
Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

2014 Stata Conference

Boston, Massachusetts

Distributed computations in Stata

Michael Lokshin Sergiy Radyakin

mlokshin@worldbank.org sradyakin@worldbank.org

Research Department (DECRG),
The World Bank

August 1, 2014

1 / 33

mailto:mlokshin@worldbank.org
mailto:sradyakin@worldbank.org


Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Motivation

there is a number of computational tasks, which clearly consist of a
large number of repeating and isolated steps;

one example is bootstrap;

another example is simulation;

While the data may be available, it is the computational power restrictions
that challenge researchers. Some simulations can run for weeks.

2 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Increasing performance

First choice is usually a CPU upgrade = get more MHz. (saves
licenses);

Modern computers are commonly equipped with multiple processors
(cores); Stata/MP can make use of multiple CPUs or cores (up to 32
on a single machine);

Not all commands benefit from parallelization (see MP Report for
details);

When a command can’t be parallelized, resources are effectively
idling, and are available to other programs on the same computer.
This can be exploited by running multiple Stata instances on the
same computer. This is the idea behind the PARALLEL package by
George Vega Yon. PARALLEL is limited to one computer.

3 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Introducing HPCCMD

We want to move further and join the power of multiple computers in
a network. This effort requires coordination of multiple computers for
distributing tasks and collecting results.

HPCCMD is a collection of software components to implement
distributed computations.

Stata is just one of many possible applications. The software itself is
written generically enough to permit other applications.

4 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

HPCCMD: Components and terminology

Aserver - coordinator server, which receives tasks and distributes them
among the computational servers. Aserver must have a fixed IP to be found
by other components. Aserver usually does not perform any other tasks (to
maximize the response rate) and doesn’t have to have Stata installed.

Bserver - a network node, receiving computational tasks. Bservers execute
an engine and host a performer. The higher the performance of each of such
station, the higher is the overall performance.

Performer - a software component actually responsible for performing
computations. [e.g. Stata]

Engine - an adapter interfacing the bserver with the performer.

Client - user’s machine that submits the jobs for computations. May or may
not have Stata installed depending on use and configuration.

Job - an assignment of the user to the cluster. Usually a collection of
multiple tasks.

Task - an individual assignment of the aserver to the bserver. Usually a part
of a larger set of tasks, a job.

5 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Overview of the system

6 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Aserver

Aserver performs the following operations:

coordinating the pool of the available computational nodes by
registering new nodes and unregistering exiting or dead nodes.

receiving the jobs from the clients, and managing the queue of jobs;

coordination of distribution of tasks among the bservers;

coordinating access to shared resources: data and code;

collecting results of individual tasks and compiling the results of jobs;

storing the job results until they are collected by the clients.

Aserver requires admin rights to be installed and operate.

7 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Bserver

Bserver is a computational server in the network. It performs the following
functions:

registering with the aserver;

acquiring the engine;

initializing the engine with stored settings;

waiting for incoming tasks;

acquiring code and data for tasks;

unpacking/unfolding incoming tasks;

responding to healthcheck quiries;

unregistering at the end of service.

Bserver requires admin rights to be installed and operate.

8 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Engine

Stata is not the engine. Stata’s installation and license are not sent
over the network.

The engine is a bridge component (library) that interfaces the
parallelization system with a particular task performer, which is Stata.

Each bserver is responsible for acquiring, unpacking and attaching the
engine upon successful registration with the aserver, and by doing
that: contracting to perform the requested tasks.

It is not even required that each bserver employs the same performer.
For example, if you believe Stata is backward compatible, then some
of the performers might be Stata 12s, and some might be Stata 13s,
and the whole cluster work as one fast Stata 12.

Each computational server must run at least one bserver component.
It can run multiple bservers. In fact it can run multiple bservers
belonging to different clusters.

9 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Engine

It is up to the engine to decide how to exploit a performer. For
example, it may decide to launch a new instance of Stata for every
task in batch mode (safer), or keep one always on and send execution
commands via OLE Automation (faster).

Aserver provides the same engine to all bservers. However its
implementation can be sophisticated enough to react to the bservers’
particular situation and it’s behavior controlled by various local
parameters.

10 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Communication subsystem

There are two communication channels in the system: ’thin’ and ’thick’:

thin is implemeted as exchange of [short] messages directly between
the nodes through TCP/IP;

thick is implemented as exchange of files through a shared storage;

11 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Shared resources

A network connected storage provides source for data and code.
Each cluster has a function to inform the client about the location of
such shared storage (in our experiments a network drive mounted on
all the network machines).
Each job submission may be accompanied by a zip archive, containing
a collection of *.ado and other files necessary for the execution of
the tasks.
There is no automatic way to decide, which files are necessary. The
person preparing the job should determine the set of files.
Each bserver acquires a copy of data and code from the shared
storage upon receiving the first task of the job.
Locally cached copies of shared resources are flushed when the job is
complete (last task of the job is done).
Bservers are logically isolated and don’t know about each other: 2
bservers running on the same computer currently require 2 data
transfers. 12 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Jobs, tasks, parameters

Jobs are collections of tasks (at least 1, usually hundreds). Tasks are
independent.

Tasks consist of parameters.

There are 3 parametes: command, data, and results

Parameters

Do what? (command)
Do with what? (data)
What do you want? (results)

Technically there are other parameters of task, such as instance
number in a batch, seed, etc

13 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Examples

A few examples of outsourcing computing power to grid for an 8-core
machine with StataMP4 license and another single core performer X.

1 One bserver instance, outsourcing Stata. 4 cores may be occupied by
the grid, 4 are always awailable to the local tasks.

2 Two bserver instances, one outsourcing Stata with 4 cores to one
cluster, and one outsourcing X with a single core to a different
cluster. Three cores are always awailable for local tasks.

3 Five bserver instances, one outsourcing Stata with 4 cores to one
cluster, and 4 outsourcing X to a different cluster.

4 Ten bservers: two outsourcing Stata with 4 cores to one cluster and 8
outsourcing X to a different cluster. (Extremely busy server).
Performers will compete for power, but can make sense if the nature
of them is different, e.g. one needs lots of CPU, another is mostly IO
operations.

14 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Reading StataMP report

Fragment from: http://www.stata.com/statamp/statamp.pdf page 25.

15 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

More examples

In some cases it can make sense to underuse the available Stata licenses if
the expectation is that the tasks are using commands that are difficult to
parallelize.

Four bserver instances: two outsourcing Stata with 3 cores to one
cluster, and two outsourcing X to a different cluster. (Stata licenses
are underused in this case, but the overall performance may be higher
than running 1 Stata instance with 4 cores).

Eight bserver instances: each outsourcing Stata with 1 core to the
cluster (for mprobit lovers).

X doesn’t have to be a statistical package or have anything to do with the computations, it may just as well be a utility. For
example, Jeph Herrin describes his workflow of creating 1500 reports in Stata and converting them into PDFs with Adobe:
http://www.statalist.org/forums/forum/general-stata-discussion/general/86543-decreasing-graph-resolution //
in this case X can be a txt to PDF converter. Other similar tasks include preparation of various graphs.

16 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Job Example

The whole job is then a plan, such as:

job example
”Z:\data\country.dta” econsimulate empl gdp migr, shock(0.05) e(infl) e(xchrate)
”Z:\data\country.dta” econsimulate empl gdp migr, shock(0.10) e(infl) e(xchrate)
”Z:\data\country.dta” econsimulate empl gdp migr, shock(0.15) e(infl) e(xchrate)
”Z:\data\country.dta” econsimulate empl gdp migr, shock(0.20) e(infl) e(xchrate)

Naturally, the command may include parameters, that vary between the
tasks, such as parameter shock above.

Currently all tasks receive the same dataset parameter - each job can have
one dataset. In the future, a job would be able to have multiple datasets
attached, and each task would be able to select one of them.

17 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Queue operation

Jobs are registered in the catalogue and their tasks are posted into a
queue;

Tasks are posted to bservers sequentially, using the FIFO principle;

Note, that this does not imply the jobs will be completed in the same
order as submitted;

Aserver maintains the status and monitors the health of all bservers;

In some cases a bserver may fail to perform a task (e.g. power
failure); when this is detected, the task is reassigned to another
bserver;

Computational servers that failed to perform a task are assigned
status ’dead’ and no longer get any assignments;

18 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Bserver settings

Behavior of the bserver is controlled by a number of parameters saved in a
local settings file, they include:

server name;

address of the aserver (ipport);

own address (ipport);

location of the performer (i.e. path to Stata);

location to use for temporary files;

number of cores to be used;

other parameters.

A particular engine may decide how to use these parameters, for example
it may ignore the cores settings in case the performer does not support it.

19 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Monitoring and administration

FarmMonitor component provides an overview of what’s going on in the cluster.
It connects to the aserver and collects statistics on the servers and jobs that are
currently queued.

Here three servers run on the same (local) machine.

Using this interface the administrator can kick out a server or schedule a
maintenance period, during which the server will not receive new tasks.

20 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Monitoring and administration

Here three bservers run on two different machines, all servers idle.

21 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Monitoring and administration

22 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Monitoring and administration

23 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Jobs queue

Similarly the list of jobs in the queue is presented, along with number of
tasks and percent complete.

24 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Client

There are two types of clients for the system:

human oriented - have interface for creating sets of tasks for jobs to
follow a particular template.

automation oriented - provide a possibility to create a job
programmatically, say, from Stata, submit to the cluster, wait for the
results, and bring the results in when they are ready.

25 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Client

To submit a job from Stata to the cluster one would use the hpccmd2

command:

hpccmd2 tasksfile, data(datafile) cluster(clusterline)

session(sessionfile)

where

tasksfile is the list of individual tasks that need to be performed by the
cluster;

datafile is the datafile to be processed by the tasks; if your file is not already
in the shared location, write the current memory content to a tempfile (in
the shared location) and pass that name here;

cluster is the cluster connection line, indicating address of the aserver, for
example: "DEMO 192.168.169.99:8888"

session is a zip file containing a collection of ado files necessary for the tasks
to be run;

26 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Tasks file

A task file can be generated:

programmatically, for bootstrap with command hpccmd gen boots

programmatically, for simulations with command hpccmd gen plan

programmatically, for other types of jobs with a custom script

manually, by directly creating a list of tasks using a simple plain text
editor, e.g. notepad.exe;

27 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Explosive substitution

28 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Plan

29 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Key

30 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Generating tasks file:

For example, the following command
tempfile tmp

hpccmd gen boots using "Z:\nlsw88.dta",
cmd(mycmd race wage tenure age)

results("e(chi2) e(ll)") reps(12) saving("‘tmp’")

creates a temporary task list that can be sent to cluster:

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

Z:\nlsw88.dta mycmd race wage tenure age e(chi2) e(ll)

31 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Client program for manual jobs submission

32 / 33



Motivation Introducing HPCCMD Components Examples Settings and operation Monitoring Client

Client program for manual jobs submission

Creating a new job

33 / 33


	Motivation
	Motivation
	Increasing performance

	Introducing HPCCMD
	Detailed description of components
	Aserver
	Bserver
	Engine
	Shared resources
	Jobs, tasks, parameters

	Examples
	Settings and operation
	Monitoring
	Client

