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1 Introduction

In the productivity modelling literature - see Coelli et al [3], Kumbhakar and Knox Lovell [17]
and, more recently, Murillo-Zamorano [20] and the many references in each - the disturbances
U and V representing technical inefficiency and noise, respectively, of the composite error

W = V − U

of the stochastic frontier model (SFM hereafter) are assumed to be independent random vari-
ables. This ubiquitous assumption, held apparently without question in the SFM literature, is
moreover described by Kumbhakar and Knox Lovell as “seems innocuous” [17, p. 75]. Despite
that opinion, the lack of factual evidence to support the independence assumption in the SFM is
cause for concern, and so it is the need to examine the consequences of weakening this assump-
tion that motivates the work presented in this article. Independence is relaxed by introducing
estimable parametric forms to represent association between the error components, each with
special, leading cases that represent independence. In doing so, the data themselves are allowed
the opportunity to determine statistically the adequacy of the independence assumption.

The joint behaviour of U and V can be parameterised by employing the copula approach
to statistical modelling. This technique derives from a representation theorem due to Sklar, see
[24] and [25], in which the joint distribution of random variables can be expressed as a function
of its univariate margins: that function being the copula. The copula represents the dependence
structure that associates random variables, it captures entirely their joint behaviour. Whilst
there exists an extensive statistical literature on copulas, they have to date received very little
attention in econometrics. Applications include Dardanoni and Lambert [5] in economics, and
Miller and Liu [19] and Smith [28] in econometrics. In finance, Embrechts et al [6] use copulas
to model risk. In regard to statistical modelling, Joe [14, Chapter 11] gives five studies in which
copula functions are used to model various multivariate and longitudinal data sets.

The copula approach to modelling derives from the converse of Sklar’s theorem, in that
specifying marginal distributions for each random variable and a copula function that binds
them, it follows that this process must yield a joint distribution; i.e. this method constructs a
statistical model. The SFM is a prime candidate for the application of the copula approach as it
is standard procedure to specify pairs of models for the error components. Common choices for U
include the Exponential, the Half-Normal, the Truncated Normal and the Gamma distributions,
and for V it is typically the Normal distribution. Any pairing is permitted under a copula
approach, including pairs picked from the aforementioned distributions.

Three major examples are given: the first is algebraic, the remaining are data-driven. The
algebraic example concerns the Logistic-Exponential SFM, whose margins are bound by the
Fairlie-Gumbel-Morgenstern family of copulas. This model is convenient in that closed form
expressions for the density of W and the Battese-Coelli measure of technical efficiency can be
derived. Both are studied allowing for differing degrees of positive and negative association
between U and V.

The data-driven examples use relatively well-known and readily available data: the US
Electricity Utility cross-section, and the US Airlines panel. The cross-section example focuses
on the Normal-Half-Normal SFM, with margins bound by differing copulas in order to explore
model choice. An interesting outcome from this example is the difference between the kernel-
smoothed distributions of technical efficiency. For the preferred model (that estimates significant
negative association between the error components) the distribution is located substantially away
from its standard (unassociated) Normal-Half-Normal counterpart.

The final example focuses on the Normal-Truncated Normal SFM applied to unbalanced
panel data; collected on n firms across T time periods. In the context of the mutually indepen-
dent random effects formulation of Kumbhakar [16] with time-varying technical efficiency, the
desired structure of association between a firms error components is common association between
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the time invariant inefficiency error component and all time-varying noise components, with the
noise component serially independent. To represent this structure it is necessary to specify a
(T + 1)-dimensional copula, the two considered are the extended Fairlie-Gumbel-Morgenstern
family of copulas and the Meta-Gaussian family of copulas.

2 Copula Functions

2.1 Theory

The study of the copula function was initiated by Hoeffding in the 1940s, and further developed
by Fréchet in the post-war period. Particularly important was the work of Sklar, especially his
representation theorem from which the copula approach to modelling is derived; see [24] and
[25]. For histories of the development of copula theory see Dall’Aglio [4], Schweizer [22], Fisher
[8] and Nelsen [21]; also of interest is Sklar [26]. Joe [14], Frees and Valdez [9] and Nelsen [21]
present comprehensive surveys of the theory of copula functions.

The simplest case will be set down here to illustrate the theory: the bivariate case. Consider
a two-place function C : II2 → II, where II denotes the closed interval [0, 1] of IR, the latter
denoting the real line, while IR = IR ∪ {−∞,∞} will later be used to denote the extended real
line. C is a copula function if it is 2-increasing with margins C(1, y) = y and C(x, 1) = x, and
grounded such that C(0, y) = C(x, 0) = C(0, 0) = 0, where the pair (x, y) ∈ II2. By 2-increasing
it is meant

C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0
for every x1, x2, y1, y2 in II such that x1 ≤ x2 and y1 ≤ y2.

Sklar’s main result is that there exists a copula function which acts to represent the joint
cumulative distribution function (cdf hereafter) of random variables in terms of its underlying
one-dimensional margins. For example, let F1(z1) and F2(z2) denote, respectively, the cdf of
the random variables Z1 and Z2; that is, Fi(zi) = Pr(Zi ≤ zi), where zi ∈ IR (i = 1, 2), and let
F (z1, z2) = Pr(Z1 ≤ z1, Z2 ≤ z2) denote the joint cdf. Sklar’s result is that the joint cdf can be
represented according to

F (z1, z2) = C(F1(z1), F2(z2)). (1)

The copula representation is a re-formulation of the joint cdf such that it separates the margins
F1 and F2 from their interaction. So while the copula function takes as arguments the margins F1
and F2 in (1), the function itself is independent of those margins. The copula serves to capture
the association between the random variables Z1 and Z2. When F1 and F2 are continuous
functions, then (1) provides a unique representation of the cdf for any (z1, z2) ∈ IR

2
. Nelsen

[21, Section 2.3] provides a proof of (1) that follows the method given in Schweizer and Sklar
[23, Chapter 6] where a multivariate version of the theorem is proved. For an alternate proof
(multivariate version) see Carley and Taylor [2].

The copula density c : II2 → [0,∞] of a copula C is defined as

c(x, y) =
∂2

∂x∂y
C(x, y).

It cannot be negative-valued as C is 2-increasing. The copula density occurs in the expression for
the joint probability density function (pdf hereafter) of continuous random variables. Assuming
that F1 and F2 are (right) continuous functions, then, from (1), the joint pdf of Z1 and Z2 is
given by

∂2

∂z1∂z2
F (z1, z2) = f1(z1)f2(z2)

∂2

∂x∂y
C(x, y)

¯̄̄̄
x→F1(z1),y→F2(z2)

= f1(z1)f2(z2)c(F1(z1), F2(z2))
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where fi(zi) = ∂
∂zi

Fi(zi) denotes the pdf of Zi, i = 1, 2. Fang et al [7] call c(F1(z1), F2(z2)) the
“density weighting function”.

2.2 Examples

Consider the Product copula:
Π = xy

where here, and in the following examples, (x, y) ∈ II2. In light of (1), under Π the joint cdf of Z1
and Z2 must be given by F (z1, z2) = F1(z1)F2(z2), implying that Z1 and Z2 are independent.
Thus, the Product copula represents (bivariate) independence. The copula density of Π is
obviously equal to unity.

A second example illustrates the re-formulation as per (1). Let (Z1, Z2) = (z1, z2) ∈ IR
2
have

joint cdf

F (z1, z2) = (1 + e−z1 + e−z2)−1

=
xy

x+ y − xy

¯̄̄̄
x→F1(z1),y→F2(z2)

where Fi(zi) = (1 + e−zi)−1 (i = 1, 2) are the Logistic margins of F. The copula in this case is
clearly xy/(x+ y − xy), and it may be written

Π

Σ−Π (2)

where Σ = x+ y. The copula density in this case is

2Π

(Σ−Π)3 .

Two further examples are the (bivariate) Fréchet lower bound

W = max(x+ y − 1, 0)

and the (bivariate) Fréchet upper bound

M = min(x, y).

These copulas are important in that the closed interval [W,M ] has the property of containing
all bivariate copulas; namely, W ≤ C(x, y) ≤M for all (x, y) ∈ II2.

2.3 Families of Copulas

For the purposes of statistical modelling it is desirable to parameterise the copula function so
that data can be used to shed light on the extent of association between the random variables
of interest. Let

Cθ(x, y)

denote a family of copulas, where the members are indexed according to values assigned to θ
(possibly vector valued). Provided that the margins F1 and F2 do not depend on θ, Sklar’s
representation (1) holds for all members of a given family.

There are numerous examples of families of bivariate copulas given in Joe [14] and Nelsen
[21]. For example, the family of Bivariate Normal copulas is given by

Φ2(Φ
−1(x),Φ−1(y); θ) (3)
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where −1 ≤ θ ≤ 1. Here, Φ(·) denotes the cdf of a standard Normal variable, and Φ2(·, ·; θ)
the cdf of a bivariate standard Normal variable with Pearson’s product moment correlation
coefficient θ. Note that setting x = Φ(z1) and y = Φ(z2) in (3) recovers the bivariate standard
Normal cdf, Φ2(z1, z2; θ). The copula density of the Bivariate Normal copula is given by

φ2
¡
Φ−1(x),Φ−1(y); θ

¢
φ (Φ−1(x))φ (Φ−1(y))

where φ(·) denotes the pdf of a standard Normal variate. Replacing x and y with, for example,
the cdfs F1(z1) and F2(z2), respectively, yields the bivariate Meta-Gaussian distribution that
Fang et al [7] attribute to Krzysztofowicz and Kelly.

A second example is the Ali-Mikhail-Haq (AMH hereafter) family of copulas:

xy

1− θ(1− x)(1− y)
(4)

where the association parameter is such that −1 ≤ θ < 1. Setting θ = 0 yields Π, and allowing
θ → 1 yields (2) as the limit. The copula density of the AMH copula is

1 + θ (xy + x+ y − 2 + θ (1− x) (1− y))

[1− θ (1− x) (1− y)]3
.

Continuing the earlier example on the Bivariate Logistic distribution, the AMH (in this case
with −1 ≤ θ ≤ 1) is the copula of a generalised version of that distribution with cdf

F (z1, z2) = (1 + e−z1 + e−z2 + (1− θ)e−z1−z2)−1

=
xy

1− θ(1− x)(1− y)

¯̄̄̄
x→F1(z1),y→F2(z2)

where, as was the case before, both margins F1 and F2 are Logistic.

2.4 Measuring Association

The ability of a given family of (bivariate) copulas to represent differing degrees of association
can be examined in terms of the extent to which it covers, for every (x, y) ∈ II2, the interval
between the lower and upper Fréchet bounds for copulas, [W,M ]. This is generally determined at
the extremes of the parameter space. For example, the Bivariate Normal family (3) has full cov-
erage as Φ2(Φ−1(x),Φ−1(y);−1) =W and Φ2(Φ−1(x),Φ−1(y); 1) =M. Furthermore, this family
is comprehensive because it also includes Π = Φ2(Φ−1(x),Φ−1(y); 0). Comprehensive families
of copulas parameterise the full range of association. Despite the existence of comprehensive
families, it may be counterproductive in modelling contexts to confine attention to such families,
for there are typically many other features of the data that are of interest.

Many copula families are not comprehensive, one example being the AMH family (4): it
includes Π, when θ = 0, but it fails to contain either W orM. For such families it is desirable to
assess coverage in terms of measures of association. In this respect, most familiar is Pearson’s
product moment correlation coefficient. However, this measure suffers from a lack of invariance
with respect to the margins. A numerical example illustrates: suppose that the copula of the joint
distribution of Z1 ∼ Logistic and Z2 ∼ Exponential(1) is the AMH. For this model, Pearson’s
measure is bounded such that [−0.2405, 0.3556], to 4dp. Now alter only the Z1 margin, and
suppose that Z1 ∼ N(0, 1). For this second model the corresponding region is [−0.2459, 0.3616],
to 4dp. This implies that when dealing with models that depart from the multivariate Normal,
that it is advisable to seek alternatives to Pearson’s measure that satisfy invariance.

Two measures that are invariant are Kendall’s τ and Spearman’s Sρ. Both are concordance
measures that are bounded to the interval [−1, 1]: equal to −1 at W, 1 at M and 0 for Π. More-
over, both depend only on the copula of the joint distribution. Focusing on Sρ, for independent
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pairs (Z1i, Z2i), i = 1, 2, 3 that are copies of (Z1, Z2), it is defined as (e.g. see Nelsen [21, Section
5.1]):

Sρ = 3 [Pr((Z11 − Z12)(Z21 − Z23) > 0)− Pr((Z11 − Z12)(Z21 − Z23) < 0)] .

Provided Z1 and Z2 are continuous random variables, with the copula of their joint distribution
given by C, then it can be shown that

Sρ = 12

Z
II2
xydC(x, y)− 3

= 12E[XY ]− 3
where the second line forms Sρ as a product moment, by interpreting X and Y as standard
Uniform random variables with joint cdf C. To illustrate, for the AMH family it can be shown
that

Sρ =
12(1 + θ)

θ2
dilog(1− θ)− 24(1− θ)

θ2
log(1− θ)− 3(θ + 12)

θ

where dilog(z) =
R z
1 log(t) (1− t)−1 dt is the dilogarithm function. Under the AMH copula, Sρ

is bounded such that [−0.2711, 0.4784], to 4dp, irrespective of the margins of the model.

2.5 The Copula Approach to Modelling

For the purposes of modelling it is the converse of the copula representation of the joint cdf
given by Sklar’s theorem that is relevant. In other words, given models for the margins and a
copula function that binds them, this then has the effect of constructing a statistical model for
the random variables of interest, as a joint cdf is specified. For example, if Z1 and Z2 denote
the variables of interest, then the statistical model for Z1 and Z2 is their true, but unknown
joint distribution; naturally, this distribution may depend on parameters and covariates. Under
a copula approach, separate models for the margins F1(z1) and F2(z2) are proposed, as well as
a selection of a copula family Cθ. Combining these selections as per (1) then has the effect of
specifying the joint cdf of Z1 and Z2. Intuitively, the copula approach determines each component
of the overall model, then engineers them together using a copula function.

3 The Stochastic Frontier Model

The Stochastic Frontier Model (SFM) is given by

log Y = x0β + V − U (5)

where the single-valued output Y = y ∈ IR+; note that any unit of measurement associated with
output is ignored in this model merely for notational ease. x (k × 1) is a vector of regressors
(i.e. known functions of the inputs) assumed exogenous, and β (k × 1) is a vector of unknown
parameters (that the regression function in (5) is linear in β is unimportant in what follows,
and can be relaxed if required). In this model, the error component U = u ∈ IR+ (where
IR+ = IR+ ∪ {0}) is a random variable with cdf F (u) = Pr(U ≤ u) that is assumed continuous,
independent of x, but dependent possibly on unknown parameters that are collected into a vector
δu. Likewise, the error component V = v ∈ IR has cdf G(v) = Pr(V ≤ v) that is assumed to
be continuous, independent of x, but dependent possibly on unknown parameters collected in
vector δv. By Sklar’s theorem, represent the joint cdf of U and V by

H(u, v) = Pr(U ≤ u, V ≤ v)

= Cθ(F (u),G(v))

where Cθ(·, ·) is the bivariate copula of the joint distribution of U and V, that itself may depend
on a vector of unknown parameters θ. It is assumed that θ has no elements in common with
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(β, δu, δv). Of course, the standard SFM arises when Cθ(x, y) = xy = Π; that is, when U and V
are assumed to be independent.

The likelihood function L(β, δu, δv, θ) is constructed from the distribution of the composite
error W = V − U, where the random variable W = w (where −∞ < w < ∞) is continuous.
Denoting the pdf of W by hθ(w), it can be derived by first considering the pdf of (U, V ) :

h(u, v) =
∂2

∂u∂v
H(u, v)

= f(u)g(v)cθ(F (u), G(v)) (6)

where f(u) = ∂F (u)/∂u and g(v) = ∂G(v)/∂v denote, respectively, the pdf of U and the pdf of V,
and cθ is the copula density of Cθ. Note that the association between U and V is captured entirely
by the density weighting function cθ(F (u), G(v)). Of course, if U and V are independent then
cθ(·, ·) = 1 implying that h(u, v) = f(u)g(v), in which case the analyses presented in texts such
as Coelli et al [3] and Kumbhakar and Knox Lovell [17] follow. Transforming (U, V )→ (U,W )
yields, as the pdf of (U,W ) :

h(u,w) = f(u)g(u+ w)cθ(F (u),G(u+ w)). (7)

Thus, the pdf of W is given by

hθ(w) =

Z
IR+

h(u,w)du (8)

= EU (g(U + w)cθ(F (U), G(U + w))) (9)

where EU denotes expectation with respect to the distribution of U. To illustrate the construction
of the likelihood, consider here the simplest case: when there are a cross-section of n firms.
Assuming independence across firms finds the likelihood given by

L(β, δu, δv, θ) =
nY
i=1

hθ(log yi − x0iβ)

where yi is the output of firm i, and xi its associated regressor vector.
It will be rare that a convenient closed form solution will exist to (8), although an exception

is provided in Example 1 that follows, so optimisation of the likelihood will typically require
numerical integration procedures. Should this prove onerous, an alternate approach is to use
simulation estimation (cf. Greene [13]) as it is quite straightforward to cast hθ(·) in the form of
an (unconditional) expectation with respect to U, see (9).

Of interest in the SFM is the technical efficiency TEθ, that, following Battese and Coelli [1],
can be measured by the following conditional expectation:

TEθ = E(exp(−U)|W = w)

=
1

hθ(w)

Z
IR+

exp(−u)h(u,w)du (10)

=
EU (exp(−U)g(U + w)cθ(F (U),G(U + w)))

EU (g(U + w)cθ(F (U), G(U + w)))
(11)

where (9) has been used to obtain (11). Once again, (11) can be used as the basis of simu-
lation estimation of technical efficiency if the Laplace transform seen in (10) cannot be solved
numerically, or (preferably) algebraically.
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4 Examples

4.1 Example 1: Algebraic

In this example, closed form expressions for the pdf hθ(w) and the technical efficiency TEθ are
derived for the Logistic-Exponential SFM. Underpinning this particular SFM is the fact that
simple relationships exist between the pdf and cdf of the Logistic, as they also do for the pdf
and cdf of the Exponential, thereby rendering much of the analysis of the Logistic-Exponential
SFM attractively simple. Moreover, as the pdf of the Logistic has a shape similar to that of the
pdf of the Normal, replacing the Normal by the Logistic may not cause too great discrepancies
in the theory. For the copula associating the error components, the Fairlie-Gumbel-Morgenstern
(FGM hereafter) family of copulas is selected. Assume:

• Assumption #1: The technical inefficiency error component U is Exponential with
parameter σu ≥ 0, with pdf

f(u) =
1

σu
exp

µ
− u

σu

¶
=

1

σu
(1− F (u)) (12)

where

F (u) = 1− exp
µ
− u

σu

¶
(13)

is the cdf of U. It is well-known that E(U) = σu and V ar(U) = σ2u.

• Assumption #2: The noise error component V is Logistic with mean zero and scale
parameter σv > 0, with pdf

g(v) =
1

σv
exp

µ
− v

σv

¶µ
1 + exp

µ
− v

σv

¶¶−2
=

1

σv
G(v)(1−G(v)) (14)

where

G(v) =

µ
1 + exp

µ
− v

σv

¶¶−1
(15)

is the cdf of V. The scale parameter σv relates to variance according to

V ar(V ) =
π2

3
σ2v.

• Assumption #3: The copula of the joint distribution of U and V is a member of the
FGM family of copulas:

Cθ(x, y) = xy(1 + θ(1− x)(1− y))

where the association parameter θ is such that −1 ≤ θ ≤ 1; clearly C0(x, y) = Π. The
copula density of the FGM family is given by

cθ(x, y) = 1 + θ(1− 2x)(1− 2y). (16)
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Under these assumptions it is easy to show that

Cov(U,V ) =
1

2
θσuσv

and thus the composite error W = V − U of the Logistic-Exponential SFM is such that

E(W ) = −σu (17)

and

V ar(W ) =

µ
σ2u +

π2

3
σ2v

¶
− θσuσv. (18)

When U and V are independent (i.e. when θ = 0), V ar(W ) is given by the term in braces.
Moreover, as would be expected from the functional form W = V −U, if U and V are positively
associated (i.e. when θ > 0) then V ar(W ) is reduced, while if they are negatively associated
then V ar(W ) is inflated.

To derive hθ(w), begin with the pdf of (U,W ) that is obtained by substituting (12)-(16) into
(7)

h(u,w) =
1

σuσv
(1− x)y(1− y)(1 + θ(1− 2x)(1− 2y))|x→F (u),y→G(u+w)

=
1

σuσv

¡
y − xy − y2 + xy2 + θy − 3θxy + 2θx2y − 3θy2

+ 9θxy2 − 6θx2y2 + 2θy3 − 6θxy3 + 4θx2y3¢¯̄
x→F (u),y→G(u+w)

(19)

which is clearly a polynomial in F (u)G(u + w). Consequently, to derive hθ(w) as per (8) is
straightforward. Before giving the general result, consider the leading case corresponding to
independence (i.e. when θ = 0) with pdf

hΠ(w) =
1

σuσv

Z ∞

0

¡
y − xy − y2 + xy2

¢¯̄
x→F (u),y→G(u+w)

du

=
1

σuσv

Z ∞

0
exp

µ
− u

σu

¶
exp

µ
−u+ w

σv

¶µ
1 + exp

µ
−u+w

σv

¶¶−2
du

=
z

σu

Z 1

0
tσv/σu(1 + zt)−2dt

=
z

σu + σv
2F1

µ
2, 1 +

σv
σu
; 2 +

σv
σu
;−z

¶
(20)

where

z = exp

µ
− w

σv

¶
.

Just as it occurs in hΠ(w), the general solution for hθ(w) that follows involves the Gaussian
hypergeometric function 2F1(·). In general form it is given by

2F1 (a, b; c; s) =
Γ(c)

Γ(c− b)Γ(b)

Z 1

0
tb−1(1− t)c−b−1(1− st)−adt (21)

=
∞X
i=0

(a)i(b)i
(c)i

si

i!
(22)

provided Re(c) > Re(b) > 0, and where the Pochhammer symbol (a)i = a(a+1)...(a+i−1). The
further conditions required for its existence illustrate how the function should be computed. The
integral form (21) is due to Euler, being single-valued and analytic provided |arg(1− s)| < π.
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The series form (22) converges under the stricter condition |s| < 1. Both forms are needed
when computing the particular 2F1(·) that appears in (20): the series form (22) can be used
when w > 0, and when w ≤ 0, the integral form (21) must be used. Well written computer
code should switch automatically between the two forms as required; as does, for example, the
Mathematica R° computer algebra system (see Wolfram [29]). For further details on the Gaussian
hypergeometric function see, for example, Slater [27] and Luke [18].

For arbitrary θ, the pdf hθ(w) is obtained by substituting (19) into (8) and integrating term
by term:

hθ(w) = z

·
1− θ

σu + σv
2F1

µ
2, 1 +

σv
σu
; 2 +

σv
σu
;−z

¶
+

2θ

σu + 2σv
2F1

µ
2, 1 +

2σv
σu
; 2 +

2σv
σu
;−z

¶
+

2θ

σu + σv
2F1

µ
3, 1 +

σv
σu
; 2 +

σv
σu
;−z

¶
− 4θ

σu + 2σv
2F1

µ
3, 1 +

2σv
σu
; 2 +

2σv
σu
;−z

¶¸
. (23)

The mean and variance of W derived respectively in (17) and (18) can now be verified directly
from (23). The pdf hθ(w) is illustrated in Figure 1, where, fixing σu = 2 and σv = 1, the three
pdf curves plotted correspond to θ = −1, 0, 1.

(Figure 1 about here.)

As the values θ = −1, 1 lie at the extremes of θ-space, then, for fixed σu and σv, all pdfs hθ(w)
for any chosen θ such that −1 < θ < 1 will be contained within the indicated curves, as quite
clearly is the pdf hΠ(w).While the mean is the same across all three pdf (here equalling −2), the
variances differ, equalling 9.29 when θ = −1, 7.29 when θ = 0, and 5.29 when θ = 1. All three
pdf display skew to the left, consistent with negative values for Pearson’s skewness measure

p
β1

(here equalling −0.78 when θ = −1, −0.81 when θ = 0, and −0.82 when θ = 1). However, upon
inspecting its formula: p

β1 =
3
√
3σ2u (3θσv − 4σu)

2 (3σ2u − 3θσuσv + π2σ2v)
3/2

it is apparent that some parameter configurations can force
p
β1 > 0, this occurring if θ >

4
3σu/σv ≤ 1. It should be noted that if

p
β1 > 0, then this need not invalidate (12)-(16) as

a proper SFM, for despite the sign of
p
β1, hθ(w) need not be skewed to the right. This can

be contrasted against the opinion expressed by Kumbhakar and Knox Lovell [17, p. 73] that
attributes positive skewness as indicative only of model misspecification.

Next, consider the technical efficiency TEθ defined in (10). For the leading case it is given
by

TEΠ =
z

hΠ(w)

Z ∞

0
exp

µ
−u

µ
1 +

1

σu
+
1

σv

¶¶µ
1 + exp

µ
−u+w

σv

¶¶−2
du

=
σu + σv

σu + σv + σuσv

2F1

³
2, 1 + σv +

σv
σu
; 2 + σv +

σv
σu
;−z

´
2F1

³
2, 1 + σv

σu
; 2 + σv

σu
;−z

´ .

It is appealing that for fixed σv and w the ratio of hypergeometric functions appearing in TEΠ

decreases monotonically in σu, as too does the initial scaling term. For θ non-zero, the technical
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efficiency is obtained by substituting (19) into (10) and integrating term by term:

TEθ =
z

hθ(w)

·
1− θ

σu + σv + σuσv
2F1

µ
2, 1 + σv +

σv
σu
; 2 + σv +

σv
σu
;−z

¶
+

2θ

σu + 2σv + σuσv
2F1

µ
2, 1 + σv +

2σv
σu
; 2 + σv +

2σv
σu
;−z

¶
+

2θ

σu + σv + σuσv
2F1

µ
3, 1 + σv +

σv
σu
; 2 + σv +

σv
σu
;−z

¶
− 4θ

σu + 2σv + σuσv
2F1

µ
3, 1 + σv +

2σv
σu
; 2 + σv +

2σv
σu
;−z

¶¸
.

In Figure 2, TEθ is plotted against σu, where σv = 1 and w = −0.1, the three curves correspond
to θ = −1, 0, 1.

(Figure 2 about here.)

Interestingly, while TEθ in this graph is initially larger for negative θ than it is for positive
θ, this ordering is reversed once σu becomes larger than approximately 3.6. However, such
switching does not necessarily occur at other settings for σv, w and θ in this SFM. A further
important feature that can be seen in Figure 2 is that TEθ is monotonically decreasing in σu;
this can be evidenced at other settings for σv, w and θ, and would appear to be a property of
the correlated error component Logistic-Exponential SFM. Efficiency monotonicity with respect
to σu is a desirable property of an SFM, and is one that it is not necessarily shared even
by some standard SFM models. For example, the TEΠ measure of technical efficiency in the
Normal-Truncated Normal SFM (e.g. see Kumbhakar and Knox Lovell [17, eq. (3.2.52)]) is not
everywhere monotonic decreasing in the scale parameter of the inefficiency error component.

4.2 Example 2: Cross-Section Data

In this example, correlated error component cost functions are fitted to a cross-section of n = 123
firms sampled from the US electricity utility industry (these data are listed in Greene [10, Table
3]). The models to be fit are cost functions rather than production functions, and specified as:

log

µ
Cost

Pf

¶
= β0 + β1 logQ+ β2 log

2Q+ β3 log

µ
Pl
Pf

¶
+ β4 log

µ
Pk
Pf

¶
+ V + U

where output Q is a function of labour, capital and fuel, with respective factor prices Pl, Pk and
Pf (cf. Greene [10, eq. (46)]). For the margins, assume:

• Assumption #1: The cost efficiency error component U is Half-Normal with scale
parameter σu ≥ 0, its pdf is f(u) = 2φ (u/σu) /σu and its cdf F (u) = 2Φ (u/σu) − 1,
where φ(x) = (2π)−1/2 exp(−x2/2) denotes the pdf of a N(0, 1) random variable and Φ(x)
denotes the corresponding cdf.

• Assumption #2: The noise error component V is Normal with scale parameter σv > 0,
its pdf is g(v) = φ(v/σv)/σv and its cdf G(v) = Φ(v/σv).

Although the components of W = V + U are now added, the theory given in Section 3 goes
through largely unscathed. The necessary mathematical changes require replacing “u + w” in
(7) with “w − u”, and “U + w” in (9) and (11) with “w − U”.

(Table 1 about here.)

The bivariate copula families to be examined here are the AMH family, the Frank family,
and the Plackett family; see Table 1 for details of their functional forms and associated densities,
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parameter spaces and Spearman’s Sρ coefficient. The other bivariate copula to be considered is
the Product copula Π corresponding to independence between U and V, yielding the standard
(unassociated) Normal-Half-Normal SFM. The Product copula is nested within each of the
copula families: for the AMH, set θ = 0; for the Frank, allow θ → 0; and for the Plackett,
allow θ → 1. Obviously, the AMH, the Frank and the Plackett are non-nested with respect to
θ. Symbol θ is used generically and is not comparable across copula families. For a measure
of association that is comparable, Spearman’s Sρ can be used; it can be seen in Table 1 that
Sρ is a (typically non-linear) function of θ. For the AMH family, Sρ is bounded to the interval
[−0.2711, 0.4784]. As the Frank and the Plackett families are comprehensive, Sρ is not subject
to any restriction outside of its natural bound [−1, 1].

For all models, ML estimation is performed using the BFGS algorithm, with the estimators
asymptotic variance-covariance estimated by the final iterate of the approximation to the inverse
Hessian generated at each step of the algorithm. As there is no analytic solution to (8) for the
correlated error component models considered here, numerical integration is used in order to
form the log-likelihood and the score vector for each of these models. Programming utilised
Mathematica R° (see Wolfram [29]) as it provides a seamless means of transition from the algebra
of the model to its numerical implementation. The ML estimates are reported in Table 2.

(Table 2 about here.)

In the first column appears the ML estimates for the standard (unassociated) Normal-Half-
Normal SFM. The remaining columns list the ML estimates for the correlated error component
models. While fairly comparable in magnitude, the estimates of (β0, ..., β4) exhibit some varia-
tion across the estimated models, with perhaps the most marked differences occurring across the
estimates of β0 and of β4. Not surprisingly, most of the impact of the correlated error component
models can be seen in the variance structure (parameters σu, σv and θ), with the estimates of
σu and σv increasing in magnitude for the copula models. The estimates of θ are consistent
with negative association between the error components for these data, although the estimated
standard error on each is obviously fairly large. However, due to the non-linear relationships
between θ and Sρ for these copula families (see Table 1), the parameter transformation from θ
to Spearman’s Sρ yields, in the case of the Plackett and the Frank, significant negative estimates
of association between U and V for these data. For completeness, other re-parameterisations
of σu and σv that have been proposed in the SFM literature are reported in the second half of
Table 2.

As none of the copula models given in Table 2 are nested (ignoring for the moment the
Product copula), model selection amongst these can be based on measures such as AIC and
BIC, following the suggestion of Joe [14, Sec.10.3]. Moreover, because the margins are fixed
across competing models (i.e. models compete only according to copula specification and so the
number of parameters does not vary across models), then selection criteria that use information
measures that penalise fit by the number of parameters used to attain that fit are equivalent
simply to selection based on the largest of the maximised log-likelihoods. On this basis, preferred
here is the SFM estimated using the Frank family of copulas. In addition, for these data preferred
overall is the Frank SFM, with an approximate p-value of 2.1% for the usual asymptotic χ2 test
for the nested comparison between it and the standard (unassociated) Normal-Half-Normal
SFM; observed is −2(66.1383− 68.7975) = 5.32 on a one degree of freedom test.

(Table 3 about here.)

Turning to cost efficiency TEθ, it is estimated for each firm by replacing w in (10) with the
observed residual bw, and integrating numerically (except for the Product copula for which a
closed form solution exists, see Kumbhakar and Knox Lovell [17, eq. (4.2.14)]). Table 3 gives
point estimates for the first and last five-ranked firms for the standard (unassociated) Normal-
Half-Normal SFM (i.e. using the Product copula) and the preferred Frank Normal-Half-Normal
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SFM. Evidently, there is a dramatic difference between the values of the point estimates; for
example, the cost efficiency of “Carolina P. & L.” under the Frank SFM is estimated at 82.75%,
differing considerably from the corresponding estimate of 94.49% under the standard SFM. The
estimate difference is further magnified for the least efficient firms. In terms of cost efficiency
ranking, there is broad agreement between both models (the empirical Spearman rank correlation
coefficient equals 0.9636), especially as to those firms that are least cost efficient. However, at
the upper end there is some variation in identifying the most cost efficient firms. For example,
“Carolina P. & L.” is first-ranked under the Frank SFM, but under the standard SFM it is
ranked eighth. While the firm ranked first under the standard SFM is “New Mex. Elec. Ser.”,
but under the preferred Frank SFM this firm is ranked very much lower at fifty-sixth.

Admittedly there is a great deal of variation associated with efficiency estimates, but the
reduced estimates seen for the firms listed in Table 3 occurs uniformly across all firms in the
sample. This is evidenced by Figure 3, that plots the kernel smoothed distributions of cost
efficiency estimates (used in both cases is the Epanechnikov kernel with bandwidth set to 0.06).

(Figure 3 about here.)

For these data, the distributional assumption of association between the error components
demonstrates sensitivity across competing models in the measurement of firm technical effi-
ciency, and consequently in the efficiency ranking of firms; cf. Coelli et al. [3, p.187, footnote
4].

4.3 Example 3: Panel Data

In this example, a correlated error component production function is fitted to an unbalanced
panel of n = 10 firms sampled from the US airline industry over T = 15 years. These annual
data are listed in Greene [11, pp.683-685] and described in Greene [12, Sec. 6.2]; it is assumed
that the firms match the first 10 airline companies named in [12, Table 3.1]. The model is

log Y = β0 + β1 logE + β2 logF + β3 logL+ β4 logM + β5 logP + V − U

where output Y is a function of inputs: equipment E, fuel F, labour L, materials M and
property P. In observational terms, assume that the composite error Wit = Vit −Uit follows the
random-effects formulation of Kumbhakar [16] with time-varying technical efficiency:

Wit = Vit − βtUi (24)

(i.e. Uit = βtUi) where
βt =

¡
1 + exp(γ1t+ γ2t

2)
¢−1

with γ1 and γ2 real-valued parameters to be estimated (i = 1, ..., n and t = 1, ..., T ). For the
purposes of this example, specify the margins as follows:

• Assumption #1: The efficiency error component U is Truncated Normal, i.e. a Normal
with mean µ and scale parameter σu ≥ 0 that is left-truncated at zero, with pdf f(u) =
φ((u− µ)/σu)/σuΦ(µ/σu) and cdf F (u) = 1− Φ((µ− u)/σu)/Φ(µ/σu).

• Assumption #2: The noise error component V is Normal with scale parameter σv > 0,
with pdf g(v) = φ(v/σv)/σv and cdf G(v) = Φ(v/σv).

Given the margins, constructing a model for intra-firm correlated error components that
is common to all firms requires the specification of a suitable T + 1 dimensional copula, or
(T +1)-copula for short. For the ith firm, assume that the copula is to represent equi-association
between Ui and Vit for t = 1, ..., T, in combination with serial independence amongst Vi1, ..., ViT .
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Such a dependence structure requires its 2-copula margin Cθ(x, yt) = Cθ(x, 1, ..., 1, yt, 1, ..., 1) be
functionally equivalent for all t = 1, ..., T, and its T -copula margin Cθ(1, y1, ..., , yT ) =

QT
t=1 yt.

One candidate (T + 1)-copula is:

x

Ã
TY
t=1

yt

!Ã
1 + θ(1− x)(T −

TX
t=1

yt)

!
(25)

corresponding to a simplified version of the extended FGM family of copulas given by Johnson
and Kotz [15]. In this case, the family is indexed by the association parameter θ, where −1 ≤
θ ≤ 1, and can represent degrees of both positive and negative association; note that for each
t = 1, ..., T, the 2-copula Cθ(x, yt) = xyt(1+θ(1−x)(1−yt)) is the FGM copula (cf. Assumption 3
in Example 1). The leading case θ = 0 yields the (T+1)-product copula underlying the standard
SFM panel data models discussed in, for example, Kumbhakar and Knox Lovell [17, Sec. 3.3].
The copula density of (25) is given by

1 + θ(1− 2x)(T − 2
TX
t=1

yt).

Given these specifications, the joint pdf of (Ui, Vi1, ..., ViT ) is given by the multivariate extension
of (6):

h(ui, vi1, ..., viT ) = f(ui)

Ã
TY
t=1

g(vit)

!Ã
1 + θ(1− 2F (ui))(T − 2

TX
t=1

G(vit))

!
where the functions f, g, F, and G are specified in Assumptions 1 and 2 above.

A second candidate is the (T + 1)-Normal copula

ΦT+1
¡
Φ−1(x),Φ−1(y1), ...,Φ−1(yT );Ω

¢
(26)

where ΦT+1(·;Ω) denotes the cdf of a (T + 1)-dimensional standard Normal variable with cor-
relation matrix Ω. The dependence structure given above is specified through Ω. Set

Ω =

·
1 θι0T
θιT IT

¸
where ιT denotes the (T × 1) vector of units, and IT the (T × T ) identity matrix. As detΩ =
1− θ2T, positive and negative association can be represented to the degree that |θ| ≤ 1/√T =
0.2582, as here T = 15. The copula density of (26) is given by

φT+1
¡
Φ−1(x),Φ−1(y1), ...,Φ−1(yT );Ω

¢
φ (Φ−1(x))φ (Φ−1(y1)) ...φ (Φ−1(yT ))

.

The particular structure for Ω (exploited by using in φT+1 (·;Ω) the Cholesky decomposition
of the adjoint of Ω) in tandem with Assumption 2 leads to considerable simplification in the
expression for the joint pdf of (Ui, Vi1, ..., ViT ) :

h(ui, vi1, ..., viT ) = f(ui)

Ã
TY
t=1

g(vit)

!
1

φ (Φ−1(F (ui)))

× 1p
1− θ2T

φ

Ã
Φ−1(F (ui))− θ

PT
t=1 vit/σvp

1− θ2T

!
corresponding to a special form of the Meta-Gaussian distribution, the latter a special case of
the Meta-Elliptical class of distributions (e.g. see Fang et al [7]). It is obvious that the leading
case θ = 0 yields the (T + 1)-product copula underlying the standard SFM panel data models.
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The procedure to derive the joint pdf of (Wi1, ...,WiT ) is identical to that undertaken in
Section 3, apart from the change in dimensionality. Using the relations vit = wit+βtui, cf. (24),
finds the pdf given by

hθ(wi1, ..., wiT ) =

Z
IR+

h(ui, wi1, ..., wiT )dui.

Finally, assuming independence across firms, the likelihood function can be written

L(β0, ..., β5, µ, σu, σv, γ1, γ2, θ) =
nY
i=1

hθ
¡
log yi1 − x0i1β, ..., log yiT − x0iTβ

¢
where yit is the output of firm i in period t, with xit the associated regressors; in this example
there are 12 parameters to be estimated. If the panel is unbalanced, as it is in this example,
then this can be handled by reducing the dimensionality of the copula. For example, if the
observations on firm i in period t are missing, then set yt = 1 in (25) and (26).

(Table 4 about here.)

In Table 4, ML estimates are given for the standard (unassociated), the Normal (Meta-
Gaussian) and the FGM Normal-Truncated Normal SFMs. Note that for these data the opti-
mised FGM Normal-Truncated Normal SFM occurs at the corner of the parameter space corre-
sponding to θ = −1, thus there is no standard error reported for fixed bθ = −1. Evidently, the
(degenerate) FGM SFM fits these data better than either of the other two SFM, even achieving
this with one fewer estimated parameter than the Normal SFM; consequently, it is the FGM
SFM that is preferred here. This result finds for the presence of negative association between
the error components for these panel data.

(Table 5 about here.)

In terms of efficiency TEθ, estimates are given in Table 5 for the first time period in which all
firms record data, this occurring when t = 2.While not uniformly greater, the estimates reported
for the preferred FGM SFM appear on the whole to be slightly larger than those of the standard
SFM. The efficiency estimates of “TWA”, “American” and “Delta” show little difference for the
FGM SFM, but these show a greater spread under the standard SFM. The dramatic shift in
the distributions of fitted TEθ seen previously in the cross-section example does not occur here,
even though there is negative association between the error components. More interesting is the
alteration in rankings when comparing the standard SFM to the FGM SFM. The preferred FGM
SFM ranks “United” ahead of “PanAm”, whereas the inferior standard SFM reverses this order.
There is agreement in rankings between both fitted models as to the most inefficient firms. It
should be noted that the rankings reported in Table 5 must hold throughout the sample period
t = 1, ..., 15, as in neither model there are no firm-specific parameters specified.

5 Conclusion

This paper has revisited the standard stochastic frontier model with a view to allowing the data
the opportunity to determine whether or not there exists any statistical association between
the model’s error components. Model construction proceeded according to the copula approach,
the rationale being that this method facilitates the modelling of association between random
variables, alongside the specification given for each margin. The copula approach permits the
fitting of a suite of candidate models from which a preferred model can emerge based on using
well-known information-theoretic criteria. The copula approach was applied to cross-section data
and to unbalanced panel data. In the cross-sectional example, striking was the location shift in
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the distribution of the Battese-Coelli measure of technical efficiency, this due to the presence of
statistically significant association between the error components. Finally, in both cross-section
and panel data examples it was shown that, when present, error component association impacts
to alter efficiency rankings.
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Table 1: Copula Families

AMH

Copula Cθ
xy

1−θ(1−x)(1−y)
Density cθ [1 + θ (xy + x+ y − 2 + θ (1− x) (1− y))] [1− θ (1− x) (1− y)]−3

Parameter θ −1 ≤ θ < 1

Spearman’s Sρ (a)
12(1+θ)

θ2
dilog(1− θ)− 24(1−θ)

θ2
log(1− θ)− 3(θ+12)

θ

Frank

Copula Cθ −θ−1 log
³
1 + (e−θx−1)(e−θy−1)

e−θ−1
´

Density cθ θ
¡
1− e−θ

¢
e−θ(x+y)

£
1− e−θ − (e−θx − 1)(e−θy − 1)¤−2

Parameter θ −∞ < θ <∞
Spearman’s Sρ (b) 1− 12

θ (D1(θ)−D2(θ))

Plackett

Copula Cθ
(c) 1

2(θ−1) (s− t)

Density cθ θ (s− 2xy(θ − 1)) t−3

Parameter θ θ > 0

Spearman’s Sρ θ+1
θ−1 − 2θ

(θ−1)2 log θ

Normal

Copula Cθ Φ2(Φ
−1(x),Φ−1(y); θ)

Density cθ
φ2(Φ

−1(x),Φ−1(y);θ)
φ(Φ−1(x)) φ(Φ−1(y))

Parameter θ −1 ≤ θ ≤ 1
Spearman’s Sρ 6

π arcsin
¡
θ
2

¢
Notes: (a) dilog(z) =

R z
1 log(t) (1− t)−1 dt is the dilogarithm function.

(b) the Debye function Dk(z) = kz−k
R z
0 t

k
¡
et − 1¢−1 dt, for k any positive integer.

(c) s = 1 + (θ − 1)(x+ y) and t =
p
s2 − 4xyθ(θ − 1).
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Table 2: Energy Cost Parameter Estimates (a)

Product copula AMH copula Plackett copula Frank copula

β0 −7.4083
(0.3185)

−7.5331
(0.3111)

−8.0261
(0.3846)

−8.0031
(0.3819)

β1 0.4078
(0.0403)

0.4178
(0.0379)

0.4508
(0.0324)

0.4515
(0.0358)

β2 0.0306
(0.0027)

0.0300
(0.0025)

0.0281
(0.0023)

0.0280
(0.0025)

β3 0.2445
(0.0632)

0.2526
(0.0601)

0.3085
(0.0700)

0.2942
(0.0645)

β4 0.0587
(0.0606)

0.0521
(0.0566)

0.0264
(0.0558)

0.0333
(0.0558)

σu 0.1553
(0.0476)

0.2098
(0.0611)

0.2937
(0.0793)

0.3589
(0.1428)

σv 0.1072
(0.0229)

0.1031
(0.0206)

0.1450
(0.0475)

0.1923
(0.1183)

θ 0.9291
(0.9009)

0.1077
(0.0973)

−8.3623
(6.6863)

logL 66.1383 66.7551 68.4595 68.7975

Sρ 0 −0.2550
(0.2064)

−0.6386
(0.1874)

−0.8159
(0.2184)

λ (b) 1.4497
(0.7292)

2.0339
(0.8880)

2.0263
(0.5499)

1.8668
(0.5658)

σ2 (b) 0.0356
(0.0108)

0.0546
(0.0235)

0.1073
(0.0560)

0.1658
(0.1451)

γ (b) 0.6776
(0.2198)

0.8053
(0.1369)

0.8041
(0.0855)

0.7770
(0.1050)

Notes: (a) Figures shown to 4 dp. Estimated standard errors in parentheses.

(b) λ = σu/σv, σ
2 = σ2u + σ2v, γ = σ2u/

¡
σ2u + σ2v

¢
.
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Table 3: Selected Energy Cost Efficiency Estimates and Ranks (a),(b)

Rank Product copula Frank copula

1. New Mex. Elec. Ser. 0.9705 (56. 0.7953) Carolina P. & L. 0.8275 (8. 0.9449)

2. Montana Power 0.9648 (52. 0.7992) Central La. Pwr. 0.8274 (12. 0.9435)

3. Northeast Util. 0.9590 (41. 0.8111) Miss. Power & L. 0.8274 (15. 0.9408)

4. Bangor Hydro. 0.9510 (18. 0.8254) Community P.S. 0.8273 (7. 0.9481)

5. Central Kansas 0.9504 (19. 0.8250) Kansas Gas & El. 0.8273 (14. 0.9413)

119. Colms. & So. Ohio 0.7601 (119. 0.6072) Colms. & So. Ohio 0.6072 (119. 0.7601)

120. Cal. Pac. Util 0.7339 (121. 0.4805) United Gas. I. 0.5233 (121. 0.7180)

121. United Gas. I. 0.7180 (120. 0.5233) Cal. Pac. Util 0.4805 (120. 0.7339)

122. N’western P.S. 0.7032 (122. 0.4766) N’western P.S. 0.4766 (122. 0.7032)

123. Maine Pub. Ser. 0.6786 (123. 0.3990) Maine Pub. Ser. 0.3990 (123. 0.6786)

Mean (c) 0.8877 0.7677

Std dev (c) 0.0543 0.0745

Min (c) 0.6786 0.3990

Max (c) 0.9705 0.8275

Notes: (a) Figures shown to 4 decimal places.

(b) In parentheses is firm rank and efficiency estimate under the alternate copula.

(c) Statistics are for all n = 123 firms.

21



Table 4: Airline Production Parameter Estimates (a)

Product copula Normal copula FGM copula

β0 0.0973
(0.0283)

0.0856
(0.0291)

0.0537
(0.0177)

β1 0.4827
(0.0917)

0.4835
(0.0837)

0.4360
(0.0708)

β2 0.4336
(0.0554)

0.4402
(0.0562)

0.4969
(0.0494)

β3 0.1974
(0.0467)

0.2041
(0.0512)

0.2223
(0.0458)

β4 −0.1287
(0.0575)

−0.1501
(0.0652)

−0.1778
(0.0497)

β5 0.0441
(0.0287)

0.0511
(0.0352)

0.0407
(0.0269)

µ 0.8396
(0.1162)

0.8635
(0.1248)

0.8040
(0.0861)

σu 0.1793
(0.0545)

0.1766
(0.0663)

0.1620
(0.0563)

σv 0.0662
(0.0047)

0.0657
(0.0045)

0.0663
(0.0042)

γ1 0.0358
(0.0690)

0.0732
(0.0823)

0.0534
(0.0784)

γ2 0.0279
(0.0092)

0.0262
(0.0119)

0.0305
(0.0110)

θ −0.0719
(0.0845)

−1

logL 152.2589 153.3257 154.3716

Sρ
(b) 0 −0.0687

(0.0808)
−0.3333

λ (c) 2.7085
(0.8638)

2.6884
(1.0497)

2.4440
(0.8838)

σ2 (c) 0.0365
(0.0195)

0.0355
(0.0233)

0.0307
(0.0182)

γ (c) 0.8800
(0.0673)

0.8785
(0.0834)

0.8566
(0.0888)

Notes: (a) Figures shown to 4 dp. Estimated standard errors in parentheses.

(b) Sρ concordance between Ui and Vit.

(c) λ = σu/σv, σ
2 = σ2u + σ2v, γ = σ2u/

¡
σ2u + σ2v

¢
.
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Table 5: Year 2 Airline Production Efficiency Estimates, and Ranks (a)

Rank Product copula FGM copula

1. PanAm 0.7582 United 0.7733

2. United 0.7399 PanAm 0.7683

3. Continental 0.7268 Continental 0.7414

4. Delta 0.7186 TWA 0.7118

5. American 0.6883 American 0.7115

6. TWA 0.6821 Delta 0.7079

7. Eastern 0.6680 Eastern 0.6659

8. National 0.6519 National 0.6582

9. Braniff 0.6324 Braniff 0.6500

10. Northwest 0.5846 Northwest 0.6006

Notes: (a) Figures shown to 4 decimal places.
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Figure 1:  Probability density function hqHwL when q = -1, 0, 1, with su = 2 and sv = 1
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Figure 2:  Technical efficiency TEq when q = -1, 0, 1, with sv = 1 and w = -0.1
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Figure 3:  Kernel smoothed estimates of the distribution of Battese-Coelli cost efficiency




