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Abstract 
 
I develop a Markov model of smart money chasing past winning funds while taking 
into account associated costs. The model also allows market capital entry and exit. 
The steady-state capital allocations are derived using constant transition probabilities. 
The results suggest that downside risk is significantly attributed to investor 
overreaction, even though a small degree of investment movement as opposed to 
capital immobility can in fact stabilize the market. Furthermore, performance 
sensitivity makes it possible that two much-debated fund styles, passive indexing and 
active management, are simultaneously profitable. If money is insensitive, the model 
becomes a zero-sum game where one strategy’s profitability is always at the cost of 
the other.  
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1. Introduction 
 

The term “smart money” has been widely used in finance to refer to the investments 

following the winning funds or being able to identify superior fund styles. The 

movements of smart money are mostly driven by fund performance and investor 

sentiments. The market condition is also believed to influence fund selection. There 

are many observations of investment movements, for instance, a shift from active 

investment management to passive indexing in recent years. In the US equity markets, 

14.8% of actively managed domestic equity funds liquidated or merged during 2000-

2002, including 6.6% in 2002 alone. At the state level, Connecticut State Trust Fund, 

in charge of the state’s $12.7 billion pooled pension fund, bumped up their indexed 

portion from $3.74 billion to $3.99 billion in just two months from July to September 

2002, with the long-term goal for the indexed proportion of equities set to be 50%. At 

the firm’s level, in July 2002 the trustees of Intel’s profit-sharing and pension plans 

fired their 10 external money managers and decided to switch an additional $300 

million of equities to in-house passive management. All of the above are examples of 

a common phenomenon of moving from active to passive investment management.  

 

It is natural to expect that overall capital flows driven by fund selections bring about a 

considerable effect on financial markets. The literature however has not seen much 

investigation on this regard. Instead, there have been abundant but diverse stories on 

the performance of mutual funds and management styles. Research along this line 

studies the cost-benefit comparison across funds and debates on whether active fund 

management adds value (Grinblatt and Titman 1989, 1993; Brown and Goetzmann 

1995; Carhart 1997; Wermers 1997, 2000). Attempts have been made to answer 
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whether actively managed funds outperform the market, and if so, whether it is due to 

pure luck or they are "hot hands” with stock-picking talents. Controversy still remains. 

Another line of research studies how fund flows are related to past performance 

(Grinblatt, Titman and Wermers 1995; Gruber 1996; Chevalier and Ellison 1997, 

1999; Sirri and Tufano 1998; Zheng 1999). These studies essentially examine whether 

money is “smart” based upon the performance-flow relationship and the effectiveness 

of betting on past winners.  

 

This paper studies the market impact arising from dynamic capital movements. The 

dynamics of capital flows among fund managements is modelled using the Markov 

chain. The transition probabilities of the Markov chain are modelled as the functions 

of the cost-adjusted fund performance. The focus here is on the investment risk 

induced by capital movements. It is in fact not difficult to imagine the link between 

investment risk (reflected by price behaviour) and capital movements. This can be 

simply understood from the process where prices determine fund performance that in 

turn influences the movements of smart money, whose dynamics then shapes new 

prices.  

 

In order to understand the long-term behaviour of investment flows, the steady-state 

closed-form solution is obtained for the Markovian dynamics conditional on the 

simplified assumptions of constant transition probabilities. A change in transition 

probabilities implies a change in the popularity of different fund styles. The current 

study applies the analysis of comparative statics to study the impact on prices due to 

changes in various aspects of transition probabilities.  
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Using simulation experiments, it is also investigated the dynamic impact of fund 

selections and capital flows. Simulation of the pricing process is carried out each 

trading period. The movements of smart money not only depend on fund performance 

but also investor sentiment. The study thus also applies varying levels of investor 

sentiment in response to fund profitability.  

 

The resulting investment risk is assessed by the market drawdown which quantifies 

uninterrupted falls of prices1. Drawdown as a risk measure has become increasingly 

popular among researchers and investors largely because of the recent crash of equity 

markets around the world. Drawdown provides a downside approach to risk as 

opposed to conventional risk measures, such as standard deviation, that do not 

differentiate deviations above and below the mean. Tolerance of downside risk cannot 

be easily compensated for by the long-term validity of the employed strategy or the 

attractive expected return characteristic. For example, regardless of the expected 

future abnormal returns it is unlikely for a consumer/investor to tolerate a drawdown 

of more than 50% of his account.  

 

Another feature of drawdown is that it concerns the duration of loss periods so that 

consecutive losses are distinguished from intermittent losses. It is highly uncommon 

that a fund manager can hold a client whose account is in a drawdown for a lengthy 

period of time even if the drawdown size is small. In this study, the degree of 

drawdown is examined in three aspects: the number, the duration, and the depth/size 

of drawdown. These various aspects of drawdown results are compared in different 

models of dynamic capital movements.  
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2. The Pricing Model 
 

Consider a market of S stocks. Let  Pt  and  St  denote the S-dimensional vectors of the 

prices and the outstanding stock shares. Prices are determined by market equilibrium. 

Demand is regarded as the time-varying flow of capital into different investment 

portfolios. Let K be the total size of capital in the economy and for simplicity it is 

assumed to be fixed. This assumption does not preclude the market capital size from 

varying; investment entry and exit are modelled as discussed later.  

 

Let i
tθ  denote the capital ratio invested in strategy (or fund) i, and X

tθ  denote the 

capital ratio staying out of the market, i.e. non-investment. There are N different 

investment strategies including non-investing, and their capital ratios sum to one, 

∑
=

=
N

i

i
t

1
1θ . i

tKθ  is the size of the capital flowing into fund i. Let  wt
i  denote the 1×S  

vector of the portfolio weights on S stocks by fund type i, and  wt
i ' 1S =1 except that 

  wt
X = 0S .   1S  is an 1×S  vector of ones and  0S  is an 1×S  vector of zeros.  

 

Market equilibrium at time t requires  

 

 
   
St�Pt = K θ t

iw t
i

i=1

N

∑ ,  (1) 

 

where �  is the element-by-element multiplication. Notice that although non-market 

participants, represented by Xi = , do not invest, i.e.  wt
X = 0S , they still affect price 

formation through the constraint ∑
=

=
N

i

i
t

1
1θ ; that is, investment entry and exit can 
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change the capital ratios of different investment strategies and also the total market 

capital size.  

 

Denote by tΘ  the 1×N  vector of i
tθ  for Ni ,..,1= . Denote by  Wt  the vector of fund 

i‘s portfolio weights   wt
i  for Ni ,..,1= .  Wt  thus has a dimension of 1×NS . The 

equilibrium condition (1) can also be as  

 

    St�Pt = K Θt
' Wt .  (2) 

 

Market equilibrium (2) yields the 1×S  vector of stock prices at time t as 

 

    Pt = K Θ t
' Wt�St

−1 .  (3) 

 

Equation (3) states that the dynamic equilibrium process is intrinsically determined by 

first, the investment movements among funds ( tΘ ), and second, the portfolio 

allocations of different fund managements (  Wt). The dynamics of capital movements 

is modelled in the next section. We now turn to the discussion of management types 

and portfolio choices.  

 

 

3. Portfolio Managements and Fund Styles 

 

In the literature of fund managements, debate has centred on two distinct approaches, 

namely, passive indexing and active portfolio managements. Indexing refers to 

passive investments that follow market indexes to form investment portfolios. The 
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portfolios are therefore designed based upon the index weights. Each stock’s index 

weight is a measure of its relative market capitalization, and is calculated as the 

multiplication of the stock price and the number of shares outstanding, normalized by 

the market capital size. Therefore, the 1×S  vector of the indexing portfolio weights is 

given by  

     wt
P = S't −1 Pt−1( )−1 St−1�Pt −1( ) .  (4) 

 

The logic behind indexing is that since each stock’s index weight measures its relative 

market capitalization, the index weight actually reflects an estimate of the ‘relative 

value’ of the company. Indexing is therefore believed to track the ‘relative values’ of 

stocks while at the same time to benefit from diversification.  

 

Conversely, instead of passively following market indexes, some fund managers trade 

actively and strategically. This type of investment management is often referred to as 

active portfolio management. Active portfolio management can have a wide variety of 

styles. Fund managers may apply systematic trading rules ranging from simple pattern 

recognition, such as head-and-shoulders, to sophisticated genetic algorithm. Or they 

may select a particular class of stocks due to their high expectations on a certain stock 

attribute such as growth, small cap, global, or emerging markets.  

 

Modern portfolio theory established by the pioneering work of Markowitz (1959) 

provides a cornerstone in building active portfolios. The key idea of the theory is to 

maximize the expected reward consistent with the willingness to bear risk, i.e. the 

mean-variance efficient frontier. A basic form in line with the mean-variance analysis 

can be given by the 1×S  vector  Ωt
−1E t , where  E t  is the 1×S  vector of the expected 
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returns on S stocks, and Ωt  is the SS ×  covariance matrix at time t. The vector of 

active portfolio weights that satisfies  wt
i ' 1S =1 is therefore given by  

 

   wt
A = (Ωt

−1Et ) ' 1S[ ]−1
Ωt

−1Et[ ].  (5) 

 

Active portfolios allocated according to (5) place more weights on the stocks that are 

expected to yield higher returns per unit risk. In order to maintain optimality, this 

form of investment managements involves frequent portfolio revision in response to 

the information affecting prices. An example of how an active manager forms return 

conjectures based on the simple moving-average trading rule is given below.   E t  is set 

as some monotonically increasing function of the moving-average price difference, 

and is defined as2  

 
  
E t = f (Pt −1 −

1
m

Pt −i
i=1

m

∑ ) , +ℜ∈f .  

m is the moving average length. The expected return is thus based on the comparison 

of the latest available price and the moving-average price of a chosen length of history. 

The function f is not required to retain a certain range expect +ℜ , since it will 

undergo normalization, as shown by (5), before the portfolio weights are formed.  

 

Throughout this study, we will consider  Wt  as a 13 ×S  vector given by  

 

 

Wt
 =

wt
P

wt
A

wt
X

 

 

 
 

 

 

 
 
,  

where   wt
P  is given by (4),   wt

A  by (5), and  wt
X = 0S .  
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The profitability of fund management style i is assessed by the returns generated by 

its portfolio choices. Let i
tπ  denote the profitability of fund style i for time period t. 

i
tπ  is a scalar defined by  

  π t
i = (w t−1

i )'R t ,  (6) 

 

where     R t = Pt�Pt−1
−1   is the 1S ×  vector of stock returns from time t-1 to t.  

 

 

4. The Markov Model of “Smart Money” 
 

As equation (3) shows, one crucial factor in the dynamic equilibrium process is the 

time-varying capital flows among different investment portfolios. We model the 

dynamics of investment flows using a Markov chain. In a Markov process, the 

distribution of next states depends on the transition probabilities and the distribution 

of current states. Transition probabilities govern the probability of moving from one 

state to another, which in this study is considered to be time-varying and a function of 

some explanatory variables. This dependency property of a Markov chain makes it a 

natural and appealing choice for dynamic modelling.  

 

Denote by P
tθ  and A

tθ  the capital ratios of passive and active portfolio investments, 

and as before, X
tθ  is the capital ratio staying out of the market. The ecology of capital 

ratios is thus a 13×  vector given by  
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=Θ
X

t

A
t

P
t

t

θ
θ
θ

 , and  Θ t
' 13 = 1.  (7) 

 

The Markovian dynamics is characterized by  

 

  Θ t +1
' = Θt

' M t ,  (8) 

 

where   M t  is the transition matrix, and is defined as  

 

 

  

M t =
Prt

PP Prt
PA Prt

PX

Prt
AP Prt

AA Prt
AX

Prt
XP Prt

XA Prt
XX

 

 

 
 

 

 

 
 
. (9) 

 

ij
tPr  denotes the transition probability of capital moving from fund style (strategy) i  

to j. For example, XX
tPr  denotes the probability of remaining out of market, and AX

tPr  

measures the probability that a client closes his account with active portfolio 

management and exits the market. The transition matrix is subject to the constraint 

  M t 13 = 13 , i.e.  

 1Pr =∑
j

ij
t .  (10) 

 

The off-diagonal transition probabilities in (9) can be further expressed in terms of the 

probability of staying with the original fund and the conditional probability on leaving. 

Denote by ij
tλ  the probability of moving to fund style j conditional on a definite 
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departure from fund i, where ji ≠ . The off-diagonal transition probabilities are given 

by  

 )Pr1(Pr ii
t

ij
t

ij
t −= λ , for ji ≠ , and 1=∑

j

ij
tλ .  (11) 

 

The transition matrix (9) now becomes  

 

 

  

M t =

Prt
PP 1− λt

PX( )1−Prt
PP( ) λt

PX 1− Prt
PP( )

1− λt
AX( )1−Prt

AA( ) Prt
AA λt

AX 1− Prt
AA( )

(1− λt
XA ) 1− Prt

XX( ) λt
XA 1− Prt

XX( ) Prt
XX

 

 

 
 

 

 

 
 
.  (12) 

 

The use of conditional probabilities ij
tλ  helps to capture the idea of transition from 

one state to another in a more hierarchical fashion. Notice that the use of conditional 

probabilities does not simplify estimation as it involves no parameter reduction; we 

have six free parameters in (9) and also six in (12). This holds true even when the 

number of states increases.  

 

The transition probabilities characterize the Markovian dynamics of investment flows. 

We consider that the probability of capital flowing from one fund management to 

another is not exogenously prearranged, but instead it depends on the relative fund 

performance that is regularly updated with new stock prices. That is, the present study 

endogenizes the transition probabilities to capture how smart money follows the 

winning fund. Endogenizing transition probabilities in fact completes the investment 

cycle by linking stock prices, which are shaped by investment flows, with the 

probabilities that determine the dynamics of investment flows. The following presents 

how the transition probabilities are endogenized.  
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We consider that the probability of staying with the original fund style i, ii
tPr , reflects 

a measure of self efficiency, and that the conditional probability of moving to 

management style j on abandoning i, ij
tλ , reflects a comparison across new fund 

styles other than i. An illustrative example is given below. Suppose ii
tPr  is a logistic 

function. The transition probabilities are given by  

 

 
)exp(1

11
)exp(1

)exp(Pr i
t

i
t

i
tii

t παπα
πα

+
−=

+
= ;  (13) 

 







+

=
)exp(1

1Pr i
t

ij
t

ij
t πα

λ , where 1=∑
j

ij
tλ  and ji ≠ .  

 

Fund profitability i
tπ , defined by (6), is chosen to be the explanatory variable but with 

a slight modification. Here we use log return instead of simple return for   R t . There 

are two main reasons. First, the sign of i
tπ  will now clearly indicate whether or not a 

loss has occurred. Second, this has the benefit of making the symmetric logistic 

transition function centre at 0.5 when the profitability is neutral. According to (13), 

clearly higher profitability leads to a higher probability of staying.  

 

Profitability is one most straightforward measure of investment performance. Other 

choices include risk-adjusted measures such as efficiency by the Sharpe ratio. Further, 

the choice of explanatory variables in transition probabilities can go beyond the 

performance measures to include factors such as market conditions. Although market 

conditions are not modelled here, the coefficient α  is related to investor sentiments 

that may to some extent reflect market conditions.  
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We assume 0≥α . The coefficient on profitability, α , measures the smart money’s 

responsiveness to a change in fund profitability. This can be seen by rearranging (13),  

 i

ii

ii

π
α

∂









−
∂

= Pr1
Prln

.  

 

ii

ii

Pr1
Pr
−

 is sometimes called the odds of staying with fund style i. α is the multiplier 

on the explanatory variable of the logarithm of the odds of staying. A high α  leads to 

a high probability of staying if the fund management makes positive profits, but also a 

high probability of changing if a loss occurs. Given a change in the fund profitability, 

a high α  implies a dramatic change in transition probabilities. Therefore, a large α  

characterizes the “overreacting” smart money. For example, nervous investors change 

their fund styles or fund managers after one single bad moment. A counterexample is 

given by pension funds. Pension Funds tend to have a relatively lower α  and be 

sticky to their fund managers.  

 

The conditional probability ij
tλ reflects, given a sure change in the fund management, 

how smart money picks up a new fund style j. ij
tλ  can be viewed as a function that 

compares both the benefits and the costs of all fund styles excluding i, since it is 

conditional on a sure leave from i. Let f  be a monotonically increasing function that 

maps +ℜ→ℜ . We define conditional probabilities consistent with the requirement 

(11) by  

 
∑

≠

−
−

=

ik

k
t

k
t

j
t

j
tij

t cf
cf

)(
)(

π
π

λ ,  (14) 
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where c−π represents the cost-adjusted profits, and ℜ∈c,π . Costs may include 

transaction costs and management fees, and are defined as a constant fraction of 

portfolio returns.  

 








=
=
=

=
.0
.
.

Xjwhen
Pjwhenc
Ajwhenc

c j
t

j
t

j
t π

π
  (15) 

 

We further impose 0>> cc  to indicate that low-cost indexing still incurs some 

transaction expenses, and that investors pay higher management fees and 

commissions to invest in actively managed funds than indexing funds. When active 

portfolio management no longer outperforms others, this high entry cost encourages a 

shift to lower-cost passive management or even a market exit.  

 

 

5. Steady State  
 

Steady state concerns the long-term behaviour of a dynamic system. This section 

solves the steady-state solution for the Markovian dynamics (8) with the transition 

matrix given by (12), under the simplifying assumption of constant transition 

probabilities. That is, the tendency of capital moving from one investment style to 

another is assumed fixed over time. Although unrealistic, this assumption simplifies 

the calculation to a great extent.  
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In steady state, the Markov chain reaches a stationary distribution and Θ  has the 

ergodic3 property  Θ
' M = Θ' . In addition, since Θ  represents the capital ratios, it must 

satisfy   Θ
' 13 = 1  as given by (7). Thus, the steady-state solution is in fact the 

normalized left4 eigenvector of M , corresponding to the eigenvalue unity. We solve 

for the steady-state solution and it is given by:  

 

 ( ))1()1()Pr1)(Pr1(
1 AXAXXAAAXXP λλλ
κ

θ −+−−−= ,  

 ( )PXXAPPXXA λλ
κ

θ )1(1)Pr1)(Pr1(
1

−−−−= , and  (16) 

 ( ))1()1(1)Pr1)(Pr1(
1 AXPXPPAAX λλ
κ

θ −−−−−= , where  

( )( ) ( ) ( ))1)(1(1)Pr1)(Pr1()1(1)Pr1)(Pr1()1()1()Pr1)(Pr1( AXPXPPAAPXXAPPXXAXAXXAAAXX λλλλλλλκ −−−−−+−−−−+−+−−−=

and 1Pr <ii , .,, XAPi =  

 

We now apply the steady-state results to illustrate the limiting cases of the functional 

forms5 given by (13). We consider both the cases when 0=α  and when ∞→α . First, 

0=α  leads to 2
1Pr =ii  and 2Pr

ij
ij λ

= , where 1=∑
j

ijλ  for ji ≠ . The steady-state 

capital ratios now become  

 

 [ ])1()1(1 AXAXXAP λλλκθ −+−= ,  

 [ ]PXXAA λλκθ )1(11 −−= , and  (17) 

 [ ])1()1(11 AXPXX λλκθ −−−= , where  

 )1)(1(1)1(1)1()1( AXPXPXXAAXAXXA λλλλλλλκ −−−+−−+−+−= .  
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Moreover, it is interesting to observe that if all the conditional probabilities ijλ  are set 

to be 2
1 , the steady-state results (17) even reduce to 3

1=== XAP θθθ . Thus, when 

0=α  and 2
1=ijλ , we will have fixed and equal capital ratios among different fund 

styles over time. We shall refer to this case as the static benchmark model. This 

extreme case of a small α  is consistent with the discussion before, regarding the 

stickiness (or under-reaction) of investment when α  is low.  

 

On the other hand, when ∞→α , two situations arise. If 0>iπ , then 1Prlim =
∞→

ii

α
 

and 0Prlim =
∞→

ij

α
 for ji ≠ . If instead 0<iπ , then 0Prlim =

∞→

ii

α
 and ijij λ

α
=

∞→
Prlim , 

where 1=∑
j

ijλ  for ji ≠ . However a non-degenerate steady-state solution fails to 

exist in either of these situations, as the limiting transition matrices in both examples 

are reducible and do not satisfy the properties of ergodicity for the existence of a 

steady state of a Markov chain.  

 

 

6. Comparative Statics 
 

Steady state describes the long-term behaviour of capital movements, but it does not 

tell us how prices respond to capital movements caused by a change in transition 

probabilities. Price formation reflects the dynamics of investment flows characterized 

by transition probabilities. The impact on prices of a change in transition probabilities 

can be understood analytically by comparative statics and numerically by simulation. 

Simulation experiments are carried out in the next section. This section applies the 

analysis of comparative statics to examine the impact on steady-state prices due to the 
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following three causes ranging from general to specific: first, a change in transition 

probabilities, second, a change in conditional probabilities on leaving the current state, 

and third, a change in the featuring factor of transition probabilities such as the 

responsiveness to profitability.  

 

From market equilibrium condition (1), the price vector can be rewritten as  

 

 
    
Pt = K θ t

i (wt
i

i=1

N

∑ �St
−1) .  (18) 

 

It is convenient to define an 1×S vector    H t
i = wt

i�St
−1 , and express the price vector 

as  

 
 
Pt = K θ t

i H t
i

i=1

N

∑ .  (19) 

 

Since   wt
i

 represents the portfolio weights on S stocks by strategy i,  H t
i  can be simply 

understood as demands per share, which mainly reflects the strategy’s expectation on 

future returns of different stocks.  

 

Suppose prices are in steady state denoted by  P
∗. We obtain the following results of 

comparative statics. Their proofs are given in Appendix A.   

 

   

∂P∗

∂Pr sk = Kθ s Hk +
∂Pr sj

∂ Prsk H j

j ≠k
∑

 

 
 

 

 
 , where 1

Pr
Pr

−=∑
≠kj

sk

sj

∂
∂

.  (20) 

 
  

∂ P∗

∂ λsk = Kθ s 1− Prss( ) Hk +
∂λsj

∂λsk H j

j≠ k
∑

 

 
 

 

 
 , where 

∂λsj

∂λsk
j ≠k
∑ = −1.  (21) 
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∂P∗

∂α
= K θ i ∂ Prij

∂α
(H j −H i)

j ≠i
∑

 

 
  

 
 

i
∑  (22)  

 

Suppose now α  is fund-specific so it can be written as iα . (22) now becomes 

 

 
  

∂P∗

∂α s = Kθ s ∂ Pr sj

∂α s
j≠ s
∑ H j −Hs( ).  (23) 

 

In the case of logistic transition probabilities (12), we obtain  

 

 
  

∂P∗

∂α s = Kθ s Pr ss(1− Prss)π s Hs − λsjH j

j ≠s
∑

 

 
  

 
 , where 1=∑

≠sj

sj
tλ .  (24) 

 

An application of (20) is given as follows. Suppose now passive indexing becomes a 

popular investment approach, i.e. k passive indexing P= =  in equation (20). What is 

the resulting impact on stock prices? The sign will depend on the expectation of the 

indexed fund on future stock returns. More precisely, its impact on the price of a 

particular stock is positive, if the demand per share by indexers on the stock is greater 

the normalized sum of the demand per share by others, i.e. the second term on the 

RHS of equation (20) is greater than zero. An important implication of (20) is that a 

strategy’s optimism on a particular stock can have a positive impact on the price of 

the stock if the strategy becomes popular.  

 

Furthermore, since     H
X = 0S , an application of (20) suggests that the tendency in 

staying out of the market (i.e. k non investing X= − =  in equation 20) always has a 



 

 19

negative impact on prices. The resulting price falls can be easily understood as a 

consequence of a lack of investments.  

 

Equation (21) tells us how prices are affected by a change in conditional probabilities. 

Its implication is similar to that of (20) by the same reasoning. (22) and (23) are better 

understood by their application (24) with logistic transition probabilities. As discussed 

before, α measures the responsiveness to profitability. Let us consider the case of 

active fund management, i.e. s active fund management A= =  in equation (24). 

Overreacting smart money or a higher α  implies a significant increase in capital 

inflow when actively managed fund makes profits, i.e. 0>Aπ . By equation (24), this 

results in a positive impact on the price of a particular stock if active management has 

a high expectation on the stock’s returns (i.e. the last term on the RHS of equation 24 

is greater than zero).  

 
 

7. Simulation Experiments and Results Discussion 
 

Computational simulation of market history provides a dynamic perspective on the 

impact of smart money movements. In this section, the pricing process is simulated 

for each trading period. The process can be understood as follows: stock prices 

determine fund profitability that in turn influences the flows of smart money; the 

dynamics of smart money then determines stock prices through market equilibrium, 

and the whole process repeats.  

 

The simulation is based upon the equilibrium price equation (3). The portfolio 

allocations of passive and active fund managements are given by (4) and (5) 
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respectively, with m set to be 10. Besides, f is set as an adjusted hyperbolic tangent 

function, 1)2/tanh()( += xxf . To avoid the problem of non-existence of the inverse 

covariance matrix and for the sake of simplicity, we assume an identity matrix for Ωt . 

The dynamics of smart money tΘ  is modelled by the Markov chain (8) with the 

transition matrix illustrated by (12). Further, transition probabilities are endogenized 

as functions of fund profitability and associated expenses, as given by (13), (14) and 

(15). The costs of active and passive fund managements as a fraction of their 

profitability, c  and c , are set to be 0.2 and 0.02 respectively. The pricing process is 

simulated for 2000 trading periods.  

 

We apply different levels of investor sentiment in response to fund profitability. The 

results are compared with the static benchmark model ( 10,
2

ijα λ= = ), with no capital 

movements and an allocation of fixed and equal capital ratios among non-investment, 

indexing and actively managed funds. Results are assessed in terms of “drawdown”. 

Drawdown is a risk measure that quantifies uninterrupted falls in security prices. The 

study considers three aspects of drawdowns, namely the duration, the depth, and the 

number of drawdowns, in both indexing and actively managed accounts.  

 

For a price series tp , a drawdown is simply defined as a sequence of dd
dttp +

=
0

0
}{  for 

1>d , where all the prices of the sequence fall down while there exists a price rise 

both immediately before and after the sequence; d  is the duration or the length of the 

drawdown. In terms of a returns series 
1−

=
t

t
t p

pr , a drawdown can be equivalently 

defined as a sequence of dd
dttr
+

+=
0

0 1}{  for d > 1, where 1<tr  for ,10 += dt ,20 +d .., 

dd +0 , while 1
0

>dr  and 110
>++ddr . Without loss of generality, we assume 00 =d . 
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The absolute depth of a drawdown is calculated by the difference between 0p  and dp , 

i.e. dpp −0 , and the relative depth by the ratio 
0

0

p
ppD d

d
−= . In this study, we 

compute the relative depth, dD , that relates to the beginning position of a drawdown. 

dD  is calculated conditional on the preceding local peak, so that a drawdown is 

considered less severe if its preceding local peak is comparatively high. The relative 

depth of a drawdown can also be expressed in terms of returns by ∏−
=

d

t
tr

1
1 . Finally, let 

Nd  denote the number of drawdowns in a series. Note that Nd  is bounded above by 

( ) 21+T  for a series of T trading periods.  

 

Table 1 reports the results of drawdown6 calculated from index (or market) returns 

and also active investment returns. Figure 1 provides the distributions of the sizes of 

the drawdown.   

 

 

Table 1 Drawdown results of the investment returns from the market index fund and 
actively managed fund.  
 

  Number of 
Period Loss  
(Frequency) 

Number of 
Drawdown 
(Frequency) 

Average 
Duration of 
Drawdown 

Average 
Depth of 

Drawdown 

Maximum 
Depth of 

Drawdown 
Index 806  

(0.3224) 
615  

(0.246) 
1.31057 0.0390024 0.18136 Fixed Θ , 

31=== XAP θθθ  Active 1694 (0.6776) 614 (0.2456) 2.75896 0.133933 0.677253 

Index 791  
(0.3164) 

622 (0.2488) 1.2717 0.0289949 0.404647 
ttt M''

1 Θ=Θ +  

tPr (α = 1) Active 1709 (0.6836) 608 (0.2432) 2.81086 0.11926 0.618233 

Index 1139 (0.4556) 395  
(0.158) 

2.88354 0.187774 0.381794 
ttt M''

1 Θ=Θ +  

tPr (α = 7) Active 1351 (0.5404) 388 (0.1552) 3.48196 0.352543 0.648755 

Index 1083 (0.4332) 363 (0.1452) 2.98347 0.463669 0.556648 
ttt M''

1 Θ=Θ +  

tPr (α = 11) 
Active 1222 (0.4888) 359 (0.1436) 3.4039 0.573109 0.692364 

Index 826  
(0.3304) 

329 (0.1316) 2.51064 0.556938 0.653068 
ttt M''

1 Θ=Θ +  

tPr (α = 100) Active 1110  
(0.444) 

326 (0.1304) 3.40491 0.598585 0.777556 
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A number of patterns can be found from the results. These patterns can lead to rather 

different implications on investor sentiment. First, comparing only the results of 

varying levels of α  excluding the static benchmark model, we find that overall the 

number of drawdown decreases but the average duration of drawdown increases as α  

Figure 1 The distributions of the relative sizes of drawdown. 
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gets larger. Furthermore, the average depth of drawdown also increases with α . The 

results suggest that overreaction aggravates both the duration and the size of 

drawdown in investment returns in the market index and active managed accounts.  

 

We may then tend to think that the static benchmark model with no investment 

movements would have a lower downside risk. Surprisingly, the static model in fact 

leads to a larger drawdown size in average than the dynamic model with a small α . 

This observation implies the existence of a stabilizing force when there is a limited 

degree of capital movements.  

 

There is an interesting observation that the number of period loss of actively managed 

fund always exceeds its counterpart of market index. This outcome is considered to be 

attributed to active management being inherently more risky.  

 

Table 2 reports the mean and variance of both market returns and active portfolio 

returns, together with the correlation coefficient between these two return series. 

Although overall the mean returns of both management strategies7 slightly increase 

with α , their variances exhibit an unproportionally large increase at the same time. 

Overreaction adversely induces a volatile market. Higher return volatility in the case 

of overreacting smart money is consistent with the drawdown results.  
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Table 2  Mean, variance, and correlation of index returns and active investment 
returns. 

  Mean Variance Correlation 
Coefficient 

Index 1.02608 0.00282958 Fixed Θ , 
31=== XAP θθθ  Active 0.973918 0.00282958 

-1 

Index 1.01962 0.00179315 
ttt M''

1 Θ=Θ +  

tPr (α = 1 ) 
Active 0.976985 0.00241346 

-0.990231 

Index 1.02767 0.0114034 
ttt M''

1 Θ=Θ +  

tPr (α = 7) 
Active 0.975898 0.0145883 

0.594797 

Index 1.04795 0.058714 
ttt M''

1 Θ=Θ +  

tPr (α = 11) 
Active 1.00201 0.0591932 

0.921535 

Index 1.06738 0.0890357 
ttt M''

1 Θ=Θ +  

tPr (α = 100) 
Active 1.04008 0.092746 

0.888454 

 
 

Now we turn to the discussion of the correlation outcomes. The profitability of these 

two investment strategies moves in the opposite directions in the benchmark model 

and also when α  is low, i.e. when clients’ money is sticky to the original investments. 

The reason to the observed negative return correlation can be grasped intuitively that 

when there is no source of investment inflow and the market capital size remains 

fixed, one strategy can only be profitable at the cost of the other. In the case of the 

static benchmark model, there is no investment entry or exit and the market capital 

ratio always remains 3
2 . Appendix B provides a proof that index returns and active 

investment returns sum to a constant, by imposing the constraint of fixed and equal 

capital ratios among different investment strategies. Since the sum of these two 

returns at each time period is fixed under certain assumptions, it becomes clear that 

one strategy is profitable at the expense of the other, and so their profitability moves 

in the reverse directions as shown by their correlation coefficient. The sum of these 
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two returns remaining fixed also explains why their variances are virtually the same 

by a straightforward proof.  

 

The return correlation however becomes positive when α  increases. This observation 

implies a counter-intuitive situation when active and passive fund managements can 

be simultaneously profitable. Considering the price mechanism, this is not as 

surprising as it seems. In the presence of overreacting smart money, a profitable active 

fund management quickly attracts a vast investment inflow from not only index 

believers but also non-market participants. This pushes up the prices of the stocks on 

which active fund management puts more weights, and hence the overall market index 

price. Here the investment inflow from out of market ( XAPr ) is crucial. If the 

investment inflow into active fund management comes merely from passive 

management, the weakened passive investment is likely to offset the push-up effect on 

the market index by the strong active investment.  

 

The most straightforward example is found in bull markets, where various active fund 

managements can be profitable at the same time when the market index is soaring8. 

This can be grasped by that market conditions influence investor sentiments, and in 

particular, bull markets trigger massive new investment inflows that boost 

profitability. Even in the rare case when passive indexing has no investment inflow, 

the market price can still go up due to the push-up effect of a strong active investment.  
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8. Concluding Remarks 
 

Since the birth of mutual funds and the emergence of diversified fund styles, there 

have been numerous observations on significant investment movements among 

different fund managements, e.g. a recent trend towards passive indexing. These 

phenomena have drawn my interest into studying their impact on financial markets. 

This paper develops a Markovian model of smart money chasing past winning funds 

while taking into account the associated costs. This study also allows market capital 

entry and exit by making non-participation as one investment choice. In seeking the 

long-term behaviour, the steady-state capital allocations among different investment 

strategies are derived under some simplified assumption on transition probabilities. It 

then studies the resulting investment risk induced by the Markovian dynamics of 

smart money, using both the analyses of comparative statics and computational 

simulation.  

 

One major finding of the results suggests that downside risk can be significantly 

attributed to overreacting smart money drastically moving from one fund style to 

another, even though a small degree of investment movement as opposed to capital 

immobility can in fact stabilize the market. Here downside risk is measured in terms 

of both the duration and the depth of drawdown. Moreover, the results using the 

conventional risk measure are consistent with the drawdown results.  

 

This paper also finds that when money is sensitive to fund performance, profitable 

active fund management is likely to trigger vast capital inflow that pushes up the asset 

prices of active portfolios and hence the overall index prices, given that there is no 
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offsetting effect from possibly weakened passive investment. Therefore, performance 

sensitivity and new capital inflow make it possible that two much debated portfolio 

management styles, passive indexing and active fund management, can be 

simultaneously profitable. By the same token, a rapid investment withdraw triggered 

by overreacting investors in response to either bad news or underperformance can 

lead to active fund management being just as devastating as market index. On the 

contrary, if money is insensitive and investment capital remains immobile, the model 

is in fact a typical zero-sum game where one strategy will be profitable at the cost of 

the other.  

 

Is the returns-chasing behaviour enabled by market liquidity socially desirable? 

Several implications can be drawn from the results. The returns-chasing behaviour 

induces a natural selection of investment funds, so that ill-performing funds are 

liquidated or merged while outperforming ones accumulate even more capital. From 

the viewpoint of seeking a valid investment tool, the increased competition level may 

enhance the effectiveness of asset managements. Besides, some degree of liquidity is 

desirable since it may work as a stabilizing force to the market as the results suggest. 

However, there are tradeoffs as well as benefits. The market with overreacting smart 

money chasing past winners and abandoning poor performing funds implies a higher 

downside risk. Particularly in bear markets, vast investment withdraws in a hasty 

fashion can exacerbate the already worsening market condition.  
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Appendix A 
 

Proof A 

Suppose prices are in steady state and so is the ecology of capital ratios. Express the 

ergodic property for a steady-state ecology,  Θ
' = Θ' M , in scalars,  

 

 θ j = θ i Pr ij

i
∑ .  (A.1) 

 

From (19) and (A.1), the steady-state price vector can be written as 

 

 
  
P∗ = K θ i Pr ij H j

i
∑

j
∑ .  (A.2) 

 

By separating whether i = s or kj = , (A.2) can be further decomposed into 

 

   
P∗ = K θs Pr sk Hk + θ i Pr ik Hk

i≠ s
∑ + θs Prsj H j

j≠ k
∑ + θ i Pr ij H j

i≠ s
∑

j≠ k
∑ 

 
 

 
 
 

.  (A.3) 

 

From the equivalent of constraint (10), Pr sj

j
∑ =1, it is easy to obtain 1

Pr
Pr

−=∑
≠kj

sk

sj

∂
∂

.  

Also we know that 0
Pr
Pr

=
≠ si

sk

ij

∂
∂

. Therefore, by partial differentiation of the steady-

state price given by (A.3) with respect to the transition probability, we obtain 

 

   

∂P∗

∂Pr sk = Kθ s Hk +
∂Pr sj

∂ Prsk H j

j ≠k
∑

 

 
 

 

 
 , where 1

Pr
Pr

−=∑
≠kj

sk

sj

∂
∂

. 
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Proof B 

 

We first decompose the steady state price (A.2) into four parts.  

 

 

  

P∗ = K θs Pr ss Hs + θs Prsk Hk

k ≠s
+ θs Prsj H j

j≠ s
j≠ k

∑ + θ i Pr ij H j

i≠s
∑

j
∑

 
 
 

  

 
 
 

  
  (A.4) 

 

Recall that ijλ  is not defined when ji = , and that the diagonal entries in the transition 

probability matrix  M  have no ijλ , thus  

 0
Pr

=sk

ss

∂λ
∂

.  

Also we know that ijPr  is independent of λsk  if si ≠ , thus  

 

 0
Pr

=
≠ si

sk

ij

∂λ
∂

.  

 

The partial differentiation of (A.4) with respect to the conditional transition 

probability hence yields 

 

 

  

∂P∗

∂λsk = K θs ∂ Prsk

∂λsk Hk + θs ∂ Pr sj

∂λsk H j

j≠ s
j≠ k

∑
 
 
 

  

 
 
 

  
.  (A.5) 
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Since the off-diagonal transition probabilities are defined by )Pr1(Pr sssk

sk

sk −=
≠

λ , it 

is straightforward that  

 ss

ks

sk

sk

Pr1
Pr

−=
≠

∂λ
∂

.  

 

By chain rule, sk

sj
ss

sk

sj

sj

sj

kj
sj

sk

sj

∂λ
∂λ

∂λ
∂λ

∂λ
∂

∂λ
∂

)Pr1(
PrPr

−==

≠
≠

.  

 

Also, from (11), 1=∑
j

sjλ , it is easy to show that 
∂λsj

∂λsk
j ≠k
∑ = −1.  

 

Therefore, (A.5) reduces to  

 

 
  

∂ P∗

∂ λsk = Kθ s 1− Prss( ) Hk +
∂λsj

∂λsk H j

j≠ k
∑

 

 
 

 

 
 , where 

∂λsj

∂λsk
j ≠k
∑ = −1.  
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Proof C1 

 

Suppose )(PrPr αijij = .  

From the constraint (10), we know that 1)(Pr =∑
j

ij α , and hence 0)(Pr =∑
j

ij

∂α
α∂ .  

Separating the diagonal entries from the off-diagonal ones yields  

 

 ∑
≠

−=
ij

ijii

∂α
α∂

∂α
α∂ )(Pr)(Pr .  (A.6) 

 

From (A.2), we can obtain  

  

∂P∗

∂α
= K θ i ∂Pr ij

∂α
H j

j
∑

i
∑ Pr Prii ij

i i i j

i j i
K ∂ ∂θ θ

∂α ∂α≠

 
= + 

 
∑ ∑H H .  (A.7) 

 

Replacing (A.6) into (A.7) leads to   

 
  

∂P∗

∂α
= K θ i ∂ Prij

∂α
(H j −H i)

j ≠i
∑

 

 
  

 
 

i
∑ .  

 

Proof C2 

Now, suppose )(PrPr iijij α= , and si αα ≠  if si ≠ . Thus, 0Pr =
≠ si

s

ij

∂α
∂ .  

 

Again from (A.2), we calculate the following.  

 

 
  

∂P∗

∂α s = K θ i ∂Pr ij

∂α s H j

i
∑

j
∑  

     
  
= K θ s ∂Pr ss

∂α s Hs + θs ∂ Prsj

∂α s H j

j ≠s
∑ + θ i ∂ Prij

∂α s H j

i≠ s
∑

j
∑ 
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= K θ s ∂Pr ss

∂α s Hs + θs ∂ Prsj

∂α s H j

j ≠s
∑ 

 
 

 
 
 

 

 

From the same reasoning as (A.6), we know  

 

 ∑
≠

−=
sj

s

sj

s

ss

∂α
∂

∂α
∂ PrPr .  

 

It therefore follows that  

 
  

∂P∗

∂α s = Kθ s ∂ Pr sj

∂α s
j≠ s
∑ H j −Hs( ).  (A.8) 

 

An example is given below with the logistic transition probabilities (13).  

 

We first obtain  

 
∂Pr sj

∂α s
j ≠s

= −λsj Pr ss(1− Prss )π s .  

From (A.8),  

 

 
  

∂P∗

∂α s = Kθ s ∂ Pr sj

∂α s
j≠ s
∑ H j −Hs( )

 
= Kθ s Pr ss(1−Pr ss)π s λsj

j ≠s
∑ Hs −H j( ).  

 

Since 1=∑
≠ sj

sjλ  as given by (11), it follows that  

 

 
  

∂P∗

∂α s = Kθ s Pr ss(1− Prss)π s Hs − λsjH j

j ≠s
∑

 

 
  

 
 , where 1=∑

≠sj

sj
tλ .  
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Appendix B 
 

Recall that market equilibrium at time t is given by (1) as  

 

 
   
St�Pt = K θ t

iw t
i

i=1

N

∑ ,  

 

where   Pt ,   St , and  wt
i  are S-dimensional vectors of prices, outstanding shares, and 

portfolio weights of strategy i on S stocks. The scalars K and i
tθ  are the total capital 

size and the capital ratio allocated to investment fund i.  

 

Rearrange the equilibrium condition (1) to obtain the price vector at time t 

 

 
   
Pt = K θ t

iw t
i

i=1

N

∑ �St
−1 .  (B.1) 

 

The static benchmark model assumes fixed and equal capital ratios among different 

investment funds. Imposing this assumption together with the simplified assumption 

of a constant number of outstanding shares, (B.1) becomes  

 

    
Pt = Kθ S−1� wt

i

i=1

N

∑ 

 
  

 
 , and similarly, 

   
Pt−1 = Kθ S−1� w t−1

i

i=1

N

∑ 

 
  

 
 .  

 

Therefore, returns defined as the price ratios are given by the 1×S  vector  

 

 
    
R t = Pt�Pt−1

−1 = wt
i

i=1

N

∑
 

 
  

 
 � w t−1

i

i=1

N

∑
 

 
  

 
 

−1

.  (B.2) 
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Following the model, consider three investment strategies, i.e. three states, 

XAPi and,,= . Notice that   wt
X = 0S  and  wt

i ' 1S =1 for APi ,= . Let   1S  denote an 

1×S  vector of ones. The return vector (B.2) then becomes  

 

 
    R t = w t

P + w t
A( )� w t−1

P + w t−1
A( )−1

.  

 

Fund profitability is measured by its portfolio return. Portfolio return is a scalar 

defined by (6) and is calculated as the summation of stock returns multiplied by the 

corresponding portfolio weights. The sum of index return and active investment return 

is then given by  

 

  π t
P + π t

A = (wt −1
P )'R t + (w t−1

A )'R t = (w t−1
P + w t−1

A )'R t  

 
    
= (w t−1

P + w t−1
A )' wt

P + wt
A( )� wt −1

P + wt −1
A( )−1{ } 

  =
′ 1 S wt

P + wt
A( ).  

 

Since   wt
i ' 1S =1 for APi ,= , thus  

 

   π t
P + π t

A = ′ 1 S wt
P + ′ 1 S w t

A = 2.  

 

Therefore, the proof has shown that under the restriction of fixed and equal capital 

ratios among different investment strategies and also the assumption of a constant 

number of outstanding stock shares, the sum of index return and active investment 

return is a constant.  
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1 The statistical properties of drawdown have been studies by Sancetta and Satchell 

(2003).  
2 The definition of Et essentially follows the feedback function given by Yang and 

Satchell (2002).  
3 Ergodicity requires the transition matrix to be irreducible and non-periodic. For a 

more detailed discussion on ergodicity, see, for example, Cox and Miller (1965). 
4 The right eigenvector of M corresponding to the eigenvalue unity is 13×1 , 

since 1313 ×× = 11M as given by (8).  

5 Notice here we assume constant ijλ  since the steady-state results given by (16) are 

derived when transition probabilities are constant.  

6 The results of drawdown are calculated from portfolio returns tπ  instead of simple returns tr . As 

tπ  given by (6) is just the weighted return in accordance with the underlying portfolio weights, the 

computation of the number, the duration, and the sizes of drawdown discussed above will still apply.  

 
7 In the model, the mean index return exceeds the mean active investment return by an 

insignificant amount. We believe that this observation is highly model-specific and is 

largely attributed to the employed active trading strategy.  
8 For instance, during the bull market of 1998 – 1999, the Fidelity aggressive growth 

fund achieved returns of 190%.  


