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Abstract: We propose a general non-linear simultaneous equations framework for the
econometric analysis of models of intervention in foreign exchange markets by central
banks in response to deviations of exchange rates from possibly time-varying target
levels. We consider efficient estimation of possibly non-linear response functions and
tests of functional form, the latter making use of the recent econometric literature on
testing in the presence of nuisance parameters unidentified under a null hypothesis. The
methodology is applied in an analysis of recent activity of the Bank of Canada with
regard to the Canada-U.S. exchange rate.
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INTRODUCTION
There exists a substantial empirical literature seeking to estimate the function

characterizing the policy response of a central bank to deviations of an exchange rate from a
target level (for surveys, see Almekinders and Eijffinger (1991) and Sarno and Taylor (2001)).
A number of measures of policy intervention have been suggested in the literature, often based
on the changes in a central bank’s holdings of foreign exchange. Various ways have also been
envisaged of modeling the target rate, which may be time-varying in response to a variety of
economic factors, and may have time series structure as its current level may depend on its
own recent values and on recent departures of the exchange rate from target. The basic
long-run determinant of the target will be some set of economic fundamentals, and the target
itself is best seen as containing a unit root, although it may remain unchanged for substantial
periods of time, as in an explicit target zone regime. In such a regime, the target will change
periodically in response to fundamentals, which may manifest themselves empirically through
an exchange rate that has been tending towards a boundary of the explicit target zone for some
stretch of time. Postulating the presence of a unit root in the exchange rate series itself, the
latter should be cointegrated with the target rate, with a cointegrating coefficient of one. The
monetary authority responds to deviations of the exchange rate from its target level through
variations in the policy variable that have the intended effect of countering the deviations,
although there is not unanimity in the literature regarding the appropriate policy response
function. A number of reaction functions are imaginable. Due to a lack of economic theory
specifying the functional form, the response function is often specified on an ad hoc basis in
empirical work. Although linear specifications are often employed in practice, various sources
of nonlinearity are plausible, such as, for example, asymmetry (if a central bank places greater
weight on depreciations than on appreciations), convexity of the reaction function (the reaction
becomes increasingly strong the greater is the deviation of the exchange rate from its target),
and threshold effects (intervention doesn’t occur unless the deviation from target is sufficiently
large), or combinations of the above.

This framework presents a number of potential econometric complications. First, the issue
of simultaneity should be addressed, as one would expect changes in a correctly-chosen policy
variable to have a fairly rapid feedback into movements of the exchange rate itself. Hence, it
would be desirable to specify a non-linear simultaneous equations model in which a second
equation characterizing this feedback effect is included. Second, the ad hoc nature of the
specification of the functional form suggests the desirability of a test of functional form. Due
to the non-linearity of the model, however, such a test would be likely to have non-standard
properties, as it would belong to the category of tests for which there exist nuisance parameters
that are unidentified under the null hypothesis. In recent years, econometric methods have been
developed to handle such situations (for example, Andrews and Ploberger (1994) and Hansen
(1996)). A third issue that may be important in many applications is the possible problem of
instrument relevance and weak instruments. An additional issue arises from the possible
non-normality that is typically present when working with exchange rate data.

The next section outlines the basic non-linear simultaneous equations econometric
framework in which these issues will be addressed. Section 3 will discuss issues concerned
with the estimation of this model, and describes an algorithm for computing a semiparametric
efficient estimator. We will then consider in Section 4 the issue of testing for the presence and
specification of the policy reaction function.
THE GENERAL FRAMEWORK



The category of models we are interested in will be described here in general terms. For
each period t  1, . . . ,n, we have data on the exchange rate (generally expressed in logs), st,
and on a policy instrument, it. The target exchange rate (also generally expressed in logs) is st

∗,
and policy reacts to deviations from target according to the following basic relationship:

it  gdt,,     1
where dt  st − st

∗, g is a specified nonlinear function with unknown parameter vector ,
and the slope parameter  will equal zero if there is no policy reaction or if the functional form
of g is incorrectly specified. The null hypothesis   0 will thus be of particular interest in
this model. We note here that in a fully specified econometric model, the parameter vector 
will be unidentified under the null, which will create problems in the testing of this null, as has
been observed in the literature. We introduce a sequence of  −fields Ft, and assume that
the pair st, it is measurable with respect to Ft. In addition, suppose that a vector zt,
measurable with respect to Ft−1, of auxiliary variables is observed, which may contains lags of
st, it, in addition to other economic variables that may be relevant to our model.

We will assume the target rate is a function of zt, st
∗  hzt, say. For the moment, we will

say no more about the function h or the time series variation of st
∗, except to state our

general assumption that the latter is integrated of order one, i.e. that it possess a unit root, so
that we have

st
∗  st−1

∗  vt,
where vt is a stationary process. In the case of an explicit target zone regime, the marginal
distribution of vt can be thought of as having a probability mass at zero, in which case changes
in the target zone could be thought of as random events that occur only occasionally. It is
reasonable to assume that the same set of economic fundamentals that drive the exchange rate
itself also drive the target rate, so that these two variables will be assumed to be cointegrated
with a cointegrating coefficient of unity, so that the deviation from target, dt, is stationary. We
also assume that the policy variable it is stationary. More precisely, we will assume that the
bivariate sequenceyt  dt, it is stationary and ergodic.

The first equation in our econometric model is derived from (1) by writing
it  0  1gdt,  q1z1t,1  u1t,     2

where q1z1t,1 is a known function, z1t is the sub-vector of zt containing those elements that
are not excluded from q1z1t,1 on a priori grounds, 1 is an unknown parameter vector with
p1 elements, to be estimated, and u1t is an iid sequence of disturbances with density f1u1.
We assume that u1t is independent of zt, but not necessarily of dt. The possible endogeneity of
the regressor dt arises from the fact that simultaneity can be present in our system if the
instrument it feeds back into the equation determining the exchange rate st (we would expect
such feedback to exist if it is an effective instrument). The inclusion of the term q1z1t,1
reflects the presence of factors other than the current exchange rate deviation that may
influence the behavior of it. We would expect, for example, that lags of it would enter z1t if
this variable exhibits any degree of persistence. Those elements of zt that are excluded from
q1z1t,1 furnish possible instruments in the instrumental variables estimation of .

To fix ideas, consider a model in which it is the policy instrument of the central bank of a
small open economy, and st is the domestic-currency price of a unit of the currency of a larger
foreign economy, so that a positive value of dt indicates that the domestic currency is
undervalued relative to the central bank’s target rate st

∗. For example, if it were the change in
reserve holdings of the foreign currency by the domestic central bank (a positive value of



which would then be expected to have a depressing effect on the value of the domestic
currency), and if gdt, were an increasing function of dt, then one would expect 1 to be
less than zero. Although there is little theoretical basis to prefer one specification of the
functional form of gdt, to another, the following strikes us as intuitively reasonable and
will be used in the empirical analysis reported below:

gdt,  dt
Idt  0 − |dt |Idt  0,     3

where I denotes the indicator function. In this example, the parameter vector of gdt, is
  ,. The members of  have economically interesting interpretations. The shape of the
reponse function will be governed by , with a value of unity indicating linear policy response
and progressively larger values representing a convex policy response, i.e. one that is less
responsive to small deviations from target and more responsive to larger deviations. We would
not generally expect  to be less than one.  is expected to be positive, with a value of unity
reflecting policy which responds equally strongly to a relatively devalued and relatively
overvalued currency. There may be reason to expect the central bank to be more sensitive to
devaluations of the currency, in which case we would have 0    1.

The simultaneous equations system is completed with the following equation
characterizing the feedback of the instrument into the exchange rate:

dt  2  3it  q2z2t,2  u2t,     4
where q2zt,2 is a known function, z2t contains the elements of zt that are not excluded from
q2z2t,2, 2 is an unknown parameter vector with p2 elements, to be estimated, and u2t is
an iid sequence of disturbances with density f2u2. Note that z1t and z2t are not prohibited by
definition from having common elements. We assume here that the feedback of the instrument
into the exchange rate is linear, an assumption that can easily be relaxed. The term q2z2t,2
will often contain lags of dt. We assume that u2t is independent of zt, but not necessarily of it.
The bivariate sequence ut  u1t,u2tT is iid from the density fu. The superscript T denotes
transposition of a vector or matrix.

As mentioned, the terms q1z1t,1 and q2z2t,2 are included to capture time series
dynamics that may be present in the series it and dt, respectively. One possible approach
to the specification of these terms would be as autoregressions in the dependent variable of the
respective equations, so that we would have

q1z1t,1 ∑
j1

p1

1jit−j  1
Tz1t     5

and

q2z2t,2 ∑
j1

p2

2jdt−j  2
Tz2t,     6

where z1t  it−1, . . . , it−p1  and z2t  dt−1, . . . ,dt−p2 . We would then have the lags of the
excluded variables available as instruments for the consistent estimation of (2) and (4). For
example, lagged values of it could be used as instruments for the estimation of 3 in (4), and
nonlinear functions of lagged values of dt could be used as instruments for the IV estimation of
1 and  in (2). We shall assume throughout the paper that valid instruments are available, so
that equations (2) and (4) are identified. We note here that a question that may need to be
addressed in practice, particularly with respect to estimation of (2), is the quality of the
instruments employed. Can we find functions of lagged dt that are correlated with gdt, (in



the case of estimation of 1 and ∂gdt,
∂ (in the case of estimation of )?

ESTIMATION OF THE MODEL
Although in practice one should test for the presence and validity of one’s specification of

the policy function gdt, in (2) (i.e. test the null hypothesis that 1  0 before proceeding
to estimate the parameter , we will discuss the issue of estimation before that of testing
(which is considered in the next section), as an understanding of the former is necessary to an
understanding of the latter. We will begin by analyzing estimators of the model in the case
where  is known to the investigator, then proceed to consider the case of unknown . Of
course,  will rarely, if ever, be known, but consideration of the case of known  will play an
essential role in our derivation of tests of the null hypothesis that 1  0. For purposes of
exposition, we assume that the functions q1z1t,1 and q2z2t,2 are linear, as in (5) and (6),
although relaxing this assumption will complicate our exposition without adding any essential
changes or difficulties.

Known 
In this case, equations (2) and (4) form a linear simultaneous equations system, so that,

assuming the existence of valid instruments, consistent 2-stage and 3-stage least squares
estimation is possible. Define gt  gdt,, where  belongs to the parameter space B, and
suppose that there exists an instrument gt

∗ that is independent of ut but for which
Egtgt

∗ ≠ 0. For equation (2), define the regressor vector
v1t  1,gt, z1t

T T

and the instrument vector
v1t
∗   1,gt

∗, z1t
T T.

For equation (4), the respective regressor and instrument vectors are
v2t  1, it, z2t

T T

and
v2t
∗  1, it−1, z2t

T T,
where we assume that it−1 is optimal among available valid instruments for it. Keeping  fixed,
we will now consider estimation of the parameter vectors 1  0,1,1

TT and
2  2,3,2

TT. Define the regressor and instrument matrices as follows:

V1n 

v11T





v1nT

,

with V1n
∗ , V2n, and V2n

∗ being defined analogously. We also have the dependent variable
vector given by Y1n  i1, . . . , inT and Y2n  d1, . . . ,dnT. The two stage least squares (2SLS)
estimator of (4) does not depend on  and is given by


 2n  V2n

∗TV2n
−1V2n

∗TY2n

whereas the 2SLS estimator of (2) does depend on , and is computed as follows:

 1n  V1n

∗TV1n
−1V1n

∗TY1n.



Defining the 2SLS residuals as

U1n  Y1n − V1n

 1n

and

U2n  Y2n − V2n

 2n,

with Un  U1n,U2n , we can estimate the error covariance matrix  by

n  n−1UnTUn.
We can then compute the three stage least squares (3SLS) estimator, after introducing some
additional notation:

Yn  Y1n
T ,Y2n

T ,

  1
T,2

TT,

Vn 
V1n 0

0 V2n
,

and

Vn
∗ 

V1n
∗  0
0 V2n

∗
.

We then compute 3SLS as

 n  Vn

∗T n−1 ⊗ In Vn
−1

Vn
∗T n−1 ⊗ In Yn,

where In denotes the identity matrix of order n. If the disturbance vector is normally
distributed, i.e. ut  iidN0,u, then 3SLS will be asymptotically efficient and will be
equivalent to the full information maximum likelihood estimator.

We note here that for such volatile economic time series as exchange rates, the assumption
of normality may not be a good approximation to the distribution generating the disturbances,
so we will take a brief look at the issue of semiparametric efficient estimation of the model
when the error density is unknown. Semiparametric efficiency bounds for nonlinear
simultaneous equations models in the context of iid data have been derived by Newey (1989)
(see also Newey (1990)) under a number of different assumptions on the otherwise unknown
distribution of the error vector ut, including the case of symmetry. Brown and Hodgson (2004)
extend Newey’s analysis to allow for time series data and they also consider the case of
elliptically symmetric errors. The results of these papers are applicable both to the known 
and unknown  version of our model. Here, we give expressions for semiparametric efficient
estimators for our model, as derived in the above papers.

When  is known, the model is linear and therefore adaptively estimable, so that the
expression for an efficient estimator is relatively simple. Suppose that, for a given value of ,
we have a n −consistent preliminary estimator n

 (2SLS and 3SLS are examples of such
estimators). Recalling that the unknown joint density function of the disturbance vector u is
given by fu, we can denote the (negative of the) score vector of this density by
u  ∂fu/∂u

fu , with associated information of f   ∂fu/∂u2

fu du. The single-observation



score vector of the log-likelihood function with regard to the parameter vector , as evaluated
at the point , belonging to the parameter space Θ  B, can be shown to equal

st,  J,  tT ,ut,,     7
where J,  0, 1 − 3−1, 0p1

T , 0, 3 − 1−1, 0p2
T T, 0pi is a vector of pi elements, and

t, 
−1 −gt −z1t

T 0 0 0p2
T

0 0 0p1
T −1 −it −z2t

T
.

Assuming that the functional form of fu, and therefore of u, is known, a fully efficient
estimator can be computed as follows:

n
∗  n

  n−1∑
t1

n

stn
,st

Tn
, ∑

t1

n

stn
,.     8

If the functional forms of f and  are unknown, then one can proceed semiparameterically by
substituting into (7) and (8) a nonparametric kernel estimator tut,, the computation of
which, for the symmetry case, is derived by, for example, Jeganathan (1995), while the
computation for the elliptical symmetry case is described by Hodgson, Linton, and Vorkink
(2002). We refer the reader to these papers for details on the computation of these
semiparametric estimates. The following Proposition can be proved as a special case of
Theorem 1 of Brown and Hodgson (2004).

Proposition: The asymptotic distribution of the estimator n
∗ is invariant to the

substitution for the true score function ut, in (7) and (8) of the nonparametric scores
tut, as described in, for example, Jeganathan (1995) and Hodgson, Linton, and
Vorkink (2002).

Unknown 
We will now discuss the estimation of the model when the parameter vector  is unknown

and so must also be estimated. To this end, we redefine the parameter vector
1  0,1,T,1

TT. As before, the full parameter vector is   1
T,2

TT, and the 2SLS
estimator


 2n can be computed as in Section 3.1. Estimation of 1 is now a more complicated

matter, as we must use a nonlinear instrumental variables procedure to estimate (2). To this
end, we require an instrument vector v1t

∗ 1 that is independent of the disturbance u1t while
still being correlated with the derivative vector

v1t1  1,gt,1
∂gt
∂T , z1t

T
T

.

In practice, there may be available an excess of valid instruments, in which case it would be
possible in principal to select a vector of optimal instruments and compute a non-linear
analogue of 2SLS. Our nonlinear IV estimator


 1n would then be the solution to the following

nonlinear system:

n−1∑
t1

n

u1t

 1n v1t

∗ 
 1n  0.     9

Numerical methods are required to solve (9) in practice. Our nonlinear IV estimator of the full



parameter vector  is therefore

 n 


 1n

T
,

 2n

T T
.

As in the model where  is known, it is of interest to consider the issue of efficient
estimation. How one goes about this problem will depend on the distributional assumptions
one wants to make about the error density fu. If it is assumed to be Gaussian, then standard
Gaussian ML procedures are available. Newey (1990) analyzes a general nonlinear
simultaneous equations model and derives a formula for a semiparametric efficient estimator if
f is assumed to be symmetric about zero, but otherwise unrestricted. Newey (1990) only
considers the case of iid data, but his results should extend to the time series case. Brown and
Hodgson (2004) analyze essentially the same nonlinear simultaneous equations model as
Newey (1990), but in a time series context and with the further restriction on f of elliptical
symmetry. Brown and Hodgson (2004) derive the semiparametric efficiency bound under these
conditions and suggest a method of computing an efficient estimator. We will now give a brief
description of this approach.

We begin by introducing some notation and definitions. Assuming that the desnity fu is
elliptical, we can write it as follows:

fu  ||−1/2puT−1u
 ||−1/2pT,

where   −1/2u and  is a scalar multiple of the covariance matrix u, normalized so that
det  1. Define   vech, and redefine the full parameter vector as   1

T,2
T,TT.

We can compute estimates n in the usual way using the residuals from the nonlinear IV
estimators


 1n and


 2n, and can then define the IV estimator of  as being


 n 


 1n

T
,

 2n

T
,n

T T
. Recalling that yt  it,dtT, we can define the following functions:

yt, zt,  −1/2 it − 0 − 1gdt, − q1z1t,1

dt − 2 − 3it − q2z2t,2
 t,

Jyt, zt,  ln det ∂yt, zt,
∂yt

,

and

T 
2p′T
pT

.

As shown by Brown and Hodgson (2004), the efficient score function for this model is given
by

st  Jyt, zt, − EJyt, zt,|T 

 Tyt, zt,t − ETyt, zt,t|T T,
    10

where the  subscripts denote partial derivatives. The semiparametric efficiency bound is given
by B  EststT 

−1, and, if the two conditional expectations in (10) were known, along
with the functional form of T, then one could compute the following iterative estimator,
which would achieve the bound asymptotically,

n
∗ 


 n  n−1∑

t1

n

st

 n st

T 
 n ∑

t1

n

st

 n .     11



Of course, the conditional expectations and T will generally not be known. However,
it may be possible to compute nonparametric estimates EJyt, zt,|T ,
ETyt, zt,t|T , and


T that can be substituted into (10) and (11) without

affecting the first-order asymptotic distribution of the iterative estimator n
∗. Details of the

computation of these nonparametric estimates are given by Brown and Hodgson (2004). The
following Proposition can be proved as a special case of Theorem 1 of Brown and Hodgson
(2004).

Proposition: The asymptotic distribution of the estimator n
∗ is invariant to the substitution

for the true score and conditional expectation functions in (10) and (11) of the nonparametric
versions of these functions.
TESTING FOR THE PRESENCE AND SPECIFICATION
OF THE POLICY REACTION FUNCTION

As mentioned above, we are interested, for various reasons, in the question of testing the
null hypothesis of 1  0 in (2). This is an unusual and interesting problem because the
parameter  is unidentified under the null hypothesis but not under the alternative, creating a
nonstandard testing problem which several authors have considered. Andrews and Ploberger
(1994) obtain a class of optimal tests, but don’t say much about implementation or
computation of critical values (the tests have nonstandard distributions). The issue of critical
values is addressed by Hansen (1996), who provides an illustration through an empirical
example.

Andrews-Ploberger (1994)
The tests of Andrews and Ploberger (1994) involve computing LM, LR, or Wald statistics

of the null for various values of , and then computing a weighted average (over the set of
possible values of ) of these statistics. For each choice of , we can compute a Wald, LM, or
LR statistic of the null hypothesis that 1  0. The Wald test, for example, would be

Wn 
n1n

2 
se1n

,     12

where 1n is one of the estimators of 1 described in Section 3a. The denominator in
(12) is a consistent estimator of the asymptotic standard deviation of the relevant estimator.
The exponential Wald test as suggested by Andrews and Ploberger then takes the form

Exp − Wn  1  c−1/2 
B

exp c
21  c

Wn dJ,     13

where c and J are user-defined constant and weight function, respectively, whose choice is
discussed by Andrews and Ploberger (1994). The limit of the statistic in (13) as c → 0 is the
"average-Wald" ("ave-W") statistic


B

WndJ,     14

while its limit as c →  is

log 
B

exp 1
2 Wn dJ,     15

and will be referred to below as "log-exp-W". The resulting statistic will have a nonstandard



limiting distribution, computation of the p-values of which is considered by Hansen (1996).
Note that in practice it may be necessary to compute Wn for a discrete set of points 
belonging to the parameter space. We will now describe a method of conducting inference with
the statistic given in (13) which follows the lines of Hansen (1996).

To illustrate the idea behind the procedure suggested by Hansen (1996), we consider the
application of the procedure to the 2SLS estimator of the parameter vector 1, which is


 1n

as defined above. The null hypothesis that 1  0 can be expressed as the null that RT1  0,
where R is a vector of dimension 2  p1 whose elements are all zeros, excepting the second,
which is a one. The “regression score” defining


 1n is

st  v1t
∗ u1t

and its estimated version is
s t  v1t

∗ u1t,
where u1t is the residual from the 2SLS estimator


 1n. Now define the following matrices:

Mn,ss  n−1∑
t1

n
s t

s tT,

and

Mn,v∗v1,2  n−1∑
t1

n

v1t
∗ 1v1t2T,

where 1 and 2 are possibly different points in the parameter space B. The asymptotic
covariance matrix of


 1n is then consistently estimated by

1  Mn,v∗v
−1 ,Mn,ssMn,v∗v,−1T.

The Wald statistic Wn defined in (12) can then be rewritten as follows:

Wn  n

 1nTR RT1R

−1
RT 1n.

Now, suppose that we have used a random number generator to supply a sequence of iid
standard normal random variables tt1

n . Define the statistics

Sn  n−1/2∑

t1

n
s tt     16

and

Wn 

SnTMn,v∗v

−1 ,R RT1R
−1

RTMn,v∗v,−1TSn.     17

To compute the p-value of our Exp − Wn statistic given in (13), we generate K different
sequences of iid random normals, kt1

n , k  1, . . . ,K, and for each k, we use the definitions

(16) and (17) to compute

Sn

k
and Wn

k
, the latter of which can be substituted into (13) to

give us the statistic

Exp − Wn
k  1  c−1/2 

B
exp c

21  c
Wn

k
 dJ.

The asymptotic p-value of the Exp − Wn statistic computed from the data will then be
estimated to an arbitrarily high degree of accuracy by the proportion of the simulated Exp − Wn

k



statistics that exceed it.
The same general procedure can be used to determine p-values when the 3SLS or adaptive

estimators are used, with suitable redefinition of the relevant statistics. In the case of 3SLS, we
are estimating the full parameter vector , of dimension 4  p1  p2, and our null hypothesis
can be expressed as RT  0, where now R is a vector of dimension 2  p1 whose elements are
all zeros, excepting the second, which is a one. We can now write the regression score defining
 nas

st  vt
∗T−1ut,

where

vt
∗ 

v1t
∗ T 0

0 v2t
∗T

.

The estimated form of the regression score is

st  vt
∗T−1ut.

Turning to the adaptive estimator, the form of the regression score is given by st, in
(7), and its estimated form can be obtained by substituting into (7) preliminary estimators


 n

and t ut

 n, .

INTERVENTION BY BANK OF CANADA
Canada is a classic example of a small open economy, the lion’s share of whose foreign

trade is with its mammoth neighbour, the United States. The exchange rate between the
Canadian and U.S dollars is thus of great interest and importance to Canada, and it is plausible
that the rate is closely monitored, and possibly influenced, by the Bank of Canada. A number
of attempts have been made to econometrically measure the nature and extent of the Bank of
Canada’s intervention in the foreign exchange market (for example, Longworth (1980),
Weymark (1995), and Rogers and Siklos (2003)). According to the following quotation, taken
from the Bank’s website and dated July 2001, it has in recent years refrained from such
intervention:

The Bank of Canada influences the exchange rate only indirectly. This can happen
when the Bank changes its Target for the Overnight Rate, which affects short-term
interest rates. As of 1998, the Bank no longer intervenes in foreign exchange markets
to ensure an orderly market, but rather reserves such actions for times of major
international crisis or a clear loss of confidence in the currency or
Canadian-dollar-denominated securities.

The test outlined in the preceding section, applied to Canadian data from the post-1998
period, would thus constitute a test of the null hypothesis that the Bank’s public utterance of a
no-intervention policy is an accurate reflection of its true behaviour. We proceed with such an
analysis in this section. Before presenting our results, we discuss various details relating to the
application of the methodology.

Data and Measurement of Variables
The first step in any study of foreign exchange market intervention is to define precisely

what will be meant by “intervention”. How is it measured in practice, using available data
series? Secondly, in estimating the response of the intervention variable to deviations of the
exchange rate from its target, we must somehow measure or estimate a (generally
time-varying) target exchange rate. Various approaches have been taken to the definition of



both of these variables, as can be seen by a quick perusal of the literature survey of
Almekinders and Eijffinger (1991).

Many authors use changes in foreign reserve holdings, possibly modified to account for
changes in reserves due to factors other than intervention, as a measure of intervention.
Dornbusch (1980, p.173), for example, in a study of the markets for several currencies
(including the Canadian) vis-à-vis the U.S. dollar, uses as his measure “an adjusted series that
subtracts from changes in reserves an amount equal to the U.S. Treasury bill rate times the
lagged stock of reserves. This series is measured as a fraction of lagged reserves.” The
intervention measure used by Longworth (1980, p.285) is “the change in foreign exchange
reserves less revaluation items (and strategic drawing reserve allocation) plus the change in net
undelivered contracts in U.S. dollars”. Weymark (1995, p.281), in the context of a
fully-specified five-equation model of the macroeconomy, proposes “an index of exchange
market intervention that measures the intervention activity of the policy authority in terms of
the proportion of exchange market pressure relieved by exchange market intervention,”
constructed as follows:

Δrt
1/Δst  Δrt

,

where st is the log-exchange rate, Δrt  htRt − ht−1Rt−1 /Mt−1, ht is the money multiplier, Rt
the stock of foreign exchange reserves, Mt−1 the inherited money stock in period t, and
  −∂et/∂rt is a parameter that depends on the specification of the model.

We use as our measure of intervention the first difference in the Bank of Canada’s official
international reserves of U.S. dollars. We use weekly observations on reserves running from
July 7, 1997 to January 8, 2003, for 169 observations on reserves and 168 on first differences.
The series was obtained from the Statistics Canada CANSIM database, series v15943317.

Various approaches have also been taken to the specification of the target exchange rate st
∗.

In the absence of an explicitly stated target rate, the specification here is largely left to the
discretion of the researcher. The target could simply be the previous period’s exchange rate, so
that intervention is modelled as being a reaction to any change in the exchange rate
(Longworth (1980), for example, takes this approach, while also considering the possibility
that parity of the U.S. and Canadian dollars is an objective of the Bank of Canada, a much less
outlandish question at the time than it may seem today). In a similar fashion, a moving average
of recent exchange rate levels could also be used. Other approaches, such as considering
deviations from purchasing power parity, or deviations of the exchange rate from its expected
value according to uncovered interest parity, have also been considered (see Almekinders and
Eijffinger (1991)).

We use weekly observations of the Canada-U.S. exchange rate, obtained from the Bank of
Canada web site, for the same dates as for the reserve series mentioned above. As a measure of
the target rate, we use an equally-weighted moving average of recent (log) exchange rate
levels, considering a number of a lags ranging from 4 to 12 weeks.

Estimation and Testing - Details
We will report results for the application of the statistics given in (14) and (15) for the test

of the null hypothesis that 1  0 in equation (2), with q1z1t,1  0 and the function g
specified as in (3). For given values of , (2) is estimated by OLS and IV, and (2) and (4)
jointly by 3SLS, with gdt−1, being used as the instrument for gdt,. The target rate st

∗ is
defined as the equally-weighted moving averages of the first 12 lags of st (some
experimentation with different settings of the moving average order produced very similar



results). For the tests, 2500 possible values of the bivariate vector  are considered, with 
values taken from the range 1-4, divided into a grid of 50 points, with the range of considered
 values being .75-1, with a grid of 50 points. The weights J decline linearly in  from 1 to
4, and decline linearly in  from 1 to .75, so that maximal weight is placed on ,  1,1,
and weight zero placed on ,  4, . 75. The number of simulation draws used in the
computation of the p-values is K  1000.

We first present some details on the data series to be employed in the analysis, in Table 1
and Figure 1 (where the reserves variable has been scaled down to approximately the same
scale as the exchange rate variable). As Table 1 indicates, the two series are slightly negatively
correlated, with a correlation coefficient of -.087. The degree of autocorrelation in the reserve
changes is slight, but is quite strong in the exchange rate deviations. The Jarque-Bera (1980)
statistic is small for the latter variable, with some evidence of skewness, whereas the reserve
change is very highly leptokurtic. This characteristic is evident from a glance at Figure 1,
where a handful of large outliers, both positive and negative, stand out.

Table 2 contains the results of the application of the log-exp-W and ave-W statistics,
computed as described above. The results for both tests, and for all three estimators considered,
strongly suggest that there is no policy response to deviations of the exchange rate from recent
levels. The p-values of the statistics range from .46 to .64, lending strong support to the null
hypothesis that 1  0. It is of some interest to note that although the test statistics and
p-values for IV and 3SLS are quite close to one another, they both differ somewhat from the
corresponding OLS numbers. Although not constituting a formal test of the exogenity of the
regressors, these figures suggest the possibility that the regressors are not exogenous in the
policy equation.

The point estimates and standard errors of the estimation of the parameters of equations (2)
and (4) are reported in Table 3. Equation (2) was estimated by NLLS and NLIV, whereas (4),
being linear, was estimated by OLS and IV (the instruments used are as described above). The
starting value in the nonlinear estimation algorithm for the parameter vector 0,1,, in (2)
was (0,-0.1,1,1). Some alternative starting values were also considered as a check on the
robustness of the results. The estimate of the intercept 0 is positive and not sensitive to the
estimator (a finding that was robust to variation in the starting value). The estimates of 1 tend
to be fairly small and negative, but with quite large standard errors. There was some sensitivity
of this estimate to starting values, not surprising considering the imprecision of the estimate.
Perhaps the most interesting result here is a finding of  in the 2-3 range, and fairly precisely
estimated. Although there was some sensitivity of the standard error estimate to changes in
starting value, the point estimate obtained is fairly robust. Note that the  estimates are far too
imprecise to be of any interest. This result suggests that reliable information about the value of
 cannot be extracted from this data set, and suggests redoing the analysis above in assuming a
symmetric policy response, fixing   1, and focusing attention on the degree of nonlinearity
as represented by . (to come)
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Table 1 – Summary Statistics 
 Change in reserves ( ) ti Exchange rate deviation ( ) td

Mean 5.50  510−× 2.22  310−×
Var 1.07  510−× 1.86  410−×
Corr -.087 

)1(ρ  -.078 .817 
)2(ρ  -.119 .634 
)3(ρ  .061 .455 
)4(ρ  .013 .309 
)5(ρ  -.050 .212 

J-B (sk, 
kurt,sk+kurt 

.99 782.09 783.09 6.90 0.47 7.37 

Note: )( jρ  indicates the autocorrelation at lag j, and J-B refers to the Jarque-Bera (1980) skewness, kurtosis, and 
skewness-kurtosis statistics 
 

Table 2 – Tests of null of no intervention ( 01 =α  in equation (2)) 
Estimator Log-exp-W p-value Ave-W p-value 

OLS .29 .46 .54 .47 
IV .10 .63 .20 .63 

3SLS .11 .64 .22 .64 
 

Table 3 – Parameter estimates 
Policy equation (2) 

Estimator 0α  1α  γ  η  

NLLS 2.54  510−×
(3.66 ) 410−×

-.0365 
(5.46) 

2.43 
(.110) 

62.9 
(9250) 

NLIV 2.96  510−×
(4.85 ) 410−×

-.144 
(19.8) 

2.59 
(.572) 

11.4 
(1230) 

Feedback equation (4) 
Estimator 2α  3α  1δ  2δ  

OLS 4.45  410−×
(6.36 ) 410−×

-.196 
(.191) 

.911 
(.0801) 

-.115 
(.0799) 

IV 4.52  410−×
(6.46 ) 410−×

-.347 
(2.20) 

.905 
(.114) 

-.109 
(.110) 

Note: Standard errors are in parentheses 








