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Abstract

We propose a novel statistic to test the rank of a matrix. The rank statistic overcomes
deficiencies of existing rank statistics, like: necessity of a Kronecker covariance matrix for
the canonical correlation rank statistic of Anderson (1951), sensitivity to the ordering
of the variables for the LDU rank statistic of Cragg and Donald (1996) and Gill and
Lewbel (1992), a limiting distribution that is not a standard chi-squared distribution
for the rank statistic of Robin and Smith (2000) and usage of numerical optimization
for the objective function statistic of Cragg and Donald (1997). The new rank statistic
consists of a quadratic form of a (orthogonal) transformation of the smallest singular
values of a unrestricted estimate of the matrix of interest. The quadratic form is taken
with respect to the inverse of a unrestricted covariance matrix that can be estimated
using a heteroscedasticity autocorrelation consistent estimator. The rank statistic has
a standard χ2 limiting distribution. In case of a Kronecker covariance matrix, the rank
statistic simplifies to the canonical correlation rank statistic. In the non-stationary
cointegration case, the limiting distribution of the rank statistic is identical to that of
the Johansen trace statistic. We apply the rank statistic to test for the rank of a matrix
that governs the identification of the parameters in the stochastic discount factor model
of Jagannathan and Wang (1996). The rank statistic shows that non-identification of
the parameters can not be rejected. We further use the stochastic discount factor model
to illustrate the validity of the limiting distribution and to conduct a power comparison.
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1 Introduction

Tests of many economic hypotheses boil down to testing the rank of a matrix, see for example
Lewbel (1991). Also the identification of parameters in econometric models often depends
on the rank of a matrix. Therefore, since the early stages of the development of econometric
methodology a literature focusing on rank tests has developed. An early contribution to this
line of work is Anderson (1951). Anderson (1951) proposes a likelihood ratio rank statistic
in a multivariate regression model based on canonical correlations. This canonical correlation
rank statistic has a χ2 limiting distribution when the covariance matrix of the unrestricted
matrix estimator has a Kronecker structure. A Kronecker covariance matrix is however not
always valid. For example, it does not apply if one opts for the use of heteroscedasticity
autocorrelation consistent covariance (HACC) matrix estimators, see for example Andrews
(1991), Newey and West (1987), West (1997) and White (1980). Alternative approaches to
test the rank of a matrix that overcome this deficit have therefore been proposed.

Gill and Lewbel (1992) and Cragg and Donald (1996) use a LDU decomposition (see for
example Golub and van Loan (1989)) of the unrestricted matrix to construct a rank statistic.
They use a (root-N) consistent estimator of the unrestricted matrix, which does not need
to have a Kronecker covariance matrix. A disadvantage of their approach is that it can be
sensitive to the ordering of the variables in the model. To overcome this sensitivity, the
estimator of the unrestricted matrix is permuted using Gaussian elimination. A high level
assumption is however needed to ensure that the Gaussian elimination performs adequately.

Cragg and Donald (1997) propose a rank statistic based on a minimum χ2 criterion. They
assume that the rank of the covariance matrix of the unrestricted matrix is maximal and
minimize the objective function numerically. Numerical optimization is often very difficult
when the tested rank is less than the rank of the true value of the matrix. This results
from the bad identification of the elements of the estimated matrix. The minimum of the
criterium function is in this case not well-defined and the numerical optimization procedure
may converge to an erroneous value.

Recently, Robin and Smith (2000) construct a rank statistic on the basis of a (root-N)
consistent estimator for the unrestricted matrix. The covariance matrix of this estimator does
not need to have the Kronecker structure and its rank does not have to be maximal. The
limiting distribution of the rank statistic is, however, a weighted average of χ2 distributions.
The asymptotic critical values of the rank statistic are therefore not tabulated. The limiting
distribution shows that this rank statistic is not always appropriately normalized so the range
of values of the weights affects the power of the statistic.

To overcome the deficiencies of the rank statistics, we propose a novel rank statistic. The
rank statistic involves a (root-N) consistent estimator of the unrestricted matrix, which does
not need to have a Kronecker covariance matrix. We decompose the unrestricted matrix
estimator using a singular value decomposition. If the limiting distribution of the unrestricted
matrix estimator is normal, an orthogonal transformation of the smallest singular values has
a normal limiting distribution. Our rank statistic is equal to the quadratic form of this
orthogonal transformation with respect to the inverse of its covariance matrix, and hence it has
a standard χ2 limiting distribution. The rank statistic simplifies to the canonical correlation
rank statistic of Anderson (1951) in case of a Kronecker covariance matrix. The rank statistic
can also be applied in case of non-stationary variables, for example for cointegration testing.
The asymptotic distribution is in that case a functional of Brownian motions and equal to the
asymptotic distribution of the Johansen (1991) trace statistic.

The outline of the paper is as follows. In Section 2 we discuss the singular value decompo-
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sition of a matrix. We show how this decomposition can be used to obtain a parameter that
reflects rank reduction. In Section 3 we construct a rank statistic based on this parameter.
We derive its limiting distribution and show that the statistic is a generalization of the canon-
ical correlation rank statistic. We limit ourselves in this section to stationary variables and
compare the rank statistic with existing rank statistics. The non-stationary cointegration case
is discussed in Section 4. In this case, the limit distribution of our rank statistic is identical
to that of the Johansen trace statistic. In Section 5, we apply the rank statistic to test the
rank of a matrix that governs the identification of the parameters in the stochastic discount
factor model of Jagannathan and Wang (1996). Furthermore, we use a factor model which
stems from this application to illustrate the validity of the limiting distribution and to conduct
a power comparison of different rank statistics. We end with some concluding remarks and
topics for further research in Section 6.

Throughout the paper we use the notation: a = vec(A) for the column vectorization of the
k×m matrix A such that for A = (A1 · · ·Am), vec(A) = (A′

1 · · ·A′
m)′, Im is the m×m identity

matrix and tr(A) stands for the trace of a square matrix A. Furthermore, “ →
p

” stands for

convergence in probability and “ →
d

” for convergence in distribution.

2 Singular Value Decomposition and Rank Reduction

To construct our rank test, we use that a k ×m real matrix C can be decomposed as

C = AqBq + Aq,⊥ΛqBq,⊥, (1)

with Aq a k× q matrix, Bq a q×m matrix, Λq a (k− q)× (m− q) matrix, Aq,⊥ a k× (k− q)
matrix, Bq,⊥ a (m− q)×m matrix and where A′

qAq,⊥ ≡ 0, Bq,⊥B′
q ≡ 0, A′

q,⊥Aq,⊥ ≡ Ik−q and
Bq,⊥B′

q,⊥ ≡ Im−q with q < min(k, m). If Λq = 0, the rank of the matrix C is determined by the
rank of AqBq. If both Aq and Bq have full rank, the rank of C is then equal to q. Our test for
rank reduction will be based on a test for Λq = 0. To obtain a value of Λq which reflects the
distance to rank reduction, we define Λq as a transformation of the smallest singular values
of the matrix C as these values determine the rank of the matrix C in a unambiguous way.
In fact, to identify the matrices in decomposition (1) we link the decomposition to a singular
value decomposition of C.

The singular value decomposition (SVD) of a real k ×m matrix C is given by

C = USV ′, (2)

where U is a k × k orthonormal matrix (U ′U = Ik), V is a m × m orthonormal matrix
(V ′V = Im), and S is a k × m matrix that contains the singular values of C on its main
diagonal and is equal to zero elsewhere. If k = m, S is a k × k diagonal matrix with the
singular values in decreasing order on its main diagonal. If k < m, S consists of a k × k
diagonal matrix with the k singular values on its main diagonal (in decreasing order) extended
on the right hand side with a k × (m − k) matrix of zeros. If k > m, S consists of a m ×m
diagonal matrix with the m singular values on its main diagonal (in decreasing order) on top
of a (k −m)×m matrix of zeros, see for example Golub and van Loan (1989) for details.

The expressions for Aq, Bq, and Λq in terms of the smallest singular values of C follow
from the relation

(
U11 U12

U21 U22

)(
S1 0
0 S2

)(
V ′

11 V ′
21

V ′
12 V ′

22

)
= AqBq + Aq,⊥ΛqBq,⊥, (3)
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where U11, S1 and V11 are q × q matrices, U12 and U ′
21 are q × (k − q) matrices, V12 and V ′

21

are q × (m − q) matrices, U22 is a (k − q) × (k − q) matrix, V22 a (m − q) × (m − q) matrix,
and S2 a (k − q)× (m− q) matrix. Equation (3) implies that

AqBq =

(
U11

U21

)
S1

(
V ′

11 V ′
21

)
and Aq,⊥ΛqBq,⊥ =

(
U12

U22

)
S2

(
V ′

12 V ′
22

)
. (4)

The exact relation between U , S and V depends on the specification of Aq and Bq. If we do
not normalize AqBq, the number of free elements in Aq and Bq (= kq + qm) is larger than
the number of free elements of a k ×m matrix with rank q (= km − q2). Hence, if we want
to solve for Aq and Bq we need to impose a normalization for AqBq. Several normalizations
are possible and the normalization usually depends on the model at hand. As illustration we
show the normalization involved in three econometric models that imply rank reduction, that
is a. the linear instrumental variables regression model, b. the error correction cointegration
model and c. a factor model.

a. The linear instrumental variables regression model for the q-dimensional endogenous
variable y1,i and (k − q)-dimensional endogenous variable y2,i with the m-dimensional
vector of instruments zi

y1,i = Bqzi + ε1,i

y2,i = Aq,2y1,i + ε2,i, for i = 1, . . . , N (5)

can be written as (
y1,i

y2,i

)
= Czi +

(
u1,i

u2,i

)
, (6)

where u1,i = ε1,i, u2,i = ε2,i +Aq,2ε1,i, and C = AqBq with normalization Aq = [Iq
... A′

q,2]
′.

b. In a vector autoregression of order 1 for the k-dimensional time series {yi}N
i=0 in error

correction form
∆yi = Cyi−1 + εi, (7)

rank reduction of the k × k matrix C implies cointegration, see for example Engle and
Granger (1987) and Johansen (1991). If the cointegration rank is q, we can write (7) as

∆yi = AqBqyi−1 + εi. (8)

For economic interpretation of the cointegration relation Bqyi, it is convenient to nor-

malize Bq as [Iq
... Bq,2], where Bq,2 is a q × (k − q) matrix.

c. In a factor model, where one relates a k-dimensional vector of variables ri to a m-
dimensional vector of explanatory variables fi,

ri = Cfi + εi, for i = 1, . . . , N, (9)

one typically imposes rank reduction on C to reduce the number of parameters. If the
rank of C is q, we can write C = AqBq. Since there is often no clear interpretation of

Bqfi, one may impose that Bq

(
1
N

∑N
i=1 fif

′
i

)
B′

q = Iq as a normalization.
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Given an appropriate normalization, we can solve for Aq and Bq in (4). For example, if

we impose that Bq = [Iq
... Bq,2] with Bq,2 a q× (m− q) matrix, as in the cointegration model,

the first equation in (4) implies that

Aq =

(
U11

U21

)
S1V

′
11 and Bq,2 = (V ′

11)
−1V21. (10)

Although Λq is initially only identified up to an orthonormal transformation, since A∗
q,⊥Λ∗qB

∗
q,⊥ =

Aq,⊥ΛqBq,⊥ with A∗
q,⊥ = Aq,⊥Rq, Λ∗q = R′

qΛqQ
′
q, B∗

q,⊥ = QqBq,⊥ and Rq and Qq are (k − q) ×
(k− q) and (m− q)× (m− q) orthonormal matrices, a unique specification of Λq results when
we use an appropriate normalization of Aq and Bq. This normalization allows us to express
Aq,⊥ and Bq,⊥ as functions of the unrestricted elements of Aq and Bq and hence in terms of
U11, U21, S1, V11, and V21. We show below that this leads to the expression of Λq

1

Λq = (U22U
′
22)

− 1
2 U22S2V

′
22(V22V

′
22)

− 1
2 , (11)

which implies, given the second equation in (4), that

Aq,⊥ =

(
U12

U22

)
U−1

22 (U22U
′
22)

1
2 and Bq,⊥ = (V22V

′
22)

1
2 (V ′

22)
−1[V ′

12

... V ′
22]. (12)

For (11) and (12), we can express Aq,⊥ in terms of Aq = [A′
q,1

... A′
q,2]

′ with Aq,1 a q × q matrix
and Aq,2 a (k − q)× q matrix as

Aq,⊥ =

(
U12U

−1
22

Ik−q

)
((U ′

22)
−1U−1

22 )−
1
2

=

(
U12U

−1
22

Ik−q

)
((U ′

22)
−1(U ′

22U22 + U ′
12U12)U

−1
22 )−

1
2

=

(
U12U

−1
22

Ik−q

)
(Ik−q + (U ′

22)
−1U ′

12U12U
−1
22 )−

1
2 (13)

=

( −(U ′
11)

−1U ′
21

Ik−q

)
(Ik−q + U21U

−1
11 (U ′

11)
−1U ′

21)
− 1

2

=

( −(U ′
11)

−1U ′
21

Ik−q

)
(Ik−q + U21S1V

′
11(V

′
11)

−1S−1
1 U−1

11 (U ′
11)

−1(S ′1)
−1V −1

11 V11S
′
1U

′
21)

− 1
2

=

( −(A′
q,1)

−1Aq,2

Ik−q

)
(Ik−q + Aq,2A

−1
q,1(A

′
q,1)

−1A′
q,2)

− 1
2 ,

where we use the orthonormality properties of U and V . Likewise, we can write Bq,⊥ in terms
of Bq,2

Bq,⊥ = ((V ′
22)

−1V −1
22 )−

1
2 [(V ′

22)
−1V ′

12

... Im−q]

= ((V ′
22)

−1(V ′
22V22 + V ′

12V12)V
−1
22 )−

1
2 [(V ′

22)
−1V ′

12

... Im−q]

= (Im−q + (V ′
22)

−1V ′
12V12V

−1
22 )−

1
2 [(V ′

22)
−1V ′

12

... Im−q] (14)

= (Im−q + V ′
21V

−1
11 (V ′

11)
−1V21)

− 1
2 [−V ′

21V
−1
11

... Im−q]

= (Im−q + B′
q,2Bq,2)

− 1
2 [−B′

q,2

... Im−q].

1If D is a positive definite real symmetric matrix, then D
1
2 = ELE′, where L is a diagonal matrix containing

the square roots of the eigenvalues of D, E contains the orthonormal eigenvectors of D, and D− 1
2 = EL−1E′,

see for example Johansen (1995, p. 222).
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We note that every normalization of Aq and Bq leads to the same expressions of Λq, Aq,⊥
and Bq,⊥ in (11) and (12). The matrices (U22U

′
22)

− 1
2 U22 and V ′

22(V22V
′
22)

− 1
2 in the expression

of Λq (11) are both orthonormal matrices. Hence, the matrix Λq is equal to the matrix S2,
that contains the smallest singular values, pre- and postmultiplied by orthonormal matrices or
stated differently, Λq is just a rotation of the smallest singular values around the origin. The
singular values are non-negative and therefore all elements of S2 are also non-negative. If we
pre- and post-multiply S2 by orthonormal matrices, the elements of the resulting matrix Λq

are no longer restrained to be non-negative. Hence, when C is a random matrix, the elements
of Λq can be normally distributed while the elements of S2 can not be normally distributed.
This property allows us to base tests for rank reduction with χ2 limiting distributions on Λq

as we show in the next section.

3 Rank Test: The Standard (Stationary) Case

We are concerned with testing the rank of the k × m matrix of parameters Π. Under our
null hypothesis, the rank of the matrix Π is equal to q with q < min(k, m), that is, H0 :
rank(Π) = q. To derive the limiting distributions of our test statistics and estimators, we
make an assumption about the limiting behavior of an estimator of the unrestricted value of
Π denoted by Π̂, where we use the notation π̂ = vec(Π̂) and π = vec(Π).

Assumption 1. The limiting behavior of the estimator of Π is characterized by

√
N(π̂ − π) →

d
ψπ,

ψπ ∼ N(0, V ),

(15)

where N is the sample size and V is a km× km covariance matrix.

If we apply the SVD given in (2) directly on Π̂ to test for the rank of Π, the resulting
procedure can be sensitive to scaling of Π̂, that is, pre- or post-multiplying Π̂ by some matrix
can affect the outcome of the rank test. We therefore allow Π̂ to be normalized before we
conduct a SVD of it. We can normalize Π̂ by means of pre-multiplication by a k × k finite
non-singular matrix G and post-multiplication by a m ×m finite non-singular matrix F. We
are free to choose the specification of F and G. The matrices F and G adapt the scaling of Π̂

Θ̂ = GΠ̂F ′, (16)

such that θ̂ =vec(Θ̂) = (F ⊗G)π̂. Using an appropriate specification of F and G, the estima-
tor Θ̂ becomes invariant to invertible transformations of the data that are identical over all
observations. The limiting behavior of θ̂ is characterized by

√
N(θ̂ − θ) →

d
ψθ,

ψθ ∼ N(0,W ),

(17)

where W = (F ⊗G)V (F ⊗G)′ and θ = (F ⊗G)π.
To test H0 : rank(Π) = q, which is equivalent to H0 : rank(Θ) = q, we use decomposition

(1) for Θ
Θ = AqBq + Aq,⊥ΛqBq,⊥, (18)
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where the components follow from the SVD (2) as described in Section 2. Under H0, the
(k − q) × (m − q) matrix Λq is identical to zero. The null hypothesis H0 : rank(Θ) = q is
identical to H0 : Λq = 0. To obtain Λq from (18), we need to pre- and post-multiply Θ by
A′

q,⊥ and B′
q,⊥, respectively. To test H0 : Λq = 0, we therefore have to make an assumption

concerning the covariance matrix W .

Assumption 2. The (k − q)(m− q)× (k − q)(m− q) covariance matrix

Ωq = (Bq,⊥ ⊗ A′
q,⊥)W (Bq,⊥ ⊗ A′

q,⊥)′ (19)

is non-singular.

Decomposition (18) is also applied to the estimator Θ̂,

Θ̂ = ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥. (20)

The limiting behavior of the different elements of Θ̂ in (20) is stated in Theorem 1.

Theorem 1 Under H0 and Assumptions 1-2, the limiting behavior of the elements of Θ̂ in
(20) is such that ÂqB̂q is a root-N consistent estimator of AqBq and

√
Nλ̂q →

d
ψλ,

ψλ ∼ N(0, Ωq),

(21)

where λ̂q =vec(Λ̂q) and Λ̂q = Â′
q,⊥Θ̂B̂′

q,⊥.

Proof. see the Appendix.

We use λ̂q to define the statistic to test H0 : rank(Θ) = q.

Definition 1: Under Assumptions 1-2, the statistic

rk(q) = 1
N

λ̂′qΩ
−1
q λ̂q, (22)

converges under H0 : rank(Θ) = q in distribution to a χ2((k − q)(m− q)) random variable.

The statistic (22), to which we refer as the rk-statistic, becomes an operational statistic
for testing the rank of Θ when we have specified a consistent estimator for the covariance
matrix Ωq, which corresponds with a consistent estimator for the covariance matrix V . The
rk-statistic therefore allows for the use of both parametric as well as non-parametric covariance
matrix estimators, like, for example, HACC matrix estimators, see Andrews (1991), Newey
and West (1987), West (1997) and White (1980).

The rk-statistic is related to the rank tests discussed in the literature. To illustrate this,
we separately discuss the relationship between the rk-statistic and the rank statistics proposed
by Anderson (1951), Robin and Smith (2000), Cragg and Donald (1997) and Gill and Lewbel
(1992)-Cragg and Donald (1996).

Anderson (1951) canonical correlation rank statistic When the covariance matrix V
has a Kronecker form, the rk-statistic is identical to the canonical correlation rank statistic of
Anderson (1951) when F and G are appropriately specified.
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Proposition 1. When V = ((F ′F )−1 ⊗ (G′G)−1), the rank statistic rk(q) (22) is identical
to the canonical correlation rank statistic of Anderson (1951). When k > m, it is equal to the
sum of the m − q smallest eigenvalues of Θ̂′Θ̂ divided by N , and when m > k, it is equal to
the sum of the k − q smallest eigenvalues of Θ̂Θ̂′ divided by N . The smallest eigenvalues of
Θ̂′Θ̂ and Θ̂Θ̂′ represent the smallest canonical correlations.

Proof. see the Appendix.

Proposition 1 shows that the rk-statistic is a generalization of the canonical correlation
rank statistic of Anderson (1951). It generalizes the canonical correlation rank statistic to
a more general specification of the covariance matrix V with the same limiting distribution.
A non-Kronecker structure of the covariance matrix V occurs when we use an estimator Π̂ that
does not give the same weight to every observation or when the disturbances of the underlying
model are heteroscedastic or correlated.

Robin and Smith (2000) propose a rank test which results from the limiting distribution
of the roots of the polynomial

∣∣∣Π̂′G′GΠ̂− µ(F ′F )−1
∣∣∣ = 0, k ≥ m, (23)

or ∣∣∣Π̂F ′F Π̂′ − µ(G′G)−1
∣∣∣ = 0, m < k, (24)

which are identical to the eigenvalues of Θ̂′Θ̂ and Θ̂Θ̂′. Robin and Smith (2000) show that,
under H0 :rank(Π) = q and Assumptions 1 and 2, the limiting distribution of the statistic

CRT(q) = N
∑min(k,m)

i=q+1 h(µ̂i), (25)

where h(z) is a continuous differentiable non-negative scalar function, h(0) = 0, dh(z)
dz
|z=0 = 1,

and µ̂1 > µ̂2 > . . . > µ̂min(k,m) are the roots of the polynomial (23) or (24), is characterized by

(k−q)(m−q)∑
i=1

τiψi, (26)

where ψi, i = 1, . . . , (k − q)(m − q), are independent χ2(1) random variables and τi, i =
1, . . . , (k − q)(m− q), are the (k − q)(m− q) eigenvalues of Ωq.

2 An example of a function h
is h(z) = z, for other examples we refer to Robin and Smith (2000).

The limiting distributions of the CRT and rk-statistics apply under the same conditions
which indicates that these statistics are closely related. The relation between the two tests
follows from the fact that the roots of polynomials (23) and (24) are equal to the squared
singular values of Θ̂, since they are equal to the eigenvalues of Θ̂′Θ̂ and Θ̂Θ̂′. The smallest
min(k−q,m−q) singular values are contained in S2. Hence, Robin and Smith (2000) construct
the limiting distribution of tr(S ′2S2) (=tr(S2S

′
2)). To construct our rk-statistic, we first conduct

2Robin and Smith (2000) express the eigenvectors of the roots of the polynomials (23) and (24) normalized
with respect to either (F ′F )−1 and (G′G)−1 so D′

k−q(G
′G)−1Dk−q = Ik−q and E′

m−q(F
′F )−1Em−q = Im−q

where the k × (k − q) and m× (m− q) matrices Dk−q and Em−q contain the eigenvectors that belong to the
smallest roots of the polynomials (24) and (23) respectively. The matrix (Em−q ⊗ Dk−q)′V (Em−q ⊗ Dk−q)
that results from Theorem 3.2 of Robin and Smith (2000) is therefore identical to Ωq in Assumption 2 since
Em−q = (Bq,⊥F )′ and Dk−q = GAq,⊥.
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an orthogonal transformation from S2 to Λq. Because Λq has a normal limiting distribution we
can obtain its asymptotic covariance matrix. Since S2 has only non-negative elements, it does
not have a normal limiting distribution and we can not construct the asymptotic covariance
matrix of S2. We use the asymptotic covariance matrix of Λq to normalize Λq which leads to
a statistic with a standard χ2 limiting distribution. Since S2 is not appropriately normalized
in tr(S ′2S2) and tr(S2S

′
2), the limiting distribution of the CRT-statistic is not a standard χ2

one. It consists of a weighted sum of χ2(1) random variables. The weights result from the
asymptotic covariance matrix of Λq since tr(S ′2S2) =tr(Λ′qΛq). The critical values of the limiting
distribution of the CRT-statistic are therefore not readily available, and given the value of the
weights we have to simulate from the limiting distribution to obtain them. Because S2 is
not appropriately normalized in the CRT-statistic, the τi, i = 1, . . . , (k − q)(m − q) are of
importance for the power of the rank test. When there is a large difference between the
different τi, i = 1, . . . , (k − q)(m− q), the CRT-statistic essentially only focusses on the large
τi since the small τi will not contribute much to the critical value. The rk-statistic normalizes
Λq using its asymptotic covariance matrix and hence it focusses on all elements of S2 in a more
evenly distributed manner.

When V = ((F ′F )−1 ⊗ (G′G)−1), the values of τi are equal to one and the limiting distri-
bution of the CRT-statistic is a χ2((k−q)(m−q)) distribution. In this case, the CRT-statistic
is also identical to the canonical correlation rank statistic of Anderson (1951).

Cragg and Donald (1997) construct a rank statistic by means of the minimal value of a
criterium function,

CD(q) = minΠ0∈Γ(q) N(π̂ − π0)
′V −1(π̂ − π0), (27)

where π0=vec(Π0) and Γ(q) is the space of k × m matrices with rank less than or equal
to q. Cragg and Donald (1997) show that the CD-statistic (27) has a χ2((k − q)(m − q))
limiting distribution. Unless V has a Kronecker structure, in which case the CD-statistic
corresponds with the canonical correlation rank statistic, Π0 can not be obtained analytically
and a numerical optimization procedure has to be used. To test for the rank of Π, we compute
CD(q) sequentially for values of q equal to 0, 1, . . . , min(k, m). Eventually CD(q) is therefore
computed at some value of q that exceeds the rank of Π. For these values of q, the value of
Π0 that minimizes (27) is often not well-defined since some elements of Π0 hardly influence
the objective function. This holds especially when k and/or m are rather large. Hence, the
numerical optimization procedure may return a erroneous value of Π0 that results from an area
where the objective function is rather flat. This is a deficiency of the numerical optimization
that is involved in the CD-statistic. Another difference with the rk-statistic concerns the
covariance matrix V which has to be non-singular while the rk-statistic only assumes a non-
singular covariance matrix Ωq. The latter assumption is a less restrictive.

Gill and Lewbel (1992)-Cragg and Donald (1996) Alongside the singular value de-
composition, another well-known matrix decomposition is the LDU-decomposition, see for
example Golub and van Loan (1989). Gill and Lewbel (1992) and Cragg and Donald (1996)
use the LDU-decomposition to construct statistics to test H0 :rank(Π) = q. To construct these
LDU-statistics, permutations are conducted on Π which transform it into Θ,

Θ = GΠF ′, (28)

where G and F are k × k and m × m permutation matrices that, in case we want to test
H0 :rank(Θ) = q, are such that the first q columns and rows of Θ perform a Gaussian elimi-
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nation of Π. For the LDU-decomposition, Θ is specified as

Θ = LDU, (29)

with L : k × k, D : k ×m and U : m×m matrices that are specified by

L =

(
L11 0
L21 Ik−q

)
, D =

(
D11 0
0 D22

)
, U =

(
U11 U12

0 Im−q

)
, (30)

where L11, D11, U11 : q × q; L21 : (k − q)× q; D22 : (k − q)× (m− q); U12 : q × (m− q); and
L11 and U ′

11 are lower triangular matrices with ones on the diagonal and D11 is a diagonal
matrix.3 The Gaussian elimination accomplishes that the largest elements of Θ are grouped
in D11, L11, L21, U11 and U12 and the smallest in D22. Under H0 :rank(Θ) = q, D22 is therefore
equal to zero.

To construct the LDU-statistic to test H0 : rank(Θ) = q, we conduct the same LDU-
decomposition with Gaussian elimination (28)-(30) on Π̂ as on Π . Cragg and Donald (1996)
show that under H0 : rank(Θ) = q, Assumptions 1, 2, and an assumption on the Gaussian
elimination that vec(D̂22) has a normal limiting distribution with mean zero. The LDU-
statistic is equal to a quadratic form of vec(D̂22) with the inverse of its asymptotic covariance
matrix and converges under H0 and the before-mentioned assumptions to a χ2((k− q)(m− q))
distributed random variable.

The LDU-decomposition is not unique and different orderings of the data result in different
LDU-decompositions. Before the LDU-decomposition, Cragg and Donald (1996) therefore per-
mute Π̂ q times using Gaussian elimination. The Gaussian elimination re-orders the columns
and rows of Π̂ such that the first q rows and columns of Θ̂ contain the largest elements of
Π̂. The Gaussian elimination accomplishes that the elements of D̂11 are significantly differ-
ent from zero under H0. In that case, D̂22 can be used to test H0 : rank(Θ) = q. Because
of the triangular structure of L̂ and Û with ones on the diagonal, both D̂11 and D̂22 reflect
whether Θ̂ is close to a lower rank value. The Gaussian elimination is needed to ensure that
only D̂22 reflects whether rank(Θ̂) is close to q. This explains why Cragg and Donald (1996)
need an additional assumption, alongside Assumptions 1 and 2, to ensure that the Gaussian
elimination performs adequately. Since this assumption is not made for the rk-statistic, the
LDU-statistic applies in a more restricted setting than the rk-statistic although their limiting
distributions are identical.

4 Rank Test: The Non-Stationary Cointegration Case

In vector autoregressive (VAR) models, cointegration implies a reduced rank value of the
long-run multiplier, see for example Engle and Granger (1987) and Johansen (1991,1995).
A convenient specification of a VAR(1) model to reflect cointegration is the so-called error
correction specification

∆yi = Πyi−1 + εi, for i = 1, . . . , N, (31)

where yi is a k × 1 vector that contains time-series observations of the variable y at time i,
∆yi = yi − yi−1, εi is a k × 1 vector of disturbances which we assume to be uncorrelated over

3In the LDU-decomposition that is used by Gill and Lewbel (1992), the matrices L22 and U22, which
are identity matrices in (30), are also lower triangular with ones on the diagonal and D22 is a diagonal
matrix. Cragg and Donald (1996) show that the estimator of D22, D̂22, in this case has not a normal limiting
distribution under H0 :rank(Θ) = q. We therefore use the LDU-decomposition that is proposed by Cragg and
Donald (1996).
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time. Cointegration occurs when the k × k matrix Π has a reduced rank value, which we can
denote as Π = AqBq with Aq a k× q matrix and Bq a q× k matrix. The canonical correlation
rank test for the rank of the long-run multiplier is in this case identical to the Johansen
trace statistic, see Johansen (1991). These statistics apply when the covariance matrix of the
disturbances εi is constant over time.

In Kleibergen and Van Dijk (1994), the LDU decomposition is used to decompose the
long-run multiplier Π̂ to construct an alternative cointegration test. This cointegration test
has however the same variable ordering problem as the LDU-based test in the stationary
case. Therefore we construct in this paper a test for rank reduction in case of non-stationary
variables, where we follow the same approach as in the previous section. Because the dependent
and explanatory variables are different realizations of the same (economic) variables over time,
we do not need to normalize the estimator Π̂ to obtain a rank statistic. As mentioned before,
an appropriately normalized rank statistic corresponds with the canonical correlation rank
test that is identical to the Johansen trace statistic. We use the SVD to decompose the
unrestricted least squares estimator Π̂ =

∑N
i=1 ∆yiy

′
i−1(

∑N
i=1 yi−1y

′
i−1)

−1 as

Π̂ = ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥. (32)

The rank statistic corresponds to a quadratic form in λq = vec(Λq). To derive the limiting
distribution of the rank statistic, we use the Representation Theorem for cointegrated series,
see for example Johansen (1991,1995). Theorem 2 states the limiting behavior of the rank
statistic under the assumptions that the disturbances εi are a white noise process with constant
covariance matrix Σ.

Theorem 2 When the disturbances εi are white noise with constant covariance matrix Σ,
Π = AqBq and A′

q,⊥B′
q,⊥ is non-singular, the limiting behavior of the rank statistic

rk(q) = 1
N

λ̂′qΩ̂
−1
q λ̂q, (33)

with λ̂q =vec(Λ̂q),

Ω̂q =
(
B̂q,⊥ ⊗ Â′

q,⊥
)

Ŵ
(
B̂q,⊥ ⊗ Â′

q,⊥
)′

(34)

and

Ŵ =

((
1
N

∑N
i=1 yi−1y

′
i−1

)−1

⊗ 1
N

∑N
i=1 ε̃iε̃

′
i

)
, (35)

where ε̃i = ∆yi − Π̂yi−1, is characterized by

rk(q) →
d

tr

[(∫ 1

0
Bk−q(t)dBk−q(t)

′
)′ (∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)−1 (∫ 1

0
Bk−q(t)dBk−q(t)

′
)]

,

(36)
where Bk−q(t) is a (k − q)-dimensional Brownian motion defined on the unit interval with
identity covariance matrix at time t.

Proof. see the Appendix.

The limiting distribution in Theorem 2 is identical to the limiting distribution of the
Johansen trace statistic, see Johansen (1991,1995). The rank statistic (33) results directly
from a SVD of the least squares estimator. It can therefore be considered as a multivariate
generalization of the Dickey-Fuller t-statistic for testing unit roots in univariate autoregressive
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models. The Johansen trace statistic is a likelihood ratio statistic while the Dickey-Fuller
statistic and the rank statistic (33) are Wald statistics.

The derivation of the limiting distribution of the rank test in the Appendix shows that we
can also obtain the rank test from

rk(q) = 1
N

[(
B̂q,⊥ ⊗ Â′

q,⊥
)

vec
(∑N

i=1 ε̂iy
′
i−1

)]′ [(
B̂q,⊥ ⊗ Â′

q,⊥
)

V̂
(
B̂q,⊥ ⊗ Â′

q,⊥
)′]−1

[(
B̂q,⊥ ⊗ Â′

q,⊥
)

vec
(∑N

i=1 ε̂iy
′
i−1

)]
,

(37)

where ε̂i = ∆yi − ÂqB̂qyi−1 and V̂ = ( 1
N

∑N
i=1 yi−1y

′
i−1 ⊗ 1

N

∑N
i=1 ε̃iε̃

′
i). Based on this spec-

ification of the rank test, we can define a set of assumptions, which are more general than
the white noise constant variance assumption, under which the test has the same limiting
distribution as the Johansen trace statistic.

Assumption 3. The limiting behavior of vec(
∑N

i=1 ε̂iy
′
i−1) is such that

1
N

[(
B̂q,⊥ ⊗ Â′

q,⊥
)

vec
(∑N

i=1 ε̂iy
′
i−1

)]
→
d

Ψ
1
2
q

(∫ 1

0
Bk−q(t)dBk−q(t)

′
)′

Σ
1
2
q (A′

q,⊥B′
q,⊥)−1′, (38)

while the limiting behavior of Ω̂q =
(
B̂q,⊥ ⊗ Â′

q,⊥
)

V̂
(
B̂q,⊥ ⊗ Â′

q,⊥
)′

accords with

1
N

Ω̂q →
d

(
(A′

q,⊥B′
q,⊥)−1Σ

1
2
q

(∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)

Σ
1
2
q (A′

q,⊥B′
q,⊥)−1′ ⊗Ψq

)
, (39)

where Σq and Ψq are (k − q)× (k − q) dimensional non-singular matrices.

Under Assumption 3, the rank statistic (37) has the limiting distribution given in (36).
Assumption 3 allows for a more general set of processes that generate the disturbances εi than
white noise with a fixed covariance matrix. For example, as shown in Phillips and Solo (1992),
these limiting distributions apply for processes with time-varying conditional variances for
which the unconditional variance is finite and fixed. The rank statistic (37) therefore allows
for the use of HACC matrix estimators V̂ , like the ones proposed by White (1980) and Newey
and West (1987). In Andrews (1991), it is show that these covariance matrix estimators are
consistent in case of non-stationary variables.

The decomposition in (32) can also be applied to other estimators of the long-run multi-
plier, for instance to those that result when we incorporate higher order lags or use different
weights for the observations to account for time varying conditional variances or non-normal
distributed errors.

5 Testing rank in stochastic discount factor models

Jagannathan and Wang (1996) base the stochastic discount factor (SDF) in a SDF model
on a conditional Capital Asset Pricing Model (CAPM). A SDF model for asset returns is
represented by, see for example Campbell et. al. (1997),

E[rji+1si+1|Ii] = 1, j = 1, . . . , k, (40)

where rji is the return at time i on asset j, j = 1, . . . , k, Ii is the information set at time i
and si is the SDF at time i. Based on the conditional CAPM, Jagannathan and Wang (1996)
specify the SDF si+1 as a linear function of a set of additional variables:

si+1 = f ′i+1γ, (41)
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where fi+1 is a m× 1 vector of additional variables and γ is a m× 1 vector of risk premia. We
substitute the specification of the SDF (41) into the SDF model (40) to obtain

{
E

[
ri+1f

′
i+1

∣∣ Ii

]}
γ = ιk, (42)

where ri = (r1i . . . rki)
′ and ιk is a k × 1 vector of ones. The vector of risk premia γ can be

estimated using Hansen’s (1982) Generalized Method of Moments (GMM), see for example
Jagannathan et. al. (2002). The GMM estimator of γ is consistent if the k ×m matrix

E
[
ri+1f

′
i+1

∣∣ Ii

]
(43)

has full rank, see Hansen (1992), Newey and McFadden (1994) and Wright (2003). Tests of
the rank of (43) therefore indicate whether all elements of γ are identified.

The asset returns that are used in SDF models are typically returns on portfolios. These
portfolios are constructed using some kind of criterium, like, for example, the market capi-
talization or size of stocks. It is well known now that the returns on portfolios that consist
of small firm stocks exhibit autocorrelation, see for example Campbell et. al. (1997). This
implies that the canonical correlation rank statistic to test for the rank of (43) is essentially
inappropriate since the (asymptotic) covariance matrix of an estimator of (43) does not possess
a Kronecker structure. In the next sub-sections, we therefore use the previously discussed rank
tests, which can be applied when the covariance matrix does not have a Kronecker structure,
to test for the rank of (43) in SDF models.

5.1 Application

Jagannathan and Wang (1996) construct return series on hundred size and beta sorted port-
folios to estimate the risk premia in the SDF model (40). The return series begin in July
1963 and end in December 1990 so N = 330. The SDF (41) is a linear function of a constant,
the return on a value-weighted portfolio, a corporate bond yield spread and per capita labor
income growth. The size and beta sorted portfolios are obtained by ranking all non-financial
stocks listed in the NYSE and AMEX and covered by CRSP with respect to size. For every
decile of size sorted stocks, the stocks are once more sorted with respect to their beta, that is
their correlation with the market return. All stocks in such a beta sorted decile constitute one
portfolio. Since we have both ten size and beta sorted deciles, the total number of portfolios
equals hundred. Inverting a 100×100 leads to a large numerical error. To decrease the number
of portfolios, we therefore regroup the beta sorted portfolios by using the average returns over
all beta sorted portfolios within each size decile. This reduced the number of portfolios to ten
which are sorted with respect to size.

When the expectation of ri+1f
′
i+1 does not depend on the information set Ii, the expectation

in (43) is a unconditional expectation. Instead of testing the rank of (43), we can then also
analyze the rank of the k×m matrix Π in a linear factor model (9) for the returns on the ten
size sorted portfolios,

ri = Πfi + εi, i = 1, . . . , N, (44)

where k = 10, fi = (f1i . . . fmi)
′ with m = 4, N = 330, and the k × 1 vector εi contains the

disturbances. The returns contained in ri are such that r1i is the return on the smallest size
portfolio and rki is the return on the largest size portfolio at time i. The factors in fi consist
of a constant term, a return on a value-weighted portfolio, a corporate bond yield spread and
a measure of per capita labor income growth.
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Returns on portfolios of small firm stocks are known to exhibit autocorrelation, see for
example Campbell et. al. (1997). We test for first order autocorrelation in the disturbances
using a Lagrange multiplier (LM) statistic. The LM statistic results from regressing the
residuals on the lagged residuals. The LM statistic equals 141.4 which is well above the
5% significance level of the χ2(102) distribution that is equal to 124.2. The (asymptotic)
significance of the LM statistic for first order autocorrelation indicates that we have to be
careful with interpreting the canonical correlation rank statistic. Alongside the canonical
correlation rank statistic, we therefore compute rank statistics that allow for non-Kronecker
covariance matrices. Using a consistent covariance matrix estimator, the limit distributions
of these rank statistics also apply when the disturbances exhibit autocorrelation. The rank
statistics that we compute are the LDU rank statistic, the rk-statistic (22) and the CD-statistic
(27). We do not consider the rank statistic of Robin and Smith (2000) because, as shown in
Section 3, it consists of exactly the same elements as the rk-statistic and has a non-standard
limiting distribution which makes a direct comparison more difficult.

To compute the rank statistics, we first transform or normalize the least squares estimator
of Π, Π̂ =

∑N
i=1 rif

′
i(

∑N
i=1 fif

′
i)
−1, towards Θ̂ = GΠ̂F (16) by using a specification of F and

G corresponding to
(
(
∑N

i=1 fif
′
i)
−1 ⊗∑N

i=1 rir
′
i

)
= ((F ′F )−1 ⊗ (G′G)−1) (45)

such that the covariance matrix estimator for θ̂ becomes

Ŵ = (F ⊗G)V̂ (F ⊗G)′,

with V̂ the covariance matrix estimator for π̂. When the covariance matrix estimator V̂ accords
with (45), the rk-statistic is identical to the canonical correlation rank statistic, as in Proposi-
tion 1. Hence, the specification of F and G is such that the rk-statistic uses the same elements
as the canonical correlation rank statistic to discriminate between different rank values of Θ
but with a consistent covariance matrix estimator. We therefore consider the rk-statistic with
this specification of F and G as a size-corrected canonical correlation rank statistic. We use
HACC matrix estimators for the covariance matrix estimator V̂ .4

Table 1 lists the values of statistics for testing the rank of Π using different HACC matrix
estimators. The LDU rank statistic results from the same specification of Θ̂ as we used for
the rk-statistic. The applied HACC matrix estimators are the Newey-West (1987) estimator
with one lag, the White (1980) estimator and the West (1997) estimator with one lag. The
latter estimator is intended for moving average processes.

The values of the rank statistics in Table 1 indicate that rank zero and rank one for
Π are rejected with 5% asymptotic significance. The value of the LDU-statistic to test for
rank two is quite different from the rank value of the other statistics. This is due to the
sensitivity of the LDU-statistic to the ordering of the variables. Depending on the ordering
of the series in fi, the values of the rank tests can differ substantially. This explains why
Cragg and Donald (1996) permute Θ̂ using Gaussian elimination. All other statistics are
insensitive to the ordering of the variables. The CD-statistic (27) is obtained using numerical
optimization. The rank two and rank three cases of the CD-statistic differ considerably from
the corresponding other statistics. The other rank statistics are not asymptotically significant

4The specification of F and G that transforms V̂ towards Ŵ is also convenient to control the numerical
error. The covariance matrix V̂ is a 40×40 matrix which can be difficult to invert when it is not scaled
appropriately. This is achieved by using the specification of F and G from (45).
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test statistic
rank rk-NW rk-White rk-West LDU-West CD-West can. cor. 5%CV

0 102.8 116.5 108.9 108.9 108.9 366.7 55.7
1 40.42 41.85 44.1 43.8 44.1 40.96 40.1
2 17.66 18.48 18.8 22.3 64.3 18.7 26.3
3 6.79 7.33 6.40 8.02 57.9 8.66 14.1

Table 1: Rank statistics with different covariance matrix estimators (can. cor. stands for
canonical correlation, NW stands for Newey-West and CV stands for critical value).

at these rank values. The numerical optimization procedure that we employed, which is a
iterative procedure that estimates the parameters conditional on one another, does therefore
not converge to a well-defined optimum because, as indicated by the other rank statistics,
such an optimum is not clearly present. This shows that the need for numerical optimization
to construct the CD-statistic is a drawback for practical purposes because these numerical
procedures perform badly when the estimated model has a rank value that exceeds the rank
of the model that generated the data.

5.2 Size Comparison

The canonical correlation rank statistic that tests for rank one is approximately equal to its
asymptotic 5% significance level. Because of the autocorrelated disturbances, the critical value
is, however, inappropriate such that we can not assess its critical value. To assess the validity
of the asymptotic critical values of the different rank statistics from Table 1, we bootstrapped
the distributions of these statistics. We estimate the parameters of the factor model (44) with
disturbances that are first order moving averages. The estimated model is used as the data
generating process to obtain the distributions of the rank statistics. The true value of Π in the
data generating process is the canonical correlation estimate of Π with rank one and we use
the same values for fi, i = 1, . . . , N as in the original model. The disturbances in the model
are simulated from a normal distribution with mean zero, where we incorporate their moving
average property in the data generating process.

Figure 1 shows the empirical distribution functions of the rank statistics obtained from
the outlined data generating process. Figure 1 shows that the distribution of the canonical
correlation rank statistic lies below its asymptotic distribution which is a χ2(27) distribution.
The empirical distribution functions of the rank statistics that employ the White and West
covariance matrix estimators, that is, the rk-West, rk-White, CD-West and LDU-West, lie
more on less on top of their asymptotic distribution function. This indicates that these
HACC estimators perform adequately in restoring the distribution of the canonical correlation
rank statistic. The empirical distribution function of the rk-statistic with the Newey-West
covariance matrix estimator lies above its asymptotic distribution. For this data generating
process, the Newey-West covariance matrix estimator therefore performs less satisfactory than
the West and White covariance matrix estimators.

Figure 1 supports the validity of the asymptotic critical values for the rank statistics with
HACC matrix estimators reported in Table 1. We conclude from Table 1 that we can not
reject rank values of Π equal to two and three. Hence, we can not reject lower rank values
of Π and also not the non-identifiedness of (elements of) the vector of risk premia γ. GMM
estimates of γ can therefore be estimates of non-identified parameters which implies that their
value can be more or less anything. This is reflected by the value and standard error (s.e.) of
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Figure 1: Empirical distribution functions of rank statistics that test for rank one while true
rank is equal to one: asymptotic distribution-χ2(27) (solid line), can. cor. (dashed), CD-West
(dotted), LDU-West (dashed-dotted), rk-West (plusses), rk-White (stars), rk-NW (triangles).

the GMM estimates of γ in Jagannathan and Wang (1996, Table IIC): γc = 2.26 (s.e.=0.35),
γvw = 1.81 (s.e.=1.44), γint = −65.72 (s.e.=21.2) and γlabor = −97.72 (s.e.=33.2). As the
scale of the factors in fi is about the same, very large values of parameters and standard
errors may indicate that the parameters are badly identified. The value of the rank statistics
further indicates the issue of identification of the parameters. This also holds for most of the
other specifications of the SDF in Table II of Jagannathan and Wang (1996).

5.3 Power Comparison

We compare the power of the different rank statistics using the same data generating process
that we employed for the empirical distribution functions in Figure 1. Hence, we generate
data from the model

ri = Π (λ∗) fi + εi, i = 1, . . . , N, (46)

where εi are moving average disturbances of order 1 with normal distributed innovations and

Π(λ∗) = Π̃1 + λ∗(Π̂− Π̃1), (47)

with Π̂ the least squares estimate of Π for the Jagannathan and Wang (1996) data and Π̃1 is
the canonical correlation estimate of Π when it has rank one. Figure 2 shows the power curves
of the different statistics that test for a rank one value of Π with 5% asymptotic significance for
various values of λ∗. Figure 2 shows, just like Figure 1, that the rank statistics which involve
the West or White covariance matrix estimators are approximately size correct. The canonical
correlation rank statistic and the rank statistic that uses the Newey-West covariance matrix
estimator are size distorted. The power of the rank statistics at other values of λ∗ behaves in
a similar way, that is, the power curves of the rank statistics that use the West and White
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Figure 2: Power curves of rank statistics that test for rank one with 5% asymptotic significance:
can. cor. (dashed), CD-West (dotted), LDU-West (dashed-dotted), rk-West (plusses), rk-
White (stars), rk-NW (triangles).

covariance matrix estimators are very similar and the power curves of the canonical correlation
rank statistic and the rank statistic that involves the Newey-West covariance matrix estimator
lie consistently below or above these.

6 Concluding Remarks

To overcome some of the deficiencies of statistics that test the rank of a matrix, we propose
a novel one. The rank statistic requires a consistent estimator of the unrestricted matrix,
which does not need to have a Kronecker covariance matrix. This allows one, for example,
to use HACC estimators for the covariance matrix. The unrestricted matrix is decomposed
using a singular value decomposition. The rank statistic is a quadratic form of an orthogonal
transformation of the smallest singular values with the inverse of the respective covariance
matrix. If the limiting distribution of the estimator of the unrestricted matrix is normal, the
proposed rank statistic has a standard χ2 limiting distribution. The rank statistic simplifies to
the canonical correlation rank statistic if the covariance matrix of the unrestricted matrix has
a Kronecker covariance matrix. In case of non-stationary cointegrated variables, the limiting
distribution of the rank statistic equals the limiting distribution of the Johansen trace statistic.

In many econometric models, the rank of a matrix governs the identification of the param-
eters. The limiting distribution of estimators of these parameters are only valid if this matrix
has full rank. For example, in order to obtain the limiting distributions of GMM estimators,
it is assumed that a matrix of derivatives has full rank, see for example Hansen (1982) and
Newey and McFadden (1994). In such cases, rank statistics can be used to test for the identifi-
cation of the parameters. We use rank statistic to test for the identification of the parameters
in the SDF model of Jagannathan and Wang (1996). We find that lower rank values of the
identifying matrix can not be rejected. The parameters in the SDF model of Jagannathan and
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Wang are therefore badly identified. This has consequences for their empirical results and the
resulting conclusions.

Appendix

Proof of Theorem 1. Under H0, Θ = AqBq, and Assumption 1,
∥∥∥Θ̂−Θ

∥∥∥ →
p

0,

where ‖ ‖ is a distance function. We pre-multiply this expression by (Aq
... Aq,⊥)′ and post-

multiply it by (B′
q

... B′
q,⊥) to obtain

∥∥∥∥∥

(
A′

q(Θ̂− AqBq)B
′
q A′

qΘ̂B′
q,⊥

A′
q,⊥Θ̂B′

q A′
q,⊥Θ̂B′

q,⊥

)∥∥∥∥∥ →p 0.

It results from the SVD that Θ̂ = ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥ and so
∥∥∥∥∥

(
A′

q(ÂqB̂q − AqBq + Âq,⊥Λ̂qB̂q,⊥)B′
q A′

q(ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥)B′
q,⊥

A′
q,⊥(ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥)B′

q A′
q,⊥(ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥)B′

q,⊥

)∥∥∥∥∥ →p 0.

Since the q largest singular values of Θ̂ are contained in ÂqB̂q, Λ̂q is an orthogonal trans-

formation of the smallest singular values and Â′
q,⊥Âq,⊥ = Ik−q, B̂q,⊥B̂′

q,⊥ = Im−q, the above

expression implies that ÂqB̂q →
p

AqBq, B̂qB
′
q,⊥ →

p
0, A′

q,⊥Âq →
p

0 and Λ̂q →
p

0. Further usage

of these results and Assumption 1 gives

√
Nvec(Θ̂− AqBq) →

d
ψθ ⇔√

Nvec(ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥ − AqBq) →
d

ψθ ⇔√
Nvec(ÂqB̂q − AqBq)+

√
Nvec(Âq,⊥Λ̂qB̂q,⊥) →

d
ψθ.

This implies that ÂqB̂q is a root-N consistent estimator of AqBq. Using the normalization

imposed on either Âq or B̂q, we can show the root-N consistency of the estimators involved

in ÂqB̂q. For example, in case that B̂ is normalized as B̂ = [Iq
... B̂q,2] with B̂q,2 a q × (m− q)

matrix,

ÂqB̂q − AqBq = [Âq − Aq
... ÂqB̂q,2 − AqBq,2]

= [Âq − Aq
... Aq(B̂q,2 −Bq,2) + (Âq − Aq)B̂q,2]

= (Âq − Aq) [Iq
... B̂q,2] + Aq(B̂q,2 −Bq,2) [0

... Iq].

Since ÂqB̂q is a root-N consistent estimator of AqBq, Âq and B̂q,2 are root-N consistent
estimators of Aq and Bq,2, respectively. Furthermore, by pre-multiplying the above expression

by either Ik or (A′
qAq)

−1A′
q and post-multiplying by either B′

q(BqB
′
q)
−1 or [0

... Iq]
′, we obtain

that √
Nvec(Âq − Aq) →

d
ψA,

√
Nvec(B̂q,2 −Bq,2) →

d
ψB
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with ψA ∼ N(0,WA), ψB ∼ N(0,WB), WA = ((BqB
′
q)
−1Bq ⊗ Ik)W ((BqB

′
q)
−1Bq ⊗ Ik)

′, and

WB = ([0
... Iq]⊗ (A′

qAq)
−1A′

q)W ([0
... Iq])⊗ (A′

qAq)
−1A′

q)
′.

If Âq and B̂q are root-N consistent estimators of Aq and Bq, Âq,⊥ and B̂q,⊥ are also root-N
consistent estimators of Aq,⊥ and Bq,⊥, respectively. This follows directly from

Â′
qÂq,⊥ ≡ 0 ⇔

A′
q(Âq,⊥ − Aq,⊥) + (Âq − Aq)

′Âq,⊥ ≡ 0,

where we have used that A′
qAq,⊥ ≡ 0. The fact that Âq is a root-N consistent estimator of

Aq now implies that Âq,⊥ is a root-N consistent estimator of Aq,⊥. The same result can be

obtained for B̂q,⊥.

The limiting behavior of λ̂ =vec(Λ̂), with Λ̂ = Â′
q,⊥Θ̂B̂′

q,⊥, then results from Assumption

1 and the root-N consistency of Âq,⊥ and B̂q,⊥,

√
Nλ̂q →

d
ψλ,

with ψλ ∼ N(0, Ωq), Ωq = (Bq,⊥ ⊗ A′
q,⊥)W (Bq,⊥ ⊗ A′

q,⊥).

Proof of Proposition 1. When V = ((F ′F )−1 ⊗ (G′G)−1),

W = (F (F ′F )−1F ′ ⊗G(G′G)−1G′) = Ikm.

As a consequence,
Ωq = (Bq,⊥ ⊗ A′

q,⊥)W (B′
q,⊥ ⊗ Aq,⊥)′

= (Bq,⊥ ⊗ A′
q,⊥)(B′

q,⊥ ⊗ Aq,⊥)
= I(k−q)(m−q),

and
λ̂′Ω−1

q λ̂ = vec(Λ̂)′vec(Λ̂)

= vec(Â′
q,⊥Θ̂B̂′

q,⊥)′vec(Â′
q,⊥Θ̂B̂′

q,⊥)

= tr(B̂q,⊥Θ̂′Âq,⊥Â′
q,⊥Θ̂B̂′

q,⊥).

If we write for notational convenience U = [U1
... U2] with U1 a k × q and U2 a k × (k − q)

matrix and V = [V1
... V2] with V1 a m× q and V2 a m× (m− q) matrix, the expressions in (12)

simplify to Aq,⊥ = U2U
−1
22 (U22U

′
22)

1
2 and Bq,⊥ = (V22V

′
22)

1
2 V ′−1

22 V ′
2 . Substituting these values in

the above expression and using the SVD expression of Θ̂ (= USV ′), we obtain

λ̂′Ω−1
q λ̂ = tr[(V22V

′
22)V

′−1
22 V ′

2Θ̂
′U2U

−1
22 (U22U

′
22)U

−1′
22 U ′

2Θ̂V2V
−1
22 ]

= tr [V ′
2V SU ′U2U

′
2USV ′V2]

= tr [V ′
2V2S2U

′
2U2S2V

′
2V2]

= tr [S ′2S2] = tr [S2S
′
2] ,

where we have used that U ′
1U2 = 0, V ′

1V2 = 0, U ′
2U2 = Ik−q, V ′

2V2 = Im−q. S2 is a (k−q)×(m−q)
dimensional rectangular matrix. When k > m it contains the square roots of the m−q smallest

19



eigenvalues of Θ̂′Θ̂. When m > q it contains the square roots of the k− q smallest eigenvalues
of Θ̂Θ̂′ on its main diagonal. As

Θ̂′Θ̂ = V S ′U ′USV ′

= V S ′SV ′

= [V1
... V2]

(
S ′1S1 0

0 S ′2S2

)
[V1

... V2]
′,

Θ̂Θ̂′ = USV ′V S ′U ′

= [U1
... U2]

(
S1S

′
1 0

0 S2S
′
2

)
[U1

... U2]
′,

it follows that tr(S ′2S2) is equal to the sum of the smallest m − q eigenvalues of Θ̂′Θ̂ and
tr(S2S

′
2) is equal to the sum of the smallest k− q eigenvalues of Θ̂Θ̂′. The eigenvalues of Θ̂′Θ̂

and Θ̂Θ̂′ correspond with the roots of the polynomial equations |µF̂ ′F̂ − Π̂Ĝ′ĜΠ̂| = 0 and
|µĜ′Ĝ−Π̂F̂ F̂ ′Π̂′| = 0 respectively. This shows the relationship with the canonical correlations.

Proof of Theorem 2. When Π = AqBq and A′
q,⊥B′

q,⊥ is non-singular, the Representation
Theorem for the VAR(1) (31), see for example Johansen (1991), implies that

yi = B′
q,⊥(A′

q,⊥B′
q,⊥)−1A′

q,⊥
∑i

j=1 εj + ξi,

where ξi is a stationary error term and εj = ∆yj−AqBqyj−1. In case of white noise disturbances
εi with constant covariance matrix Σ,

1√
Nτ

yτN →
d

B′
q,⊥(A′

q,⊥B′
q,⊥)−1Σ

1
2
q Bk−q(τ), 0 < τ < 1,

with Σq = A′
q,⊥ΣAq,⊥ and Bk−q(τ) is a (k − q)-dimensional Brownian motion defined on the

unit interval with identity covariance matrix at time τ .
From the first order condition for the least squares estimator, we obtain that

∑N
i=1(∆yi − Π̂yi−1)y

′
i−1 = 0 ⇔∑N

i=1(∆yi − ÂqB̂qyi−1 − Âq,⊥Λ̂qB̂q,⊥yi−1)y
′
i−1 = 0 ⇔∑N

i=1(ε̂i − Âq,⊥Λ̂qB̂q,⊥yi−1)y
′
i−1 = 0 ⇔∑N

i=1 ε̂iy
′
i−1 =

∑N
i=1 Âq,⊥Λ̂qB̂q,⊥yi−1y

′
i−1.

where ε̂i = ∆yi − ÂqB̂qyi−1. Since Ik = PÂq
+ PÂq,⊥ , it follows that

∑N
i=1 ε̂iy

′
i−1 = Âq,⊥Â′

q,⊥
∑N

i=1 ε̂iy
′
i−1,

where we use that Â′
q,⊥Âq,⊥ = Ik−q. We can express Λ̂q as

Λ̂q = Â′
q,⊥

[∑N
i=1 ε̂iy

′
i−1

] [∑N
i=1 yi−1y

′
i−1

]−1

B̂′
q,⊥.

To derive the limiting behavior of the rank statistic, we first consider the limiting behavior of∑N
i=1 yi−1ε̂

′
i. We specify ε̂i as Σ

1
2 ui with ui a k × 1 random vector with an identity covariance

matrix. When we use that Âq,⊥ is a consistent estimator of Aq,⊥, we obtain that

1
N

∑N
i=1 ε̂iy

′
i−1 →

d
Aq,⊥Σ

1
2
q

(∫ 1

0
Bk−q(t)dBk−q(t)

′
)′

Σ
1
2
q (A′

q,⊥B′
q,⊥)−1′Bq,⊥,
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where we used that
∑N

i=1 ε̂iy
′
i−1 = Âq,⊥Â′

q,⊥
∑N

i=1 ε̂iy
′
i−1 and Σq = A′

q,⊥ΣAq,⊥. The limiting

behavior of second term in the expression of Λ̂q,
1

N2

∑N
i=1 yi−1y

′
i−1, is given by

1
N2

∑N
i=1 yi−1y

′
i−1 →

d
B′

q,⊥(A′
q,⊥B′

q,⊥)−1Σ
1
2
q

(∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)

Σ
1
2
′

q (A′
q,⊥B′

q,⊥)−1′Bq,⊥,

and (
1

N2

∑N
i=1 yi−1y

′
i−1

)−1

→
d

Aq,⊥Σ
− 1

2
q

(∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)−1

Σ
− 1

2
′

q A′
q,⊥.

The limiting behavior of Λ̂q is therefore

N Λ̂q →
d

Σ
1
2
q

(∫ 1

0
Bk−q(t)dBk−q(t)

′
)′ (∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)−1

Σ
− 1

2
′

q (Bq,⊥Aq,⊥)′.

To estimate the covariance matrix of π̂ =vec(Π̂), we use

Ŵ =

((
1
N

∑N
i=1 yi−1y

′
i−1

)−1

⊗ 1
N

∑N
i=1 ε̃iε̃

′
i

)
,

where ε̃i = ∆yi − Π̂yi−1 and hence the estimator of the covariance matrix of λ̂q = vec(Λ̂q) is

Ω̂q =
(
B̂q,⊥ ⊗ Â′

q,⊥
)

Ŵ
(
B̂q,⊥ ⊗ Â′

q,⊥
)′

.

The limiting behavior of Ω̂q corresponds with

1
N

Ω̂q →
d

(
Bq,⊥Aq,⊥Σ

− 1
2

q

(∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)−1

Σ
− 1

2
′

q A′
q,⊥B′

q,⊥ ⊗ Σq

)
,

and of its inverse

(
1
N

Ω̂q

)−1

→
d

(
(A′

q,⊥B′
q,⊥)−1Σ

1
2
q

(∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)

Σ
1
2
q (A′

q,⊥B′
q,⊥)−1′ ⊗ Σ−1

q

)
.

From this we obtain the limiting behavior of the rank statistic rk(q) = 1
N

λ̂′qΩ̂
−1
q λ̂q,

rk(q) →
d

tr

[(∫ 1

0
Bk−q(t)dBk−q(t)

′
)′ (∫ 1

0
Bk−q(t)Bk−q(t)

′dt
)−1 (∫ 1

0
Bk−q(t)dBk−q(t)

′
)]

.
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