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1 Introduction

Dating back to Black’s (1986) seminal paper, it is a well accepted fact that transaction data

occurring in financial markets are often contaminated by market microstructure effects, such as

bid-ask spreads, liquidity ratios, turnover, and asymmetric information (see also e.g. Hasbrouk

(1993), Bai, Russell and Tiao (2000), Hasbrouck and Seppi (2001), O’Hara (2003) and references

therein). It is argued in these papers that the observed transaction price can be decomposed into

the efficient one plus a “noise” due to microstructure effects.

This fact is particularly relevant when dealing with high frequency data, which are often used

to compute model free measures of volatility, such as realized volatility (see e.g. Barndorff-Nielsen

and Shephard (2002, 2003, 2004c), Andersen, Bollerslev, Diebold and Labys (2001, 2003), Meddahi

(2002) and Andersen, Bollerslev and Meddahi (2004)) and bipower variation (Barndorff-Nielsen

and Shephard, 2004a,b). Although the relevant limit theory suggests that volatility estimates get

more precise as the frequency of observations increases, this is not necessarily valid in the presence

of microstructure noise which is not accounted for. The effect of microstructure noise on high

frequency volatility estimators has been recently analyzed by Aı̈t-Sahalia, Mykland and Zhang

(2003), Zhang, Mykland and Aı̈t-Sahalia (2003), and Bandi and Russell (2003a,b). These papers

point out that changes in transaction prices over very small time intervals are mainly composed of

noise and carry little information about the underlying return volatility. This is because, at least

for the class of continuous semimartingale processes, volatility is of the same order of magnitude as

the time interval, while the microstructure noise has a roughly constant variability. Therefore, as

the time interval shrinks to zero, the signal to noise ratio related to the observed transaction prices

also tends to zero, and using the estimators of volatility mentioned above one may run the risk of

estimating the variance of the microstructure noise, rather than the underlying return volatility.

Hence, the need of measures of return volatility which are robust to the presence of market

microstructure effects. An important contribution in this direction is that of Zhang, Mykland and

Aı̈t-Sahalia (2003), who suggest an asymptotically unbiased volatility estimator, based on subsam-

pling techniques. The validity of their estimator hinges on the chosen model for the microstructure

noise.

Our paper complements the papers cited above in two directions. First, we provide a test for the

null hypothesis of no market microstructure effect, which is robust to the presence of possible large
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and rare jumps. Second, if the null is rejected, we test the null hypothesis of correct specification

of the model of microstructure noise of Aı̈t-Sahalia and Mykland and Zhang (2003), which assumes

that the microstructure noise has a constant variance, regardless of the frequency at which data

are sampled.

The first test statistic is based on the difference between two realized volatilities computed at

different sampling intervals, say one minute and ten minutes. Under the null, both estimators

will converge to the true integrated volatility process, though at a different speed. Given this, by

properly scaling this difference we have a statistic with a normal limiting distribution under the

null and unit asymptotic power. However, such a test statistic can diverge because of the presence

of either microstructure noise or jumps. To overcome this problem, we also provide a jump robust

version of the test, which is based on recent results by Barndorff-Nielsen and Shephard (2004a,b)

and Corradi and Distaso (2004).

The second test statistic is based on the difference between two estimators of the microstructure

noise computed again over different time intervals. Under the null model of a noise with constant

variance, by properly scaling this difference we obtain a statistic with a normal limiting distribution.

The test is consistent against the alternative of a noise with variance depending on the chosen

sampling frequency. Indeed, an alternative model of economic interest would be one in which the

microstructure noise variance is positively correlated with the time interval.

The proposed tests are then applied to transaction data recorded for the stocks included in the

Dow Jones Industrial Average (DJIA) for the period 1997-2002, using a fixed time span equal to

five days. The tests are computed over the different five days intervals. The empirical analysis

suggests that while the presence of microstructure effects induces a severe bias when estimating

volatility using high frequency data, such a bias grows less than linearly in the number of intraday

observations.

This paper is organized as follows. Section 2 describes the employed methodology and derives

the limiting behavior of the two test statistics. The empirical findings are reported in Section 3

and Section 4 contains some concluding remarks. All the proofs are contained in the Appendix.
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2 Methodology

2.1 Set-up

Let Xt = log(St), where St denotes the price of a financial asset or derivative. Throughout the

paper it is assumed that Xt follows a process of the type

Xt = µtdt + ctdqt + σtdWt, (1)

where Wt is a standard Brownian motion. As for the jump component, Pr(dqt = 1) = λtdt,

where λt is independent of σ2
t , ct is an i.i.d. process and is assumed to be independent of dqt.

This specification of the jump component covers the case of large and rare jumps, analyzed by

Barndorff-Nielsen and Shephard (2004a). Although we cannot observe the trajectory of Xt, we still

have data recorded at high frequency. Suppose that the number of daily observations is denoted

by T and that, for each day, we have M intraday observations; therefore, over a fixed time span,

say T , we have a total of TM observations. Realized volatility is defined as

RVt,T ,M =
TM∑
i=1

(
Xt+ i

M
− Xt+ i−1

M

)2
, 0 ≤ t ≤ T − T .

If Xt belongs to the class of continuous semimartingales (if dqt = 0, a.s., ∀ t, i.e. there are no

jumps in the log price process), then (see e.g. Karatzas and Shreve (1991), Ch.1), as M → ∞,

RVt,T ,M
Pr→
∫ t+T

t
σ2

sds = IVt,T . (2)

Here σ2
s denotes the instantaneous volatility at time s, that is

lim
h→0

E
(
(Xs+h − Xs)

2 |�s

)
h

= σ2
s ,

where �s refers to the relevant conditioning set at time s.

However, if Xt is the sum of a continuous semimartingale component and a jump component,

then the statement in (2) does no longer hold and, as pointed out by Barndorff-Nielsen and Shephard

(2004a),

RVt,T ,M
Pr→ IVt +

Nt+T∑
i=Nt

c2
i , (3)
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where Nt is a counting process and ci denotes the size of the jumps. Interestingly, Barndorff-Nielsen

and Shephard (2004a) also suggest a measure of integrated volatility, namely bipower variation,

which (when properly scaled) is a consistent estimator of integrated volatility and is robust to the

presence of rare of large jumps.1 Bipower variation is defined as

BVt,T ,M =
TM−1∑

i=1

∣∣∣Xt+ i+1
M

− Xt+ i
M

∣∣∣ ∣∣∣Xt+ i
M

− Xt+ i−1
M

∣∣∣ , 0 ≤ t ≤ T − T .

Now, suppose that we can observe St+ i
M

only up to an error, so that the observed price process is

given by

S̃t+ i
M

= St+ i
M

ηt+ i
M

, t = 0, 1, . . . , T − 1. (4)

Therefore

log S̃t+ i
M

= log St+ i
M

+ log ηt+ i
M

, or (5)

Yt+ i
M

= Xt+ i
M

+ εt+ i
M

.

Here εt+ i
M

is interpreted as a noise capturing the market microstructure effect. Similarly to what

is customarily assumed in the literature, Xt+i/M and εt+i/M are independent and E
(
εt+i/M

)
= 0.

Now,

E
(
Yt+ i

M
−Y t+ i−1

M

)2

= E
(
Xt+ i

M
−X i−1

M

)2
+ E

(
εt+ i

M
−εt+ i−1

M

)2
+ E

(
εt+ i

M
−εt+ i−1

M

)(
Xt+ i

M
−Xt+ i−1

M

)
= E

(
Xt+ i

M
−X i−1

M

)2
+ E

(
εt+ i

M
−εt+ i−1

M

)2
. (6)

In the case of Xt being a continuous semimartingale, E
(
Xt+ i

M
− Xt+ i−1

M

)2
= O(M−1). Also, we

will assume that

lim
M,N→∞, N/M→0

E

(∑TM−1
i=1

(
εt+ i

M
− εt+ i−1

M

)2
)

N
= ∞.

As for bipower variation, note that, by Minkowski inequality,

E

TM−1∑
i=1

∣∣∣Yt+ i+1
M

− Yt+ i
M

∣∣∣ ∣∣∣Yt+ i
M

− Yt+ i−1
M

∣∣∣
 ≤ E

TM−1∑
i=1

∣∣∣Xt+ i+1
M

− Xt+ i
M

∣∣∣ ∣∣∣Xt+ i
M

− Xt+ i−1
M

∣∣∣


1 A viable alternative to this approach would be to follow Aı̈t-Sahalia (2004), who proposes a method to disentangle

the continuous Brownian and jump components, and then use the continuous component to compute an estimator of

integrated volatility. Such an approach is valid for homoskedastic diffusion processes.
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+E

TM−1∑
i=1

∣∣∣εt+ i+1
M

− εt+ i
M

∣∣∣ ∣∣∣εt+ i
M

− εt+ i−1
M

∣∣∣
+ E

TM−1∑
i=1

∣∣∣εt+ i+1
M

− εt+ i
M

∣∣∣ ∣∣∣Xt+ i
M

− Xt+ i−1
M

∣∣∣
 .

Therefore, when using bipower variation it is not immediate how to decompose the total variability

in integrated volatility and noise variance. Nevertheless, it is evident that, while bipower variation

is robust to the presence of the jump component, it is not robust to microstructure effects.

As mentioned in the Introduction, our objective is perform a test for the null hypothesis of no

microstructure effects over a sequence of finite time span (e.g. 5 working days) periods, and, for

the cases in which the null is rejected, proceed to test the null hypothesis that the microstructure

noise has constant variance, regardless of the sampling interval over which we compute realized

volatility.

2.2 Testing the null hypothesis of no microstructure effects

In the sequel we shall assume that the true asset price process is generated as in (1). Define the

following hypotheses:

H0 : E
(
εt+ i

M
− εt+ i−1

M

)2
= 0, for all M, t (7)

and

HA : E
(
εt+ i

M
− εt+ i−1

M

)2 �= 0, (8)

where E
(
εt+i/M − εt+(i−1)/M

)2 and εt+i/M are defined respectively in (6) and (5).

Therefore the null hypothesis implies that there are no microstructure effects in the observed

transaction prices, while the alternative is simply the negation of the null.

In order to test H0 versus HA, we propose the following statistic

ZM,N,T ,t =

√
NT

(∑TM
i=1

(
Yt+ i

M
− Yt+ i−1

M

)2 −∑TN
i=1

(
Yt+ i

N
− Yt+ i−1

N

)2
)

√
2
3NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4
, (9)

where N/M → 0 as M,N → ∞ (i.e. M grows faster than N). The numerator in (9) can be

expanded as√
NT (10)

×
TM∑

i=1

(
Yt+ i

M
− Yt+ i−1

M

)2 −
∫ t+T

t
σ2

sds

−
TN∑

i=1

(
Yt+ i

N
− Yt+ i−1

N

)2 −
∫ t+T

t
σ2

sds

 .
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Inspection of (10) reveals the logic behind the choice of the test statistic in (9); if there are no mi-

crostructure effects (under the maintained assumption of no jumps), then both
∑TM

i=1

(
Yt+i/M − Yt+(i−1)/M

)2
and

∑TN
i=1

(
Yt+i/N − Yt+(i−1)/N

)2 converge in probability to the true integrated volatility,
∫ t+T
t σ2

sds.

Also, by the central limit theorems in Barndorff-Nielsen and Shephard (2002 and 2004c),TM∑
i=1

(
Yt+ i

M
− Yt+ i−1

M

)2 −
∫ t+T

t
σ2

sds

 = Op(M−1/2)

and TN∑
i=1

(
Yt+ i

N
− Yt+ i−1

N

)2 −
∫ t+T

t
σ2

sds

 = Op(N−1/2).

Therefore, under the null hypothesis, provided that as N,M → ∞, N/M → 0,

√
NT

TM∑
i=1

(
Yt+ i

M
− Yt+ i−1

M

)2 −
∫ t+T

t
σ2

sds

 = op(1).

Under H0, the limiting distribution of the test statistic is driven by

−

√
NT

(∑TN
i=1

(
Yt+ i

N
− Yt+ i−1

N

)2 − ∫ t+T
t σ2

sds

)
√

2
3NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4
,

which is asymptotically standard normal. Under the alternative, we expect
∑TM

i=1

(
Yt+i/M − Yt+(i−1)/M

)2
to be of a larger order of magnitude (in probability) than

∑TN
i=1

(
Yt+i/N − Yt+(i−1)/N

)2, and so we

expect the statistic to diverge.

A possible problem with the statistic above is that standard normal critical values are no longer

correct in the presence of jumps. In fact, in the presence of jumps, the numerator of (9) has a non

zero mean and the square of the denominator is not a consistent estimator for the true integrated

quarticity (i.e.
∫ t+T
t σ4

sds). Therefore, we also suggest a statistic which is robust to jumps

ZBM,N,T ,t =
µ−2

1

√
NT√

2.6090µ−4
1

(11)

×
(∑TM−1

i=1

∣∣∣Yt+ i+1
M

−Y t+ i
M

∣∣∣ ∣∣∣Yt+ i
M
−Y t+ i−1

M

∣∣∣−∑TN
i=1

∣∣∣Yt+ i+1
N
−Y t+ i

N

∣∣∣ ∣∣∣Yt+ i
N
−Y t+ i−1

N

∣∣∣)√
NT

∑TM−3
i=1

∣∣∣Yt+ i+4
M

−Y t+ i+3
M

∣∣∣ ∣∣∣Yt+ i+3
M

−Y t+ i+2
M

∣∣∣ ∣∣∣Yt+ i+2
N

−Y t+ i+1
N

∣∣∣ ∣∣∣Yt+ i+1
N
−Y t+ i

N

∣∣∣ ,

where µ1 = E (|N (0, 1)|). Under the null hypothesis, the statistic above has a standard normal

limiting distribution, regardless of the presence of possible jumps.
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2.3 A simple specification test for the microstructure noise

For all the periods in which, according to either or both test statistics proposed in the previous

subsection, we reject the null hypothesis of no microstructure noise, it may be interesting to perform

a specification test for the microstructure error. In particular, the hypothesis of interest is that of

the microstructure noise having a constant variance, independent of the frequency at which data

are recorded. In fact, most of the recent literature on incorporating microstructure effects (see e.g.

Aı̈t-Sahalia, Mykland and Zhang (2003), Zhang, Mykland and Aı̈t-Sahalia (2003), and Bandi and

Russell (2003a,b)) postulates a model of noise with constant variance.

More precisely, let E
(
εt+i/M − εt+(i−1)/M

)2 = 2νt,M and E
(
εt+i/M − εt+(i−1)/M

)2 = 2νt,N . The

null and alternative hypotheses can be formulated as follows

H ′
0 : νt,M = νt,N , for all M,N (12)

and

H ′
A : νt,M < νt,N . (13)

Thus, the alternative of interest is that the variance of the microstructure noise is negatively

correlated with the frequency at which data are recorded. The alternative hypothesis is compatible

with the microstructure noise model outlined by Barndorff-Nielsen and Shephard (2004b), who

specify a two component model; the first is a jump component and the second is an error process

with the variance decaying to zero at a rate 1/
√

M . As a consequence, the bias incurred in

estimating volatility using realized volatility grows less than linearly in the number of intraday

observations.2 We propose the following test statistic

VM,N,T ,t =
√

NT


∑TM

i=1

(
Y

t+ i
M

−Y
t+ i−1

M

)2

2TM
−
∑T N

i=1

(
Y

t+ i
N

−Y
t+ i−1

N

)2

2TN√
1

NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4

 . (14)

The logic behind the statistic proposed above is the following. Under the null hypothesis, both∑TM
i=1

(
Yt+i/M − Yt+(i−1)/M

)2
/2TM and

∑TN
i=1

(
Yt+i/N − Yt+(i−1)/N

)2
/2TN converge to the same

2The fact that the variance of measurement error is in general not independent of the sampling frequency has

been kindly pointed out to us by Andrew Chesher.
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probability limit, say ν, though the former converges faster than the latter. Thus,

√
NT


∑TM

i=1

(
Y

t+ i
M

−Y
t+ i−1

M

)2

2TM
− ν√

1
NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4


is asymptotically negligible and the statistic in (14) is asymptotic equivalent to

−
√

NT


∑T N

i=1

(
Y

t+ i
N

−Y
t+ i−1

N

)2

2TN
− ν√

1
NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4

 ,

which has a standard normal limiting distribution (see Theorem A1 in Zhang, Mykland and Aı̈t-

Sahalia (2003)).

Under the alternative,
∑TM

i=1

(
Yt+i/M − Yt+(i−1)/M

)2
/2TM and

∑TN
i=1

(
Yt+i/N − Yt+(i−1)/N

)2
/2TN

converge respectively to νM and νN , and thus the statistic diverges.

In the next subsection, the limiting distributions of the proposed test statistics are derived.

2.4 Main theoretical results

In the sequel we need the following assumptions

A1: Xt is generated as in (1).

A2:
∫ t+T
t σ4(s)ds < ∞, almost surely, for any t and T .

A3: E
(
ε i

M
− ε i−1

M

)4
< ∞.

A4:
∑MT

i=1

(
εt+i/M − εt+(i−1)/M

)2
/MT = op(b−1

t,M ), and
∑NT

i=1

(
εt+i/N − εt+(i−1)/N

)2
/NT = op(b−1

t,N ),

where, as M,N → ∞,
bt,M

bt,N
M1−α → ∞, for α ∈ (0, 1) and N = Mα.

A4’: E
(∑MT

i=1

(
εt+i/M − εt+(i−1)/M

)2
/MT

)
= νt,M and E

(∑NT
i=1

(
εt+i/N − εt+(i−1)/N

)2
/NT

)
=

νt,N ,
√

N (νt,M/νt,N ) → ∞, as M,N → ∞.

Notice that A1 and A2 are customary in the literature on realized volatility; A3 requires a finite

fourth moment of the market microstructure noise and seems to be trivially satisfied. Finally,

A4 allows the variability of the microstructure error to decrease with the sampling interval. In

particular, the variance of the microstructure noise is allowed to approach zero as the sampling

interval goes to zero, but at a slow enough rate.

Then, we can state the following Propositions.
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Proposition 1

(i) Let A1-A2 hold and assume that λt = 0 for all t. Under H0, defined in (7), as M,N → ∞
and N/M → 0,

ZM,N,T ,t
d→ N(0, 1).

(ii) Let A1-A4 hold. Under HA, defined in (8), as M → ∞, for ε > 0,

lim
M→∞

Pr
(

bt,N

bt,M
Mα−1ZM,N,T ,t > ε

)
= 1.

Therefore, we can just perform a one-sided test and reject the null hypothesis of no microstructure

effects when we get a value for ZM,N,T ,t larger than, say, the 95% percentile of a standard normal.

In the proposition above, the statement under the null is robust to possible leverage effects, but

not to possible jumps.

The null limiting distribution and power properties of the jump robust version of the test for

no microstructure effects test are given in the next Proposition.

Proposition 2

(i) Let A1-A2 hold and assume that µt = 0 for all t and that σt in (1) is independent of Xt.

Under H0, defined in (7), as M,N → ∞ and N/M → 0,

ZBM,N,T ,t
d→ N(0, 1).

(ii) Let A1-A4 hold. Under HA, defined in (8), as M → ∞, for ε > 0,

lim
M→∞

Pr
(

bt,N

bt,M
Mα−1ZBM,N,T,t > ε

)
= 1.

As outlined in the previous subsection, every time we reject the null hypothesis in (7), according

to either or both the suggested statistics, we may be interested in performing a specification test

for the microstructure noise. Its properties are given in the next Proposition.

Proposition 3

(i) Let A1-A3 hold. Under H ′
0, defined in (12), as M,N → ∞, N/M → 0,

VM,N,T ,t
d→ N(0, 1).

9



(ii) Let A1-A3 hold. Also, assume that

E

 1
MT

MT∑
i=1

(
εt+ i

M
− εt+ i−1

M

)2

 = 2νt,M and E

 1
NT

NT∑
i=1

(
εt+ i

N
− εt+ i−1

N

)2

 = 2νt,N

are such that
√

Mνt,M → ∞ and
√

Nνt,N → ∞. Under HA, defined in (13), as M → ∞, for

ε > 0,

lim
M→∞

Pr
(

1√
NT

VM,N,T ,t > ε

)
= 1.

An application of the testing procedure outlined in this section to the stocks included in the Dow

Jones Industrial Average is given in the next Section.

3 Empirical evidence from the Dow Jones Industrial Average

3.1 Data description

The empirical analysis of market microstructure effects is based on data retrieved from the Trade

and Quotation (TAQ) database at the New York Stock Exchange. The TAQ database contains

intraday trades and quotes for all securities listed on the New York Stock Exchange (NYSE), the

American Stock Exchange (AMEX) and the Nasdaq National Market System (NMS). The data is

published monthly on CD-ROM since 1993 and on DVD since June 2002. Our sample contains the

DJIA stocks (30 stocks in total3) and extends from January 1, 1997 until December 24, 2002, for

a total of 1505 trading days.4 Also, in our empirical example T = 5 and therefore we have a total

of 301 five-days periods.

Table 2 shows the average number of quotations per minute for all individual stocks. The

table presents a spectrum of liquidity, ranging from as low as 3 quotations per minute for United

Technologies Corp. (UTX) to as high as 94 for Intel Corp.. The two most liquid stocks in the sample
3It is worth mentioning that the 30 companies included in the DJIA are not the same throughout the sample

period. Woolworth, Bethlehem Steel, Texaco and CBS (Westinghouse Electric) have been replaced by Wal-Mart,

Johnson & Johnson, Hewlett-Packard and Citigroup (Travelers Group) in 1997. In addition SBC Communications,

Microsoft, Intel and Home Depot have replaced Union Carbide, Chevron, Goodyear, and Sears in 1999. Our sample

contains the DJIA of individual firms as it was in 2000. The names and the symbols of the stocks included in the

sample are reported in Table 1.
4Trading days are divided over the different years as follows: 253, 252, 252, 252, 248, 252 from 1997 to 2002. Note

that there are 5 days missing in 2001 due to September 11th.
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are Intel and Microsoft and it takes only a fraction of a second to have a fresh quote. Liquidity

has increased substantially during the sample period and, as we approach 2002, the number of

quotations per minute almost doubles for some stocks (e.g. 3M Company (MMM), Citigroup Inc.

(C), Home Depot Corp. (HD), Microsoft (MSFT)).

From the original data set, which includes prices recorded for every trade, we extracted 1

minute and 10 minutes interval data, similarly to Andersen and Bollerslev (1997). Provided that

there is sufficient liquidity in the market, the 5 minutes frequency is generally accepted as the

highest frequency at which the effect of microstructure biases are not too distorting (see Andersen,

Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev and Lang (1999) and Ebens (1999));

hence the choice of the two mentioned frequencies to calculate the test statistics, in order to highlight

the full extent of the microstructure noise effects.

The price figures for each 1 and 10 minutes intervals are determined as the interpolated average

between the preceding and the immediately following quotes, weighted linearly by their inverse

relative distance to the required point in time. For example, suppose that the price at 15:29:56

was 11.75 and the next quote at 15:30:02 was 11.80, then the interpolated price at 15:30:00 would

be exp(1/3 × log(11.80) + 2/3 × log(11.75)) = 11.766. From the 1 and 10 minutes price series

we calculated 1 and 10 minutes intradaily returns as the difference between successive log prices

expressed in percentages; then

Rt+ i
N

= 100 ×
(
log(Yt+ i

N
) − log(Yt+ i−1

N
)
)

,

where Rt+i/N denotes the return for intraday period i/N on trading day t , with t = 0, . . . , T − 1.

The New York Stock Exchange opens at 9:30 a.m. and closes at 4.00 p.m.. Therefore a full trading

day consists of 391 (resp. 40) intraday returns calculated over an interval of one minute (resp. ten

minutes). For some stocks, and in some days, quotations arrive some time after 9:30; in these cases

we always set the first available trading price after 9:30 a.m to be the price at 9:30 a.m.. Not

all the days in our sample consists of 391 (resp. 40) price observations; this is attributable to the

fact that the NYSE closes early on certain days, such as on Christmas Eve5; for all these intervals

without price quotes we insert zero return values. Highly liquid stocks may have more than one

price at certain points in time (for example 5 or 10 quotations at the same time stamp is normal
5In addition to Christmas Eve, there are 12 other short days in the sample, making a total of 17 days.
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for INTC and MSFT); when there exists more than one price at the required interval, we select the

last provided quotation. For interpolating a price from a multiple price neighborhood, we select

the closest provided price for the computation.

3.2 Testing for the null of no microstructure effects

Table 3, columns 2 and 3, reports the findings for the test based on the statistic defined in (9).

More precisely, we report the number and the percentages of rejections, based on a one-sided test.

We first notice that only for six stocks the percentage of rejection is below 20% of the cases.

For twelve stocks the percentage of rejection is between 20% and 40% of the cases, and for the

remaining twelve stocks it is higher than 40% with a maximum of 66%. This indicates that, though

microstructure effect plays an important role, its contribution is quite variable over time. Overall,

we do not find evidence of a clear relationship between liquidity and microstructure effects. For

example, taking two rather liquid stocks like IBM and Intel, for the former we reject the null about

20% of the times, while for the latter we reject about 39% of the times. In Figure 1, we report

the plot of the test statistic over the different 5 days intervals considered, with the dotted line

representing the 5% upper tail critical value of a standard normal. We notice that there are a few

instances in which the statistic takes a large and negative values. This happens mainly for stocks

characterized by low liquidity, such as EK and HON. The reason for this finding is that, since these

stocks are not very liquid, and therefore are not traded often enough, a lot of returns over 1 minute

interval are zero, while are not zero over 10 minutes interval. Hence a negative value for the test

statistic.

Table 3, columns 4 and 5, reports the results for the test based on the statistic defined in (11).

We notice that the rejection rates are comparable with those obtained using the previous test,

although slightly lower (the only exception being Intel). As the latter statistic is robust to the

presence of large and rare jumps, the obtained results seem to provide evidence in favor of the fact

that most of the 5 days periods are not characterized by jumps. The fact that only a small number

of days is characterized by jumps is also confirmed by the empirical findings of Andersen, Bollerslev

and Diebold (2003), and Huang and Tauchen (2003). The plot of the test statistic, for each 5 days

interval, is inserted in Figure 2 and displays a very similar pattern to the one observed in Figure 1.

As explained in the previous Section, each time we reject the hypothesis of no microstructure
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noise effect, we perform a specification test for the hypothesis of a microstructure noise with constant

variance (independent of the sampling interval). The relevant empirical results are contained in

the next subsection.

3.3 A specification test for the variability of the microstructure noise

For all the periods in which we reject the null hypothesis of no market microstructure effects, we

then test H ′
0 versus H ′

A, defined respectively in (12) and (13), using the statistic suggested in (14).

We perform two sequences of test, the first one conditional on rejecting the null of no microstructure

using the test statistic in (9) and the second conditional on the same outcome using the statistic in

(11). The results are reported in Table 4, columns 2 to 5, and the plots are given in Figures 3 and

4. It is immediate to see that the null hypothesis is rejected in almost all the cases. This provides

strong evidence that while the presence of microstructure induces a severe bias when estimating

volatility using high frequency data, such a bias grows less than linearly in the number of intraday

observations. In fact, given (6), acceptance of the null hypothesis would imply that

E

(
M∑
i=1

(
Yt+ i

M
− Yt+ i−1

M

)2
)

= E

(
M∑
i=1

(
Xt+ i

M
− Xt+ i−1

M

)2
)

+ E

(
M∑
i=1

(
εt+ i

M
− εt+ i−1

M

)2
)



∫ t+1

t
σ2

sds + 2MνM =
∫ t+1

t
σ2

sds + 2Mν.

However, our findings strongly suggest that νM < νN , thus indicating that the microstructure bias

grows at a slower than linear rate as the number of intraday observations increases.

4 Concluding remarks

To be done.
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Appendix

Proof of Proposition 1.

(i) The statistic defined in (9) can be expanded into

ZM,N,T ,t =

√
N

M

√
MT

(∑TM
i=1

(
Yt+ i

M
− Yt+ i−1

M

)2 − ∫ t+T
t σ2

sds

)
√

2
3NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4

−

√
NT

(∑TN
i=1

(
Yt+ i

N
− Yt+ i−1

N

)2
− ∫ t+T

t σ2
sds

)
√

2
3NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4
. (15)

Theorems 1 in Barndorff-Nielsen and Shephard (2002, 2004c) establish that, as M → ∞,

√
MT

(
RVt,T ,M,T −

∫ t+T

t
σ2

sds

)
d→ N

(
0, 2

∫ t+T

t
σ4

sds

)
.

Therefore the first term in (15) is op(1), given that, as M,N → ∞, N/M → 0. As a consequence,

the limiting distribution of ZM,N,T ,t under H0 will be determined by the second component of (15).

By a similar argument as before, since, as N → ∞,

1
3
NT

NT∑
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4 Pr→
∫ t+T

t
σ4

sds,

the statement follows immediately.

(ii) Under the alternative hypothesis, it is possible to expand the numerators of the components of

(15) respectively as

√
NT

TM∑
i=1

((
Xt+ i

M
− Xt+ i−1

M

)2
+
(
εt+ i

M
− εt+ i−1

M

)2
+ 2

(
Xt+ i

M
− Xt+ i−1

M

)(
εt+ i

M
− εt+ i−1

M

))

−
∫ t+T

t
σ2

sds

]

and

−
√

NT

TN∑
i=1

((
Xt+ i

N
− Xt+ i−1

N

)2
+
(
εt+ i

N
− εt+ i−1

N

)2
+ 2

(
Xt+ i

N
− Xt+ i−1

N

)(
εt+ i

N
− εt+ i−1

N

))
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−
∫ t+T

t
σ2

sds

]
.

Similarly

NT∑
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4

=
NT∑
i=1

[(
Xt+ i

N
− Xt+ i−1

N

)4
+
(
εt+ i

N
− εt+ i−1

N

)4
+ 6

(
Xt+ i

N
− Xt+ i−1

N

)2 (
εt+ i

N
− εt+ i−1

N

)2

+4
(
Xt+ i

N
− Xt+ i−1

N

)3 (
εt+ i

N
− εt+ i−1

N

)
+ 4

(
Xt+ i

N
− Xt+ i−1

N

)(
εt+ i

N
− εt+ i−1

N

)3
]

.

Therefore the statistic will diverge to plus infinity and the test will be consistent if, as N,M → ∞,∑TM
i=1

(
εt+ i

M
− εt+ i−1

M

)2 −∑TN
i=1

(
εt+ i

N
− εt+ i−1

N

)2

√∑NT
i=1

(
εt+ i

N
− εt+ i−1

N

)4
→ ∞,

which holds under Assumption A4. �

Proof of Proposition 2. From Barndorff-Nielsen and Shephard (2004a), under the null hypoth-

esis, as M → ∞,

TM−1∑
i=1

µ−2
1

∣∣∣Yt+ i+1
M

− Yt+ i
M

∣∣∣ ∣∣∣Yt+ i
M

− Yt+ i−1
M

∣∣∣ Pr→
∫ t+T

t
σ2

sds,

µ−4
1

TM−3∑
i=1

∣∣∣Yt+ i+4
M

−Y t+ i+3
M

∣∣∣ ∣∣∣Yt+ i+3
M

−Y t+ i+2
M

∣∣∣ ∣∣∣Yt+ i+2
N
−Y t+ i+1

N

∣∣∣ ∣∣∣Yt+ i+1
N

−Y t+ i
N

∣∣∣ Pr→
∫ t+T

t
σ4

sds

and from Theorem 1 in Barndorff-Nielsen and Shephard (2004b)√
MT

(
µ−2

1 BVt,T ,M,T −
∫ t+T

t
σ2

sds

)
d→ N

(
0, 2.6090

∫ t+T

t
σ4

sds

)
.

The statements then come by the same argument as above. �

Proof of Proposition 3.

(i) Under the null hypothesis, the test statistic can be rewritten as

VM,N,T ,t =
√

NT



∑TM
i=1

(
Y

t+ i
M

−Y
t+ i−1

M

)2

2TM
− ν

−
∑TN

i=1

(
Y

t+ i
N

−Y
t+ i−1

N

)2

2TN
− ν


√

1
NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4


.
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By Theorem A1 in Zhang, Mykland and Aı̈t-Sahalia (2003),

√
MT


∑TM

i=1

(
Yt+ i

M
− Yt+ i−1

M

)2

2TM
− ν

 = Op(1),

since it converges in distribution. Thus, asymptotically,

VM,N,T ,t = −
√

NT



∑T N
i=1

(
Y

t+ i
N

−Y
t+ i−1

N

)2

2TN
− ν


√

1
NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4


d→ N(0, 1).

(ii) Under the alternative hypothesis, the statistic can be rearranged as

VM,N,T ,t

=
√

NT

∑T M
i=1

(
Y

t+ i
M

−Y
t+ i−1

M

)2

2TM
− νt,M

−
∑TN

i=1

(
Y

t+ i
N

−Y
t+ i−1

N

)2

2TN
− νt,N


√

1
NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4

+

√
NT (νt,M − νt,N )√

1
NT

∑NT
i=1

(
Yt+ i

N
− Yt+ i−1

N

)4
. (16)

Note that the first term of the right hand side of (16) is asymptotically normal. As the denominator

in the second term of the right hand side of (16) is Op(νt,N ), the statement then follows. �
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Table 1: Names and Symbols of the companies included in the DJIA

Company Ticker Symbol

3M Company MMM
Alcoa Inc. AA
Altria Group, Inc. MO
American Express Co. AXP
AT&T Corp. T
Boeing Co. BA
Caterpillar, Inc. CAT
Citigroup Inc. C
Coca-Cola Co. KO
DuPont (E.I.) de Nemours DD
Eastman Kodak Co. EK
Exxon Mobile Corp. XOM
General Electric Co. GE
General Motors GM
Hewlett-Packard Co. HPQ
Home Depot Inc. HD
Honeywell Int’l. Inc. HON
Intel Corp. INTC
International Bus. Mach. IBM
International Paper Co. IP
J.P. Morgan Chase & Co. JPM
Johnson & Johnson JNJ
McDonald’s Corp. MCD
Merck & Co.Inc. MRK
Microsoft Corp. MSFT
Procter & Gamble Co. PG
SBC Communications, Inc. SBC
United Technologies Corp. UTX
Wal-Mart Stores, Inc. WMT
Walt Disney Co. DIS
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Table 2: Average number of trade quotations per minute of DJIA stocks

Stock Average 1997 1998 1999 2000 2001 2002

MMM 3.65 1.86 2.22 2.60 3.08 4.73 7.35
AA 3.37 0.99 1.39 2.30 3.75 5.10 6.69
MO 9.39 7.28 7.46 9.51 9.51 8.70 13.74
AXP 5.68 2.12 3.03 4.01 5.80 9.32 9.74
T 12.26 8.96 6.80 16.39 20.99 10.09 10.07
BA 7.50 6.59 10.20 6.23 5.88 7.03 8.95
CAT 3.60 2.00 2.94 3.33 3.58 4.13 5.56
C 11.31 4.07 3.29 11.70 12.15 14.28 22.23
KO 7.25 5.94 5.97 8.41 7.45 6.55 9.04
DD 5.47 3.54 4.96 4.86 5.79 6.21 7.36
EK 3.48 3.40 2.79 2.73 3.16 3.85 4.91
XOM 8.02 4.44 4.77 5.72 7.41 9.95 15.70
GE 19.45 8.73 10.19 11.72 19.66 26.19 39.99
GM 4.90 3.49 3.76 3.76 4.32 4.81 9.18
HPQ 8.30 5.93 6.75 7.12 8.82 10.26 10.84
HD 11.32 2.98 7.45 8.19 14.80 13.25 21.07
HON 5.89 0.64 0.84 15.81 5.66 5.51 6.77
INTC 94.99 41.51 45.48 64.29 128.33 128.48 160.65
IBM 12.53 6.82 5.92 14.06 13.09 14.88 20.24
IP 3.75 2.09 2.42 3.01 4.20 4.62 6.12
JPM 6.16 1.56 2.66 2.74 4.25 10.26 15.46
JNJ 6.96 4.97 4.59 4.33 6.70 8.49 12.57
MCD 5.53 4.10 3.37 4.06 6.20 6.72 8.69
MRK 8.48 5.96 6.11 8.91 9.13 8.87 11.79
MSFT 84.60 22.18 38.47 72.08 100.45 114.07 159.27
PG 6.35 3.63 4.38 4.40 9.50 6.69 9.38
SBC 6.25 1.99 2.88 4.29 8.05 8.40 11.81
UTX 3.07 1.11 1.32 2.07 2.71 4.64 6.53
WMT 10.15 3.88 5.17 11.22 14.15 11.28 15.02
DIS 9.68 2.96 11.36 13.43 8.30 9.57 12.30
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Table 3: Results of the tests for no microstructure effects

Stock Test based on ZM,N,T ,t Test based on ZBM,N,T,t

# of Rej. % of Rej. # of Rej. % of Rej.

MMM 53 17.6 41 13.6
AA 45 14.9 33 10.9
MO 200 66.4 197 65.4
AXP 45 14.9 22 7.3
T 142 47.1 132 43.8
BA 140 46.5 122 40.5
CAT 70 23.2 43 14.2
C 165 54.8 160 53.1
KO 130 43.1 101 33.5
DD 92 30.5 72 23.9
EK 63 20.9 29 9.6
XOM 163 54.1 124 41.1
GE 110 36.5 93 30.8
GM 60 19.9 49 16.2
HPQ 79 26.2 62 20.5
HD 128 42.5 123 40.8
HON 32 10.6 21 6.9
INTC 118 39.2 129 42.8
IBM 65 21.5 60 19.9
IP 112 37.2 84 27.9
JPM 63 20.9 37 12.2
JNJ 97 32.2 70 23.2
MCD 179 59.4 152 50.4
MRK 82 27.2 66 21.9
MSFT 145 48.1 145 48.1
PG 105 34.8 71 23.5
SBC 120 39.8 85 28.2
UTX 16 5.3 5 1.6
WMT 123 40.8 103 34.2
DIS 164 54.4 152 50.4
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Table 4: Results of the specification tests for the microstructure noise

Stock
Test based on VM,N,T ,t, conditional Test based on VM,N,T ,t, conditional

on rejecting H0 using ZM,N,T ,t on rejecting H0 using ZBM,N,T ,t

# of Rej. % of Rej. # of Rej. % of Rej.

MMM 50 94.3 35 85.3
AA 44 97.7 27 81.8
MO 165 82.5 152 77.1
AXP 44 97.7 20 90.9
T 118 83.0 103 78.0
BA 130 92.8 103 84.4
CAT 64 91.4 33 76.7
C 113 68.4 100 62.5
KO 122 93.8 90 89.1
DD 85 92.3 62 86.1
EK 58 92.0 22 75.8
XOM 157 96.3 113 91.1
GE 108 98.1 86 92.4
GM 47 78.3 36 73.4
HPQ 71 89.8 49 79.0
HD 114 89.0 97 78.8
HON 30 93.7 18 85.7
INTC 103 87.2 104 80.6
IBM 64 98.4 47 78.3
IP 107 95.5 81 96.4
JPM 59 93.6 29 78.3
JNJ 88 90.7 56 80.0
MCD 157 87.7 121 79.6
MRK 82 100 57 86.3
MSFT 133 91.7 121 83.4
PG 103 98.0 66 92.9
SBC 113 94.1 73 85.8
UTX 16 100 5 100
WMT 106 86.1 83 80.5
DIS 145 88.4 121 79.6
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Figure 1: Plot of the test statistic defined in (9), with the upper 95% percentile of the standard
normal (dotted line)
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Figure 2: Plot of the test statistic defined in (11), with the 95% percentile of the standard normal
(dotted line)
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Figure 3: Plot of the test statistic defined in (14), conditionally on rejections of the null hypothesis
in (7) using RVt,M,T , with the 5% percentile of the standard normal (dotted line)
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Figure 4: Plot of the test statistic defined in (14), conditionally on rejections of the null hypothesis
in (7) using BVt,M,T , with the 5% percentile of the standard normal (dotted line)

26


