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1 Introduction

The problems associated to total lack of identification of structural equations mod-

els have been well know for several years (e.g. Sims (1980) and Sargan (1983)).

Phillips (1983), Phillips (1989) and Hillier (1985) show that the standard esti-

mators are completely uninformative about the structural parameters if these pa-

rameters are totally unidentified. The standard asymptotic theory fails even in

intermediate situations such as the partially identified models of Phillips (1989)

and Choi and Phillips (1992) and in the weakly identified models of Staiger and

Stock (1997). The surprising result, is that the standard asymptotic theory breaks

down, and confidence sets can be unbounded with positive probability even if the

model is identified but can be arbitrarily close to being unidentified (Dufour (1997),

Staiger and Stock (1997)). This discovery has had a huge impact on applied econo-

metric work because evidence of identification of the structural parameters is often

very weak (Staiger and Stock (1997)).

Although relatively new in econometrics, the history of these kind of problems

goes back a long way in the statistics literature. Let P be a family of probability

measures on a common measurable space (X,A), and η : P → Rq be a map. Let

δ (P1, P2) = supA∈A {|P1 (A)− P2 (A)|} be the total variation distance between the

probability measures P1, P2 ∈ P . Bahadur and Savage (1956) and Singh (1963)

show that if there is a bounded length confidence interval for η based on a sample

of fixed size, then the map η is uniformly continuous on (P , δ) (for more recent

results see Koschat (1987), Gleser and Hwang (1987), Dufour (1997), Pfanzagl

(1998)). LeCam and Schwartz (1960) notice that if the map η is discontinuous

at P0 ∈ P then there can be no uniformly consistent estimator of η. Uniform

consistency excludes estimators with disturbing local behaviour (such as Hodges’

superefficient estimator) having unbounded local asymptotic risk (see also Pötscher

(2002)).

A simple example helps to understand the nature of the problems which may

arise even in a very basic context. Consider a sample of n independent observations

(x1, x2)i from a bivariate normal distribution with mean vector (µ1, µ2) and identity

covariance matrix I2. The sample means (x̄1, x̄2) contain all the sample information
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about the parameter (µ1, µ2). Inference about this parameter does not involve

any problem whatsoever. However, if the mean is reparameterized as µ1 = ψµ2,

µ2 = µ2, then it is well known that inference about ψ is problematic, although it

is difficult to state clearly what the problem is. In very loose terms, there are two

interrelated sources for the difficulty of inference about ψ. The first one concerns

the parameterization employed because ψ is not well defined for all values of µ2.

The second one pertains to the estimator: the natural estimator of ψ, ψ̂ = x̄1/x̄2,

is imprecise when x̄2 is close to zero.

In this paper we connect the statistics and the econometrics literature and try

to make clear what goes wrong in situations like the one described above. The

starting point is the observation that a parameterization and many estimators

define maps from the manifold of probability density functions (PDFs) to the

parameter space (usually a submanifold of the q-dimensional Euclidean space).

The properties of this maps are fundamental as the work of Bahadur and Savage

(1956), LeCam and Schwartz (1960), Singh (1963), and Pfanzagl (1998) shows. We

study how these maps transmit perturbations. Intuitively, problems arise when

either the perturbations are not transmitted at all or when they are enormously

amplified. In the latter case, the manifold of PDFs is too rich and this gives rise

to the problems emphasised by the econometric and statistic literature referred to

above. The lack of transmission of perturbations may reflect the fact that very

restrictive conditions have been imposed on the manifold of PDFs. These may be

relaxed without compromising statistical inference.

An important by-product of this analysis is the derivation of measures of weak-

ness of instruments for structural equations models, which can be easily calculated

and interpreted. We regard weak instruments as a very sensitive relationship be-

tween the manifold of PDFs and the parameters of interest, and embed the analy-

sis in a general set-up which includes parametric ill-posed problems. This provide

both a definition and a measure for weak instruments, which complement those of

Shea (1997), Godfrey (1999), Stock, Wright, and Yogo (2002), Hahn and Hausman

(2002a), Hahn and Hausman (2002b), Poskitt and Skeels (2002) and Stock and

Yogo (2003).
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By observing that the weak instruments problem is linked to the fact that the

manifold of PDFs is too rich, our analysis may suggest that a solution may consist

in restricting the manifold of PDFs in suitable ways. It is clear from the analysis

of Dufour (1997) that imposing identification does not restrict the manifold of

PDFs enough, and it is difficult to think of agreeable ways of further restricting

such manifold. The model could be changed as done for example by Chamberlain

and Imbens (2004) and Han and Phillips (2003), however, if we do not want to do

so, we need to account for points in the manifold of PDFs, in a neighbourhood of

which inference is difficult. This can be done by using the measures of weakness

of the instruments as post-data measures of precision (Goutis and Casella (1995)).

Forchini and Hillier (2003) argued for conditioning on an identification test statistic

which measures the distance of the observed point in the manifold of PDFs from

the point where identification does not hold. The measures suggested below may

be certainly used in this way since they are less ad hoc than the statistic used in

the previous paper. Alternatively, one could report estimates of a loss function

as post-experimental measures of precision (see for instance Goutis and Casella

(1995), Lindsay and Li (1997) and Sundberg (2003)). For structural equation

models, however, instead of reporting an estimate of the loss we report an estimate

of the “sharpness” of the loss function (see also Bowden (1973)).

An application the problem of estimating return to schooling using the data

set of Angrist and Krueger (1991) is given. There is clear evidence that inference

about return to schooling is weak and that changes on the manifold of PDFs are

transformed into large variations of the parameter of interest (see Bound, Jaeger,

and Baker (1995) for a related conclusion). The results also show how differently

the TSLS and the OLS estimator are affected by identification.

The remaining part of the paper is organized as follows. Section 2 describe

the set-up considered and gives bound on the transmission of perturbation from

the data generation process to the parameter of interest. Section 3 deals with the

case of singular information metric. Section 4 gives some examples of applications

of the measured proposed. These include the classical linear regression model,

the linear regression model with time-trend and autocorrelated errors, and some
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variations of the Fieller-Creasy problem. Section 5 discusses structural equations

models and considers an empirical application. The conclusions end the paper.

2 The model and the main results

Consider the manifold of PDFs, P = {p (x; θ)}, parameterized by a q dimensional

vector of parameters θ ∈ Θ ⊂ Rq, and assume that P is a differential manifold

(Amari (1985)). The manifold of PDFs is often described in econometrics as the

set of all data-generation processes (DGPs). The variable x is an n × k matrix

containing n observations on k variables.

This paper studies the map η : P → Θ and develops measures for the “sensitiv-

ity of this map”. With the expression “sensitivity of a map” we mean the property

that a map has of transmitting small perturbations of p ∈ P to η (p) ∈ Θ. In-

tuitively, if the map η (p) amplifies perturbations of p, then it is very difficult to

discover where η (p) is when p is only imprecisely located. However, if pertur-

bations of p are not transmitted at all, then all the points in P are mapped to

the same value η (p), indicating that the manifold of PDFs has been considerably

restricted by the researcher’s assumptions. To capture these ideas we will mea-

sure the largest possible change of η (p) ∈ Θ which can be achieved by changing p

slightly, and the smallest variation of p necessary to produce a fixed (small) change

of η (p). We will be more precise below.

Before starting our analysis we need to impose some structure on the problem

at hand. In order to define a neighbourhood of p (x; θ0) in P we use the notion

of divergence. A divergence (Amari (1985) p. 84) is a function δ (p1, p2), p1 =

p (x; θ1), p2 = p (x; θ2) ∈ P , such that:

(1) δ (p1, p2) ≥ 0, and δ (p1, p2) = 0 if and only if p1 = p2;

(2) Dθ1δ (p1, p2)|θ1=θ2
= Dθ2δ (p1, p2)|θ2=θ1

= 0 at p1, p2 and

(3) D2
θ2

δ (p1, p2)
∣∣
θ1=θ2

= G (θ1) and G (θ1) is a positive definite matrix,

where Dθ denotes differentiation with respect to θ. The following well known result

is fundamental for the results to follow:
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Lemma 1 (i) The divergence δ (θ0, θ0 + θ) between two neighbouring points θ0 and

θ0 + θ is

δ (θ0, θ0 + θ) =
1

2
θ′G (θ0) θ + O

(|θ|3) .

(ii) (Morse’s Lemma) There is a neighbourhood BRq (θ0, ε
∗) of θ0 and a diffeomor-

phism φ such that φ (0) = 0 and for every θ ∈ BRq (θ0, ε
∗)

δ (θ0, θ0 + φ (τ)) = τ ′τ .

For a discussion and background on the Morse’s lemma see Milnor (1963) and

Castrigiano and Hayes (1993). Lemma 1 implies that δ (θ0, θ0 + θ) behaves locally

as half the square of an Euclidean distance. Several measures of statistical distance

have this form (see Blyth (1994) who calls them “Rao divergences”): the Kullback-

Leibler divergence, the α-divergences of Amari (1985) and the Hellinger distance

(see Gibbs and Su (2002) for a survey of the relationships among them). The total

variation distance used in the statistical literature mentioned in the introduction

and the Hellinger distance (which is a special case of divergence) induce the same

topology and uniformity on the set of probability measures (see for example LeCam

and Yang (1990) and Gibbs and Su (2002)).

In the rest of the paper we assume that the matrix G used to define the di-

vergence is the Fisher information matrix, but other choices are possible (e.g. the

observed information). In Rq a ball of radius ε and centre θ0 ∈ Rq is the set

BRq (θ0, ε) =
{
θ ∈ Rq : |θ − θ0|2 < ε2

}
,

where |.| denotes the usual Euclidean distance. Analogously, using this notation

introduced above, a ball of radius ε centred at p0 ∈ P is the set

BP (p0, ε) =

{
p ∈ P : δ (p0, p) <

1

2
ε2

}
.

To simplify the presentation we will write δ (θ1, θ2) for δ (p1, p2), when p1 =

p (x; θ1) , p2 = p (x; θ2).

Consider a map η : P → Rm, m ≤ q. A (small) perturbation of p0 will induce a

change of η (p0). The largest amplification factor for a perturbation of p0 on η (p0)
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is

Mη (p0) =

√
lim
ε→0

inf

{
φ : η (BP (p0, ε)) ⊂ BRm

(
η (p0) ,

φε√
n

)}
.

This definition takes explicitly into account the sample size since it considers a

neighbourhood φε/
√

n of η (p0) which shrinks with the sample size and, thus,

acknowledges the fact that information about the interest parameter is usually of

order O (n). This simplifies the interpretation of the results of the paper when

using standard asymptotic arguments, but it may be modified in some cases (see

also Sections 3 and 4.2 below).

Heuristically, if we let p0 = p (x; θ0), and with a slight abuse of notation, denote

the perturbed density by p0 + ε, then by changing p0 to p0 + ε, the largest change

in η (p0) is at most Mη (p0) (ε/
√

n).

The following theorem and two corollaries are proved in Appendix A.

Theorem 1 The quantity Mη (p0) is well defined and

Mη (p0) = λ
1/2
M

(
η̇ (θ0)

[
n−1G (θ0)

]−1
[η̇ (θ0)]

′
)

where λM (A) denotes the largest eigenvalue of the matrix A, η (θ) = η (p (x; θ))

and η̇ (θ0) = Dθη (θ)|θ=θ0
. The rank of η̇ (θ0) is less or equal to m.

Corollary 1 For a fixed map η, Mη (p0) is invariant to reparameterizations of P .

Corollary 2 Let λM (A) and λm (A) denote the largest and the smallest eigenval-

ues of the matrix A. If η = θ,

M θ (p0) = λ
1/2
M

([
n−1G (θ0)

]−1
)

= λ−1/2
m

(
n−1G (θ0)

)
.

If η = θ1 where θ = (θ′1, θ
′
2), then

M θ1 (p0) = λ
1/2
M

([
n−1Ḡ11.2 (θ0)

]−1
)

= λ−1/2
m

(
n−1Ḡ11.2 (θ0)

)

where G11.2 (θ0) denotes the orthogonalised metric

Ḡ11.2 (θ0) = G11 (θ0)−G12 (θ0) [G22 (θ0)]
−1 G21 (θ0)
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and

G (θ0) =

(
G11 (θ0) G12 (θ0)
G21 (θ0) G22 (θ0)

)

is partitioned conformably to θ. Moreover, M θ1 (p0) is invariant to the reparame-

terizations of θ2.

The results above show that Mη (p0) is well defined for the class of models under

consideration, and is unaffected by the way the manifold of PDFs is parameterized.

Theorem 1 requires the function η (p) to be differentiable at p0, but does not impose

any restriction on the rank of η̇ (θ0). If the map of interest is the parameterization

itself, the largest change in the parameter of interest induced by the move from

p0 to p0 + ε is the square root of the reciprocal of the smallest eigenvalue of the

standardized information matrix.

We will now impose restrictions on the map η : P → Rm and look at the

problem from a slightly different perspective. Suppose that the map η : P → Rm

is a submersion (i.e. η̇ (θ0) = Dθη (p (x; θ))|θ=θ0
has rank m ≤ q). Then, we can

reparameterise the manifold P in term of η and other q−m parameters orthogonal

to η, φ say, θ = ψ (η, φ). The metric changes to

G (η0, φ0) =
[
ψ̇ (η0, φ0)

]′
G (θ) ψ̇ (η0, φ0)

=

(
G11 (η0, φ0) G12 (η0, φ0)
G21 (η0, φ0) G22 (η0, φ0)

)

where ψ̇ (η0, φ0) = D(η,φ)ψ
∣∣
(η,φ)=(η0,φ0)

. Let |G22 (η0, φ0)| > 0, then the orthogo-

nalised metric G11 (η̃, φ) is

Ḡ11.2 (η0, φ0) = G11 (η0, φ0)−G12 (η0, φ0)
′ G22 (η0, φ0)

−1 G21 (η0, φ0) .

and it is invariant to reparameterizations of φ.

We are now interested in looking at changes along the η coordinates keeping φ

fixed at φ0. To do this we need to define the divergence δ̄ along the η coordinates

with respect to Ḡ11 (η0, φ0) in the same way as above, and let

B̄P (p0, ε) =

{
p ∈ P : δ̄ (p0, p) <

1

2
ε2

}
.

Then we have the following result:
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Theorem 2 The quantity

M̄η (p0) =

√
lim
ε→0

inf

{
φ : η

(B̄P (p0, ε)
) ⊂ BRm

(
η (p0) ,

φε√
n

)}

is well defined and equals Mη (p0) = λ−1/2
m

(
n−1Ḡ11.2 (θ0)

)
given in Corollary 2.

Moreover, the direction in the η coordinates in which this is achieved is given by

the eigenvectors of n−1Ḡ11.2 (η̃0, φ0) associated to λm (n−1G11.2 (θ0)).

Given that M̄η (p0) = Mη (p0), in the rest of the paper we will denote them

with the same symbol Mη (p0). Heuristically, by changing p0 to p0 + ε along the η

coordinates, the largest change in η (p0) is at most M̄η (p0) (ε/
√

n).

Also define

µ̄η (p0) =

√
lim
ε→0

inf

{
φ : η−1

(
BRm

(
η (p0) ,

ε√
n

))
⊂ B̄P (p0, φε)

}
.

This is the change in p0 (along the η coordinates) required to change η by an

amount equal to ε.

Theorem 3 The quantity µ̄η (p0) is well defined and

µ̄η (p0) = λ
1/2
M

(
n−1Ḡ11.2 (η0, φ0)

)
.

Moreover, the direction in the η coordinates in which this is achieved is given by

the eigenvectors of n−1Ḡ11.2 (p0) associated to λM (n−1G11.2 (θ0)).

Corollary 3 Let ‖A‖2 denote the spectral norm of the matrix A. Then, the dis-

tance of n−1Ḡ11.2 (η0, φ0) from the nearest point of where the matrix G is rank

deficient (measured in terms of the norm ‖.‖2) equals 1/Mη (p0) = 1/M̄η (p0).

2.1 Discussion

Both Mη (p0) and µ̄η (p0) measure how perturbations of p0 along the η coordinates

are mapped into changes in η (p0), and they quantify two related but different

ideas. The quantity Mη (p0) is the largest change in η (p0) that we can achieve
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when we change p0 along the η coordinates. On the other hand µ̄η (p0) is the

smallest change of p0 (along the η coordinates) which yields a given change in

η (p0). Consider the case where µ̄η (p0) is infinite: when p0 is slightly perturbed

η (p0) is unaffected, i.e. η (p0) is locally constant. Inference about the point η (p0)

can be done using η (p̂) where p̂ denotes any DGP sufficiently close to p0. In this

situation we have imposed very tight restrictions on the manifold of PDFs and, in

a neighbourhood of p0, all PDFs are mapped into the same point η (p0). We are

using a model which is too restrictive, and we could relax some of these restrictions

without compromising the statistical inference about η (p0).

The other extreme situation is the one where Mη (p0) is infinite: small pertur-

bations of p0 generate infinitely large changes of η (p0). The point η (p0) is not

exactly defined and inference about it can be extremely difficult and imprecise.

For example, if we are interested in constructing a confidence set C (x) for η (p0),

then we would like

sup
ε>0

inf
p∈BP (p0,ε)

∫

{x:η(p)∈C(x)}
p (x) dx = 1− α

for a fixed 0 < α < 1 and also we would like C (x) to be bounded with probability

one. However, if Mη (p0) = ∞ this is not possible. Heuristically, by perturbing p0

slightly, the change of η (p0) is so large that no bounded confidence set can contain

η (p0 + ε). In this case, to be able to make precise inference about η (p0) we need to

restrict the manifold of PDFs. This is analogous to the impossibility results of Ba-

hadur and Savage (1956), Singh (1963), Koschat (1987), Gleser and Hwang (1987),

Dufour (1997), Pfanzagl (1998) and Pötscher (2002). Formally, Pötscher (2002)

has shown that, given some regularity conditions, for any proper loss function,

the minimax risk for estimating η (p) is bounded below by 2−2osc (η, p0) where

osc (η, p0) denotes the oscillation of the function η : P → Rm at the point p0 ∈ P .

Using the notation introduced above

osc (η, p0) = lim
ε→0

sup
{p∈P :δ(p0,p)≤ε2/2}

√
(η (p)− η (p0))

′ (η (p)− η (p0))

(ε/
√

n)
2

= Mη (p0)

where the second line follows from the first because the square root is a continuos

10



function. Thus if the matrix G (θ0) is close to be singular the minimax risk for

estimating η (p) can be arbitrarily large. Inferential problems in this case have

been documented by Bottai (2003).

If G denotes the Fisher information matrix, it is well known that a sufficient

(although not necessary) condition for local identification is that G is non singular

(see for instance Theorem 1 p 579 of Rothenberg (1971) and Section 3 of Bowden

(1973)). For models for which identification is determined by the non-singularity

of the Fisher information matrix, Corollary 1 establishes a link between Mη (p0)

and the set where the parameter of interest η is not identified (a discussion of

the singular information matrix case is in Section 3). As such, it is a measure of

identification (i.e. of instruments’ weakness): small values of Mη (p0) indicate that

η is identified, and large values of Mη (p0) suggest that the parameter η is close to

being unidentified.

This interpretation is in accordance with Bowden (1973) who suggests using

the rate of change of the Kullback-Leibler divergence to measure the “sharpness”

of identification. Furthermore, for a general M-estimator the divergence θ →
M (θ) = δ (θ0, θ0 + θ) represent an “asymptotic criterion function”, and Lemma 1

gives approximations for it in a neighbourhood of θ0. It is well known that if this

map changes quickly as θ moves away from 0 then the estimator θ̂n maximizing

the sample equivalent of the “asymptotic criterion function” has a high rate of

convergence given some regularity conditions (see for example Van der Vaart (2000)

Section 5.8).

A further interpretation of the measures suggested above hinges on identifying

the divergence with a loss function having a minimum at the true DGP p0 ∈ P .

Looking at the proof of Theorem 3 we deduce that µ̄η (p0) is the largest relative

increase in the loss function which can be caused by a small change of the pa-

rameters of interest. Analogously, Mη (p0) is the relative change in the interest

parameters necessary to increase the loss function by a small amount. Both quan-

tities measure how quickly the loss function (i.e. the divergence) changes as the

parameters of interest change.
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An estimator of the point η (p) is a function

η̂ : P → Rq.

This is an abstract, although useful, definition of estimator when looking at the

problem under consideration. It is different from the most common definition for

which an estimator is a function from the sample space to the parameter space, but

many common estimators have this form. For example the MLE is the function

P → Rq which associates to a point p ∈ P the quantity arg maxθ {ln [p (x; θ)]}.
Note that even if η (P ) = η̂ (P ), the estimator and the parameterization are not

necessarily the same function, although in most cases they do coincide. Since

an estimator is a map defined on the manifold of PDFs, the quantities M η̂ (p0),

M̄ η̂ (p0) and µ̄η̂ (p0) are well defined.

Note that the rule according to which an element of P is chosen gives rise to

a map p̂ : P → P . For example if P is parameterised as p (x; θ) and θ̂ is the MLE

of θ, then p̂ = p
(
x; θ̂

)
is the image of such a map. In this case if we take this rule

as given we can regard a function η : P → Rp as the map p̂ → η (p̂). For example,

if P is a full exponential family, i.e., its elements are of the form

p (x; θ) = exp {θ′x−K (θ)} , θ ∈ Rq (1)

with respect to a certain dominating measure, then we can introduce the expecta-

tion coordinates as in Amari (1985)

ηi (θ) =
∂K (θ)

∂θi

= Ep(x;θ) (xi)

and regard η as a function of the observed x (the sufficient statistics). In particular,

the MLE of η is just η̂ = x, and E (η̂) = η. If we take the rule p̂ as given, we can

also focus on the observed quantities M η̂ (p̂) and µ̄η̂ (p̂).

By evaluating an estimator η̂ at the observed p̂ we establish a link with the

work of Van Garderen (1996) who investigates how curvature affects the preci-

sion of the maximum likelihood estimator (MLE) in curved exponential models.

Van Garderen (1996) shows with a few examples that, in the presence of a sig-

nificant curvature, small changes of the observations (sufficient statistics) lead to
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large changes in the estimates. Our measure differ from the idea of model curva-

ture of Amari (1985), because, for example, the Fieller-Creasy model is flat but

none of our measures of sensitivity is constant over the parameter space or over

the manifold of PDFs.

Although our measures µ̄η (p0) and Mη (p0) differ from the idea of model cur-

vature of Amari (1985), they are closely related to it. In the case where q = 2,

µ̄η (p0) and Mη (p0) are the maximal and minimal Euler curvature respectively.

Their product, the Gaussian curvature, may be constant but µ̄η (p0) and Mη (p0)

may vary considerably. This is the case, for instance, in the Fieller-Creasy set-up.

3 The singular information matrix case

The fact that the information matrix is positive definite is a sufficient but by no

means necessary condition for identification of a parametric model. We can extend

this observation to the set-up considered in this paper by noting that we do not

need G to be nonsingular to define a divergence. We can generalize the notion of

divergence by replacing condition (3) above with

(3’) Di
θ2

δ (p1, p2)
∣∣
θ1=θ2

= 0 for i = 1, 2, ..., 2m + 1 (m ≥ 2) and

ti1i2....i2m+2θ
i1
2 θi2

2 ...θ
i2m+2

2 > 0 for all θ2 =
(
θ1

2, θ
2
2, ..., θ

q
2

) ∈ Rq, θ 6= 0, where we

use the summation convention whereby summation is implied when an index

is repeated on the upper and lower level, and we define

ti1i2...i2m+2 =
∂jδ (p1, p2)

∂θi1
2 ∂θi2

2 ...∂θ
ij
2

∣∣∣∣∣
θ1=θ2

where θ2 =
(
θ1

2, θ
2
2, ..., θ

q
2

)
and j = i1 + i2 + ... + i2m+2.

Theorems 3.2 and 3.3 of Schaffler (1992) guarantee the existence of a minimum

for the divergence at p1 = p2. If rank of G equal q1 < q, the Reduction Lemma

(Castrigiano and Hayes (1993) p 64) implies that there is a local diffeomorphism

such that

δ (θ0, θ0 + ψ (τ , φ)) = τ ′τ + g (φ)

13



where τ ∈ Rq1 and φ ∈ Rq−q1 , and g is a smooth function such that D2
φg (φ)

∣∣
φ=0

= 0

for which the origin is a critical point and g (0) = 0. Note that under assumption

(3), Morse Lemma allows us to reduce the divergence in a neighbourhood of a

particular point to the square of the Euclidean distance. If, on the other hand,

the matrix G is rank deficient the Reduction Lemma yields a decomposition of

the divergence in a neighbourhood of a given point into two components: one is

the square of the Euclidean distance (τ ′τ) and one is not an Euclidean distance

(g (φ)).

The function g has a minimum at φ = 0 (see Corollary 2.2 of Schaffler (1992))

and for a sufficiently small neighbourhood of zero g (φ) ≤ φ′φ. By expanding g (φ)

as a Taylor series around φ = 0 we have

g (φ) =
1

i1!i2!...i2m+2!
gi1i2....i2m+2φ

i1φi2 ...φi2m+2 + O
(‖φ‖2m+3)

where

gi1i2...i2m+2 =
∂jg (φ)

∂φi1∂φi2 ...∂φi2m+2

∣∣∣∣
φ=0

.

This has very important implications. Let τ = 0, φ = 0 then δ (θ0, θ0 + ψ (0, 0)) =

0. Suppose we change one coordinate at a time by a quantity ε leaving all other

coordinates unchanged. If we increase τ i = 0 to τ i = ε (i = 1, 2, ..., p1) the increase

in the divergence is ε2. However, for a change in the φ coordinates from φi = 0

to φi = ε, the change in the divergence equals ε2m+2 + O (ε2m+3). Given that the

order of magnitude of changes in the τ and the φ coordinates are so different, we

need to consider changes in the two coordinates separately.

To simplify the notation let

δ (θ0, θ0 + ψ (τ , φ)) = δθ0 (τ , φ) .

Also assume that there are no nuisance parameters (if there are, as before, we

assume that η is a submersion and that P is parameterized in terms of η and some

other q − m parameters orthogonal to η, which are kept fixed and we consider

changes along the η coordinates). Moreover, define

Bτ
P (p0, ε) =

{
p = p (x; θ0 + ψ (τ , φ)) : δθ0 (τ , 0) <

1

2
ε2

}
,

14



and

Bφ
P (p0, ε) =

{
p = p (x; θ0 + ψ (τ , φ)) : δθ0 (0, φ) < ε2m+2

}
.

With this notation we can write

M̄η
τ (p0) =

√
lim
ε→0

inf

{
φ : η (Bτ

P (p0, ε)) ⊂ BRm

(
η (p0) ,

φε√
n

)}

M̄η
φ (p0) =

√
lim
ε→0

inf

{
φ : η

(
Bφ

P (p0, ε)
)
⊂ BRm

(
η (p0) ,

φε

nm+1

)}

and

µ̄η
τ (p0) =

√
lim
ε→0

inf

{
φ : η−1 (BRm (η (p0) , ε)) ⊂ Bτ

P

(
p0,

φε√
n

)}

µ̄η
φ (p0) =

√
lim
ε→0

inf

{
φ : η−1 (BRm (η (p0) , ε)) ⊂ Bφ

P

(
p0,

φε

nm+1

)}
.

Theorem 4 The four measures of sensitivity defined above are well defined and

M̄η
τ (p0) = λ

1/2
M (nA11)

M̄η
φ (p0) =

√
n2(m+1) max

1
i1!i2!...i2m+2!

gi1i2....i2m+2
vi1vi2 ...vi2m+2=1

v′A22v

µ̄η
τ (p0) = λ

1/2
M

(
1

n
A−1

11

)

µ̄η
φ (p0) =

√
1

n2(m+1)
max

v′A22v=1

1

i1!i2!...i2m+2!
gi1i2....i2m+2v

i1vi2 ...vi2m+2

where (
A11 A12

A′
12 A22

)
=

[
ψ̇ (0, 0)

]′
[η̇ (θ)]′ η̇ (θ) ψ̇ (0, 0)

and

η̇ (θ) = Dθη (θ)|θ=θ0

ψ̇ (0, 0) = Dτ ,φψ (τ , φ)|(τ ,φ)=0

15



4 Examples

Examples of applications of the measures of sensitivity derived in Sections 2 and

3 are now given. A further application to structural equations models is given in

Section 5.

4.1 The linear regression model

Consider a Gaussian linear regression model

y = Xβ + u

where β is an unknown k × 1 vector of parameters, X is a nonstochastic n × k

matrix and u ∼ N (0, σ2In). The Fisher partial information about β is (1/σ2) X ′X.

So

Mβ (p0) = M̄β (p0) =
σ

λ1/2
m (n−1X ′X)

µ̄β (p0) =
λ

1/2
M (n−1X ′X)

σ
.

Note that Mβ (p0) < ∞ is, in this case, a necessary condition for identification of

β. Note that the condition number suggested by Besley, Kuh, and Welsh (1980)

as a measures of multicollinearity is

K (X ′X) = µ̄β (p0) M̄β (p0) =

√
λM (n−1X ′X)

λm (n−1X ′X)
.

The condition number has been criticised as a measure of multicollinearity because

it depends on the units of measurement of the columns of X. However, if we

declare that β defined by y ∼ N (Xβ, σ2In) is the parameter of interest, then X

must be taken as given. By rescaling the columns of X, the parameter of interest

is changed, and the measures of sensitivity reflect this.

4.2 Trend and autoregression

Consider a normal linear regression model of the form

y = xβ + u

16



where β is a scalar parameter, x is the n × 1 vector x = (1, 2, ..., n)′ and u is an

n× 1 random vector such that ui = ρui−1 + NID (0, σ2) and u0 = 0. The Fisher

information matrix for the parameters (β, σ2, ρ) is




n(n+1)(1+2n)
6σ2 − 1

3σ2 n (n− 1) (n + 1) ρ + 1
6σ2 n (n− 1) (2n− 1) ρ2 0 0

0 n
2σ4 0

0 0 1
σ2

∑n−1
j=1

∑j−1
i=0 ρ2i




So taking into account that in this case the information about β is of order O (n3),

Mβ
(
β, σ2, ρ

)
=

√
n3

n(n+1)(1+2n)
6σ2 − 1

3σ2 n (n− 1) (n + 1) ρ + 1
6σ2 n (n− 1) (2n− 1) ρ2

and, as n grows, this equals

lim
n→∞

Mβ
(
β, σ2, ρ

)
=

√
3σ2

1− ρ + ρ2

When the sample size is large, the sensitivity of the map from the DGP to R
given by the parameter of interest β depends on both the error variance σ2 and

the error autocorrelation coefficient ρ. The quantity limn→∞ Mβ (β, σ2, ρ) has a

maximum at ρ = 1/2. This decreases rapidly as ρ moves away from 1/2. Note

that limn→∞ Mβ (β, σ2, 0) =
√

3ε3 = limn→∞ Mβ (β, σ2, 1) , so that the parameter

of interest β is equally sensitive when ρ = 0 and when ρ = 1.

4.3 The Fieller-Creasy problem

Let (x1i, x2i)
′ be a sequence of n pairs of independent observations from a bivariate

normal distribution with covariance matrix σ2I2, and σ2 is unknown. In this case

we can reduce to problem by sufficiency to one for which

(
x̄1

x̄2

)
∼ N

((
µ1

µ2

)
,
σ2

n
I2

)

s2/σ2 ∼ χ2 (2 (n− 1)) ,

17



and (x̄1, x̄2)
′ and s2 =

∑n
i=1

(
(x1i − x̄1)

2 + (x2i − x̄2)
2) are independent. The

Fisher information matrix is

1

n
G (µ1, µ2, σ) =




1
σ2 0 0
0 1

σ2 0
0 0 1

σ
√

n


 .

We consider the effects of a reparameterization of the mean function, and regard

σ as a nuisance parameter throughout this subsection.

Suppose the mean vector is written in polar coordinates as µ1 = ρ cos φ, µ2 =

ρ sin φ and that ρ is the parameter of interest. Then, defining p0 = p (x; ρ, φ, σ)

Mρ (p0) = M̄ρ (p0) =
σ

|ρ|
µ̄ρ (p0) =

|ρ|
σ

.

Similarly if we write µ1 = µ2ψ and µ2 = µ2, σ = σ (the Fieller-Creasy model),

and focus on the parameter ψ. Then

Mψ (p0) = M̄ψ (p0) =
σ
√

1 + ψ2

|µ2|
µ̄ψ (p0) =

|µ2|
σ
√

1 + ψ2
,

where p0 = p (x; ψ, µ2, σ). Estimators of the parameters of interest involve the

same functions as the parameters evaluated at (µ1, µ2) = (x̄1, x̄2).

Both formulations show that a small change of the DGP may create huge

changes in the parameter of interest (ρ and ψ respectively) when (µ1, µ2) is in

particular areas of R2 (see also James, Wilkinson, and Venables (1974), and Wal-

lace (1980)). Such areas are defined in different ways depending on the parameter

of interest (see Forchini and Hillier (2003) for further discussion), and are close

to the region (of measure zero) in the (µ1, µ2)-space where the parameterizations

(µ1, µ2) → (ρ, φ) and (µ1, µ2) → (ψ, µ2) are not defined. It appears that as we get

close to the edge of the regions where the parameterizations are well defined infer-

ence about the parameter of interest becomes more difficult because small changes

of the DGP imply large changes for the parameter of interest, while changes of the

parameter of interest only marginally affect the DGP.
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5 Structural equations models

In this section we apply the measures derived above to structural equations models,

and argue that they can be used to measure instruments weakness. We consider

a single structural equation

y1 = Y2β + Z1γ + u, (2)

where y1 and Y2 are respectively a T × 1 vector and a T ×n matrix of endogenous

variables, Z1 is a T×k1 matrix of exogenous variables, and β and γ are, respectively,

n× 1 and k1 × 1 vectors of parameters. The reduced form corresponding to (2) is

(y1, Y2) = Z1 (φ1, Φ2) + Z2 (π1, Π2) + (v1, V2) , (3)

where Z2 is a T × k2 matrix of exogenous variables not included in the structural

equation, (φ1, Φ2) and (π1, Π2) are matrices of parameters of dimension k1×(1 + n),

k2 × (1 + n) respectively. We assume throughout that k2 ≥ n. The rows of V =

(v1, V2) are assumed to be independent normal vectors with mean zero and common

(n + 1)× (n + 1) covariance matrix

Ω =

(
ω11 ω′21

ω21 Ω22

)
,

where ω11, ω21 and Ω22 are respectively (1× 1), (n× 1) and (n× n) matrices of

parameters (i.e. V ∼ N (0, IT ⊗ Ω)). The structural equation (2) is embedded in

the reduced form (3).

A structural equations model is a multivariate linear regression model subject

to the restrictions

π1 − Π2β = 0

φ1 + Φ2β = γ

v1 + V2β = u

where β is a n× 1 vector of parameters of interest (the coefficients of the endoge-

nous variables). Forchini (2003) gives a detailed discussion of the role of these
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compatibility conditions in determining identification of the structural parame-

ters. Here we focus on the coefficients of the endogenous variable and ignore the

last two restrictions. There is no loss of generality in doing this because the par-

tial information about β is independent of the parameterization of the nuisance

parameters.

We focus on the case in which the matrix G defining the divergence is the

(partial) Fisher information about β. This is given by the following result.

Lemma 2 The partial information matrix for a multivariate linear regression

model subject to the restriction π1 = Π2β is

G (β : Π2, Φ, Ω) =
1

var (u)
Π′

2Z2MZ1Z2Π2

where

β∗ = ω
−1/2
11.2

(
Ω

1/2
22 β − Ω

−1/2
22 ω21

)

var (u) = (1 + β∗′β∗) ω11.2

and

ω11.2 = ω11 − ω′21Ω
−1
22 ω21.

Note that G (β : Π2, Φ, Ω) is similar to the concentration parameter considered

by Stock, Wright, and Yogo (2002), but the partial information depends on var (u)

rather than on the covariance matrix of the rows of V .

If follows from the result above that

Mβ (p0) = M̄β (p0) =

√
T var (u)

λm (Π′
2Z2MZ1Z2Π2)

and

µ̄β (p0) =

√
λM (Π′

2Z2MZ1Z2Π2)

T var (u)
.

Therefore, Mβ (p0) is arbitrarily large when the structural equation can be arbi-

trarily close to be unidentifiable (i.e. rank (Π2) < n). In this case a small change
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in p ∈ P significantly affects β because some components of β are not identified

(Phillips (1989)) and can thus take on any value.

The quantity µ̄β (p0) is arbitrarily close to zero when the structural equation

can be arbitrarily close to be totally unidentifiable (i.e. Π2 = 0). If β is only

partially identified, a change of these parameters affects the manifold of PDFs

through the identified parameters.

If T−1Z ′Z
P→ Q, where Z = [Z1, Z2] and Q is a finite positive definite matrix

we have that

µ̄β (p0)
P→

√
λM (Π′

2Q11.2Π2)

var (u)

and

Mβ (p0)
P→

√
var (u)

λm (Π′
2Q11.2Π2)

,

where Q11.2 = Q11 − Q12Q
−1
22 Q21 and Q is partitioned conformingly to Z. In the

case where the instruments are weak, i.e. Π2 = O
(
T−1/2

)
, we have µ̄β (p0)

P→ 0

and Mβ (p0)
P→∞.

In structural models, the common estimators define maps which are different

from the components of the parameterizations corresponding to the parameters of

interest. Here we will consider the sensitivity of the TSLS and the OLS estimators

of β.

Note that both TSLS and OLS are defined in terms of the sufficient statistics

Φ̂ = (Z ′
1Z1)

−1
Z ′

1Y ∼ N
(
Φ + (Z ′

1Z1)
−1

Z ′
1Z2Π, (Z ′

1Z1)
−1 ⊗ Ω

)

Π̂ = (Z ′
2MZ1Z2)

−1
Z ′

2MZ1Y ∼ N
(
Π, (Z ′

2MZ1Z2)
−1 ⊗ Ω

)

S = Y ′MZY ∼ Wn+1 (υ − k2, Ω) ,

(note that they also are independent of each other) where Φ = (φ1, Φ2) and Π =

(π1, Π2). These are the observed values of the Φ, Π and Ω for a given sample. In

terms of this parameterization, the TSLS and the OLS estimators are

β̂TSLS (π1, Π2) = (Π′
2Z

′
2MZ1Z2Π2)

−1
Π′

2Z
′
2MZ1Z2π1

β̂OLS (π1, Π2, Ω) = (TΩ22 + Π′
2Z

′
2MZ1Z2Π2)

−1
(Tω21 + Π′

2Z
′
2MZ1Z2π1) .

For the case n = 1 we have the following result.
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Theorem 5 Let A = T−1Z ′
2MZ1Z2. For the TSLS estimator we have

TG∗
TSLS =

ω11 − 2ω12β̂TSLS

Π′
2AΠ2

+ Ω22
π′1Aπ1

(Π′
2AΠ2)

2 ,

and for the OLS estimator we have

TG∗
OLS =

ω11 − 2ω12β̂OLS

Ω22 + Π′
2AΠ2

+ Ω22
π′1Aπ1

(Ω22 + Π′
2AΠ2)

2

−
(

ω12 − 2Ω22β̂OLS

Ω22 + Π′
2AΠ2

)2

+
2β2

OLSΩ2
22

(Ω22 + Π′
2AΠ2)

2 .

Since for this simple case µβ̂ (p0) =
√

TG∗ = 1/M β̂ (p0) , and since Ω22 +

Π′
2Z

′
2MZ1Z2Π2 > Π′

2Z
′
2MZ1Z2Π2, we can conclude that the OLS estimator is af-

fected less than the TSLS estimator by the weak instruments problem. This is in

accordance with the results of Forchini and Hillier (2003) who show that the den-

sity on the TSLS estimator conditional on an identification test statistic is more

sensitive to identification than the OLS estimator.

If we consider a sequence of {Π2}∞p=1 converging to a zero vector, we have that

TG∗
TSLS → ∞ while TG∗

OLS → |Ω| /Ω2
22. Thus, even if the model is very close to

be unidentified, the effect of a change of the DGP on the OLS estimator is finite,

and depends only on Ω.

5.1 An application to return to schooling

We now consider an application of the measures discussed above to the estimation

of return to schooling. Angrist and Krueger (1991) estimate the return to school-

ing for men born in the U.S. in 1930-1939 using Public-Use Microdata Samples

(PUMS) for 1980 by using quarter of birth, and quarter of birth interacted with

other variables as instrumental variables (see Angrist and Krueger (1991) for the

construction of the dataset). Bound, Jaeger, and Baker (1995) point out that the

instruments used by Angrist and Krueger (1991) are weak, and, as a consequence,

that inference based on them is unreliable.

We use the same dataset as Angrist and Krueger (1991), and calculate the

measures of transmission of perturbations. They depend on the parameters of the

22



model, and they can be estimated consistently under very general conditions. In

Table 1 estimates of the parameterization and estimator sensitivity are reported

for various model specifications as in Table V of Angrist and Krueger (1991). If

we consider for example column (1) the parameter β is estimated using OLS,

and this estimate (0.0710) is used in all measures of sensitivity in such column.

Mβ (p̂0) indicates that a small perturbation ε in the manifold of PDFs may change

the parameter of the endogenous variable (education) by as much as 9.2017 × ε.

The smallest change in the manifold of PDFs needed to produce a change ε in the

parameter of education is 0.1087 × ε. One may consider 0.1087 as the distance

from the nearest point where β is not identified. The next quantities in column

(1) refer to the estimator (OLS) and indicate that OLS is insensitive to changes

in the manifold of PDFs.

Table 1 shows that identification may be an issue in this dataset as already

pointed out by serval authors before. It also show that OLS and TSLS may be

affected by identification in very different ways even though the estimates obtained

are very close. Precisely, TSLS appears to be very sensitive. OLS seem to be

insensitive to small changes of the DGP. OLS also take values approximately equal

to
∣∣∣Ω̂

∣∣∣ /Ω̂2
22 as we would expect if the model would be unidentified.

Table 1 approximately here

6 Concluding remarks

The relationship between the parameters of interest and the manifold of PDFs

can be very weak in some ill-posed problems. In this paper we have argued that

it is possible to quantify the weakness of this relationship in a parametric set-up

by measuring the how it transmits perturbations from the space of DGP to a

multidimensional Euclidean space (e.g. the parameter space). We have provided

several interpretations of these measures, and have argued that by evaluating these

measures at the observed PDF we obtain information about the post-data precision

with which this map can be located.
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An application to structural equations models have been considered in detail.

We have shown how coherent, simple and easily interpretable measures of weakness

of instruments can be obtained and interpreted. Their empirical relevance has

been illustrated with the estimation of the returns to schooling with the dataset

of Angrist and Krueger (1991).
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A Proofs of results in Section 2

A.1 Proof of Theorem 1

Let

Mη
ε (p0) = sup

{p∈BP (p0,ε)}

(η (p)− η (p0))
′ (η (p)− η (p0))

(ε/
√

n)
2

so that Mη (p0) =
√

limε→0 Mη
ε (p0). According to Lemma Morse’s lemma (lemma

1 (ii)) it is possible to find a local diffeomorphism ψ such that δ (θ0, θ0 + θ) = δθ0 (θ)

is locally equal to

δθ0 (ψ (τ)) = τ ′τ .

Now, let η (θ) = η (p (x; θ)) , and expand η (θ0 + θ)−η (θ0) = η (θ0 + ψ (τ))−η (θ0)

around τ = 0 in a Taylor series

η (θ0 + θ)− η (θ0) = η̇ (θ0) Dτψ (τ)|τ=0 τ + O
(|τ |2)

so that

(η (θ0 + ψ (τ))− η (θ0))
′ (η (θ0 + ψ (τ))− η (θ0))

= τ ′ [Dτψ (τ)|τ=0]
′ [η̇ (θ0)]

′ η̇ (θ0) Dτψ (τ)|τ=0 τ + O
(|τ |3)

= τ ′ [Dτψ (τ)|τ=0]
′ [η̇ (θ0)]

′ η̇ (θ0) Dτψ (τ)|τ=0 τ + O
(
ε3

)
.

Thus Mη
ε (p0) equals

Mη
ε (p0) = n sup

{τ :τ ′τ≤ε2}

τ ′ [Dτψ (τ)|τ=0]
′ [η̇ (θ0)]

′ η̇ (θ0) Dτψ (τ)|τ=0 τ + O
(
δ3

)

ε2

Since [Dτψ (τ)|τ=0]
′ [η̇ (θ0)]

′ η̇ (θ0) Dτψ (τ)|τ=0 is positive semidefinite, the supre-

mum must occur at the boundary as a maximum,

Mη
ε (p0) = n sup

{τ :τ ′τ=ε2}

τ ′ [Dτψ (τ)|τ=0]
′ [η̇ (θ0)]

′ η̇ (θ0) Dτψ (τ)|τ=0 τ + O
(
δ3

)

ε2

= n max
τ ′τ=1

τ ′ [Dτψ (τ)|τ=0]
′ [η̇ (θ0)]

′ η̇ (θ0) Dτψ (τ)|τ=0 τ +
O (ε3)

ε2

= nλM

[
[Dτψ (τ)|τ=0]

′ [η̇ (θ0)]
′ η̇ (θ0) Dτψ (τ)|τ=0

]
+

O (ε3)

ε2

= nλM

[
η̇ (θ0) Dτψ (τ)|τ=0 [Dτψ (τ)|τ=0]

′ [η̇ (θ0)]
′] +

O (ε3)

ε2
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Note that

D2δθ0 (ψ (τ))
∣∣
τ=0

= [Dψ (τ)|τ=0]
′ D2δθ0 (θ)

∣∣
θ=0

[Dψ (τ)|τ=0]

= [Dψ (τ)|τ=0]
′ G (θ0) [Dψ (τ)|τ=0]

= Ip

so that

G (θ0)
−1 = Dψ (τ)|τ=0 [Dψ (τ)|τ=0]

′

and

Mη
ε (p0) = nλM

[
η̇ (θ0) G (θ0)

−1 [η̇ (θ0)]
′] +

O (ε3)

ε2
.

The desired result follows by taking the limit as ε goes to zero.

A.2 Proof of Corollary 1

Suppose we define θ = φ (τ) so that θ0 = φ (τ 0). The metric G (θ0) changes to[
Dτφ (τ)|τ=τ0

]′
G (θ0) Dτφ (τ)|τ=τ0

where Dτφ (τ)|τ=τ0
is a p× p nonsingular ma-

trix. Moreover, Dτη (p (x; φ (τ)))|τ=τ0
= Dθη (p (x; θ))|θ=θ0

Dτθ (τ)|τ=τ0
.

A.3 Proof of Corollary 2

This is a special case of the results in Corollary 1

A.4 Proof of Theorem 2

The proof is very similar to the proof of Theorem 1 and is thus omitted
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A.5 Proof of Theorem 3

Let

µ̄η
ε (p0) = sup

η̃′η̃≤(ε/
√

n)
2

2δ̄ (η0, η0 + η)

ε2

= sup
η̃′η̃≤(ε/

√
n)

2

η′Ḡ11 (η0, φ0) η + O
(
δ3

)

ε2

=
1

n
max
v′v=1

v′Ḡ11 (η0, φ0) v +
O (ε3)

nε2

=
1

n
λM

(
Ḡ11 (η0, φ0)

)
+

O (ε3)

nε2

and the result follows by taking the limit as ε goes to zero and taking the square

root.

A.6 Proof of Corollary 3

This result follows from Gastinel Theorem (Kahan (1966), p 775) and Theorem

A5.3 of Muirhead (1982).

B Proofs of results in Section 3

B.1 Proof of Theorem 4

Note that locally

(η (θ0 + ψ (τ , φ))− η (θ0))
′ (η (θ0 + ψ (τ , φ))− η (θ0))

= τ ′A11τ + 2τ ′ (A12 + A′
12) φ + φ′A22φ
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so

Mη
τε (p0) = sup

τ ′τ≤ε2

τ ′A11τ + O
(
δ3

)

(ε/
√

n)
2 = λM (nA11)

Mη
φε (p0) = sup

g(φ)≤ε2m+2

φ′A22φ + O (ε3)

(ε/nm+1)2

= n(m+1)2 sup
g(εv)≤ 1

(2m+2)!
ε2m+2

v′A22v +
O (ε3)

ε2

= n(m+1)2 sup
1

i1!i2!...i2m+2!
ε2m+2gi1i2....i2m+2

vi1vi2 ...vi2m+2+O(ε2m+3)≤ 1
(2m+2)!

ε2m+2

v′A22v +
O (ε3)

ε2

= n(m+1)2 sup
1

i1!i2!...i2m+2!
gi1i2....i2m+2

vi1vi2 ...vi2m+2≤1+O(ε)

v′A22v +
O

(
δ3

)

δ2

= nm+1 max
1

i1!i2!...i2m+2!
gi1i2....i2m+2

vi1vi2 ...vi2m+2=1+O(ε)
v′A22v +

O (ε3)

ε2
.

Moreover

µ̄η
τε (p0) = sup

τ ′A11τ≤(ε/
√

n)
2

τ ′τ
ε2

=
1

n
max

τ ′A11τ=1
τ ′τ =

1

n
λM

(
A−1

11

)

µ̄η
φε (p0) = sup

φ′A22φ≤(ε/nm+1)2

g (φ)

ε2m+2

=
1

n(m+1)2
max

v′A22v=1

g (εv)

ε2m+2

=
1

n(m+1)2
max

v′A22v=1

1

i1!i2!...i2m+2!
gi1i2....i2m+2v

i1vi2 ...vi2m+2 + O (ε)

All results follow by taking the squares root of the limits of the quantities

obtained above.

C Proofs of results in Section 5

C.1 Proof of Lemma 2

The likelihood for the simultaneous equation model can be written as

l = −(n + 1) T

2
ln (2π)− T

2
ln |Ω| − 1

2
tr

{
Ω−1V ′V

}

V = Θ− Z1Φ + Z2Π2 (β, In) .
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Minus the expected value of the second differential is

−E
(
d2l

)
=

T

2
(dv (Ω))′ D′

n+1

(
Ω−1 ⊗ Ω−1

)
Dn+1dv (Ω)

+ vec (dV )′
(
Ω−1 ⊗ IT

)
vec

(
(dV )′

)
.

Now

− vec (dV ) =
(

en+1 ⊗ Z2Π2 (β, In)′ ⊗ Z2 In+1 ⊗ Z1

)



dβ
d vec [Π2]
d vec [Φ]




where en+1 is a n + 1 × 1 vector for which all components are zero apart from

the element in position 1 which is 1, i.e. en+1 = (1, 0, ..., 0, 0)′. So the Fisher

information matrix

G =




e′n+1Ω
−1en+1Π

′
2Z2Z2Π2 B′ 0

B A 0
0 0 T

2
D′

n+1 (Ω−1 ⊗ Ω−1) Dn+1


 .

where

B =

(
(β, In) Ω−1en+1 ⊗ Z ′

2Z2Π2

Ω−1en+1 ⊗ Z ′
1Z2Π2

)

A =

(
(β, In) Ω−1 (β, In)′ ⊗ Z ′

2Z2 (β, In) Ω−1 ⊗ Z ′
2Z1

Ω−1 (β, In)′ ⊗ Z ′
1Z2 Ω−1 ⊗ Z ′

1Z1

)
.

The partial Fisher information about β is

G (β : Π2, Φ, Ω) = e′n+1Ω
−1en+1Π

′
2Z2Z2Π2

− (
B′ 0

) (
A 0
0 T

2
D′

n+1 (Ω−1 ⊗ Ω−1) Dn+1

)−1 (
B
0

)

= e′n+1Ω
−1en+1Π

′
2Z2Z2Π2 −B′A−1B.

To simplify this expression, let

C =

(
In − (β, In)⊗ Z ′

2Z1 (Z ′
1Z1)

−1

0 In+1

)

and note that

CAC ′ =
(

(β, In) Ω−1 (β, In)′ ⊗ Z ′
2MZ1Z2 0

0 Ω−1 ⊗ Z ′
1Z1

)
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so that

A−1 = C ′
( [

(β, In) Ω−1 (β, In)′
]−1 ⊗ (Z ′

2MZ1Z2)
−1 0

0 Ω⊗ (Z ′
1Z1)

−1

)
C.

It is easy to check that

CB =

(
(β, In) Ω−1en+1 ⊗ Z ′

2MZ1Z2Π2

Ω−1en+1 ⊗ Z ′
1Z2Π2

)

and that

B′C ′
( [

(β, In) Ω−1 (β, In)′
]−1 ⊗ (Z ′

2MZ1Z2)
−1 0

0 Ω⊗ (Z ′
1Z1)

−1

)
CB

=
{

e′n+1Ω
−1 (β, In)′

[
(β, In) Ω−1 (β, In)′

]−1
(β, In) Ω−1en+1

}
Π′

2Z
′
2MZ1Z2Π2

+e′n+1Ω
−1en+1Π2Z

′
2Z1 (Z ′

1Z1)
−1

Z ′
1Z2Π2

So G (β : Π2, Φ, Ω) equals

(
e′n+1Ω

−1en+1 − e′n+1Ω
−1 (β, In)′

[
(β, In) Ω−1 (β, In)′

]−1
(β, In) Ω−1en+1

)
Π′

2Z2MZ1Z2Π2.

Now note that, after some tedious calculation, we have

(β, In) Ω−1en+1 = ω
−1/2
11.2 Ω

−1/2
22 β∗,

e′n+1Ω
−1en+1 = ω−1

11.2,

(β, In) Ω−1 (β, In)′ = Ω
−1/2
22 (In + β∗β∗′) Ω

−1/2
22 ,

1− β∗′ (In + β∗β∗′)−1
β∗ =

1

1 + β∗′β∗
,

so that G (β : Π2, Φ, Ω) can be simplified to the form given in the statement of the

Lemma.

C.2 Proof of Theorem 5

Minus the expected value of the second differential of the likelihood is as in Theo-

rem 3, with V = (y1, Y2)−Z1Φ−Z2 (π1, Π2) , so that dV = −Z1 (dΦ)−Z2 (dπ1, dΠ2)

and

vec (dV ) = − (In+1 ⊗ Z1, In+1 ⊗ Z2)

(
vec (dΦ)
vec (dΠ)

)
.
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The Fisher information matrix for the multivariate linear model (3) is

T−1G =




Ω−1 ⊗ T−1Z ′
1Z1 Ω−1 ⊗ T−1Z ′

1Z2 0
Ω−1 ⊗ T−1Z ′

2Z1 Ω−1 ⊗ T−1Z ′
2Z2 0

0 0 1
2
T−1D′

n+1 (Ω−1 ⊗ Ω−1) Dn+1




where Dn+1 is the duplication matrix (Magnus and Neudecker (1988), p 48-50). We

will now focus on the case n = 1. To simplify the notation let A = T−1Z ′
2MZ1Z2.

Then, in order to find D
(
β̂TSLS

)
we need to evaluate the differential.

dβ̂TSLS =


 Π̂′

2A

Π̂′
2AΠ̂2

,

(
π̂′1 − 2Π̂′

2β̂TSLS

)
A

Π̂′
2AΠ̂2




(
dπ̂1

dΠ̂2

)

=


 Π̂′

2A

Π̂′
2AΠ̂2

,

(
π̂′1 − 2Π̂′

2β̂TSLS

)
A

Π̂′
2AΠ̂2


 vec (dΠ) ,

and TG∗
TSLS follows from tedious but straightforward simplification. For the OLS

estimator we have

β̂OLS = (Ω22 + Π′
2AΠ2)

−1
(ω21 + Π′

2Aπ1) ,

and the differential is

dβ̂OLS =


 Π′

2A

Ω22 + Π′
2AΠ2

,

(
π′1 − 2β̂OLSΠ′

2

)
A

Ω22 + Π′
2AΠ2

,
1

Ω22 + Π′
2AΠ2

,
−β̂OLS

Ω22 + Π′
2AΠ2







dπ1

dΠ2

dω21

dΩ22




= (Ω22 + Π′
2AΠ2)

−1
[
Π′

2A,
(
π′1 − 2β̂OLSΠ′

2

)
A, 1,−β̂OLS

]



dπ1

dΠ2

dω21

dΩ22


 .

Note that since we are assuming n = 1 we have

vec (Ω) =




ω11

ω12

ω12

Ω22


 , v (A) =




ω11

ω12

Ω22


 , D2 =




1 0 0
0 1 0
0 1 0
0 0 1




so that

(
1

2
D′

2

((
Ω−1 ⊗ Ω−1

))
D2

)−1

=




2ω2
11 2ω11ω12 2ω2

12

2ω11ω12 ω11Ω22 + ω2
12 2ω12Ω22

2ω2
12 2ω12Ω22 2Ω2

22


 .
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The components of G−1 that we need are




Ω⊗ A−1 0 0
0 ω11Ω22 + ω2

12 2ω12Ω22

0 2ω12Ω22 2Ω2
22




Then G∗
OLS follows from a tedious but straightforward simplification.
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