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Nonlinear mixed-effects models

What is NLMEM?

Jargon

Nonlinear mixed-effects models (NLMEMs)

mixed effects = fixed effects + random effects

Nonlinear multilevel models

Nonlinear hierarchical models
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Nonlinear mixed-effects models

What is NLMEM?

Applications

NLMEMs are popular in studies of biological and agricultural
growth processes, population pharmacokinetics, bioassays, and
more. For example, NLMEMs have been used to model drug
absorption in the body, intensity of earthquakes, and growth of
plants.
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Nonlinear mixed-effects models

What is NLMEM?

Two ways of thinking: Nonlinear regression + REs

Nonlinear regression:

y =
1

β1 + β2x + β3x2
+ ǫ

where ǫ ∼ N(0, σ2).

Let, e.g., β1 vary randomly across G groups:

β1 = β1j = b1 + uj , j = 1, 2, . . . ,G

where uj ∼ N(0, σ2
u).

Variance components: error variance σ2 and between-group
variance σ2

u.

Coefficients β2 and β3 can also be group-specific.
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Nonlinear mixed-effects models

What is NLMEM?

Two ways of thinking: Linear mixed-effects regression + nonlinearity

Alternatively, consider a linear mixed-effects model:

yij = β1 + β2xij + β3x
2
ij + uj + ǫij

where ǫij ∼ N(0, σ2) and uj ∼ N(0, σ2
u).

In the nonlinear mixed-effects model

yij =
1

β1 + β2xij + β3x
2
ij + uj

+ ǫij

all coefficients and random intercept uj enter nonlinearly.
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Nonlinear mixed-effects models

Simple NLMEM

Growth of orange trees

. webuse orange

(Growth of orange trees (Draper and Smith, 1998))

. twoway connected circumf age, connect(L) title(Growth of orange trees)
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Growth of orange trees
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Nonlinear mixed-effects models

Simple NLMEM

Nonlinear growth model

Consider the following nonlinear growth model:

circumfij =
β1

1 + exp
{

−
(

ageij − β2
)

/β3
} + ǫij

where ǫij ∼ N(0, σ2).

β1 is the average asymptotic trunk circumference of trees as
age → ∞.

β2 estimates the age at which a tree attains half of β1.

β3 represents the number of days it takes for a tree to grow
from 50% to about 73% of its average asymptotic trunk
circumference β1.
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Nonlinear mixed-effects models

Simple NLMEM

Graphical representation of parameters
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Growth of orange trees

β1 ≈ 175 mm, β2 ≈ 700 days, and β3 ≈ 1,000− 700 = 300

days.
Notice that the variability between trees increases with age.
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Nonlinear mixed-effects models

Simple NLMEM

Two-level nonlinear growth model

Let’s incorporate the between-tree variability into the model.

Consider the following two-level nonlinear growth model
(Pinheiro and Bates 2000):

circumfij =
β1 + u1j

1 + exp
{

−
(

ageij − β2
)

/β3
} + ǫij

where u1j ∼ N(0, σ2
u1
) and ǫij ∼ N(0, σ2).
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Nonlinear mixed-effects models

Simple NLMEM

Two-level nonlinear growth model

We use menl to fit the model.

. menl circumf = ({b1}+{U1[tree]})/(1+exp(-(age-{b2})/{b3}))

Mixed-effects ML nonlinear regression Number of obs = 35

Group variable: tree Number of groups = 5

Obs per group:
min = 7

avg = 7.0
max = 7

Linearization log likelihood = -131.58458

circumf Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 191.049 16.15403 11.83 0.000 159.3877 222.7103
/b2 722.556 35.15082 20.56 0.000 653.6616 791.4503

/b3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

tree: Identity
var(U1) 991.1514 639.4636 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184
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Nonlinear mixed-effects models

Simple NLMEM

Two-level nonlinear growth model: All coefficients vary

Similarly, we can let β2 and β3 vary across trees.

We use a more convenient multistage formulation:

circumfij =
β1j

1 + exp
{

−
(

ageij − β2j
)

/β3j
} + ǫij

where

β1j = b1 + u1j

β2j = b2 + u2j

β3j = b3 + u3j

and where u1j ∼ N(0, σ2
u1
), u2j ∼ N(0, σ2

u2
) and

u3j ∼ N(0, σ2
u3
).

Yulia Marchenko (StataCorp) 12 / 48



. menl circumf = ({beta1:})/(1+exp(-(age-{beta2:})/{beta3:})),
> define(beta1:{b1}+{U1[tree]})

> define(beta2:{b2}+{U2[tree]})
> define(beta3:{b3}+{U3[tree]})

Mixed-effects ML nonlinear regression Number of obs = 35

Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0

max = 7
Linearization log likelihood = -131.55076

beta1: {b1}+{U1[tree]}

beta2: {b2}+{U2[tree]}
beta3: {b3}+{U3[tree]}

circumf Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 191.1332 15.96228 11.97 0.000 159.8477 222.4187

/b2 722.7144 34.94627 20.68 0.000 654.2209 791.2078
/b3 345.2863 27.70935 12.46 0.000 290.977 399.5956

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

tree: Independent
var(U1) 970.67 665.4967 253.2113 3721.004

var(U2) 140.9707 2669.433 1.07e-14 1.85e+18
var(U3) 248.5962 1397.996 .0040617 1.52e+07

var(Residual) 59.43549 18.44102 32.35519 109.1812



Nonlinear mixed-effects models

Simple NLMEM

Random-effects covariance structures

With only five trees, the previous model is already too rich for
these data.

Otherwise, we could have considered a more complicated
covariance structure for the random effects:

(u1j , u2j , u3j) ∼ MVN(0,Σ), Σ =





σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33





Or assuming dependence only between some random effects
such as u1j and u2j :

Σ =





σ11 σ12 0

σ12 σ22 0

0 0 σ33





And variations of the above.
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Nonlinear mixed-effects models

Simple NLMEM

Random-effects covariance structures

For example,

. menl circumf = ({beta1:})/(1+exp(-(age-{beta2:})/{beta3:})),
> define(beta1:{b1}+{U1[tree]})
> define(beta2:{b2}+{U2[tree]})
> define(beta3:{b3}+{U3[tree]})
> covariance(U1 U2 U3, unstructured)

The above is also equivalent to:

. menl . . . , . . . covariance(U*, unstructured)

Or, assuming correlation between only U1 and U2

. menl . . . , . . . covariance(U1 U2, unstructured)
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Nonlinear mixed-effects models

Residual covariance structures

menl provides flexible modeling of within-group error
structures (or residual covariance structures).

Use option resvariance() to model error heteroskedasticity
as a linear, power, or exponential function of other covariates
or of predicted values.

Use option rescorrelation() to model the dependence of
the within-group errors as, e.g., AR or MA processes.

Combine resvariance() and rescorrelation() to build
flexible residual covariance structures.
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Nonlinear mixed-effects models

Heteroskedasticity

Growth of soybean plants

Continuing with growth processes, consider the growth of
soybean plants.

Variable weight records an average leaf weight per plant in
grams.

Variable time records the number of days after planting at
which plants were weighed.

The data are obtained from 48 plots.

. webuse soybean
(Growth of soybean plants (Davidian and Giltinan, 1995))
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Nonlinear mixed-effects models

Heteroskedasticity

Two-level growth model

Consider the following growth model:

weightij =
φ1j

1 + exp {− (timeij − φ2j ) /φ3j}
+ ǫij

where

φ1j = b1 + u1j

φ2j = b2 + u2j

φ3j = b3 + u3j

and where (u1j , u2j , u3j) ∼ MVN(0,Σ) with

Σ =





σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33





and ǫij ∼ N(0, σ2).
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Nonlinear mixed-effects models

Heteroskedasticity

menl specification

We use the following specification of menl:

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),

> define(phi1: U1[plot], xb)
> define(phi2: U2[plot], xb)

> define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)

Option

define(phi1: U1[plot], xb)

is essentially a shortcut for

define(phi1: {b1}+{U1[plot]})

The above shortcut is useful to specify linear combinations.
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Nonlinear mixed-effects models

Heteroskedasticity

menl: Regression coefficients

Estimates of regression coefficients:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:

min = 8
avg = 8.6

max = 10
Linearization log likelihood = -739.83445

phi1: U1[plot], xb
phi2: U2[plot], xb

phi3: U3[plot], xb

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1

_cons 19.25314 .8031811 23.97 0.000 17.67893 20.82734

phi2

_cons 55.01999 .7272491 75.65 0.000 53.59461 56.44537

phi3
_cons 8.403468 .3152551 26.66 0.000 7.78558 9.021357
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Nonlinear mixed-effects models

Heteroskedasticity

menl: Variance components

Estimates of variance components:

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

plot: Unstructured

var(U1) 27.05081 6.776516 16.55561 44.19929
var(U2) 17.61605 5.317899 9.748766 31.83227

var(U3) 1.972036 .9849825 .7409021 5.248904
cov(U1,U2) 15.73304 5.413365 5.123042 26.34304
cov(U1,U3) 5.193819 2.165586 .9493488 9.438289

cov(U2,U3) 5.649306 2.049458 1.632442 9.66617

var(Residual) 1.262237 .1111686 1.062119 1.50006

Store estimation results for later comparison

. estimates store nohet
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Nonlinear mixed-effects models

Heteroskedasticity

Residuals-versus-fitted plot

Residuals-versus-fitted plot

. predict fitweight, yhat

. predict res, residuals

. scatter res fitweight
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Nonlinear mixed-effects models

Heteroskedasticity

Error variability as a power function of the mean

Davidian and Giltinan (1995) proposed to model
heteroskedasticity (the error variance) in this example as a
power function of the mean:

Var(ǫij) = σ2(ŵeightij)
2δ

where ŵeightij denotes predicted mean weight values.

The corresponding menl specification is

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb)

> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)

> covariance(U1 U2 U3, unstructured)
> resvariance(power yhat, noconstant)
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Nonlinear mixed-effects models

Heteroskedasticity

menl, resvar(power): Regression coefficients

Estimates of regression coefficients:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:

min = 8
avg = 8.6

max = 10
Linearization log likelihood = -357.55571

phi1: U1[plot], xb
phi2: U2[plot], xb

phi3: U3[plot], xb

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1

_cons 16.9422 .6060387 27.96 0.000 15.75439 18.13002

phi2

_cons 51.77667 .462577 111.93 0.000 50.87004 52.68331

phi3
_cons 7.540957 .0963157 78.29 0.000 7.352182 7.729732
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Nonlinear mixed-effects models

Heteroskedasticity

menl, resvar(power): Variance components

Estimates of variance components:

plot: Unstructured
var(U1) 11.47264 2.747485 7.174911 18.34469

var(U2) 3.014802 1.278198 1.313322 6.920641
var(U3) .1017371 .0442522 .0433746 .2386292

cov(U1,U2) .5324789 .131718 .2743164 .7906415
cov(U1,U3) .9081537 .2459849 .4260321 1.390275
cov(U2,U3) .340901 .1091677 .1269363 .5548658

Residual variance:

Power _yhat
sigma2 .0496757 .0043236 .0418849 .0589156
delta .9376681 .0253201 .8880416 .9872945

Store estimation results for comparison

. estimates store het
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Nonlinear mixed-effects models

Heteroskedasticity

Model comparison

Likelihood-ratio test:

. lrtest het nohet

Likelihood-ratio test LR chi2(1) = 764.56
(Assumption: nohet nested in het) Prob > chi2 = 0.0000

Information criteria:

. estimates stats het nohet

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

het 412 . -357.5557 11 737.1114 781.3427
nohet 412 . -739.8344 10 1499.669 1539.879

Note: N=Obs used in calculating BIC; see [R] BIC note.

A heteroskedastic model fits data better.
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Nonlinear mixed-effects models

Linear combinations and random coefficients

The actual objective of the soybean study was to compare the
growth patterns of two genotypes of soybean plants in three
types of growing seasons.
Genotypes, variety: commercial variety F and experimental
variety P

Growing seasons, year: dry (1988), wet (1989), and normal
(1990).
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Nonlinear mixed-effects models

Linear combinations and random coefficients

We can include the main effects of genotypes and of years,
and their interaction in the equation for the asymptotic rate:

φ1j = b1 + β⊤

GG+ β⊤

YY+ · · ·+ u1j

menl specification:

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),

> define(phi1: i.variety##i.year U1[plot])
> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)

> covariance(U1 U2 U3, unstructured)
> resvariance(power yhat, noconstant)
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Nonlinear mixed-effects models

Linear combinations and random coefficients

We can also let the coefficients for, e.g., genotypes vary
across plots:

φ1j = b1 + β⊤

GG+ β⊤

YY+ · · ·+ u1j + F× f1j + P× p1j

where F and P are genotype indicators and f1j ∼ N(0, σ2
F ) and

p1j ∼ N(0, σ2
P ).

menl specification:

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.variety##i.year U1[plot] 1.variety#F1[plot] 2.variety#P1[plot])
> define(phi2: U2[plot], xb)

> define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)

> resvariance(power yhat, noconstant)

The i. operator is not allowed with factor variables when
specifying random coefficients because a distinct name is
required for each random coefficient.
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Nonlinear mixed-effects models

Three-level model: CES production function

Constant elasticity of substitution (CES) production function
is used in macroeconomic modeling to model the production
process as a function of inputs such as capital and labor.

It introduces and estimates the CES parameter, which makes
it a flexible modeling tool.

Elasticity of substitution (ES) measures how easy it is to
substitute one input such as capital for another such as labor.
And constant ES does not depend on input values.

Other common production functions such as Cobb-Douglas
and Leontief can be viewed as special cases of the CES
production function. For example, Cobb-Douglas function
assumes that ES is 1.
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Nonlinear mixed-effects models

Three-level model: CES production function

Consider fictional data on log(production) from the 50 U.S.
states plus D.C. divided into 9 regions over the period of 1990
to 2017.

We wish to fit the CES production function

lnPijt = β0 −
1

ρ
ln{δK−ρ

ijt + (1− δ)L−ρ
ijt }+ ǫijt

where ǫijt ∼ N(0, σ2).

lnPijt , Kijt , and Lijt are log(production), capital, and labor of
state j within region i in year t.

Parameters: log-factor productivity β0, share δ, and ρ is
related to the elasticity of substitution σ = 1/(1 + ρ).
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Nonlinear mixed-effects models

Three-level model: CES production function

We suspect that δ may be affected by regions and
states-within-regions:

δ = δij = δ0 + u1i + u2ij

where u1i ∼ N(0, σ2
u1
) and u2ij ∼ N(0, σ2

u2
). u2’s are nested

within u1’s.
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Nonlinear mixed-effects models

Three-level model: CES production function

menl: Regression coefficients

. menl lnprod = {b0}-1/{rho}*ln({delta:}*capital^(-{rho})+(1-{delta:})*labor^(-{rho})),

> define(delta: {delta0} + {U1[region]} + {U2[region>state]})

Mixed-effects ML nonlinear regression Number of obs = 1,377

No. of Observations per Group

Path Groups Minimum Average Maximum

region 9 108 153.0 216
region>state 51 27 27.0 27

Linearization log likelihood = 1094.2223

delta: {delta0}+{U1[region]}+{U2[region>state]}

lnprod Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b0 3.49166 .0040189 868.82 0.000 3.483783 3.499537
/delta0 .3439896 .0490629 7.01 0.000 .2478281 .4401511

/rho 1.109318 .0272072 40.77 0.000 1.055993 1.162644
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Nonlinear mixed-effects models

Three-level model: CES production function

menl: Variance components

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
var(U1) .0199948 .0102071 .0073517 .0543809

region>state: Identity

var(U2) .0073329 .001642 .004728 .0113729

var(Residual) .0102169 .0003967 .0094681 .0110248

There is some variability between regions and states-within-regions
in the estimates of the share parameter.
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Nonlinear mixed-effects models

Three-level model: CES production function

Predict region-specific share parameters

We can predict the share parameter for each region:

. predict (delta = {delta:}), relevel(region)

. list region delta if region[_n]!=region[_n-1], sep(0)

region delta

1. New England .2699136
163. Mid Atlantic .1453616

271. E North Central .6366224
406. W North Central .3761043
595. South Atlantic .3879336

811. E South Central .344411
919. W South Central .17091

1027. Mountain .4102365
1243. Pacific .3544133
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Nonlinear mixed-effects models

Three-level model: CES production function

Estimate ES

We can use nlcom to estimate the ES:

. nlcom (sigma: 1/(1+_b[/rho]))

sigma: 1/(1+_b[/rho])

lnprod Coef. Std. Err. z P>|z| [95% Conf. Interval]

sigma .4740868 .006115 77.53 0.000 .4621015 .4860721

The estimated ES is 0.47, which is less than one meaning that
the capital and labor are not very good substitutes in this
example. If the labor price increases, substituting capital for
labor will not offset the increase in the total expenditure on
labor.
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Nonlinear mixed-effects models

Pharmacokinetic model

Pharmacokinetics (PKs) studies the distribution of drugs
within the body and is often referred to as the study of “what
the body does with a drug”.

It models drug output based on drug input by summarizing
concentration-time measurements, while accounting for
patient-specific characteristics.
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Nonlinear mixed-effects models

Pharmacokinetic model

PK study of theophylline

Consider data on the antiasthmatic agent theophylline
(Boeckmann, Sheiner, and Beal [1994] 2011).

The drug was administered orally to 12 subjects with the
dosage (mg/kg) given on a per weight basis.

Serum concentrations (in mg/L) were obtained at 11 time
points per subject over 25 hours following administration.
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Nonlinear mixed-effects models

Pharmacokinetic model

PK study of theophylline

Concentration-time profiles of 12 subjects:

. webuse theoph
(Theophylline kinetics (Boeckmann et al., [1994] 2011))

. twoway connected conc time, connect(L)
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Nonlinear mixed-effects models

Pharmacokinetic model

One-compartment model

The concentration rises rapidly initially and then decays
exponentially.

In PKs, such pattern is often described by a so-called
one-compartment open model with first-order absorption and
elimination. (Body is viewed as one “blood compartment”.)

This model is used for drugs that distribute relatively rapidly
throughout the body, which is a reasonable assumption for the
kinetics of theophylline after oral administration.
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Nonlinear mixed-effects models

Pharmacokinetic model

One-compartment model

One-compartment open model for theophylline kinetics:

concij =
dosejkekaj

Clj

(

kaj − ke
)

{

exp (−ketimeij)− exp
(

−kajtimeij
)}

+ǫij

for i = 1, . . . , 11 and j = 1, . . . , 12.

Parameters: elimination rate constant ke , and, for each
subject j , absorption rate constant kaj and clearance Clj .
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Nonlinear mixed-effects models

Pharmacokinetic model

One-compartment model

Elimination rate constant describes the rate at which a drug is
removed from the body. It is defined as the fraction of drug in
the body eliminated per unit time.

Absorption rate constant describes the rate at which a drug is
absorbed by the body.

Clearance measures the rate at which a drug is cleared from
the plasma. It is defined as the volume of plasma cleared of
drug per unit time.
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Nonlinear mixed-effects models

Pharmacokinetic model

One-compartment model

All parameters must be positive, and clearance and absorption
rate constant are allowed to vary among subjects:

Clj = exp (β0 + u0j)

kaj = exp (β1 + u1j)

ke = exp (β2)

where u0j ∼ N(0, σ2
u0
) and u1j ∼ N(0, σ2

u1
).

Heteroskedasticity, often present in PK data, is modeled using
the power function plus a constant.

Var (ǫij) = σ2{(ĉoncij)
δ + c}2

Adding a constant avoids the variance of zero at time = 0,
because the concentration is zero at that time.
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Nonlinear mixed-effects models

Pharmacokinetic model

menl: Coefficients

. menl conc =(dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*(exp(-{ke:}*time)-exp(-{ka:}*time)),

> define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]}))

> define(ke: exp({b2}))
> resvariance(power _yhat) reml

Mixed-effects REML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12

Obs per group:

min = 11
avg = 11.0

max = 11
Linear. log restricted-likelihood = -172.44384

cl: exp({b0}+{U0[subject]})

ka: exp({b1}+{U1[subject]})
ke: exp({b2})

conc Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b0 -3.227295 .0619113 -52.13 0.000 -3.348639 -3.105951

/b1 .4354519 .2072387 2.10 0.036 .0292716 .8416322
/b2 -2.453743 .0517991 -47.37 0.000 -2.555267 -2.352218
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Pharmacokinetic model

menl: Variance components

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Independent

var(U0) .0316416 .014531 .0128634 .0778326
var(U1) .4500585 .2228206 .1705476 1.187661

Residual variance:
Power _yhat

sigma2 .1015759 .086535 .0191263 .5394491
delta .3106636 .2466547 -.1727707 .7940979

_cons .7150935 .3745256 .2561837 1.996063
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Pharmacokinetic model

menl specification

In the previous menl model, we used restricted maximum
likelihood estimation (REML) via option reml instead of the
default maximum likelihood (ML) estimation to account for a
moderate number of subjects.

We specified nonlinear functions of model parameters in the
define() options.
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Summary

menl fits NLMEMs; see [ME] menl.

menl implements the Lindstrom–Bates method, which is
based on the linearization of the nonlinear mean function with
respect to fixed and random effects.

menl supports ML and REML estimation and provides flexible
random-effects and residual covariance structures.

menl supports single-stage and multistage specifications.

You can predict random effects and their standard errors,
group-specific nonlinear parameters, and more after
estimation; see [ME] menl postestimation.

NLMEMs are known to be sensitive to initial values. menl
provides default, but for some models you may need to specify
your own. Use option initial().

NLMEMs are known to have difficulty converging or
converging to a local maximum. Trying different initial values
may help.
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