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Universidad de Alicante

acarnero@merlin.fae.ua.es

2Dpt. Estad́ıstica

Universidad Carlos III de Madrid

dpena@est-econ.uc3m.es and ortega@est-econ.uc3m.es

May 25, 2004

Abstract

This paper analyzes the effects caused by the presence of outliers on the iden-

tification and estimation of GARCH models. We show that outliers can lead

to detect spurious conditional heteroscedasticity and they can also hide gen-

uine ARCH effects. First, we derive the asymptotic biases caused by outliers

on the sample autocorrelations of squared observations and their effects on

some popular homoscedasticity tests. Then, we obtain the asymptotic biases

of the OLS estimates of the parameters of ARCH(p) models and analyze their
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finite sample behavior by means of extensive Monte Carlo experiments. The

finite sample results are also extended to GLS and ML estimates of ARCH(p)

and GARCH(1,1) models. All the results are illustrated analyzing real series

of financial returns.
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1 Introduction

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) mod-

els were introduced by Engle (1982) and Bollerslev (1986) to represent the

dynamic evolution of conditional variances and they have been extensively

used in the empirical analysis of high frequency financial returns. However,

we often find that when these models are fitted to real time series, the residu-

als still have excess kurtosis, which could be explained, among other reasons,

by the presence of outliers; see, for example, Bollerslev (1987), Teräsvirta

(1996) and Franses and Ghijsels (1999).

Previous results on the effects of outliers on the identification and estima-

tion of conditional heteroscedasticy are somehow confusing. Some authors

argue that outliers generate spurious heteroscedasticity. For example, Balke

and Fomby (1994) conclude that the outliers in several macroeconomic series

of the US economy are able to explain most of the observed non-linearities.

A similar conclusion is reached by Franses and Gijsels (1999) for macroeco-

nomic series and Aggarwal et al. (1999) and Franses and Van Dijk (2000)

for financial returns. On the other hand, other authors suggest that the

presence of outliers may hide genuine heterocedasticity; see, for example,

Mendes (2000) and Li and Kao (2002) for an empirical application with ex-

change rates returns.

The simultaneous presence of conditional heteroscedasticity and outliers

in time series can be easily confused because both phenomena cause excess

kurtosis and, if outliers appear in patches, autocorrelated squared observa-

tions. The objective of this paper is to show that the presence of additive
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outliers in uncorrelated GARCH series may generate spurious heteroscedas-

ticity when they appear in patches, and hide legitimate heterocedasticity

when they are isolated. Consequently, both the size and power of tests for

conditional homoscedasticity can be distorted in the presence of outliers.

Also, they modify the estimated autocorrelations of squares and the esti-

mated parameters of the conditional variance.

The paper is organized as follows. Section 2 defines different types of

outliers in the context of the popular ARCH(p) and GARCH(1,1) models.

In this paper, we focus on level outliers that do not affect the conditional

variance. Section 3 analyses the effects of level outliers on the sample au-

tocorrelations of squared observations and on several tests for conditional

heteroscedasticity. In section 4, we derive the asymptotic bias of the Ordi-

nary Least Squares (OLS) estimator of the parameters of ARCH(p) models

contaminated by level outliers. Its finite sample properties are also ana-

lyzed by means of extensive Monte Carlo experiments. These results are

also extended to the Maximum Likelihood (ML) estimator. Section 5 anal-

yses the finite sample properties of the ML estimator of the parameters of

GARCH(1,1) models. Section 6 illustrates the results by analyzing several

real series of financial returns. Finally, Section 7 concludes the paper.

2 GARCH models and outliers

The most popular model to represent the dynamic evolution of conditional

variances is the GARCH(1,1) model proposed independently by Bollerslev

(1986) and Taylor (1986). This model specifies the series of interest, yt, as
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follows

yt = εtσt (1)

σ2
t = α0 + α1y

2
t−1 + βσ2

t−1

where εt is a Gaussian white noise with mean zero and variance one. The

parameters α0, α1 and β are assumed to satisfy the usual restrictions to guar-

antee the positiveness, stationary and existence of the fourth order moment

of yt; see, for example, Bollerslev et al. (1994). Alternatively, the conditional

variance in (1) can be approximated assuming that β = 0 and adding p− 1

additional lags of squared observations. The resulting model was originally

proposed by Engle (1982) and it is known as ARCH(p). In this case, the

conditional variance is given by

σ2
t = α0 +

p∑
i=1

αiy
2
t−i (2)

where the parameters αi should also be restricted so that σ2
t is positive and

yt is stationary with finite fourth order moment.

It is well known that in both models the series yt is an uncorrelated

sequence. However, it is not independent because y2
t is correlated. To derive

its autocorrelation function (acf), it is useful to write the ARCH(p) model

as an AR(p) for squared observations as follows

y2
t = α0 +

p∑
i=1

αiy
2
t−i + νt (3)

where the noise, νt = σ2
t (ε

2
t − 1), is a zero mean uncorrelated sequence.

However, it is conditionally heteroscedastic and, consequently, it is non-

independent and non-Gaussian. From equation (3), it is straightforward to
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see that the acf of y2
t has the same shape as the acf of an AR(p) model with

autoregressive parameters αi, i = 1, ..., p. Similarly, the GARCH(1,1) model

can be written as

y2
t = α0 + (α1 + β)y2

t−1 + νt − βνt−1 (4)

and thus the acf of y2
t has the shape of the acf of an ARMA(1,1) model with

autoregressive parameter α1 + β and moving average parameter β. From (4)

it is also clear that when the ARCH parameter α1 = 0, the parameter β is

not identified. In this case, the series yt is homoscedastic.

Outliers were originally defined for ARMA(p, q) models given by,

yt =
θq(L)

φp(L)
at (5)

where θq(L) and φp(L) are the moving average and autoregressive polyno-

mials and at is an uncorrelated sequence. Fox (1982) proposed two types of

outliers in model (5): additive (AO) and innovative (IO). An AO only affects

one particular observation and the observed series, zt, is given by

zt = yt + ωI(t = τ) (6)

where ω is the size of the outlier and I(t = τ) is the indicator function that

takes value one when t = τ and zero otherwise. On the other hand, the effect

of an IO is transmitted through time with the same dynamics as the rest of

the series and the observed series, zt, is given by

zt =
θq(L)

φp(L)
(at + ωI(t = τ)) (7)

Given that ARCH(p) and GARCH(1,1) models are uncorrelated, θq(L) =

φp(L) = 1 and, consequently, the distinction between AO and IO in this
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context is not relevant. However, it is important to distinguish whether an

outlier affects or not future conditional variances. In this sense, Hotta and

Tsay (1998) introduce two types of outliers in GARCH models: level (LO)

and volatility (VO). A LO affects only the level of the series and has no effect

on the conditional variance. Therefore, if the series yt is contaminated by a

LO of size ω at time τ , the observed series is given by (6) but the conditional

variance is like in (1) and depends on the underlying series yt and not on the

observed series zt. Similarly, the conditional variance is given by (2) when

dealing with an ARCH(p) model. On the other hand, a VO affects both the

level and conditional variance of the series. In this case, the observed series

is also given by expression (6) but if the model is a GARCH(1,1) model, the

conditional variance is given by

σ2
t = α0 + α1z

2
t−1 + βσ2

t−1

while if it is an ARCH(p) model, it is given by

σ2
t = α0 +

p∑
i=1

αiz
2
t−i.

In this paper we focus on LO. We expect that similarly to what happens to

IO in the context of linear models, the effects of VO should be less important

as they are transmitted by the same dynamics as the rest of the series; see,

for example, Peña (2001).

3 Effects of outliers on the identification of

conditional heteroscedasticity

ARCH models generate autocorrelated squared observations and conditional

heteroscedasticity tests are mainly based on this property. In this section, we
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derive the biases caused by level outliers on the sample autocorrelations of

squared observations of ARCH(p) and GARCH(1, 1) models and show how

they affect some popular tests of conditional heteroscedasticity.

3.1 Effects on the correlogram of squares

Consider that the series of interest, yt, is stationary and it has been contam-

inated from time τ ownwards by k consecutive outliers of the same size, ω.

In this case, the observed series, zt, is given by

zt =

{
yt + ω if t = τ, τ + 1, . . . , τ + k − 1

yt otherwise.
(8)

The autocorrelation of order h, h = 1, 2, . . ., of squared observations is

estimated by

r(h) =

T∑
t=h+1

z2
t z

2
t−h − T−h

T 2

(
T∑

t=1

z2
t

)2

T∑
t=1

z4
t − T−1

(
T∑

t=1

z2
t

)2 . (9)

If the sample size, T, is large relative to the order of the estimated auto-

correlation, h, the numerator of r(h) can be written as follows

∑

t∈T(h)

y2
t y

2
t−h +

h−1∑
i=0

(yτ+i + ω)2y2
τ+i−h +

k−1∑

i=h

(yτ+i + ω)2(yτ+i−h + ω)2 +

+
k+h−1∑

i=k

y2
τ+i(yτ+i−h + ω)2 − T−1


 ∑

t∈T(0)

y2
t +

k−1∑
i=0

(yτ+i + ω)2




2

(10)

where T(s) = {s + 1, ..., τ − 1, τ + k + s, ..., T}. Similarly, the denominator

can be written as

∑

t∈T(0)

y4
t +

k−1∑
i=0

(yτ+i + ω)4 − T−1


 ∑

t∈T(0)

y2
t +

k−1∑
i=0

(yτ+i + ω)2




2

(11)
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If the order of the autocorrelation is smaller than the number of consec-

utive outliers, i.e., h < k, then the third summation in (10) contains k − h

terms which depend on ω4. Therefore, it is easy to see that expression (10) is

equal to (k−h− k2

T
)ω4+o(ω4). However, if h ≥ k then the third summation in

(10) disappears and the numerator of r(h) is equal to −k2

T
ω4 +o(ω4). On the

other hand, expression (11) is equal to (k− k2

T
)ω4 + o(ω4). Consequently, the

limit of r(h) when the size of the outliers tends to infinity and the sample size

is large relative to k is k−h
k

if h < k and zero if h ≥ k. Therefore, one single

large outlier biases towards zero all the autocorrelations of squares, making

difficult the detection of genuine heteroscedasticity. However, several consec-

utive outliers can generate positive autocorrelations of squares even if they

are truly zero. If, for example, yt is a white noise series, two large consecutive

outliers generate an autocorrelation of order one approximately equal to 0.5

and all the others close to zero. With three large consecutive outliers all

the autocorrelations are approximately zero except r(1) and r(2) which are

close to 0.6 and 0.3 respectively. In this case, outliers can be confused with

conditional heteroscedasticity. Furthermore, it is important to notice that,

in the presence of large outliers, the autocorrelations tend to the same values

independently on the dynamics of the squared uncontaminated observations.

As an illustration, we have simulated 1000 replicates of size T = 1000 of

a Gaussian white noise process with zero mean and variance one. First, we

have contaminated each series by one single LO of size 15 at time t = 500

and, second, by two consecutive outliers of the same size as before at times

t = 500 and 5011. The top panels of Figure 1 plot the mean correlogram

1Similar results have been obtained when outliers appear in other positions.
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of squared observations through all Monte Carlo replicates in both cases. It

can be seen that although the series are uncorrelated, the mean of the first

estimated autocorrelation is approximately 0.5 when they are contaminated

by consecutive outliers.

We have also generated 1000 series by the GARCH(1,1) model in (1) with

parameters α0 = 0.1, α1 = 0.1 and β = 0.82. In this case, the marginal vari-

ance is also one but the squares are autocorrelated. The simulated GARCH

series have been contaminated by the same outliers as before. The bot-

tom panels of Figure 1 plot the acf of squares together with the means of

the sample autocorrelations estimated through the Monte Carlo replicates.

When there is a single outlier, all the estimated autocorrelations are very

close to zero and when outliers appear in patches, the autocorrelations are

zero for all lags except the first one which is approximately 0.5. Notice that,

as indicated by the theoretical analysis, in the presence of large outliers, the

expected autocorrelations of squares are the same for GARCH and white

noise series.

3.2 Testing for conditional heteroscedasticity

Many popular tests for conditional homoscedasticity are based on autocorre-

lations of squares. Therefore, if these autocorrelations are biased, the proper-

ties of the tests will be affected. In this subsection we analyze the behavior of

four tests for conditional homoscedasticity, namely, the Lagrange Multiplier

(LM) of Engle (1982), its robust version (RLM) proposed by Van Dijk et al.

(1999), the McLeod and Li (1983) and the Peña and Rodriguez (2002) tests.

2Similar results have been obtained generating series by alternative conditional het-
eroscedastic models like EGARCH and Stochastic Volatility.
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The LM(p) test for ARCH effects proposed by Engle (1982) is given

by TR2, where R2 is the determination coefficient of the regression of the

squared observations, y2
t , on a constant and p lags y2

t−1, ..., y
2
t−p. Under the

null hypothesis of conditional homoscedasticity, this statistic is asymptoti-

cally distributed as a χ2 with p degrees of freedom. Lee (1991) shows that the

LM(p) test for GARCH(p, q) is the same as for ARCH(p) since, as we have

previously mentioned, the parameter β in (1) is not identified when α1 = 0.

The finite sample properties of the LM test have been studied among many

others by Lee and King (1993) who show that its empirical size is under the

nominal while the power is reasonable.

Alternatively, McLeod and Li (1983) proposed to test for conditional het-

eroscedasticity using the Box-Ljung statistic for squared observations given

by

Q(m) = T (T + 2)
m∑

j=1

r2(j)

(T − j)
. (12)

If the eighth order moment of yt exists and under the null hypothesis

of conditional homoscedasticity, Q(m) is approximately distributed as a χ2

with m degrees of freedom.

Peña and Rodriguez (2002) propose to test for conditional homoscedas-

ticity using the following statistic

D(m) = T (1− |Rm|1/m) (13)

where

Rm =




1 r̃(1) · · · r̃(m)
r̃(1) 1 · · · r̃(m− 1)

...
...

. . .
...

r̃(m) r̃(m− 1) · · · 1



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and r̃(j) is the standardized autocorrelation of order j, given by r̃(j) =
√

T+2
T−j

r(j). Under the null hypothesis of conditional homoscedasticity and if

the eighth order moment of yt exists, the asymptotic distribution of D(m)

can be approximated by a Gamma distribution, γ(α, β) , with α = 3m(m +

1)/4(2m + 1) and β = 3m/2(2m + 1).

Finally, Van Dijk et al. (1999) show that, in the presence of consecutive

AO, the LM test rejects the null hypothesis of conditional homoscedasticity

too often. Furthermore, long isolated outliers lead to an asymptotic power

loss of the LM test. They propose an alternative robust statistic (RLM) with

better size and power properties; see also Franses et al. (2004) for an empir-

ical illustration with series of financial returns. However, the performance of

the robust test is adequate only when the proportion of outliers is less than

1% and it is seriously damaged when the proportion of outliers is greater

than 5%.

Using the results in previous subsection on the effects of large outliers on

the sample autocorrelations of squared observations, we analyze how these

large outliers affect the size and power of the LM(m), Q(m) and D(m) tests.

With respect to the LM(m) test, consider the equation of the AR(p) model for

y2
t in (3) with p = m. It is well known that, for this model, the relationship

among the parameters αi and the first p − 1 autocorrelations of squared

observations is given by



1 ρ(1) · · · ρ(p− 1)
ρ(1) 1 · · · ρ(p− 2)

...
...

. . .
...

ρ(p− 1) ρ(p− 2) · · · 1







α1

α2
...

αp


 =




ρ(1)
ρ(2)

...
ρ(p)


 (14)

where ρ(h) is the autocorrelation of order h of squared observations; see,
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for example, Brockwell and Davies (1996). The same relationship could be

established between sample autocorrelations and parameters estimated by

OLS. As we have seen before, one isolated outlier biases towards zero all

estimated autocorrelations. Consequently, the p× p matrix on the left hand

side of (14) becomes approximately the identity matrix while the vector on

the right becomes approximately zero. Therefore, for large isolated outliers,

all the estimated parameters αi, i = 1, ..., p are close to zero. It is straight-

forward to see that, in this case, the determination coefficient R2 is zero.

Consequently, if yt is homoscedastic, the size of the LM test is zero. How-

ever, if the series follows an ARCH model, the power is also zero.

To consider the effects of consecutive outliers on the LM(m) test, we are

considering m = 1. Notice that if the null is rejected in this particular case,

it is going to be rejected for any other value of m. The LM(1) test is given

by

LM(1) = T

α̂2
1

T∑
t=2

(
y2

t−1 −
∑

y2
t−1

T−1

)2

T∑
t=1

(
y2

t −
∑

y2
t

T

)2

We have seen before that k consecutive outliers bias the autocorrelation of

order one and, consequently, the estimated ARCH(1) parameter, α̂1, towards

T (k−1)−k2

Tk−k2 . Consequently, the limit of the LM(1) statistic is given by

lim
ω→∞

LM(1) = T

(
T (k − 1)− k2

Tk − k2

)2

−→
T→∞

∞

The null hypothesis is always rejected. In this case, if the true process is

homoscedastic, the size tends to one while if it is heteroscedastic the power

tends to one.
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Next, we consider the properties of the McLeod-Li test in (12) when the

series yt is affected by an isolated large outlier. In this case, the limit of the

estimated autocorrelations of any order when the outlier size goes to infinity

is 1
1−T

. Then,

lim
ω→∞

Q(m) = T (T + 2)
m∑

j=1

1

(1− T )2(T − j)
<

T (T + 2)m

(1− T )2(T −m)
−→
T→∞

0

Consequently, the null is never rejected. In this case, similarly to what

happens to the LM test, if the series is homoscedastic the size is zero while

if the series is heteroscedastic, the power is also zero.

On the other hand, we consider the effect of k consecutive outliers on the

Q(1) = T (T+2)r(1)2

T−1
test. As before, notice that if the null is rejected in this

case, is going to be rejected for any other lag. The limit of the order one

autocorrelation when the outliers size goes to infinity is in this case T (k−1)−k2

Tk−k2 .

Then

lim
ω→∞

Q(1) = T (T + 2)
T (k − 1)− k2

(Tk − k2)(T − 1)
−→
T→∞

∞

Therefore, even if the series is truly homoscedastic, patches of large outliers

make the McLeod-Li test to reject always the null. The asymptotic size is, in

this case, one. On the other hand, if the series is heteroscedastic, the power

is also one.

The same kind of arguments can be use to show that the asymptotic

size and power of the Peña-Rodriguez test in (14) are zero when series are

contaminated by a large isolated outlier while they are one in the presence

of large consecutive outliers.

The previous analytical results are asymptotic and for large outlier sizes.

To analyze the effects of relatively moderate outliers on the sizes of the three
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tests considered above and of the robust test of Van Dijk et al. (1999), we

have simulated 1000 Gaussian white noise series of sizes T = 500, 1000 and

5000 that have been contaminated first, by one single outlier and then, by

two consecutive outliers of the same size. For each simulated series, we test

the null hypothesis of conditional homoscedasticity using the LM(m) and

the corresponding robust test for m = 1 and the Q(m) and D(m) tests for

m = 20. The performance of the LM and D(m) tests are very similar to the

Q(m) test and, consequently, we only plot the size and power of the latter.

The top panel on the left of Figure 2 plots the empirical sizes of the Q(20)

and RLM(1) tests as a function of the outlier size, for the same sample sizes,

when the nominal size is 5%. In this plot, it is possible to observe that, for

small or moderate sample sizes, i.e. T = 500 or 1000, when the outlier size is

greater than 7 standard deviations the size of the Q(m) test is zero. However,

if the sample size is large, i.e. T = 5000, the size only goes to zero if the

outlier is as large as 10 standard deviations. On the other hand, the size of

the robust test is around 9%, i.e. nearly double the nominal, independently

on the outlier size. What is even worse is that its size strongly deteriorates

when the sample size increases. For example, when T = 5000, the empirical

size is around 25% independently on the outlier size. Therefore, although

the robust test is clearly oversized, its size is not affected by the presence of

outliers.

We have also contaminated the simulated Gaussian series by two consec-

utive outliers. The right panel on top of Figure 2 plots the empirical sizes

of the two tests in this case. First of all, it is possible to observe that the

behavior of the robust test is similar to the one observed when there was just
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one outlier. However, notice that for relatively small outliers sizes, like for

example, 5 standard deviations, the size of the non-robust tests is almost 1

for any of the three sample sizes considered. Therefore, rather small outliers

in homoscedastic series make the homoscedasticity tests to detect conditional

heteroscedasticity even for relatively large samples.

To analyze the power of the considered homoscedasticity tests in the

presence of outliers of finite size, the left bottom panel of Figure 2 plots

the percentage of rejections of the null hypothesis as a function of the outlier

size. These results are based on 1000 series of the same sample sizes as before

generated by the same GARCH(1, 1) model that have been contaminated by

a single outlier. This figure shows that if the outlier size is smaller than 4 or

5 standard deviations, the power of the portmanteau test is larger than the

power of the robust test when the sample size is T = 500 or 1000. For these

sample sizes, the power of the Q(m) test decreases very rapidly with the size

of the outlier. If this size is larger than approximately 7 standard deviations,

the power is negligible. However, if the sample size is rather large as, for

example, T = 5000, then a very large outlier is needed for the RLM test to

have more power than the Q(m) test. In our experiments, the power of the

Q(m) test is affected only if the outlier is larger than 10 standard deviations.

We have also contaminated the series with two consecutive outliers. The

empirical powers have been plotted in the right bottom panel of Figure 2.

As we can see, the power of the robust test is clearly lower than the power of

the non-robust test considered for all sample sizes and outlier sizes chosen.

However, given that their sizes are clearly distorted, these tests are worthless

in the presence of consecutive outliers.
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Summarizing, relatively small consecutive outliers are able to generate

spurious heteroscedasticity while larger sizes of outliers are required to hide

genuine heteroscedasticity when standard tests are used for testing for con-

ditional homoscedasticity. On the other hand, the available robust LM test

seems to be of little help because it suffers from important size distortions

that get worse with the sample size.

4 Effects of outliers on the estimation of ARCH

models

The ARCH(p) model is hardly implemented for the analysis of real time series

of financial returns because a very large number of lags, p, is often required

to adequately represent the dynamic evolution of the conditional variances.

However, this model is attractive because it is possible to obtain a closed-

form expression for the OLS estimator of its parameters. In the following

subsection, we quantify the effects of level outliers on the OLS estimates of

ARCH(p) models. In subsection 4.2, we also analyze the effects of outliers on

the GLS estimator. Finally, the results are extended in the next subsection

to the ML estimators.

4.1 OLS estimator

The OLS estimator of the parameters of the ARCH(p) model defined in (3)

is given by

α̂OLS = (X ′X)−1(X ′Y ) (15)
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where α is the vector of parameters given by α = (α0 α1 . . . αp)
′, Y =

(y2
p+1 y2

p+2 . . . y2
T )′ and X is the following matrix

X =




1 y2
p y2

p−1 · · · y2
1

1 y2
p+1 y2

p · · · y2
2

...
...

...
. . .

...
1 y2

T−1 y2
T−2 · · · y2

T−p




Weiss (1986) shows that if the 4th order moment of yt exists, α̂OLS is con-

sistent. Furthermore, if the 8th order moment is finite, then the asymptotic

distribution of α̂OLS is given by

√
T (α̂OLS − α)

d→ N(0, Σ−1
XXΣXΩXΣ−1

XX)

where lim
T→∞

X′X
T

= ΣXX and lim
T→∞

X′V V ′X
T

= ΣXΩX ; see Engle (1982) for suffi-

cient conditions for the existence of higher moments of yt when εt is Gaussian.

Consequently, a consistent estimator of the asymptotic covariance matrix

of α̂OLS is given by

(X ′X)−1S(X ′X)−1 (16)

where

S =




T∑
t=p+1

ν̂2
t

T∑
t=p+1

ν̂2
t y

2
t−1 · · ·

T∑
t=p+1

ν̂2
t y

2
t−p

T∑
t=p+1

ν̂2
t y

4
t−1 · · ·

T∑
t=p+1

ν̂2
t y

2
t−1y

2
t−p

. . .
...

T∑
t=p+1

ν̂2
t y

4
t−p




and ν̂t are the residuals from the OLS regression in (3).

Alternatively, the covariance matrix of the OLS estimator can be esti-

mated taking into account that the structure of the matrix Ω = E(V ′V ) is

known. In particular, Ω = diag(σ2
p σ2

p+1 · · · σ2
T ). Therefore, it is also

possible to estimate the asymptotic covariance matrix of α̂OLS by
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(X ′X)−1X ′Ω̂X(X ′X)−1 (17)

where Ω̂ is given by the Ω matrix where the ARCH parameters have been

substituted by the corresponding estimates.

Notice that although the OLS estimator is the best unbiased linear es-

timator, it is not efficient because, as we mentioned before, the noise νt is

conditionally heteroscedastic.

Next, we analyze how a single outlier affects the asymptotic and finite

sample properties of α̂OLS. We then consider the effects of patches of outliers.

4.1.1 Isolated outliers

Consider a series generated by an ARCH(p) model which is contaminated at

time τ by a single level outlier of size ω, as in (8) with k = 1. Then, α̂OLS in

(15) will be computed using the contaminated observations z2
t instead of y2

t

and the matrix X ′X will become

(
T − p (ω2 + o(ω2))1′

(ω2 + o(ω2))1 (ω2 + o(ω2))F

)

where 1 is a p × 1 column vector equal to (1 1 · · · 1)′, F is a p × p

symmetric matrix with fij = 1 for i = 1, . . . , p, j = i + 1, . . . , p and fii = ω2

for i = 1, . . . , p. And all elements in X ′Y will be equal to ω2 + o(ω2). Then,

after some tedious algebra it can be seen that

lim
ω→∞

α̂OLS
i =

{
∞ for i = 0

− 1
T−2p

for i = 1, . . . , p.
(18)

The limit in (18) shows that, as expected, if the sample size is large

enough, the estimated unconditional variance, given by α̂0/(1 −
∑p

i=1 α̂i),
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tends to infinity when the outlier size tends to infinity. Furthermore, as

expected from the results on the autocorrelations obtained in the previous

section, all the estimated ARCH parameters tend to zero and, consequently,

the dynamic dependence in the conditional variance disappears. Finally,

notice that the persistence of the volatility in an ARCH(p) model, measured

by
∑p

i=1 αi, also decreases as the size of the outlier increases. It is also

important to notice that if the sample size is not very large, it is possible to

obtain estimates that do not satisfy the usual non-negativity restrictions.

To illustrate the behavior of the OLS estimator of the parameters of

ARCH(p) models in the presence of a LO, we have generated 1000 series by

an ARCH(1) model with parameters α0 = 0.8 and α1 = 0.2. The sample

sizes are T = 500, 1000 and 5000 and all the series have been contaminated

with a single LO of size ω. The values chosen for ω are 5, 10 and 15 standard

deviations. First and fourth rows of Figure 3 plot kernel estimates of the

density of the α̂0 and α̂1 OLS estimators respectively when the size of the

outlier is ω = 5, 10 and 15. Notice that, as expected, the bias caused by

an outlier of fixed size is smaller the larger the sample size T . For example,

the mean of the OLS estimates of α0 and α1 when there is an outlier of

size 10, is 1.18 and 0.02 respectively when T = 500. However, if T = 1000,

the corresponding means are 1.06 and 0.04 and they are 0.91 and 0.11 when

T = 5000. Furthermore, Figure 3 also shows that the effect of the size of

the outlier on the bias of the OLS estimator of α1 is very quick when the

sample sizes are T = 500 or 1000. Even for T = 5000, relatively small

outliers generate strong negative biases on the OLS estimator of the ARCH

parameter. In this figure it is also possible to see that the dispersion of α̂1
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decreases with the size of the outlier while it is approximately constant for

α̂0.

An interesting problem that arises here is to study the effect that out-

liers have not only on the parameter estimates but also on the variance of

the estimators. In order to have a first answer, we have computed, for each

Monte Carlo replicate, the variance of α̂OLS
0 and α̂OLS

1 estimated with ex-

pressions (16) and (17). We denote the first one by White and the second

one by ARCH. The first and fourth rows of Figure 4 plot, for α̂OLS
0 and

α̂OLS
1 respectively, the ratio between the empirical variance, and the esti-

mated asymptotic variance averaged through all Monte Carlo replicates. If

the sample size is big enough and there are no outliers, we would expect this

ratio to be close to one. With respect to the variance of α̂OLS
0 , it is possible

to observe that the White variances overestimate the empirical variances.

The bias is larger, the larger the outlier size. The biases are less pronounced

when the information on the structure of the volatility is used to estimate

the variance of α̂OLS
0 . In this case, very large outliers can even cause an un-

derestimation of the empirical variance. In any case, for outliers smaller than

5, 8 and 13 standard deviations for T = 500, 1000 and 5000 respectively, the

biases of the White variances are smaller. On top of this, when estimating

the variance of α̂OLS
1 , the results in Figure 4 suggest that biases are smaller

when using the White estimator. Therefore, it seems more adequate to esti-

mate the variance of the OLS estimator of the ARCH model using equation

(16).

Summarizing the results of Figures 3 and 4 for the OLS estimator of

an ARCH(1) model, we can say that a single outlier of a big size makes
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α0 to be overestimated and α1 to be underestimated. The presence of a

big outlier in the sample also makes the variance of the OLS estimators to

be overestimated. Similar results have been obtained when the series are

generated by an ARCH(p) model, for different values of p.

4.1.2 Patches of outliers

When the original series, yt, is contaminated by k consecutive outliers as

given in (8), the effects on the OLS estimator depend on the relationship

between the number of outliers and the order of the ARCH model. First, let

us consider k ≥ p, i.e., there are at least as many outliers as the number of

lags in the ARCH model. In this case, it is necessary to consider separately

the cases where p = 1 and p > 1. This is because in the first case, the

parameter α1 receives the whole effect of the outliers while in the latter, this

effect is shared by all the parameters.

We consider first the effect of k consecutive outliers on the estimates of

the parameters of an ARCH(1) model. In this case, taking into account that

∑T−1
t=1 z2

t = kω2 + o(ω2) and
∑T−1

t=1 z4
t = kω4 + o(ω4) it is possible to show

that

lim
ω→∞

α̂OLS
i =

{
∞ for i = 0

(T−1)(k−1)−k2

(T−1)k−k2 for i = 1
(19)

Notice that if k = 1, we obtain the same result as in (16). The limit

in (17) shows that isolated and consecutive outliers have the same effects in

the limit on the estimated constant, α̂0. In both cases, it tends to infinity.

Consequently, the estimated marginal variance increases with the size of the

outliers. On the other hand, if the number of consecutive outliers is large, the

estimated ARCH parameter, α̂1, tends to one when the outliers size tends
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to infinity. Therefore, given that in ARCH(1) models, the persistence to

shocks to volatility is measured by α1, the presence of long patches of large

outliers can lead to infer that the volatility is characterized by a unit root

and, consequently, that yt is not stationary. Finally, notice that patches

of large outliers can overestimate or underestimate the ARCH parameter

depending on its original value. If the sample size is moderate, α̂1 tends to

0.5 if there are two large consecutive outliers. Therefore, if α1 < 0.5, the

OLS estimator will have a positive bias while if α1 > 0.5, the bias will be

negative. However, notice that in cases of empirical interest in the context

of financial time series, the ARCH parameter is usually rather small, never

over 0.3. Consequently, in these cases, if there are patches of consecutive

outliers, the OLS estimator will overestimate the ARCH parameter. It is

also important to point out that the limit in (19) increases very quickly with

the number of consecutive outliers. For example, if k = 3, α̂1 tends to 0.66

while if k = 4 the limit is 0.75.

To illustrate these results, we have generated 1000 series by the same

ARCH(1) model as before with α0 = 0.8 and α1 = 0.2. Each series has

been contaminated by 2 consecutive outliers. First and fourth rows of Figure

5 plot kernel estimation of the density of the α̂0 and α̂1 OLS estimators

respectively. Although in the limit, α̂0 increases with ω, notice in this figure

that for small outliers, α0 can be underestimated. For example, consider

T = 500, then if the outlier size is 5 standard deviations, the mean of the

estimates α̂0 is 0.75, below the true value of 0.8. If the size of the outlier is

10, the mean is also 0.75, however, if the size is 15, the mean is 0.98 and,

therefore, bigger than the true value of 0.8. This effect is even stronger for
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larger sample sizes. Consequently, for the outlier sizes typically encountered

in empirical applications, the constant can be underestimated in the presence

of patches of outliers. Remember that in the presence of a single outlier, the

OLS estimates of α0 tend monotonically to infinity. Therefore, although the

effect in the limit is the same, in practice, isolated outliers overestimate the

constant while consecutive outliers underestimate the constant.

Looking at the results for α̂1, observe that in concordance with the limit

in (19), they tend to 0.5 when k = 2. Furthermore, for all the sample sizes

considered, the limit is reached for sizes of the outliers relatively small. For

example, for T = 500, the mean of the estimates of α1 is 0.31 when ω = 5,

0.46 when ω = 10 and 0.49 when ω = 15.

Finally, the ratio of the empirical variance and the estimated asymptotic

variance of the OLS estimators is plotted in rows 1 and 4 of Figure 6, where

we can see that for both estimators, α̂0 and α̂1, this ratio tends to zero with

the size of the outlier. This meas that the asymptotic variance, estimated

using (16) or (17), is overestimating the true variance, which tends to zero

with the size of the outlier. Notice that in this case, the biases are larger

than in the presence of a single outlier. And, as before, the biases are smaller

when using equation (16) to estimate the asymptotic covariance matrix.

Next, we consider the effect of k consecutive outliers in an ARCH(p)

model with p > 1 and k > p. Again, α̂OLS in (15) will be computed using

the contaminated observations z2
t instead of y2

t and the matrix X ′X will

become (
T − p (kω2 + o(ω2))1′

(kω2 + o(ω2))1 (ω4 + o(ω4))M

)
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where 1 is a p × 1 column vector equal to (1 1 · · · 1)′, M is a p × p

symmetric matrix with mij = k + i− j for i = 1, . . . , p, j = i, . . . , p. And the

vector X ′Y will become (
kω2 + o(ω2)

(ω4 + o(ω4))B

)

where B is a (p + 1)× 1 column vector such that bi = k − i for i = 1, . . . , p.

After some tedious algebra it can be seen that the limit of the estimates when

the size of the outliers tend to infinity is given by

lim
ω→∞

α̂OLS
i =





∞ for i = 0
−2k2+(2k−p)(T−p)
−2k2+(2k−p+1)(T−p)

for i = 1

0 for i = 2, . . . , p− 1
−(T−p)

−2k2+(2k−p+1)(T−p)
for i = p

(20)

Like in previous cases, the estimated unconditional variance tends to

infinity. The estimated parameters, α̂i, tend to zero, except α̂1 and α̂p. If

the number of consecutive outliers is large relative to the order of the model,

then α̂1 tends to a quantity close to one and α̂p tends to zero. Consequently,

the estimated persistence, given by
∑p

i=1 α̂i, tends to −2k2+(2k−p−1)(T−p)
−2k2+(2k−p+1)(T−p)

which

is close to one. Notice that if p = 1, the limit of the persistence coincides

with the limit of α̂1 given in (17). Consider, for example, an ARCH(2) series

contaminated by 2 large consecutive outliers. In this case, if the sample

size is moderately large, α̂1 tends approximately to 0.66 and α̂2 to −0.34

and, consequently, the persistence tends to 0.32. However, if the number of

consecutive outliers is 5, α̂1 tends to 0.89 and α̂2 to −0.11 and the persistence

tends to 0.78. On the other hand, if there are 5 consecutive outliers in an

ARCH(4) series, α̂1 tends to 0.86 and α̂4 to −0.15 and the persistence to

0.71. It is also important to notice that in the presence of patches of outliers,

the estimates may easily violate the non-negativity restrictions.
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Finally, it is not possible to derive a general result when the number of

consecutive outliers is smaller than the order of the ARCH(p) process where

obviously the order p should be at least 3 if there are two or more consecutive

outliers. The biases are going to depend on the relationship between k and

p.

4.2 Generalized Least Squares estimator

Taking into account the heterogeneity of the noise in equation (3), it is pos-

sible to obtain an alternative estimator of the parameters of the ARCH(p)

model. Model (3) can be expressed in matrix form as follows,

Y = Xα+V

and premultiplying by P , where P ′P = Ω, the following expression is ob-

tained

PY = PXα+PV (21)

The GLS estimator is obtained by estimating by OLS the parameters α in

equation (21). In practice given that the matrix Ω is unknown, it can be

substituted by

Ω̂ =




σ̂2
p+1 0 · · · 0
0 σ̂2

p+2 · · · 0
...

...
. . .

...
0 0 · · · σ̂2

T




where σ̂2
t = α̂OLS

0 + α̂OLS
1 y2

t−1 + ... + α̂OLS
p y2

t−p. Therefore, the GLS estimator

is given by

α̂GLS = (X ′Ω̂X)−1(X ′Ω̂Y ) (22)
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The GLS estimator is very easy to obtain because it just involves two

sets of linear equations. Another atractive is that its asymptotic efficiency

is equivalent to the ML estimator. Bose and Mukherjee (2003) derive the

asymptotic distribution of α̂GLS and show that if the sixth order moment of

yt is finite, then
√

T
(
α̂GLS − α

) d→ N(0, Σ−1
Ω ) (23)

where lim
T→∞

X′Ω−1X
T

= ΣΩ.

The effects of outliers on the GLS estimator of the ARCH parameters

have been illustrated through Monte Carlo experiments. Second and fifth

rows of Figure 3 show the results for the same ARCH(1) model considered

before contaminated by one single outlier. Comparing these results with the

ones shown in rows 1 and 4 of the same figure, it is possible to observe that

the effects on the estimated constant are very similar to the ones observed

for OLS estimates. However, the GLS estimator of α1 is more robust against

outliers than the OLS estimator. For example, when T = 5000, the GLS

estimator is unbiased in the presence of outliers smaller than 15 standard

deviations. However, this is not the case for the estimates of the variance.

Rows 2 and 4 of Figure 4 plot the ratio of the empirical variance and the

estimated asymptotic variance averaged through all Monte Carlo replicates

for α̂GLS
0 and α̂GLS

1 respectively. As we can see, this ratio is bigger than one,

meaning that the asymptotic variance underestimates the empirical variance.

The results for two consecutive outliers appear in rows 2 and 4 of Figures

5 and 6. In this cases, the biases on the estimated α1 parameter are negligible

for any of the sample sizes and outliers sizes considered. The biases on the
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estimated constant α0 are slightly larger. However, it is important to point

out that, as illustrated by Figure 6, the estimated asymptotic variances,

strongly underestimates the empirical variances for consecutive outliers larger

than 5 standard deviations.

4.3 Maximum likelihood estimator

Engle (1982) proposed to estimate the parameters of the ARCH(p) model

by ML. The distribution of yt conditional to Yt−1 = {yt−1, yt−2, · · · , y1} is

N(0, σ2
t ) and consequently, ML estimation of their parameters is straightfor-

ward maximizing the log-likelihood function given by

L = −T − p

2
log(2π)− 1

2

T∑
t=p+1

(
log σ2

t +
y2

t

σ2
t

)
. (24)

If the errors are not Gaussian, the estimates obtained by maximizing

(24) are Quasi-Maximum Likelihood (QML) estimates. The consistency and

asymptotic normality of the QML estimator was established by Weiss (1986)

assuming that the fourth order moment of yt is finite. Then,

√
T

(
α̂ML − α

) d→ N(0, [I(α)]−1) (25)

where I(α) = E[− ∂2L
∂α∂α′ ] is the Information matrix.

The QML is fully efficient when εt is Gaussian. However, there are not

close form expressions of the QML estimators of the parameters α0, α1,...,αp

and the numerical maximization of the Gaussian log-likelihood function is

difficult because it is rather flat unless the sample size is very large; see, for

example, Shephard (1996).

There is reduced evidence on the effects of outliers on the ML estimator;

see for example, Muller and Yohai (2002) who show that the Mean Squared
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Error of the MLE of the parameters of ARCH(1) models are dramatically

influenced by isolated outliers. However, this evidence is based on sample

sizes which are too small (T = 100, 200) when compared with the sizes

usually encountered in the empirical analysis of financial time series.

Rows 3 and 6 of Figure 3 illustrate the effect of a single outlier on the ML

estimates of the parameters of the same ARCH(1) model considered before.

For outliers of small size, such that 5 standard deviations, the effects on the

estimated parameters α0 and α1 are similar to the ones observed for the OLS

and GLS estimates. However, these effects are quite different for larger sizes

of the outlier. Notice that, for sample sizes of T = 500 and 1000 and outliers

of sizes 10 and 15 standard deviations, the kernel estimated density of both

α̂ML
0 and α̂ML

1 are bimodal. Looking for example at the last row of Figure 3,

we can see that in the presence of an outlier of size 15 standard deviations

in a sample os size T = 1000, α̂ML
1 could take any value between 0 and 1,

although values close to zero seem to be more probable, like what we had for

α̂OLS
1 and α̂GLS

1 .

Rows 3 and 6 of Figure 4 plot the ratio of the empirical variance and the

estimated asymptotic variance averaged through all Monte Carlo replicates

for α̂ML
0 and α̂ML

1 respectively. We can see, that similarly to what happened

in the case of the GLS estimator, this ratio is bigger than one, meaning that

the asymptotic variance underestimates dramatically the empirical variance.

In the case of two consecutive outliers, the results appear in rows 3 and 6

of Figures 5 and 6. As we can see in the plots, the effects caused by two

consecutive outliers on the ML estimators are very similar to the effects

caused by a single outlier.
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Another interesting fact observed in these plots is that the sample distri-

bution of α̂ML
0 and α̂ML

1 are not symmetric but they have a positive skewness

coefficient in the presence of both isolated and consecutive outliers. Hence,

tests based on normality will be inadequate.

5 Maximum Likelihood estimator of GARCH(1,1)

models

Using the same arguments as before, it is straightforward to derive the fol-

lowing expression of the Gaussian log-likelihood of a GARCH(p, q) model

L = −T − p

2
log(2π)− 1

2

T∑
t=p+1

(
log σ2

t +
y2

t

σ2
t

)
. (26)

If the errors are not Gaussian, the estimates obtained by maximizing (22)

are Quasi-Maximum Likelihood (QML) estimates. Bollerslev and Wooldridge

(1992) show that under certain regularity conditions the QML estimator is

consistent and asymptotically Normal if the first two conditional moments

are correctly specified; see Lee and Hansen (1994) and Lumsdaine (1996) for

weaker conditions for GARCH(1,1) models.

Previous studies on the effects caused by outliers on the QML estimators

of GARCH models are based on Monte Carlo experiments. In any case, the

evidence on these effects are scarce and contradictory. For example, Mendes

(2000) carried out Monte Carlo experiments based on 100 replicates obtained

by just one GARCH(1,1) model. She concludes that the QML estimates of α1

are biased towards zero while the estimates of β are biased towards one. On

the other hand, Gregory and Reeves (2001), based on Monte Carlo results

with just one design and on the empirical analysis of a series of weakly
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exchange rates returns, conclude that, in the presence of isolated LO, the

QML estimators of the parameters α0 and α1 are positively biased while β̂

underestimates β with a negative overall effect on the estimated persistence;

see also Verhoeven and McAleer (2000) for an empirical application with the

same conclusion.

In this section, we carry out detailed Monte Carlo experiments to analyze

the biases caused by isolated and consecutive LO on the QML estimates of

the parameters GARCH(1,1) models.

Figure 7 contains the kernel estimates of the density of α̂ML
0 , α̂ML

1 and

β̂ML based on 1000 replicates, for a GARCH(1,1) model with parameters

α0 = 0.1, α1 = 0.1 and β = 0.8, contaminated a single outlier of sizes ω =

5, 10 and 15 standard deviations. As we can see in the plots, for large sample

sizes, like T = 5000, ML estimators seem to be robust to the presence of

outliers. Notice that they are unbiased even when the series is contaminated

by an outlier of size 15 standard deviations. This is not true for smaller

sample sizes, like T = 500 or 1000, where just one outlier seems to bias

towards zero the estimated α̂1 and towards one the estimated value β̂, in

the sense that the estimated density is bigger for those values. When we

look at the results in Figure 8, containing kernel estimates of the density

of α̂ML
0 , α̂ML

1 and β̂ML based on 1000 replicates, for the same GARCH(1,1)

model but now contaminated with two consecutive outliers of sizes ω = 5, 10

and 15 standard deviations, it seems that α̂ML
0 and α̂ML

1 are overestimating

the true parameters, and β̂ is underestimating the true β. Hence, the bias

caused by outliers on the ML estimates of a GARCH(1,1) model depend also

on the size of the outlier, and very important, on their position in the series.
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The bias caused by isolated outliers are very different from the bias caused

by consecutive ones. This could be one reason for the contradictory results

found in the literature.

From the ARCH(∞) representation of a GARCH(1,1) model, we could

find an explanation to the bias caused by a single outlier. Let us consider

a series yt generated by a GARCH(1,1) model where σ2
0 = α0

1−α1−β
, i.e., the

initial value for σ2
t is the unconditional variance. For a sample size, T , fixed,

the series can be approximated by the following ARCH(T − 1) model:
{

yt = εtσt

σ2
t = ω̃ +

∑T−1
i=1 α̃iy

2
t−i

where α̃0 = α0

[
1+βT−1

1−β
+ βT−1

1−α1−β

]
y α̃i = α1β

i−1 for i = 1, 2, . . . , T − 1.

If the observed series is contaminated with a single outlier of size ω, we

have seen before that limω→∞ α̃0 = ∞ y limω→∞ α̃i = α1β
i−1 = 1/(T −

2), ∀i. In particular, for i = 1 we would have that α̂1 tends to 1/(T − 2)

and therefore, β̂ tends to one as the size of the outlier tends to infinity. In the

limit, α̂1 is close to zero and β̂ is close to one, implying that the unconditional

variance tends to infinity and α0 would not be identified. This could explain

why ω̂ is not very affected by the outlier.

6 Empirical application

This section illustrates the previous results by analyzing two world indexes.

We consider the daily series of returns of the S&P 500 index of US and the

Nikkei 225 index of Japan, observed from October 20, 1982 to May 17, 2004

and from January 4, 1984 to May 19, 2004 respectively3. Figures 9 and 10

3Series have been obtained in the webpage http://finance.yahoo.com/.
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plot the return series and the correlogram of the squared observations for

the original series and for the series corrected for outliers. Series have been

corrected by substituting the corresponding outliers by the unconditional

mean. In the S&P 500 series there is one observation which is exactly 22

times the standard deviation. This observation corresponds to the 19th of

October, 1987, also known as “October black monday”, the biggest fall in all

the history of Wall Street. The other two outliers correspond to the following

days, October, 21 and 26. The size of these two observations is around 8.5

standard deviations. In the Nikkei 225, there are two consecutive outliers

corresponding to the same “October black monday”, 19th and 20th of Octo-

ber, 1987. In this case, the corresponding return was 11 times the standard

deviation. The third outlier in this series corresponds to 2nd October 1990,

and this observation is 8 times the standard deviation.

As we can observe in both figures, correcting the series by these extreme

observations makes more clear the structure in the squared observations. In

the case of the S&P 500, we can see how just one observation biases towards

zero all correlation coefficients of squared observations, and in the Nikkei

225, two consecutive outliers overestimate the first order autocorrelation and

underestimate all the others, as expected looking at the theoretical results.

Table 1 contains descriptive statistics for both original and corrected series.

Tables 2 and 3 contain estimated parameters for and ARCH(9) and

GARCH(1,1) model. As these examples illustrate, real time series can be

affected by outliers which can bias the correlogram of squared observations

and affecting in a decisive way the identification and estimation of conditional

heteroscedasticity. Nevertheless, for these two particular series, outliers do
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not change the conclusions of the conditional homoscedasticity tests analyzed

in this paper, which reject the null hypothesis of conditional homoscedastic-

ity for all the series, the original and the corrected ones. However, as Tables 2

and 3 show, estimated parameters are quite different in original and corrected

series.

7 Conclusions

In the presence of isolated outliers, the sizes of the LM, Q(k) and D(k)

tests for conditional homoscedasticty is always zero while their powers are

also zero if the sample size is relatively small while it is recovered for large

enough sample sizes. The effect of consecutive outliers is even worse because,

in this case, these tests always reject the hosomoscedasticity hypothesis even

if the series is truly homoscedastic and the sample size is large. On the other

hand, the size and power of the test proposed by... are robust to the presence

of both isolated and consecutive outliers. However, the size gets larger as the

sample size increases and, consequently, this test can be misleading rejecting

homoscedasticity too often.

References

[1] Aggarwal, R., C. Inclan and R. Leal (1999), Volatility in Emerging Stock

Markets, Journal of Financial and Quantitative Analysis, 34, 33-35.

[2] Blake, N.S. and T.B. Fomby (1994), Large Shocks, Small Shocks and

Economic Fluctuations: Outliers in Macroeconomic Time Series, Jour-

nal of Applied Econometrics, 9, 181-200.

34



[3] Bollerslev, T. (1986), Generalized Autoregressive Conditional Het-

eroskedasticity, Journal of Econometrics, 31, 307-327.

[4] Bollerslev, T. (1987), A Conditionally Heteroskedastic Time Series

Model for Speculative Prices and Rates of Return, The Review of Eco-

nomics and Statistics, 69, 542-547.

[5] Bollerslev, T. and J.M. Wooldridge (1992), Quasi-Maximum Likelihood

Estimation and Inference in Dynamic Models with Time-Varying Co-

variances, Econometric Reviews, 11, 143-172.

[6] Bollerslev, T., R.F. Engle and D.B. Nelson (1994), ARCH Models, The

Handbook of Econometrics, 4, 2959-3038.

[7] Chen, C. and J. Liu (1993), Joint Estimation of Model Parameters and

Outlier Effects in Time Series, Journal of the American Statistical As-

sociation, 88, 284-296.

[8] Doornik, J.A. and M. Ooms (2002), Outlier detection in GARCH mod-

els, manuscript.

[9] Engle, R.F. (1982), Autoregressive Conditional Heteroskedasticity with

Estimates of the Variance of United Kingdom Inflation, Econometrica,

50, 987-1007.

[10] Franses, P.H. and E. Ghijsels (1999), Additive Outliers, GARCH and

Forecasting Volatility, International Journal of Forecasting, 15, 1-9.

[11] Franses, P.H. and D. van Dijk (1999), Outlier detection in GARCH

models, Econometric Institute Research Report EI-9926/RV.

35



[12] Franses, P.H., D. van Dijk and A. Lucas (2004), Short Patches of Out-

liers, Applied Financial Economics, forthcoming.

[13] Geweke, J. (1986), Comment to ”Modeling persitence of conditional

variance, Econometric Reviews, 5, 57-61.

[14] Gregory, A.W. and J.J. Reeves (2001), Estimation and Inference in

ARCH Models in the Presence of Outliers, Proceedings of the 2002 North

American Summer Meetings of the Econometric Society.

[15] Hotta, L.K. and R.S. Tsay (1998), Outliers in GARCH processes,

manuscript.

[16] Lee, J.H.H. (1991), A Lagrange Multiplier Test for GARCH Models,

Economics Letters, 37, 265-271.

[17] Lee, S. and B.E. Hansen (1994), Asymptotic Theory for the

GARCH(1,1) Quasi-Maximum Likelihood Estimator, Econometric The-

ory, 10, 29-52.

[18] Li, J. and C. Kao (2002), A Bounded Influence Estimation and Outlier

Detection for ARCG/GARCH Models with an Application to Foreign

Exchange Rates, manuscript.

[19] Lumsdaine, R.L. and S. Ng (1999), Testing for ARCH in the Presence

of a Possibly Misspecified Conditional Mean, Journal of Econometrics,

93, 117-136.

36



[20] Lumsdaine, R.L. (1996), Consistency and Asymptotic Normality of the

Quasi-Maximum Likelihood Estimator in IGARCH(1,1) and Covariance

Stationary GARCH(1,1) Models, Econometrica, 64, 575-596.

[21] Mendes, B.V.M. (2000), Assessing the Bias of Maximum Likelihood Es-

timates of Contaminated GARCH Models, Journal of Statistical Com-

putation and Simulation, 67, 359-376.

[22] McLeod, A.J. and W.K. Li (1983), Diagnostic Checking ARMA Time

Series Models Using Squared-Residual Correlations, Journal of Time

Series Analysis, 4, 269-273.

[23] Muller, N. and V.J. Yohai (2002), Robust Estimates for ARCH Pro-

cesses, Journal of Time Series Analysis, 23, 341-375.

[24] Ng, H.G. and M.McAller (2003), Recursive modelling of symmetric and

asymmetric volatility in the presence of extreme observations, Interna-

tional Journal of Forecasting, forthcoming.

[25] Pantula, S.G. (1986), Comment to ”Modeling persitence of conditional

variance”, Econometric Reviews, 5, 57-61.

[26] Peña, D. (2001), Outliers, influential observations and missing Data, in

Peña, D., G.C. Tiao and R.S. Tsay (eds.), A course in Time Series,

John Wiley, New York.

[27] Sakata, S. and H. White (1998), High Break-down Point Conditional

Dispersion Estimation with Application to S&P500 Daily Returns

Volatility, Econometrica, 66, 529-567.

37



[28] Taylor, S.J. (1986), Modelling Financial Time Series, John Wiley.
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Figure 1: Biases caused by outliers on the correlogram of squared observa-
tions

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

0.5
Two consecutive outliers of size ω=15

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

0.5
One single outlier of size ω=15

N
(0

,1
),

 T
=

10
00

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

Lag
0 10 20 30

−0.1

0

0.1

0.2

0.3

0.4

0.5

Lag

G
A

R
C

H
(1

,1
),

 T
=

10
00

True ACF True ACF 

Figure 2: Effects caused by outliers on the size and power of conditional
homoscedasticity tests
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Figure 3: Kernel estimation of the density of estimators of an ARCH(1)
model with a single outlier
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Figure 4: Ratio of variances of estimators of an ARCH(1) model with a single
outlier
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Figure 5: Kernel estimation of the density of estimators of an ARCH(1)
model with two consecutive outliers
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Figure 6: Ratio of variances of estimators of an ARCH(1) model with two
consecutive outliers
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Figure 7: Kernel estimation of the density of ML estimators of GARCH
models with a single outlier
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Figure 8: Kernel estimation of the density of ML estimators of GARCH
models with two consecutive outliers

0 0.5 1 1.5
0

5

10

α 0M
LE

ω=5

0 0.5 1 1.5
0

5

10
ω=10

0 0.5 1 1.5
0

5

10
ω=15

T=500         
T=1000        
T=5000        
true parameter

0 0.5 1
0

5

10

α 1M
LE

0 0.5 1
0

5

10

0 0.5 1
0

5

10

0 0.5 1
0

5

10

βM
LE

0 0.5 1
0

5

10

0 0.5 1
0

5

10

44



Figure 9: Series and correlogram of squares of daily returns of S&P500 index
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Figure 10: Series and correlogram of squares of daily returns of Nikkei 225
index
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Table 1: Descriptive statistics of daily returns

Series S&P 500 NIKKEI 225
T 5445 5012

original 0.0377∗ 0.0015
Mean

corrected 0.0149 0.0001
original 1.0761 1.4042

S.D.
corrected 1.0167 1.3660
original -1.9239∗ -0.1109∗

Skewness
corrected -0.1872∗ -0.0365
original 44.8720∗ 10.6079∗

Kurtosis
corrected 6.8724∗ 5.8164∗

Autocorrelations of squared returns
original 0.1309∗ 0.3225∗

r2(1)
corrected 0.2791∗ 0.2938∗

original 0.1717∗ 0.2127∗

r2(2)
corrected 0.3022∗ 0.3085∗

original 0.1599∗ 0.1657∗

r2(5)
corrected 0.2996∗ 0.3205∗

original 0.0384∗ 0.1367∗

r2(10)
corrected 0.2641∗ 0.2594∗

original 390∗ 797∗

Q2(20)
corrected 1847∗ 1558∗

T: Sample size.
r2(τ): Order τ acf of y2

t .
Q2(20): Box-Ljung statistic for y2

t .
* Significative at 5% level.
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Table 2: Estimates of the ARCH(9) Model
S&P 500 NIKKEI 225

OLS GLS MLE OLS GLS MLE
original 0.71

(0.11)

∗ 0.45
(0.04)

∗ 0.27
(0.01)

∗ 1.05
(0.10)

∗ 0.52
(0.07)

∗ 0.34
(0.01)

∗

α̂0

corrected 0.42
(0.04)

∗ 0.26
(0.04)

∗ 0.29
(0.01)

∗ 0.78
(0.07)

∗ 0.48
(0.09)

∗ 0.35
(0.02)

∗

original 0.09
(0.01)

∗ 0.16
(0.03)

∗ 0.10
(0.01)

∗ 0.22
(0.01)

∗ 0.19
(0.04)

∗ 0.23
(0.01)

∗

α̂1

corrected 0.08
(0.01)

∗ 0.13
(0.03)

∗ 0.04
(0.01)

∗ 0.07
(0.01)

∗ 0.19
(0.04)

∗ 0.11
(0.01)

∗

original 0.13
(0.01)

∗ 0.05
(0.03)

0.11
(0.01)

∗ 0.05
(0.01)

∗ 0.10
(0.02)

∗ 0.12
(0.02)

∗

α̂2

corrected 0.11
(0.01)

∗ 0.13
(0.03)

∗ 0.11
(0.01)

∗ 0.09
(0.01)

∗ 0.15
(0.04)

∗ 0.13
(0.02)

∗

original 0.03
(0.01)

∗ 0.06
(0.02)

∗ 0.09
(0.01)

∗ 0.05
(0.01)

∗ 0.09
(0.03)

∗ 0.11
(0.01)

∗

α̂3

corrected 0.07
(0.01)

∗ 0.10
(0.03)

∗ 0.07
(0.01)

∗ 0.11
(0.01)

∗ 0.11
(0.04)

∗ 0.13
(0.01)

∗

original −0.02
(0.01)

0.00
(0.01)

0.10
(0.01)

∗ 0.03
(0.01)

0.06
(0.02)

∗ 0.08
(0.01)

∗

α̂4

corrected 0.06
(0.01)

∗ 0.11
(0.03)

∗ 0.10
(0.01)

∗ 0.03
(0.01)

∗ 0.08
(0.03)

∗ 0.08
(0.01)

∗

original 0.13
(0.01)

∗ 0.11
(0.03)

∗ 0.08
(0.02)

∗ 0.03
(0.01)

0.11
(0.02)

∗ 0.10
(0.01)

∗

α̂5

corrected 0.10
(0.01)

∗ 0.09
(0.03)

∗ 0.09
(0.02)

∗ 0.11
(0.01)

∗ 0.09
(0.04)

∗ 0.11
(0.01)

∗

original −0.01
(0.01)

0.03
(0.02)

0.08
(0.01)

∗ 0.04
(0.01)

∗ 0.08
(0.02)

∗ 0.06
(0.01)

∗

α̂6

corrected 0.03
(0.01)

∗ 0.08
(0.02)

∗ 0.08
(0.01)

∗ 0.06
(0.01)

∗ 0.05
(0.04)

0.07
(0.01)

∗

original −0.03
(0.01)

∗ 0.02
(0.01)

∗ 0.07
(0.01)

∗ 0.02
(0.01)

0.09
(0.02)

∗ 0.12
(0.02)

∗

α̂7

corrected 0.07
(0.01)

∗ 0.07
(0.03)

∗ 0.08
(0.01)

∗ 0.06
(0.01)

∗ 0.08
(0.04)

∗ 0.13
(0.02)

∗

original 0.03
(0.01)

∗ 0.10
(0.02)

∗ 0.10
(0.01)

∗ 0.01
(0.01)

0.04
(0.02)

0.07
(0.01)

∗

α̂8

corrected 0.06
(0.01)

∗ 0.09
(0.03)

∗ 0.11
(0.01)

∗ 0.01
(0.01)

0.05
(0.03)

0.06
(0.01)

∗

original 0.03
(0.01)

∗ 0.05
(0.02)

∗ 0.07
(0.01)

∗ 0.02
(0.01)

0.03
(0.02)

0.05
(0.01)

∗

α̂9

corrected 0.02
(0.01)

0.04
(0.02)

∗ 0.06
(0.01)

∗ 0.04
(0.01)

∗ 0.04
(0.04)

0.06
(0.01)

∗
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Table 3: Estimates of the GARCH(1,1) Model
Series S&P 500 NIKKEI 225

original 0.012
(0.001)

∗ 0.076
(0.003)

∗

α0

corrected 0.006
(0.001)

∗ 0.018
(0.002)

∗

original 0.078
(0.002)

∗ 0.139
(0.003)

∗

α1

corrected 0.046
(0.003)

∗ 0.101
(0.005)

∗

original 0.915
(0.003)

∗ 0.863
(0.004)

∗

β
corrected 0.948

(0.004)

∗ 0.895
(0.005)

∗

original −7299.6 −8145.9
Log-Likelihood

corrected −7217.2 −8040.9
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