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Abstract 
 

Over the past decade, the purchasing-power parity (PPP) puzzle has taken two forms.  
Its early form arose from early tests of unit roots in real exchange rates, which failed to 
reject the null hypothesis, thus casting doubts on the long-term PPP hypothesis of real 
exchange rates' mean reversion. Following the development of more powerful tests that 
resulted in rejections of unit roots, the PPP-puzzle re-surfaced in the form of surprisingly 
slow rates of convergence of real exchange rates to their long-run means. Rogoff (1996) 
expressed this puzzle in terms of the estimated "half-life" of real exchange rate shocks 
being 3 to 5 years. Recent research has attempted to solve that second form of the puzzle 
by adopting non-linear stochastic models of real exchange rates. Despite this introduction 
of non-linearities, the literature has continued to focus on the notion of "half-life" as a 
measure of persistence. 

 
We argue that the half-life measure is only appropriate in linear settings, failing to 

capture the richness of non-linear dynamics introduced in the more recent literature. We 
propose operational measures of persistence in such non-linear models, which we label 
short-memory in distribution (SMD, which is similar to the notion of φ -mixing), and 
short-memory in mean (SMM, c.f. Granger (1995)). We show that focusing on a simple 
notion such as "half-life" can be very misleading. In particular, we show that it is possible 
to match desired "half-lives" for any of the most popular non-linear models recently 
proposed in the literature, at the expense of matching their more general dynamic 
structure. We conclude that depending on the models and criteria selected for 
investigating the PPP-puzzle, the puzzle may be in the eye of the beholder. 
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1. Introduction 
 

In the early 1990s, doubts were cast on the purchasing-power parity (PPP) 
hypothesis, following repeated failures to reject univariate unit root tests for real 
exchange rates. Then, a number of studies in the 1990s noted that those early failures to 
reject the unit root hypothesis were artifacts of the low power of those simple unit root 
tests. Using more powerful panel-data tests, those researchers managed to reject the unit 
root hypothesis, thus providing support for the PPP-hypothesis, if only in the very long-
run. Developments in this literature up to the mid-1990s were summarized in the seminal 
survey of Rogoff (1996). 

 
No sooner had the first PPP-puzzle been solved, a second PPP-puzzle arose. 

Despite rejection of the extreme form of persistence of real exchange rates that unit roots 
would imply, estimates still suggested a "half-life" (time for a transitory shock to the real 
exchange rate to be cut in half) of three to five years.1  Common wisdom dictated that 
half-lives for real exchange rates should be two years or less, for the PPP-hypothesis to 
be operationally relevant. The emerging empirical stylized fact of three-to-five years' 
half-life was also problematic since existing models could not explain the estimated slow 
mean reversion together with the observed high short-term real exchange rate volatility.   

 
It is easiest to illustrate this second form of the PPP-puzzle within the linear 

AR(1) model, which is the main building block for the literature on PPP-puzzle: 
,1x xt ttρ ε= +−  

where tx is a real exchange rate and 2~ . . . (0, )t i i d Nε σ . In this model, the half-life (H) of 
the process is easily calculated based on the estimate of ρ : ˆ ˆln(0.5) / ln( )H ρ= . Estimates 
of ρ̂  that yield an estimated half-life below 3 years would be deemed acceptable, and 
higher estimates are considered puzzling. In order to estimate a ρ̂  that yields such 
acceptable half-life estimates, researchers first looked for econometric explanations of 
why earlier estimates of half-life may have been artificially high. For instance, Murray 
and Papell (2000) investigated the potential upward bias of half-lives using 
approximately unbiased median estimators. 
  

Later studies aimed to produce alternative half-life estimates using non-linear 
models of real exchange rate dynamics. For instance, Taylor (2001) used a regime 
switching threshold model (RSTM) of the data generating process to show that linearity-
based half-life estimates would be biased upward. A number of other studies also 
introduced non-linear dynamics to explain the high half-life estimates in simple linear 
models, including Cheung and Lai (2000), Taylor, Peel and Sarno (2001). In later 
sections, we shall discuss some of those models in greater detail, especially the so-called 

                                                           
1 The 3~5 years' half-life was first highlighted in the survey of Rogoff (1996).  He noted that the 
immediately preceding literature had reached a surprising degree of consensus around that half-life 
estimate. 
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Threshold Autoregressive (TAR) and the Smooth Transition Autoregressive (STAR) 
models. The purpose of this paper is to investigate whether adding greater flexibility 
through non-linear dynamic models resolves the puzzle, or merely makes it more 
complex. 

 
Our point of departure is an examination of the measure of persistence used by all 

earlier studies, including ones that propose non-linear models of real exchange rates. 
Despite introducing highly non-linear stochastic models, the literature has continued to 
occupy itself mainly with point estimates of "half-life" as a measure of persistence. In 
later sections, we shall propose a more general approach to studying the evolution 
dynamics for distributions of real exchange rates around their long-term PPP-levels.  
Utilizing that framework of distribution dynamics, we can investigate more fully 
convergence to long-term PPP levels, and speeds thereof.2   

 
To study the persistence properties of non-linear stochastic models of real 

exchange rates, we use the notions of Short-Memory-in-Mean (SMM) and Short-
Memory-in-Distribution (SMD), which are closely related to the statistical notion of φ -
mixing. Our SMM measure was proposed by Granger (1995) and Granger and Teräsvirta 
(1993) as an alternative for the linear notion of I(0). In this regard, Granger (1995) 
showed through a number of examples that the I(0) notion is only appropriate in linear 
models, and argued for using SMM as a better measure of persistence in more general 
models. However, he stated that it was not clear how to operationalize the concept of 
SMM for estimation and testing. To the best of our knowledge, this is the first attempt to 
provide an operational algorithm for estimating SMM, and the more general notion of 
SMD discussed below. 

 
The rest of this paper will proceed as follows. We discuss various recent non-

linear models of real exchange rate processes in Section 2. We construct our non-
persistence measures of SMM (a measure we call m-life, half-life being one point on the 
curve), and SMD (which will be an estimate of φ -coefficients) in Section 3. In Section 4, 
we introduce non-parametric estimation of our non-persistence measure, and apply it to 
five real exchange rates covering the post-1973 floating exchange rate system. We shall 
also discuss small-sample problems associated with such non-parametric estimation in 
Section 4. In Section 5, we evaluate the dynamic persistence properties of the various 
non-linear models discussed in Section 2, utilizing the non-parametric estimates of 
Section 4, and using various degrees of over- or under-smoothing. In Section 6, we 
conduct some Monte Carlo simulations to assess the effects of model mis-specification.  
In particular, we investigate whether non-linear models always yield shorter half-life 
measure relative to their linear counterparts.   Some concluding remarks close the paper. 

 

                                                           
2  To the best of our knowledge, a similar approach has only been utilized in the economic growth 
literature. Early studies in that literature focused on the means of cross-country income distribution (β-
convergence) or the variance (σ-convergence) thereof.  More recently, Quah  (1993, 1997) and Durlauf 
(1993) highlighted the necessity of examining the dynamics of the entire distribution. 
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2. Non-linear models of real exchange rates 
 

We have already noted that early tests of the PPP-hypothesis concentrated on unit 
root tests of real exchange rates.3  In that early literature, OLS estimates of AR(1) 
coefficients were used for calculating half-lives of the estimated processes.4 The validity 
of this linear-model framework was questioned in later studies. For instance, Obstfeld 
and Taylor (1997), and Taylor (2001), studied the upward bias in linear half-life 
estimates if the data generating process followed a threshold autoregressive (TAR) 
models. In particular, Obstfeld and Taylor (1997) showed that if the true model is a TAR 
with a half-life of 12 months, mis-specifying the model as a linear AR(1) may result in 
over-estimated half-lives of 2-3 years. 

 
In addition to the linearity-induced biases, recent econometric studies have shown 

that linear-model half-life estimates may be biased due to using ordinary least squares 
(OLS). In particular, Murray and Papell (2000) showed that if the data generating process 
was indeed a linear AR(1), the OLS estimate of half-life is biased downward in small 
samples, with the bias growing as the true AR (1) coefficient approaches unity.  
Furthermore, they argued that the conventional point estimate half-life measure is not a 
sufficient measure of persistence, since it does not account for the serial correlation and 
estimation errors of such estimates. 

 
A third set of problems with conventional linear-model half-life estimation stems 

from the monotonicity of that measure of persistence. Cheung and Lai (2000) 
investigated plausible models with non-monotonic real exchange rate adjustment, 
whereby impulse response functions (IRF) initially rise before the shock begins 
dissipating. In such models, a monotonic half-life estimate (usually computed from IRFs) 
will be inflated, and clearly becomes an improper measure of persistence.   

 
After uncovering the above mentioned pitfalls of linear-model estimates of half-

life, research in this area turned to proposing ex ante plausible non-linear models of real 
exchange rate dynamics, with an eye to estimating "reasonable" half lives. In an early 
contribution to the literature, Goldberg et al (1997) introduced a diffusion process model 
that allowed for more general patterns of mean reversion for real exchange rate process. 
More recently, Taylor, Peel, and Sarno (2001) introduced a smooth transition 
autoregressive (STAR) model, which allowed them to estimate shorter (and therefore less 
puzzling) half-lives. This model agrees with empirical patterns of mean reversion, where 
larger shocks are found to dissipate faster than small ones. This feature is also discussed 
in Section 2 of Taylor et al (2001). A similar model, called the exponential STAR 
(ESTAR) model, was proposed by Baum et al (2001), also allowing for more general 
types of mean reversion.   

                                                           
3 This is somewhat of an oversimplification.  Froot and Rogoff (1995) classified PPP tests in the unit roots 
literature into first, second, and third levels, including cointegration tests, which are not discussed here.  
4 For example, Darby (1983), Hakkio (1984), etc. 



5 

 
The above mentioned models of non-linear mean reversion were highly 

parametric. Shintani (2001) introduced a non-parametric framework with an alternative 
half-life estimates, which he called "average half-life". His estimate is obtained from non-
parametric estimates of the derivative of a one-period Markovian real exchange rate 
mapping at various points.  He argued that while half-life will be different for different 
levels of real exchange rates, allowing for many more general forms of mean reversion, 
his estimated "average" measure can provide some linear-model approximation. 
Unfortunately, this measure suffers from technical problems,5 as well as the conceptual 
problem of attempting to approximate a non-linear-model notion with the average of its 
model-linearization equivalents at various points. Clearly, the latter estimate can be 
arbitrarily inappropriate depending on the actual level of the real exchange rate. 

 
Indeed, one major drawback of the literature to-date is its continued focus on a 

linear measure of persistence (half-life), despite the introduction of a variety of non-linear 
mean-reversion dynamics in their models. We now turn to the task of defining a more 
appropriate measure of persistence in such non-linear models. 

 
3.  Laws of motion and Non-persistence measures 

 
Granger and Teräsvirta (1993) and Granger (1995) showed that the notion of I(0), 

which is central to the unit-roots literature that dominated early PPP-hypothesis 
investigations, is essentially a linear notion, with no clear non-linear analog. In non-linear 
models, they suggested investigating short-memory in distribution (SMD) and/or short-
memory in mean (SMM), to be defined below, as measures of persistence that apply to 
non-linear models. Before defining our operational measures of SMD and SMM, we find 
it useful to review a few definitions. 

 
3.1. Useful definitions 

 
Keeping in mind the eventual need for non-parametric estimation of our measures 

of SMD and SMM, we adopt the framework of Domowitz and El-Gamal (1993,1996, 

                                                           
5  His average half-life of deviation from PPP is calculated as follows: 

l
l

ln(1/ 2)
1 ln ( )1 1

HL TT Dm qt t
= − ∑ = −

 where m( )1Dm qt−  is a nonparametric estimator of the first derivative of 

( )1m qt−  in the mapping equation of ( )1q m qt tt ε= +− .  Calling lHL  an average half-life is a misnomer. 
In fact, it is the half-life of the average estimator. To calculate an "average half-life", he should have 

computed: j m
ln(1/ 2)1

1 ( )1

THL T t Dm qt

−= ∑ =
−

.  Since jH L is greater than lHL  by Jensen’s inequality 

( [ ( )] ( [ ])E f Y f E Y≥ ), we know that his latter mislabeled estimate of “average half-life” is biased 
downward.   
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2001) for a first-order Markovian univariate time series { }xt .6 We assume that for a 
given point Xξ ∈ , that given transition ( , )TP ξ ⋅  is a probability measure on ( )B R , and 
for a given ( ),  ( , )TA P A∈ ⋅B R  is a Borel measurable function.  We shall refer to ( , )TP ⋅ ⋅ as 
the one-step transition kernel. As usual, we define the s-step transition probability 
recursively by: 

 
( ) ( 1)( , ) ( , ) ( , )s s

T T T
X

P A P d P Aξ ξ η ξ−= ∫  

We assume that the probability measure ( , )TP ξ ⋅  is absolutely continuous, and we denote 
the corresponding (estimated) transition density ( , )Tp ⋅ ⋅ . 

 
Starting from an initial density 0( )g x on the state space R , the probability of the 

process falling in any Borel set A at period s can be easily defined by  
 

0

( )
0Pr { } ( ) ( , ) ( )s

g s T s
A A

x A g P d g dξ ξ η η η∈ = ≡∫ ∫  

 
This implicitly defines the Markov operator : ( ) ( )T D DΠ →R R   (via 0( ) ( )s

s Tg g⋅ = Π ⋅ ), 
where ( )D ⋅  is the space of densities.  We call TΠ  the Frobenius-Perron (F-P) operator.7 
 

Using this framework, we can directly apply the consistent tests of ergodicity and 
mixing constructed in Domowitz and El-Gamal (1993, 1996, and 2001) to various real 
exchange rate series. Those tests failed to reject the null hypotheses of ergodicity or 
mixing as shown in Table 8.8 However, due to the smallness of our sample size (T=312), 
we know that our estimate of P (using the automatic bandwidth selection methods 
discussed below) is over-smoothed, thus producing low power for our tests.9 A perennial 
problem in this literature is our inability to increase sample size by using higher-
frequency data, since CPI data (used for computing the real exchange rate) are not 
available at higher frequencies (c.f. A. Taylor (2001) for a discussion of the same 
problem).  

 
Moreover, even if we had failed to reject ergodicity and mixing with sufficiently 

large samples, we would not be able to conclude that the PPP-puzzle is solved.  Indeed, 

                                                           
6 Domowitz and El-Gamal (1993, 1996) discussed how to generalize this framework to a multi-variate 
and/or higher-order Markovian setting, providing an algorithm for dimension-reduction. 
7 Day and Pianigiani (1991) also used a Frobenius-Perron operator approach to study complex economic 
dynamics.  Quah (1993) used a similar approach to study the time-evolution of income distribution across 
countries. 
8 Recall that the tests of Domowitz and El-Gamal (1993, 1996, 2001) are randomized tests, hence Table 8 
reports the percentage of rejections at 5% and 10%. Since those percentages are close to 5% and 10%, 
respectively, we conclude that the randomized tests fail to reject the null hypotheses of ergodicity and 
mixing. 
9 The small sample problem appeared in Murray and Papell (2000) in the downward bias of OLS estimate 
of half-life. 
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such simple testing methodologies cannot deal with the new version of the PPP-puzzle, 
which focuses on measures of persistence of real exchange rates (in particular, half-life). 
Therefore, our focus should turn to the estimation of appropriate measures of persistence.   

 
We now proceed to define the short memory in distribution (SMD) and short 

memory in mean (SMM) measures used in this paper: 
 

Definition: Consider a time series { }tx . Let ( ) Pr | )(s t sF x x x+= ≤ tA  be the cumulative 
distribution function of t sx +  conditional on the past information set ( ; 0)t jx jσ −= ≥tA , 

and let F  be some fixed (unconditional) distribution function. The time series is said to 
have short memory in distribution (SMD) if: ( ) ( )sF x F x⇒ , as s ↑ ∞ . 
 
This definition implies that for an SMD process, there exists a series { }sd  s.t. 

1 2 1Pr( | ) Pr( )   ;     0s
t s t j t s s sx C x C x C d d ↑∞
+ − +∈ ∈ − ∈ < → , for all measurable sets 

1 2,  C C  with 2Pr( ) 0t jx C− ∈ ≠ .  In this regard, the SMD property is a form of “mixing”, as 
we shall see later. In the meantime, we consider a first-moment analog to SMD, which 
compares means conditional on distant information sets to unconditional means. 

 
Definition: The time series is said to have the short memory in mean (SMM) property if  
|| [ | ] [ ] ||   ;  0s

t s t s s sE x E x c c ↑∞
+ +− < →tA . 

 
This SMM is equivalent to “mixing in mean” or “mixingales” as discussed in McLeish 
(1978) and Gallant and White (1988). We note that SMD implies SMM, but the opposite 
is not true.  Even though the concepts of SMD and SMM are very useful to study 
convergence structure in time series context, operational methods to study sd and sc  are 
not well developed. To the best of our knowledge, this paper presents the first attempt to 
operationalize estimation of measures of SMD and SMM in a non-parametric framework. 

 
3.2. m-life and ( )sφ  functions 
 

We can study SMD or SMM directly using the asymptotic independence notion of 
uniform, or φ -mixing. The φ -coefficient for a time series is defined by: 

 

, , Pr( ) 0
 ( ) sup Pr( | ) Pr( )

t t sA B A
s B A Bφ

+∈ ∈ >
= −

A A  
 

The process is called uniform of φ -mixing if ( ) 0ssφ ↑∞→ . This notion of uniform 
mixing was first used in econometrics by White and Domowitz (1984) to establish the 
asymptotic normality of various parameter estimators.  
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One known property of φ -mixing processes (c.f. Jacod and Shiryaev (1980, 
lemma 3.102, p.456)), is the following: 

 
Lemma Let x be a random variable measurable with respect to t s+A , such that 

1/[ ]q q
q

x E x≡ < ∞ , for some 1q > , and let 1 p q≤ ≤ .  Then, 
1 )(1  

sup [ | ] [ ] 2[ ( )]
t

q
t s t s p qA

E x A E x s xφ
−

+ +
∈

− ≤
A

 

Setting p = q = 2, we can see that a mixing process must have auto-covariances that 
vanish sufficiently fast. This is the link to central limit theorems exploited in earlier 
econometrics work. However, the previous literature has usually made mixing 
assumptions, without attempting to calculate or estimate the various elements of this 
inequality. In this paper, we shall show that given any transition kernel P, we can 
numerically calculate approximations of the LHS and RHS.   

 
Before proceeding to our numerical approximations of the memory-in-mean and 

( )sφ measures, it is worthwhile putting our measures of persistence within the context of 
other popular measures: 

• The PPP literature has to-date focused on the notion of half-life: a measure of 
the time until a transitory shock between the real exchange rate and its long-
term PPP mean-level is cut by half. 

• A finer (more general) measure of persistence may be defined as an m-life 
curve, which measures the time needed for a transitory shock between the real 
exchange rate and its long-term PPP-level to be cut by 1-m, for all (0,1)m ∈ . 
We shall select this notion (m-life) as our measure of SMM, to be defined 
more carefully later in the paper.10 

• Our most general, and finest measure of persistence is SMD, as measured by 
( )sφ . This measure looks beyond the first moment, to provide a general 

assessment of the dependence structure of our time series. 
 

We can approximate our transition kernel P  by finite transition matrix nP , and 
approximate the fixed point *f  of the former with the latter's fixed point *

nf ,11 hence we 
can approximate ( )sφ  with ( )n sφ  as shown in the next subsection. 

 
 
 
 

                                                           
10 Murray and Papell (2001) discussed the potential advantage of looking at points other than half-life. 
They argued that looking at estimates of three quarters-life, or 51% life, may yield different persistence 
implication from looking only at half-life.  
11 T. Li (1976) demonstrated that in the case ( , , ) ([0,1], )X µ µ=F F, , where µ is Legesgue measure, each 

finite approximation nP  has a non-negative fixed point nf , and *n
nf f↑∞→  weakly.   Bose (1994) 

expanded this result to strong convergence. 
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3.3. Numerical approximations of m-life and ( )sφ  functions 
 

We approximate the coefficients ( )sφ  by their analogs on a finite grid. As in 
Domowitz and El-Gamal (1993, 1996, 2001), we restrict attention to a compact 
subset X of the state space that covers 95% of the support of our data. We can then 
construct a grid nX covering that compact set.  Let nP  be the transition kernel on nX  that 
is induced by the transition kernel P . Since P is a bounded linear operator, it follows that 

0 n
nP P ↑∞− → . This in turn implies that the finite grid analog ( )n sφ defined below 

converges to ( )sφ  as the grid size n ↑ ∞ (c.f. Kress (1998), theorem 12.6, p.292): 
 

*
; 

( ) sup Pr ( | ) Pr ( ) ( )s
nn

s

n
n P fx grid B

s B x B sφ φ↑∞

∈ ∈
→= −

A
, 

where n
sA  is the σ -algebra induced by { } 0

s s
t nt

x X
=

∈ . Notice that the maximization over 
all Borel sets for initial conditions reduces in the finite grid to maximization over all 
single initial conditions.12 This makes the search much more manageable. 

 
In similar fashion, we introduce a measure of SMM, which we call the Maximum 

Distance in Mean (MDM) function. The finite grid ( )nMDM s defined below converges to 
the Maximum Distance in Mean ( )MDM s , also defined below, as n ↑ ∞ : 
 

*
{ }

*
( ), 

                         ,

( ) sup [ | ] [ ]

( ) sup [ | ] [ ]

s
n x

s

n t s t t sP f

n
t s t t sP f f

x grid

f D X A

MDM s E x x x E x

MDM s E x x A E x

δ + +

↑∞
+ +

∈

∈ ∈
→

= = −

= ∈ −
A

 

where the maximum distance in mean for each s  is defined on the RHS, as the maximal 
distance between the conditional mean of t sx +  (given initial condition set and 
distribution), and the unconditional mean under the unique invariant distribution 

* *f Pf= . When the process on X is approximated by the process on the grid nX , the 
analog MDMn is obtained through maximization over all initial conditions. 
 

The notion of half-life can now be replaced by the value of s  at which 
( ) 0.5 (0)n nMDM s MDM= × , i.e. the number of periods needed for the worst possible 

transitory shock from the unconditional mean to be cut in half. This notion may then be 
extended beyond half-life to consider m-life as the number of time periods before the 
worst possible shock would have shrunk to (1-m) of its original magnitude.  For a given 
model summarized by a transition kernel P (and approximated by the corresponding 
matrix nP ), our approach has the added advantage of calculating m-life directly 
numerically. In contrast, the literature on non-linear exchange rate dynamics often 
computes half-life by simulating impulse response functions, e.g. see Cheung and Lai 
(2000), and Taylor et al (2001).   
                                                           
12 Proof in the Appendix. 



10 

3.4. Numerical algorithms for computing m-life and ( )sφ functions 
 

We now turn to the actual numerical algorithms used in this paper for computing 
our measures of SMD and SMM for known models and estimated transition densities. 
We begin with the assumption of having a known transition matrix (.,.)nP  on an n n×  
grid (in all of our applications, we fixed the grid-size at 100n = ). 
 

Algorithm A  ( ( )nMDM s ) 
1. Fix the grid 1( ,..., )nx x=x . 
2. Compute the invariant measure *

nf  by iterating on s
nP f for any initial f , and 

1, 2,...s = , until convergence (in the sup norm). 
3. Compute the unconditional expectation *

*[ ] 't s nnf
E x fµ += = x . 

4. Define (0) max( ,1 )nMDM µ µ= − . 

5. For each s , and each point on the grid { } 1

n
i i

x
=

, compute the conditional expectation 

{ }{ }( ) [ | ]
i

s
i t s t i n xs

n iP xs E x x x Pδµ δ+= = = x' . Compute ( ) max(| ( ) |)n ii
MDM s sµ µ= − . 

6. Normalize ( )nMDM s  by defining 1 ( ) ( ) / (0)n n nm s MDM s MDM− = . 
7. Plot m-life as s against (1 ( ))nm s− . 
 

Algorithm B ( ( )n sφ ) 
 

1. Perform steps 1-2 of Algorithm A. 
2. For each s , and each point on the grid { } 1

n
i i

x
=

, compute *
, { }( ) || ||

i

s
n i n n xs f Pφ δ= − .  

3. Set ,( ) max( ( ))n n ii
s sφ φ= . 

4. Plot ( )n sφ  against s. 
 

4. Non-parametric empirical applications 
 

In this section, we analyze the persistence properties of real exchange rates for 
five major currencies that are most commonly studied in investigations of the PPP-
hypothesis: the Japanese Yen, the French Franc, the U.K. Pound, the Deutsche Mark, and 
the Swiss Franc. We studied monthly data for those five currencies over the period 
1973:1 to 1998:12. The base currency for all five series is the U.S. Dollar. Following the 
usual practice in this literature, we constructed the series for each country's real exchange 
rate as the natural logarithm of its nominal exchange rate, less the difference between the 
natural logarithm of the CPIs of the two countries.  

 
The early literature on the PPP-puzzle failed to reject unit root tests for those post-

Bretton Woods series, thus questioning the empirical validity of the PPP-hypothesis, even 
in the long-run. Later studies applied higher-power tests and managed to reject the null 
hypothesis of unit roots, thus turning the focus of the PPP-puzzle literature towards the 
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notion of high-persistence, or long half-lives, of real exchange rates.  Following in the 
footsteps of the latter literature, we begin from the assumption that PPP holds in the long 
run. We cast this long-run PPP-hypothesis in our stochastic model as an assumption of 
ergodicity of real exchange rates, each process of which being assumed to have a unique 
invariant measure. Notice that without such an assumption, the notion of half-life (central 
to the recent PPP-puzzle literature) will be ill-posed, since moments need not exist, and 
convergence of sample moments will not be assured. This assumption of ergodicity 
allows us consistently to estimate the transition matrix nP  on our grid non-parametrically 
for each series.  

 
4.1. Some practical problems 

 
In the previous sections, we have shown how we compute numerical 

approximations of our measures of SMM and SMD, assuming that we have a given nP  on 
the n-point grid. Under the assumption of ergodicity of our time series sample of size T , 
we know that we can obtain consistent estimates ,

T
T n nP P↑∞→   (c.f. Roussas (1969), 

Yakowitz (1979)). In addition, we have numerical convergence of the finite linear 
operator (matrix) nP  on the n-point grid to P as the grid size n goes to infinity.  In 
principle, one should investigate the optimal choice of n given sample size T (=312 in our 
applications).  However, such investigations would be mathematically cumbersome, and 
necessarily include constants of integration that render their usefulness for any given time 
series quite limited. In our applications, we simply fixed the grid-size at 101 101× , and 
performed sensitivity analyses with 51 51×  and 201 201×  for known models to ensure 
that our nP  with n=100 provides a good approximation of P.  

  
We decided to use the estimation approach of Roussas (1969) as adopted in 

Domowitz and El-Gamal (2001) to estimate ,T nP  non-parametrically using a kernel 
estimator. In this framework, we face the perennial problem of bandwidth selection rules. 
This problem was exacerbated in our applications to real exchange rate data by our small 
sample size of 312 monthly observations. Our initial experimentation with likelihood-
based time series cross-validation (TSCV, c.f. Hart and Vieu (1990)) yielded satisfactory 
results, with short m-lives (in particular half-lives < 2 years) for all series. However, 
when we performed sensitivity analyses for the number of leave-out-observations in 
TSCV, our results proved to be excessively sensitive to this formula, rendering our initial 
results unreliable.13 Reverting to the more robust Silverman-like plug-in methods (c.f. 
Hall, Lahiri and Truong (1995)), our sensitivity analyses showed that the results are too 
sensitive to the selected rule of thumb.14  

 

                                                           
13 We thank Jeff Racine, who suggested that we replace likelihood-based TSCV with h-block least squares 
cross validation.  However, the latter procedure proved equally sensitive to the number of leave-out-
observations.   
14 Here the "rules of thumb" were various constant multipliers of the familiar 1/(4+d)T −  rate of convergence. 
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This non-robustness of our non-parametric approach to studying the PPP-puzzle 
does not only reflect negatively on the non-parametric approach. In fact, it highlights the 
importance of parametric modeling assumptions with which one may approach the real 
exchange rates in question. In this regard, we shall show in Section 5 how this sensitivity 
to bandwidth selection can provide us with a calibration-type approach to studying the 
persistence implications of various non-parametric models applied to the specific series 
in question. Before proceeding to that section, it is worthwhile discussing the effect of 
over- and under-smoothing on our estimates of ( )sφ and m-life. 

 
We begin with the estimated ( )sφ and m-life using Silverman’s rule of thumb: 

1/5 T Th Tσ −= , where Tσ  is the standard deviation of our series. The estimated m-lives 
with this bandwidth selection rule yielded half-lives below one year for all five series.  
However, the calibration/simulation exercises in Section 5 showed us that this selection 
rule produces an over-smoothed estimate of the transition density. The resulting estimates 
of ( )sφ and m-life are consequently biased downward, and converge to zero excessively 
fast.   

 
In our calibration exercise, we can ask how much under-smoothing we need to 

impose on our kernel estimates ,T nP of the transition matrix nP  to avoid under-estimating 
our measure of persistence.15  For parsimony, we would like to summarize the required 
level of under-smoothing with a single parameter k. An convenient way to introduce such 
a single-parameter "level of under-smoothing" is to place it in the denominator of 
Silverman’s rule of thumb, yielding: 

1/5T
Th T

k
σ − =  

 
. 

 
4.2. Empirical Applications for real exchange rates 
 

We conclude this section with a summary of the estimated ( )sφ and m-life 
functions for our five time series of real exchange rates, and for various values of the 
under-smoothing parameter k.  Figures 1 through 5 show plots of the two functions for 
values of k=1,2,3,4,7 and 10. Selected curves from those figures will be used in 
conjunction with estimates for the same values of k using simulated data from the various 
recent non-linear models of real exchange rate dynamics reviewed in Section 2. 

 
Before proceeding to Section 5, we need to briefly summarize the regular pattern 

of our results plotted in Figures 1-5: 
• For k=1, Th  is the standard Silverman’s rule of thumb, and there appears to be 

no PPP-puzzle. For instance, the estimated half-life for the Japanese Yen is 
below 10 months, and ( )sφ and m-life show fast exponential rates of decay.  

                                                           
15 A similar approach may be applied to the non-parametric estimation in Shintani (2001), who seemed to 
use an arbitrary plug-in bandwidth. 
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Moreover, each of the two functions is fitted very well with an exponentially 
declining curve.   

• In contrast, consider the results for k=3. In this case the half-life for the 
Japanese Yen is more than 60 months and the m-life function is much steeper.  
Even though ( )sφ  seems to be exponentially declining in this case as well, its 
speed of decay is much slower for this higher value of k. 

• A similar pattern can be observed for various values of k.  
 

5.  Numerical investigations of recent non-linear models 
 
 As we have seen, the recent literature on the PPP-puzzle has turned to non-linear 

dynamic modeling of the real exchange rate processes for solutions of the puzzle of long 
half-lives.  That literature has focused to date on single point estimates of half-lives from 
impulse response functions. The rich dynamics of non-linear models offer this literature 
an infinite number of degrees of freedom to fit this single point to any desired value. In 
this regard, one may wonder if the infinite flexibility of model selection that has 
produced different results makes confirmations of the PPP-puzzle, or lack thereof, mere 
artifacts of the selected models.  In other words, the PPP-puzzle in this non-linear 
modeling world may be in the eye of the beholder. 

 
To study this problem more systematically, we look at the persistence properties 

of some of the most popular non-linear models of real exchange rates recently 
investigated in the literature. Instead of focusing on the single point estimate of half-life, 
we look at the full dynamics of such models in terms of m-life and ( )sφ  functions. We 
find in those models that there is a tradeoff between fitting the overall dynamics, and 
obtaining a satisfactory estimate of half-life for any given series. This tradeoff can be 
summarized in terms of the degrees of "over- or under-smoothing" implicit in the model. 
Those measures of the degree of smoothness will be obtained by matching the measures 
of persistence of the model to estimates using various values of the under-smoothing 
parameter k. 

 
5.1. Calibration of the under-smoothing parameter using an AR (1) benchmark  
 

Before proceeding to the analysis of implicit over- and under-smoothing in 
various non-linear models, we calibrate the level of smoothing (value of k) in non-
parametric estimation of m-life from simulated data generated by an AR(1) process. 
Clearly, we can solve for the m-life function for any AR(1) process with a known 
parameter. In figure 6(a), we show three m-life functions: 

1. The first function we plot is the theoretical m-life function for a given value of 
the AR(1) parameter.  In particular, we choose values of the AR(1) parameter 
to produce particular values of half-life. For instance, at ρ =0.9439, we obtain 
a theoretical half-life of exactly 1 year.16  

                                                           
16 This is a simple calculation for monthly data: 12(months)=1 yearln(1/ 2) ln(0.9439)HL = =  
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2. The second function we plot is a numerically calculated m-life on a fixed 
101 101×  grid. Assuming an i.i.d. Gaussian error for the AR(1) process, the 
transition matrix nP  can easily be computed for any given AR(1) coefficient 
ρ  and standard error σ . The goodness of fit of our numerical nP  as an 
approximation of the theoretical kernel P using this grid-size can be 
ascertained by comparing the two m-life curves. In Table 2, we list various 
combinations of ρ  and standard error σ  that produce half-lives of 
approximately one year, two years, and three years.17 

3. The third function we plot is a best-fitting non-parametric estimates of m-life 
from simulated data using the same AR(1) model.  For the parameters used in 
Figure 6(a), the non-parametric estimate of m-life using an under-smoothing 
factor k=6 matches both theoretical and numerical m-lives.  

 
In Figure 7, we show a similar pattern for an AR(1) process with a 2-year half-

life. In Table 3, we summarize the various combinations of smoothing factor k and 
resulting half-lives. It appears that a smoothing factor k=6 correctly matches the 
estimated half-life to its theoretical and numerical counterparts. Hence it appears rather 
easy within the AR(1) framework to match the half-lives of series with varying half-lives 
with a single choice of the smoothing parameter k. 

 
However, if we wish to match more features of the model dynamics than merely 

the half-life point, or even the entire m-life function, the story is quite different. Figures 
6(b) and 7(b) show the numerical and estimated ( )sφ functions whose m-life functions are 
shown in figures 6(a) and 7(a), respectively.18 Using the numerical ( )sφ  as our 
benchmark, we can see that the non-parametrically estimated ( )sφ  is too low at k=6 
(implying over-smoothing of our estimated nP ). However, if we use a higher value of k to 
match the ( )sφ function, we would over-estimate the m-life.  In other words, in order to 
match the general dynamics of the process as measured by the ( )sφ  function, we would 
have to admit to the existence of a PPP-puzzle in the sense of an excessively long half-
life, even if the actual half-life was quite short. The latter over-estimation of half-life is 
typically caused by under-smoothing of the estimated nP . In other words, we have a 
small-sample tradeoff between over-estimation of the m-life function and under-
estimation of the ( )sφ  functions. Given our sample size, it is impossible to match both 
functions simultaneously. Of course, the fact that this trade-off is a small sample 
problem, which vanishes asymptotically, offers little consolation. 

 
As we shall shortly see, tradeoffs of the same sort appear for non-linear models as 

well. However, not all of the tradeoffs are in the same direction. In particular, some 
models will seem to have a tendency for over-estimating m-life, while others seem to 
                                                           
17 Quah (1993)’s Markov operator M is approximated by discretizing the set of possible values of relative 
incomes into 5 intervals, i.e., his transition kernel is approximated on a 5x5 grid. Such a small grid-size 
would induce significant biases in our approximation. 
18 We cannot construct a theoretical ( )sφ function. 
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have an intrinsic tendency to under-estimate it. Notice that those tendencies are also 
small-sample problems that we have investigated using simulated data from each 
maintained model. Asymptotically, the non-parametric estimator is consistent for all of 
the data-generating models in our investigation. However, for small samples, we can 
classify models as over-smoothers or under-smoothers depending on the value of k 
required to match the numerical m-life and ( )sφ  functions. The tradeoffs between fitting 
the two functions will also prove instructive regarding the dynamics implied by each of 
the two non-linear models that we consider below, and their relationship to the 
benchmark AR(1) model that initially resulted in the puzzling high estimates of half-life. 

 
5.2. The threshold auto-regression (TAR) model 
 

The first nonlinear model we consider is the TAR model proposed to solve the 
"long half-life" PPP-puzzle in Obstfeld and Taylor (1997), A.Taylor (2001), and Shintani 
(2001). This model assumes that trade cost frictions induce a “band of inaction” around 
the long-term PPP level of the exchange rate. Outside this band, the model assumes that 
significant arbitrage opportunities cause real exchange rates to converge quickly towards 
their long-term PPP levels. The time series process is assumed to follow a random walk 
inside the compact band, but to be covariance stationary overall due to mean-reversion 
outside the band: 

  
1 1

1 1

1 1

( )       if  ,
                      if ,

- ( )      if  ,  

t t t

t t t t

t t t

c x c x c
x x c x c

c x c x c

ρ ε
ε

ρ ε

− −

− −

− −

+ − + ≥
= + − ≤ ≤
 + + + ≤ −

 

 
where 2(0, )t Nε σ∼ . This model is thus parameterized by the AR (1) coefficient outside 
the band edge: ρ , and the radius of the inaction band: c. 

 
While theoretical m-life cannot be easily computed for this model, we can 

calculate m-life and ( )sφ numerically as before, for any given values of ρ  and c.  We can 
also use simulated data for various values of those parameters to obtain nonparametric 
estimates of m-life and ( )sφ . In Tables 4 and 5, we summarize the numerical half-life and 
non-parametrically-estimated half-lives for various parameter values and smoothing 
factor k. 

 
The 2-year half-life case is shown in Figure 8. For the parameters shown in that 

figure, we need to use an under-smoothing factor of k=170 to match the numerical half-
life of the process. However, this value of k leads to excessive under-smoothing, as 
shown in the over-estimation of ( )sφ , plotted in Figure 8(b). Thus, despite the added 
complexity in this model, there is still a small sample tradeoff between matching the half-
life of the process, and matching its more general dependence structure as measured by 
the ( )sφ  function. The same pattern is also seen in the 3-year half-life parameterization, 
shown in Figure 9 for k=185. 
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More importantly, the small sample tradeoff in this model is the opposite of that 

for the AR(1) model.  For the TAR(1) model, the tradeoff is between over-estimating 
( )sφ or under-estimating m-life. In other words, the TAR model tends to under-estimate 

m-life relative to the AR model! It is thus not surprising that the studies utilizing this 
model estimated shorter half-lives, and the Monte Carlo analyses in that literature 
suggested that using an AR(1) model to estimate half-life when the DGP was a TAR(1) 
will tend to produce over-estimates. For instance, Obstfeld and Taylor (1997) have shown 
this tendency in their investigation of the law of one price across various cities in the 
U.S.A.  
 
5.3. The smooth transition autoregression (STAR) model 
 

We now consider the STAR model, introduced in Granger and Teräsvirta (1993) 
as a promising non-linear model, and recently employed by Michael et al (1997), Taylor 
and Sarno  (1998), Taylor et al (2001), and Baum et al (2001) to address the PPP-puzzle.  
The STAR model takes the form: 

 
*[ ]   [ ] [ :  ] ,1 1

p pq q q qt tj t j j t jj j t dµ β µ β µ θ µ ε− = − + − Φ − +∑ ∑− −= = −  

 
where { }tq  is a stationary and ergodic process with mean µ , 2~ (0, )t iidε σ , and 
( , )θ µ +∈ × . The transition function [ :  ]t dqθ µ−Φ −  determines the degree of mean-
reversion,19 and is controlled by the parameter θ .  We shall consider a similar model with 
an exponential transition function, which is called the Exponential STAR (ESTAR) 
model.  Taylor et al (2001) proposed this model with 1p d= = :  
 

* 2 2
1 1 1 1 1[ ] [ ](1 exp{ [ ] })t t t t tq q q qµ β µ β µ θ µ ε− − −− = − + − − − − +  

 
To further simplify the model, we consider the case where *

1 11,  1,  0β β µ= = − = : 
 

2 2
1 1( ) (1 e x p { [ ] } )t t t tq q qµ µ θ µ ε− −= + − − − − +  

 
This leaves us with the single parameter θ  for the numerical calculation and 

estimation of m-life and ( )sφ  functions at various parameter values.20 The various 
parameter values yielding different half-lives are summarized in Table 6. Consider the 
case of θ =0.16, with a 3-year half-life.  In this case, we can see in Figure 10 that the 

                                                           
19 The transition parameter θ  determines the speed of transition between two extreme regimes.  When 

0Φ = (no transition), the model becomes a linear AR (p).  At the other extreme of 1Φ = , the model 
becomes a different AR(p) with a different speed of mean reversion if * 0jβ ≠ for some  j. 
20 We consider [0,1]θ ∈ .   As 0θ ↓ , the process approaches a random walk.  As 1θ ↑ , the process 
becomes purely stationary.  Thus we can expect higher rates of mean reversion for higher values of θ . 
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nonparametric estimates with k=3.5 can match the numerical m-life function (see also 
Table 7). However, at this value of k, ( )sφ is under-estimated.   

 
In other words, the ESTAR model produces the same trade-off as the AR(1) 

model: we can either over-estimate m-life or under-estimate ( )sφ . In fact, we can rank-
order the inherent levels of implicit smoothing in the three models, and conclude that the 
ESTAR model tends to over-estimate m-life relative to the TAR model, and under-
estimate it relative to the AR model. For instance, Taylor et al (2001) have shown that the 
estimated half-life in the ESTAR model with a 20% shock was in the range of 18~24 
months, which is considerably shorter than the stylized fact of 3~5 years half-life. 
 
6. Monte Carlo and empirical analysis of AR, TAR and ESTAR estimators 
 

In section 5, we have shown that there are various tradeoffs between fitting the 
overall dynamics and obtaining a satisfactory estimate of half-life. In recent years, non-
linear models of real exchange rate processes were proposed, and the literature has 
focused on showing that linear AR estimates of half-life are biased when the true data 
generating process is non-linear. For instance, Taylor (2001) and Shintani (2002) 
hypothesized a TAR(1) model of the data generating process, and performed Monte 
Carlo analyses for AR(1) estimates under that maintained hypothesis. Those Monte-Carlo 
analyses suggested that the AR(1) model over-estimates the process half-life when the 
true DGP is a TAR(1). Similar results were obtained by Taylor and Sarno (1998) and 
Taylor et al (2001) using a STAR specification of the DGP. 

 
To assess the effects of model mis-specification more fully, we perform three sets 

of Monte Carlo analyses, with the DGP being specified once as an AR(1), once as a 
TAR(1), and once as an ESTAR (1). Under each of the three DGP specifications, we 
estimate all three models, to see if TAR(1) estimates of half-life are always lower than 
their AR(1) counterparts, etc. 

 
For easy comparison with earlier Monte Carlo results in the literature, first 

consider the results under the maintained hypothesis of a TAR(1) DGP, reported in Table 
9(b). We generate simulated data samples of length 312, and for each simulated sample 
we estimate the parameters of each of our three models: AR(1), TAR(1) and 
ESTAR(1).21 For each given parameterization of the TAR(1) DGP, allowing for different 
values of ρ  and c (see section 5) and a fixed value of σ , we obtain four numerical 
calculations of m-life (one for the true parameters and DGP, and one for each of the three 
estimated models). We can see in Table 9(b) that the AR(1) model overestimates half-life 
quite significantly, in accordance with the earlier Monte Carlo results found in the 
literature. Since the TAR(1) model is correctly specified, estimated half-lives under that 
model do not differ significantly from their numerical counterparts when the parameters 
are known. Furthermore, since the ESTAR(1) model is a more flexible version of the 
                                                           
21 For estimation of the  TAR(1) model, we employ the best grid search and maximum likelihood 
estimation method used in Obsfeldt and Taylor (1997). 
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TAR(1) model, half-life estimates under the former are also very close to their numerical 
counterparts. 

 
The results are different, however, if we postulate the ESTAR(1) model as the 

DGP. Table 9(c) shows in this case that the TAR(1) model will have a higher tendency of 
over-estimating half-life, even compared to the AR(1) model. Similarly, if the true DGP 
is AR(1), we find in Table 9(a) that TAR(1) model also overestimates the most. In other 
words, within our class of models, the TAR(1) model only obtains a relatively short half-
life if it is the correctly specified model, otherwise it would tend to over-estimate half-life 
more severely than other linear and non-linear models under consideration. This Monte 
Carlo result is of particular interest given the empirical findings that follow. 
 

Figure 12 shows maximum likelihood estimates of the AR(1), TAR(1), and 
ESTAR(1) models for each of the five real exchange rates analyzed earlier in the paper. It 
is interesting to note that the TAR(1) model produces the longest m-life for all five series. 
In some cases (e.g. for the Japanese Yen), the level of over-estimation of m-life by the 
TAR(1) model relative to the ESTAR model is quite significant. The cases of the French 
Franc and the Deutsche Mark are particularly interesting, since both cases produce lower 
estimated m-lives under the AR(1) model relative to both the TAR and ESTAR models. 
Our Monte Carlo studies suggested that the TAR model would produce shorter half-life 
estimates than the AR model if the DGP was indeed a TAR process. Since the TAR 
model produced longer half-life estimates than the AR model for all of our series, this 
suggests that the TAR model is incorrect. More importantly, the estimated results from 
all three models tend to be qualitatively similar, in the sense that the difference between 
the shortest and the longest estimated half-lives is rarely large enough to make a 
qualitative difference for the validity of the medium-term PPP-hypothesis. Qualitatively, 
the estimated half-lives under all three models are less than two years for all series with 
the exception of the Japanese Yen. For the latter, the half-life is roughly two years under 
the ESTAR model, and three or more years under the AR and TAR models. In other 
words, if the goal was to obtain half-lives at or below two years for all series, one would 
only need to use the ESTAR model to resolve the PPP-puzzle.   

 
7. Concluding Remarks 
 
      A number of non-linear models have been proposed in the late 1990s to solve the 
second-incarnation of the PPP-puzzle: half-lives exceeding two years. In the immediately 
preceding analysis, we saw that the ESTAR model produces half-lives at or below two 
years for all five real exchange rate series considered in this paper. However, selecting a 
model to estimate ex post, based on meeting a half-life target that solves a supposed 
puzzle, is dubious at best. The space of non-linear models is quite large, and there is no 
doubt that for any fixed data set, one can find a model that produces any desired pattern 
of half-lives. Indeed, as we have seen in our Monte Carlo studies and in some of the 
empirical results, there are instances in which the ESTAR model would produce 
estimated half-lives that are longer than those obtained with an AR model. If we 
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happened to observe such a series, and if the AR model's half-life estimate was at the 
boundary of our acceptable set, we might be tempted to revert back to linear models of 
real exchange rate processes! In fact, if one fixes a single criterion (e.g. a half-life less 
than a particular value), and allows for an infinite class of models, the puzzle can only be 
in the eye of the beholder. 
 
 Instead, we propose that if non-linear models are entertained, their full dynamical 
structure should be analyzed, instead of focusing on a single linear measure of 
dependence, such as the half-life concept. Towards that end, we have devised numerical 
methods for computing measures of short memory in mean and short memory in 
distribution (a la Granger (1995)) to analyze the full dependence structure of any 
estimated non-linear model. In this regard, we would argue that the choice of a non-linear 
model to study any particular phenomenon (e.g. the behavior of real exchange rates) 
should be driven by theoretical and institutional considerations, rather than the model's 
ability to yield desirable parameter values. While the latter can be easily attained when 
using the infinite number of degrees of freedom afforded by selection from a very large 
class of models, it is also uninformative for the same reason. 
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Appendix 
 
We wish to show that maximization over all Borel sets A of initial conditions may be 
reduced to maximization over all singleton initial conditions. Since we have restricted 
attention to a finite grid approximation, we may construct a proof by induction. Thus, we 
first consider conditioning on two initial conditions relative to conditioning on one, in 
order to show that: 

0  00 * *{Pr( |  or ) Pr ( )}  {Pr( | ) Pr ( )}s s s sf fx B x i x j x B x B x i x B∈ = = − ∈ ≤ ∈ = − ∈  
 
We can re-write both the LHS and the RHS as follows: 
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We first verify the desired result for the case of positive LHS, the other case follows by 
symmetry: 0 0 *Pr( |  or ) > Pr ( )s f sx B x i x j x B∈ = = ∈ .  
We further assume without loss of generality that: 

0 0
0 0

0 0

Pr(  and ) Pr(  and )
Pr( |  )> Pr( |  )

Pr( ) Pr( )
s s

s s
x B x i x B x j

x B x i x B x j
x i x j

∈ = ∈ =
∈ = ∈ = ⇔

= =
>

 

Note that:   A B B A B A
a b b a b a

+
> ⇒ < <

+
  for , , , 0A B a b > .  

Setting 0

0

Pr(  and )

Pr( )
sx B x i

x i

A
a

∈ =

=
=  and 0

0

Pr(  and )

Pr( )
sx B x j

x j

B
b

∈ =

=
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inequality holds.  
 

Proceeding by induction, we can see that maximization over all Borel sets of 
initial conditions reduces on the finite grid to maximization over all single initial 
conditions. 
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< Table 1. k rule of thumbs’ bandwidth and half-lives >  

      
K Japan France U.K. Germany Swiss 
1 5 5 8 5 7 
2 33 15 22 20 23 
3 > 60 37 29 40 37 
4 > 60 55 32 56 45 
5 > 60 > 60 34 > 60 45 
6 > 60 > 60 35 > 60 53 
7 > 60 > 60 36 > 60 55 
8 > 60 > 60 37 > 60 56 
9 > 60 > 60 37 > 60 56 
10 > 60 > 60 37 > 60 57 

 
 
 

< Table 2.  Numerical calculation of half-lives and AR(1) model > 
     (unit, months) 

ρ =0.9439 σ  0.010 0.015 0.020 0.025 
1-year Half-life 12 12 12 11 

ρ =0.9715 σ  0.008 0.011 0.014 0.017 
2-year Half-life 23 23 23 22 

ρ =0.9809 σ  0.008 0.010 0.012 0.014 
3-year Half-life 35 34 34 33 

 
 
 
 

< Table 3.  Smoothing Factor k and and half-lives in AR(1) model >  
      (unit, months) 

ρ =0.9439 K 1 2 3 4 5 6 
σ =0.010 Half-life 7 11 11 11 11 11 
ρ =0.9715 K 1 2 3 4 5 6 
σ =0.008 Half-life 8 17 19 20 21 21 
ρ =0.9809 K 1 2 3 4 5 6 
σ =0.008 Half-life 8 20 25 27 28 30 
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< Table 4.  Numerical calculation of half-lives and TAR(1) model >  
     (unit, months) 

ρ =0.92 C 0.75 0.73 0.72 0.65 0.60 
 I(1) interval [0.25, 0.75] [0.27, 073] [0.28, 0.78] [0.35, 0.65] [0.40, 0.60]
 Half-life 36 28 25 14 12 

ρ =0.94 C 0.75 0.73 0.72 0.69 0.68 
 I(1) interval [0.25, 0.75] [0.27, 0.73] [0.28, 0.72] [0.31, 0.69] [0.32, 0.68]
 Half-life 47 37 34 26 24 

ρ =0.96 C 0.75 0.69 0.68 0.65 0.60 
 I(1) interval [0.25, 0.75] [0.31, 0.69] [0.32, 0.68] [0.35, 0.65] [0.40, 0.60]
 Half-life > 60 39 36 30 24 

 
 
 
 

< Table 5.  Smoothing Factor k and half-lives in TAR model >  
      (unit, months) 

ρ =0.92 c=0.75 k 150 170 185 190 200 
  Half-life 14 23 35 40 54 
 c=0.72 k 150 170 185 190 200 
  Half-life 14 22 34 40 58 
 c= 0.60 k 150 170 185 190 200 
  Half-life 16 27 42 49 > 60 

ρ =0.94 c=0.73 k 100 120 123 126 129 
  Half-life 20 32 35 35 38 
 c=0.68 k 100 120 123 126 129 
  Half-life 20 29 32 35 38 
 c=0.55 k 100 120 123 126 129 
  Half-life 20 29 32 35 37 

ρ =0.96 c=0.68 k 25 30 32 33 35 
  Half-life 24 31 35 36 41 
 c=0.60 k 25 30 32 33 35 
  Half-life 24 31 35 37 42 
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< Table 6.  Numerical calculation of half-lives and ESTAR(1) model > 

 (unit, months) 
θ  half-life 

0.12 57 
0.14 44 
0.16 36 
0.18 29 
0.20 24 
0.22 20 
0.24 17 
0.26 14 
0.28 12 

 
< Table 7.  Smoothing Factor k and half-lives in ESTAR model> 

   (unit, months) 
k θ =0.16 θ =0.20 θ =0.28 
1 5 5 5 

1.5 11 11 10 
2 18 18 17 

2.5 25 25 24 
3 32 32 31 

3.5 37 38 37 
4 43 43 43 
5 51 51 51 
6 57 57  57 
10 > 60 > 60 > 60 
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< Table 8(a).  Percentiles for ergodicity test  > 

   
Series % p- value < 0.05 % p- value < 0.1 

Japanese Yen 16 25 
French Franc 3 8 
British Pound 8 16 

Deutsche Mark 5 12 
Swiss Franc 5 10 

 
 
 
 

< Table 8(b).  Percentiles for mixing test  > 
   

Series % p- value  < 0.05 % p- value  < 0.1 
Japanese Yen 3 8 
French Franc 3 7 
British Pound 3 8 

Deutsche Mark 3 8 
Swiss Franc 3 8 
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< Table 9(a)  Simulation results: True DGP is AR(1) > 

    (unit, months) 

ρ  0.95 0.96 0.97 0.98 0.99 
AR(1) 

known parameters 
8 

(7,9) 
9 

(8,11) 
12 

(10,14) 
16 

(12,19) 
23.5 

(16,31) 
AR(1) 

Estimated parameters 
8 

(7,9) 
9.5 

(7,11) 
12 

(9,15) 
16 

(11,20) 
22.5 

(14,30) 
TAR(1) 

Estimated parameters 
9 

(7,11) 
11 

(8,14) 
14 

(10,19) 
18 

(13,26) 
23 

(15,33) 
ESTAR(1) 

Estimated parameters 
8 

(7,10) 
9 

(7,12.5) 
12 

(8,16) 
14 

(10,20) 
18.5 

(12,27) 
Note : Fix σ =0.01.  Median of calculated half-lives with 25th and 75th 
percentiles in parenthesis. Total 100 replications. 
  

 
< Table 9(b)  Simulation results: True DGP is TAR(1) > 
    (unit, months) 

c 0.90 0.80 0.70 0.60 0.50 
TAR(1) 

Known parameters 
17 

(10,28) 
17 

(10,29) 
16 

(11,28) 
17 

(10,30)
19.5 

(12,32) 
AR(1) 

Estimated parameters 
22 

(10,28) 
22 

(10,49) 
22.5 

(13,49) 
22 

(11,53)
24 

(15,46) 
TAR(1) 

Estimated parameters 
18.5 

(10,35) 
18.5 

(10,34) 
19.5 

(13,31) 
18.5 

(10,33)
23 

(14,33) 
ESTAR(1) 

Estimated parameters 
15.5 

(9,30) 
16.5 

(9,30) 
16 

(11,29) 
16 

(8,33) 
18.5 

(12,31) 
Note : Fix ρ =0.97σ =0.01.    

 
< Table 9(c)  Simulation results: True DGP is ESTAR(1) > 

    (unit, months) 

θ  0.50 0.40 0.30 0.20 0.10 
ESTAR (1) 

Known parameters 
7 

(6,8) 
9 

(8,9) 
11 

(9,12) 
15 

(11,17) 
20 

(15,28) 
AR(1) 

Estimated parameters 
10 

(8,11) 
11 

(10,13)
14 

(11,16) 
17 

(12,22) 
21.5 

(15,32) 
TAR(1) 

Estimated parameters 
10 

(9,11) 
11 

(10,14)
14 

(11,17) 
17.5 

(12,22) 
21.5 

(16,33) 

ESTAR(1) 
Estimated parameters 

7 
(6,8) 

8 
(7,10) 

10 
(8,13) 

13 
(10,17) 

17 
(12,27) 

Note : Fix µ =0.5, σ =0.1. 
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< Figure 1. m-life and ( )sφ  of Japanese Yen > 
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< Figure 2. m-life and ( )sφ  of French Franc > 
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< Figure 3. m-life and ( )sφ  of U.K. Pound > 
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< Figure 4. m-life and ( )sφ  of Deutsche Mark > 
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< Figure 5. m-life and ( )sφ  of Swiss Franc > 
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< Figure 6.  PPP and Non-persistence measures: AR(1) –1 year HL> 
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< Figure 7.  PPP and Non-persistence measures: AR(1) –2 year HL> 
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< Figure 8.  PPP and Non-persistence measures: TAR (1) –2 year HL> 
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< Figure 9.  PPP and Non-persistence measures: TAR (1) –3 year HL> 
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< Figure 10.  PPP and Non-persistence measures: ESTAR (1) –3 year HL> 
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< Figure 11.  PPP and Non-persistence measures: ESTAR (1) –1 year HL> 
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           < Figure 12. m-lives and non-linear models > 
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(c) British Pound 

 

(d) German Mark 
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(e) Swiss Franc 
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