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Abstract

In this paper, we propose the use of bootstrapping methods to obtain correct
critical values for dating breaks. Following the procedure proposed in Banerjee,
Lazarova and Urga (1998), we consider the case of estimating a system with two
or more marginal processes and a conditional process. First, the location of the
breaks in marginal models is estimated. Next, the marginal models are imposed on
the conditional model to form a reduced form system. The conditional model with
its own breaks is then estimated. The estimation of the break dates is sequential.
Break dates are estimated via two alternative procedures: including estimated break
dates one by one or splitting the sample. Inclusion of additional breaks or splitting
samples are repeated until a criterion for stopping is satisfied. In this paper we
propose bootstrap tests as criterion for stopping sequential search. This procedure
allows to improve the estimators to avoid excessive bias and prove to be stable in
the case of both stationary and non-stationary series. Finally, we illustrate the
methods by modelling the money demand in United Kingdom.

Keywords: Structural Breaks, Sequential Testing, Bootstrap.
JEL Classification: C10, C12, C13, C15.

∗We wish to thank participants to the International Conference on: “Modelling Structural Breaks,
Long Memory and Stock Market Volatility” (Cass Business School, London, 6-7, December 2002) for
discussions and comments. C. de Peretti thanks Sandrine Lardic and Valérie Mignon for the invitation to
present the paper at the 2e Journée d’économétrie: “Développement récent de l’économétrie appliquée à
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1 Introduction

In recent work, methods for dating break using the supremum and other functional forms
of processes based on standard statistics have been established (Andrews (1993; 2003);
Andrews and Ploberger (1994); Hansen (n.d.)). The works published recently by Bai
(1997; 1999), Bai and Perron (1998) and Culver and Papell (1997) among others have
extended Perron’s (1989) analysis not only to the case where the break date is unknown
but to a scenario where the series may be broken, both in trend and in mean, more
than once. One of the main difficulties posed by this literature is the calculation of
the critical values of a significance test for the break for a particular data generation
process (DGP), especially for a system of equations. The paper by MacKinnon (1994),
among others, has emphasised the usefulness of response surfaces that may be used to
recompute critical values under changes to the DGP such as sample size, signal-noise
ratio, unconditional mean etc. Here, we propose the use of bootstrapping methods as
another way of overcoming the difficulty of obtaining the useful critical values 1.

Our work originated and expands a companion work by Banerjee, Lazarova and Urga
(1998) where the authors estimated a system of equations consisting of a conditional
process (the variable that we want to explain) and two marginal processes (explanatory
variables). They propose the following general estimating procedure to detect breaks.
The breaks are defined as exogenous changes in the mean and in the trend of the pro-
cesses. They can be modelled with dummy variables. First, the locations of the breaks
in marginal models are estimated. Next, the marginal models are integrated into the
conditional model to create a reduced form of the system. Following the estimation of
the marginal models, the conditional model with its own breaks is estimated. The es-
timation of the break dates is sequential. Break dates are estimated by two alternative
procedures: one method involves including estimated break dates one by one by including
dummies, estimating each of them over the full sample, while the other requires splitting
the sample before each subsequent estimation. Inclusion of breaks or splitting the sample
are repeated until a criterion for stopping is satisfied. The final stage of the procedure
is to impose the break dates from the marginal models into the conditional model and
repeat the sequential research for the conditional model. What emerges at the end are
congruent marginal and conditional models with the breaks in all the series and the re-
lations of interest properly identified having easily interpretable coefficients. However,
the main unresolved issue in that paper was that no criterion for stopping the sequential
search for breaks was developed, so the searching was run until the exhaustion of the
degrees of freedom.

Here we fill this gap. We propose bootstrap stopping (parametric and nonparametric)
tests for the cases of stationary and non stationary series (when the series are integrated
of order one (I(1)) and when the regressors are nonstationary in the sense of I(1) and/or
having structural breaks that cause difficulties in calculating the statistic distributions
that are not pivotal). Before presenting the test procedures, we describe two break point
estimators that we use, given that the test statistics are based on these estimators and also
to improve the performance of the estimators to avoid excessive bias. One is asymptotic,

1A valuable account of the usefulness of bootstrap methods in time series econometrics has appeared
in a recent issue of Econometric Reviews (1996) and provides useful background for the discussion in
our paper. There is an extensive literature on bootstrapping both in statistics and econometrics. In
addition to the journal cited above, see, for example, Efron and Tibshirani (1993) and references therein,
Freedman and Peters (1984a; 1984b) and Basawa, Mallik, McCormick, Reeves and Taylor (1991) and
Horowitz (2001).
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and the other bootstrap. For each date, compute the F -statistic ,Ft, for testing the null
hypothesis of no break. The asymptotic break point estimator is defined as the date at
which the Ft-statistics reach their maximum. The bootstrap break point estimator is
defined as the date where the bootstrap P-values reach their minimum. Two types of
bootstrap are presented, one parametric and another non-parametric. However, in some
cases, the estimations of the first dates are not consistent. The inconsistency is due to
the model misspecification because of the lack of knowledge of the other(s) break date(s)
during the first estimations. To solve this problem, a possible solution is a simultaneous
estimation of two or more breaks, combined with bootstrap methods. Unfortunately
this procedure is too computational intensive. In order to overcome this problem and to
reduce the estimation bias, we may re-estimate the first breaks after the estimation of
the next ones. In this way, the re-estimation of the first break will be done conditionally
on the knowledge of the next breaks. These second estimations will have considerably
less bias than the first ones without taking account other breaks. One the other hand,
we also propose a modified bootstrap estimator which will identify an optimal number of
bootstrap replications to reduce the computation time.

We then propose tests for stopping the sequential search. We want to stop when the
last estimated break is not significant, that is when the null of i − 1 breaks against the
alternative of i breaks is not rejected. The conventional test of this hypothesis is to com-
pare the computed F -statistic against the 0.05 critical value of the relevant asymptotic
(or even bootstrap) F -distribution. However, this is not appropriate in our case as the
time of break is not determined exogenously. To obtain a critical value that takes into
account that the breaks are chosen endogenously on the basis of the maximum F -value
or minimum bootstrap P-value, there are two approaches: the Ploberger’s (asymptotic)
approach and the bootstrap approach. The bootstrap errors terms are generated in the
same way than for the estimate, parametrically or non-parametrically. This time, how-
ever, we perform the whole estimating procedure for building a test statistic for each
bootstrap sample, such that the bootstrap P-value can be computed. We propose two
test statistics for discriminating the hypotheses, they are based on the two estimators
cited above. The combination of the bootstrap approach for the test with the bootstrap
estimation of the break point can be called a double bootstrap.

We provide Monte Carlo experiments that study the finite sample performances of
the statistic tests and of the estimators in the context of stationary and nonstationary
series, I(1) and with structural breaks in the regressors. We provide the bias and the
standard deviations of the estimators, and the P-value plots and the power-size curves of
the tests.

Finally, we apply our methods to the case of money demand in United Kingdom
explained by interest rate and income.

The remaining of the paper is organised as follows. Section 2 introduces the procedures
for dating breaks, while in Section 3 we describe the break point estimators, both the
asymptotic and the parametric and nonparametric bootstrap versions (3.1), the modified
bootstrap estimator (3.2) and a procedure to improve the estimators to avoid excessive
bias (3.3). In Section 4 we propose bootstrap tests as criterion for stopping sequential
search and in Section 5 we report the results of the evaluation of the performance of
the estimators and the tests using Monte Carlo experiments tuned to account for the
characteristics of the real series of money demand, income and interest rate for UK used
in Section 6, where we report an illustration of the methods proposed by modelling the
money demand function for UK. Section 7 concludes.
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2 The main methods: the sequential estimation pro-

cedures

In this section, we report the two procedures for dating breaks as proposed in Banerjee,
Lazarova and Urga (1998). For an exposition of the proposed methods, we use a very
simple system. Our justification for doing so is twofold. It keeps the analysis simple and
at the same time provides easily interpretable results.

Consider estimating the following system:

yt = µ0 + δ0t +

L0∑
i=1

ρ0,iyt−i +

I0∑
i=1

(α0,iM0,i,t + β0,iD0,i,t) +

+
N∑

n=1

(anxn,t−1 +
In∑
i=1

(ηn,iMn,i,t + νn,iDn,i,t)) + ut, (1a)

xn,t = µn + δnt +
Ln∑
i=1

ρn,ixn,t−i +
In∑
i=1

(αn,iMn,i,t + βn,iDn,i,t) + en,t, (1b)

for t = 1, 2, . . . , T and n = 1, 2, . . . , N , where yt is a variable denoting the conditional
process, here taken to be the real money demand, xn,t is a variable denoting either of
the marginal processes, here taken to be income and interest rates. ut and eit represent
mutually uncorrelated white noise processes. The dummy variables, designed to capture
breaks in mean and linear trend, are defined as follows:

Mn,i,t = I(t ≥ bn,i), n = 1, 2, . . . , N, i = 1, 2, . . . , In,

Dn,i,t = (t− bn,i + 1)I(t ≥ bn,i), n = 1, 2, . . . , N, i = 1, 2, . . . , In,

where bn,i stands for the date of break.
The structure and notations used in the system reflect the working of the procedure.

First, the locations of the breaks in marginal models are estimated. Next, the marginal
models are imposed on conditional model to create a reduced form of the system. i.e. the
marginal processes are used as explanatory variables in the conditional regression as well
as the breaks found in the marginal processes in addition to the own constant and trend
terms and the own lag variables of the conditional process. That means that the break
dummies of the marginal models can appear with different coefficients in the conditional
model. Following estimation of the marginal models, the conditional model with its own
breaks is estimated.

Break dates are estimated by two alternative procedures. One method involves in-
cluding break dates one by one, estimating each of them in full sample, while the other
require splitting the sample before each subsequent estimation. These two different but
related methods are now described.

2.1 Including the breaks one by one

Under this method, a break date in a given process is estimated first. Further, a dummy
for the break is included in the specification of the model and another break date is
estimated, always using the whole sample. Inclusion of additional breaks is repeated
until a criterion for stopping is satisfied, as we will describe in section 4.
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For example, consider the following marginal model:

xt = µ + δt + ρxt−1 +
I∑

i=1

(αiMi,t + βiDi,t) + et, (2)

for t = 1, 2, . . . , T , where

Mi,t = I(t ≥ bi), i = 1, 2, . . . , I,

Di,t = (t− bi + 1)I(t ≥ bi), i = 1, 2, . . . , I,

We employ the following sequential procedure. In each step i, a break date is estimated,
namely b̂i. The first step is carried out without any break in the model. In the next step,
i + 1, two dummies:

• M̂i,t = I(t ≥ b̂i) and

• D̂i,t = (t− bi + 1)I(t ≥ b̂i),

are included into the regression and the estimation procedure is repeated to obtain another
break 2. The procedure continues in this manner until a criterion for stopping is satisfied.

2.2 Splitting the sample

Under the method of splitting sample, the first step is carried out precisely as in the
method of adding breaks one by one. Our next step is to repeat the estimation procedure
in each of the two subsamples created by splitting the sample at the estimated break
point and to continue this procedure until a criterion for stopping is satisfied 3.

2.3 The conditional process

The final stage of the procedure is to impose the break dates from the marginal models
on the conditional model and repeat the sequential research for the conditional model.
What emerges at the end are congruent marginal and conditional models with the breaks
(potentially) in all the series and relations of interest properly identified.

3 The break point estimators and our modifications

In this section, we describe the break point estimators. This will allow us to introduce our
modifications dealing with some problems encountered in practice and it will be useful
to understand the test statistics that will be introduced in Section 4.

2It is worth noticing that we cannot test the presence of a break date near a previous break date
because the regressor matrix X has not numerically full rank, so we must exclude any dates too close
to the previous break dates depending the numerical invertibility of the X ′X matrix. Indeed, there
is no loss of effectiveness, since in practice, we cannot distinguish two break dates that are too close.
Moreover, in real data, a break does not necessarily come instantaneously at a date b, but it can come
over time a little more progressively or with a little pre-break. So, there would be reason to believe
that any breaks found within such a short neighbourhood might in fact be reflective of the same break
and repeated procedure would prove to be misleading in its finesse. Thus, this including procedure can
exclude too many dates that are in fact the realisation of only one break date.

3 The same remark than in the previous footnote concerning the fact that the regressor matrix X has
not numerically full rank holds, since near the border of the dates the X ′X matrix is not numerically
invertible but this should be solved by trimming.
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3.1 The break point estimators

We estimate the regression for each admissible date of break t, namely for t = 3, . . . , T−1
except for the dates of the breaks already included in the regression, (in fact, for a small
neighbourhood around the dates), using the first observation x1 as an initial condition.
For each t, compute the F -statistic, Ft, for testing the null hypothesis of no break,
αi = βi = 0|bi = t.

3.1.1 Asymptotic estimate

A break point estimator b̂i is defined as the time t at which the Ft-statistic reaches its
maximum.

b̂i = argmax{Ft} = argmin{1− F̂as(Ft)} for all admissible t , (3)

where F̂as is the relevant asymptotic estimation of the F -distribution under the null of
no more break.

3.1.2 Parametric and non parametric bootstrap estimates

We bootstrap the set of Ft-values adopting the following approach. The regression (2)
under the null of i− 1 breaks imposed is run,

xt = µ + δt + ρxt−1 +
i−1∑
j=1

(αjMj,t + βjDj,t) + e0
t (4)

The basic idea of this procedure is that the modified residuals from the null regression
are resampled with replacement. Then the estimated parameters together with bootstrap
error terms are used to create a recursive bootstrap sample x∗t following the equation

x∗t = µ̂ + δ̂t + ρ̂x∗t−1 +
i−1∑
j=1

(α̂jMj,t + β̂jDj,t) + e∗t , t ≥ 2, (5)

x∗1 = x1, (6)

where e∗t denotes the bootstrap error terms and where parameters with a hat have been
estimated in the regression (4). The resampling is repeated Best times, so that Best

bootstrap samples are obtained. For each of the bootstrap samples the regression (2)
with the break date fixed at t for all admissible t is estimated and the set of Ft-statistics
of the hypothesis αi = βi = 0 is computed. The bootstrap F -distributions (obtained in
the manner of empirical distribution) for each time of break t are used to get the set of

P values for each of the Ft-statistics (Christiano (1992)). A break point estimator b̂i is
defined as the t at which the bootstrap P values attain their minimum.

b̂i = argmin{1− F̂bs,t(Ft)} for all admissible t , (7)

where F̂bs,t is the bootstrap estimation of the F -distribution for testing no more break
against one more break at the date t, under the null of no more break.

For each bootstrap P value, the same set of random number is used to reduce the
experimental error in the comparison of the methods.
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For the parametric bootstrap, we draw the bootstrap error term from a N(0, σ̂2
0), where

σ̂2
0 is the estimate of the variance of the error terms under the null.

In this case of non-parametric bootstrap the e∗t are generated by re-sampling from the
vector with typical element ẽt constructed as follows:

1. let dt be the tth diagonal element of P<X>, the matrix projecting onto the space
spanned by the regressor matrix X,

2. divide each element of the residuals ê by
√

1− dt,

3. re-centre the resulting vector,

4. re-scale it so that it has variance σ̂2
e .

This type of procedure is advocated in Weber (1984).

3.2 The number of bootstrap replications

A natural question we pose at this point is what are the consequences if there are no suffi-
ciently large number of bootstrap replications. It is well known that the main consequence
is that the bootstrap P value can be non-distinguishable from 0 in some circumstances (if
the P value is small, close to zero), depending on the data and particularly on the error
distribution and on the autoregressive parameter.

In the context of a test, it is not very important if the number of bootstrap replications
is not sufficiently large to distinguish the bootstrap P value from 0 in the case of typical
tests at levels 0.05 or 0.01. So, if we obtain a numerical P value equal to zero, we could
conclude that the true P value is smaller than the significance level of the test and so
reject the null.

However, in the case of our estimation method, we must take the argmin of the set
of the bootstrap P values. If the number of bootstrap if not sufficient, there is a set of
dates t for which the associated P values are numerically equal to zero. Thus, the argmin
of this set is not unique, and we cannot determine the estimate.

With real data, when a large number of bootstrap replications is required for the
estimation, one can verify that the number is sufficient by regarding if there is at least a
computed P value that is equal to zero. If it is the case, the researcher must do again the
estimation procedure with a larger number of bootstrap until there is no zero P value. As
the last step, we suggest to do again the estimation with more bootstrap to avoid random
effect due to the fact that the previous bootstrap number is just sufficient to distinguish
a P value from zero.

There are two other cases where taking a too large bootstrap number can be problem-
atic - the case of Monte Carlo experiments and the case of double bootstrap test that is
presented later in the paper (Subsection 4.2). In both the cases, the problem is that we
do a second loop containing the bootstrap estimation loop, and it can be computationally
costly. For the Monte Carlo experiments, there is a loop over the simulated samples, and
for each sample, there is a loop over the bootstrap samples used to compute the bootstrap
estimate. Moreover, the bootstrap number can vary depending on the sample, and we
must verify that it is correct for each sample, that can take more time again. For the
double bootstrap test, there is a loop over the bootstrap samples used to compute the
bootstrap P value, and for each of the bootstrap sample, there is a loop over a second set
of bootstrap samples used to compute the test statistic because this statistic is based on
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the same principle than the bootstrap estimation. As for the Monte Carlo case, we must
verify that the bootstrap number is correct for each bootstrap sample used for P value.

Modified bootstrap estimator To avoid the problem due to insufficient bootstrap
replications, we propose the following break date estimator: First, we take a not too small
bootstrap number to make the method not too poor. We must take more bootstrap than
for a test, but less than what is needed normally. Second, we compute the set

B̂i = argmin{1− F̂bs,t(Ft)}
for all admissible t. If the bootstrap number is sufficiently large, B̂i = {b̂i}, where b̂i is

the previous bootstrap estimator. Otherwise, B̂i is not unique, and the estimate is not

well defined. We can then define a new estimator
̂̂
bi from B̂i. We propose here simply

the average of the break dates in B̂i:

̂̂
bi =

1

#B̂i

#cBi∑
1

t ∈ B̂i,

#( . ) represents the number of elements in a set.
This estimator is consistent because we have

B̂i
T→∞−→ {b̂i} T→∞−→ {bi},

and thus ̂̂
bi

T→∞−→ b̂i
T→∞−→ bi.

Of course,
̂̂
bi is a less efficient estimator than b̂i, and it must not be used with true data

for which the exact detection of a break is very important. Nevertheless, for Monte Carlo
experiments, where we are interested only by the average behaviour of the methods,

the use of
̂̂
bi instead of b̂i can be sufficient to compare the bootstrap method to the

asymptotic one or to obtain a good idea of the performances of the bootstrap. For the
double bootstrap test, it is more delicate, since the less precise is the underlying estimate,
the less efficient is the resulting test. But exact estimation of the break date is less crucial
since we are more interested in the distribution of a test statistic to make inference. Thus,
we can accept a small loss in efficiency of the test to gain in computation time.

3.3 A simple simulation exercise to explore the problem of bias

In this section we illustrate a way to improve the estimators to avoid excessive bias.

3.3.1 The bias

Let us estimate the following DGP:

xt = δt + ρxt−1 + β1D1,t + β2D2,t + et (8)

et ∼ N(0, 1)

t ∈ {1, . . . , T}
D1,t = (t− T1 + 1)I(t ≥ b1)

D2,t = (t− T2 + 1)I(t ≥ b2)

where the parameter values are:
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Parameters Values
δ −0.05
ρ 0.1
T 512

Parameters Values
β1 0.1
b1 [T/3] + 1

Parameters Values
β2 −0.1
b2 [2T/3] + 1

and where [ . ] is the integer part. We choose the Gaussian distribution for the errors and
ρ = 0.1 for the autoregressive parameter to show that the problem does not come from
the leptokurtic characteristic of the data or from a distortion of the statistic distributions.
From a close inspection of figure 1 it is evident where the breaks are but the estimators
are not able to pick them up despite a sample size of T = 512. Figure 2 shows the Ft-

Figure 1: The simulated time series

statistics of Christiano (1992) method using first the asymptotic distribution, and second
the parametric bootstrap distribution with Best = 1024. The bootstrap Ft statistics are
calculated as follows

F̂−1
as (1− pbs,t),

where pbs,t are the bootstrap P values. The zero bootstrap P values are replaced by the
min of the P values. The aim of this transformation is to compare both the asymptotic
and the bootstrap statistics. One can see that the estimate (the max of the curve) is
totally spurious. Figure 3 shows the four sets of Ft-statistics (for each step) of sequential
search procedure using the asymptotic distribution. One can see that the first estimate
(in fact, it is equal to Christiano (1992) first estimate) is totally spurious. The second
estimate detects correctly one of the two breaks (and even the second). The third estimate
detects very well the second break. The time series geometry leads the first estimation b̂1

to choose the break date such as b1 = [T/2] + 1, even for large sample size (T ≤ 1024).
Perron (1989) showed that if the estimation of only one break is processed when there

are two breaks, the estimator converges to one of the two breaks. But in finite sample,
this can appear differently. In our situation, none of the breaks dominate the other (they
have equal amplitude and symmetric location). Thus, the first estimation must choose
one of the breaks randomly (and the second estimation must choose the other break).
But the presence of the second break when estimating the first one biases the estimation.
Since the location of the breaks is symmetric, the first estimation is biased and the
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Figure 2: The Christiano method

result is somewhat between the two breaks. We can conclude that this first estimate is
inconsistent since the second and the third estimations detect correctly the first and the
second breaks.

3.3.2 A solution illustrated via a simple experiment

The inconsistency is due to the model misspecification because of the lack of knowledge of
the other(s) break date(s) during the first estimations. A simultaneous estimation of two
or more breaks, combined with bootstrap methods, is too complex and computationally
expensive. So, a basic idea is to re-estimate the previous breaks with the knowledge of
the following breaks. In what follows we illustrate the procedure with a simple example
with two breaks: we estimate a first break, then, a second break, as in the classical
sequential search. But in the new search, we re-estimate the first break. Figure 4 shows
the Ft-statistics of the new sequential search using the asymptotic distribution. We only
re-estimate the first break once. If there are only two breaks, we can adopt a two step
method, and re-estimate the second break, and then the first until a precision criterion
stop the procedure. If there are three breaks, we can do the following:

1. estimate the first break,

2. estimate the second break, and then re-estimate the first break,

3. estimate the third break, re-estimate the second break, and re-estimate the first
break.

If there are more than two breaks, a two step method can also be constructed, but only
one iteration can be sufficient.

And what about the computation time? Recall that the number of breaks is denoted
by I. Let us assume that the stopping test performs correctly. For the classical sequential
search, the number of break estimations, let it be denoted Îclassic, is equal to I, so

Îclassic = O(I).

10



Figure 3: The sequential search

For the new sequential search, the number of estimations, say Înew, is equal to (I +1)I/2,
so

Înew = O(I2).

If the number of breaks I is not too large, the loss of computing time is not too critical.
This is a reasonable assumption, since, if I is too large compared to the sample size T ,
it is more suitable to use another approach to model the time series, as, for example,
a random threshold process that switches between regimes, or a long range dependence
process that can approximate (under certain conditions) a structural break process, see
Diebold and Inoue, (2001). For comparison with the time computing of a simultaneous
estimation of all the breaks, let this be denoted by Îsim, we present now the computing
time in terms of the number of statistics calculated at a date t:

Îclassic = T × I,

Înew = T × (I + 1)I

2
,

Îsim = T I .

Moreover, one must assume that one knows the number of breaks. Algorithms for opti-
mising a search in a multidimensional space can reduce the computing time of the last
type of estimation, but it stays exponential, and thus, dominates the others when I
increases.

The problems of the Christiano (1992)’s method are that, since there is only one step in
its search, in which it estimates all the breaks, all the estimations can be non consistent
and/or some break dates can be difficult to detect. The advantage of the sequential
search is that, since the model is more flexible for each step, the following estimations
will detect the break dates with less bias at each step. Thus, in the estimated date set,
there will be all the true break dates, but also spurious dates. If there are spurious
dates, they correspond to the first estimations, which should be the most significant !
The new sequential search solves this problem. In an extreme case, if the time series
are fractal, all the estimations can be spurious. But in this case, the distinction between

11



Figure 4: The sequential search with reestimation

this sort of structural breaks and long memory (fractal) property can have no sense.
Thus we can restrict our analysis to the reasonable case of when the sample is finite,
there is a finite number of breaks over. For comparison, we programmed a simple kernel
estimation. We used a window in which we estimate an eventual break date in the same
way than Christiano (1992). This method is more robust but it uses less information
than Christiano’s method and than the sequential search method, and thus, it can be
less powerful. In fact, the sequential search uses all the information in the sample. One
cannot find a method that uses more information. As for all kernel estimation, we are
faced to the problem of the choice of the window. When the window grows, the method
converges to the Christiano (1992)’s method with its disadvantages. If the window is too
small, the detection will be too random (not powerful), and it cannot detect the breaks.

4 Tests for stopping the sequential search

As already mentioned earlier in the paper, we want to stop the sequential serach when
the last estimated break is not significant, that is when the null of i − 1 breaks against
the alternative of i breaks is not rejected.

About the consistency of the estimation of the number of breaks, Bai and Perron
(1998) provide some theoretical proofs for the consistency of the estimation of the num-
ber of breaks by using sequential tests. One of their remarks is that asymptotically,
the significance level of the tests must decrease to 0 when T −→ ∞, otherwise, the
number of breaks will be asymptotically over-estimated. Conversely, in finite samples,
the significance level must increase to gain power for that the number of breaks is not
under-estimated. However, since the significance level cannot be reasonably increased
too much, in practice, the number of breaks can be over-estimated. We think that there
is no solution to this problem: it is a very basic problem in econometrics, if there is no
data enough, the significance of any variables cannot be detected. Each break is in fact
specified as a variable, thus, it is possible that it cannot be detected.

The conventional test of this hypothesis is to compare the computed F -statistic with
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the 0.05 critical value of the relevant asymptotic F -distribution. However, this is not ap-
propriate in our case as the time of break is not determined exogenously. Specifically, the
standard F -distribution critical values appear to be too low, causing excessive rejection
of the null hypothesis of structural stability. Even the bootstrapped F -distribution has
this problem, if the time of break is considered to be determined exogenously.

If we consider that bi is selected exogenously, the asymptotic P-value is

1− F̂as(max{Ft}) = min{1− F̂as(Ft)} for all admissible t,

where F̂as is the relevant asymptotic estimation of the F -distribution (under the null);
and the bootstrap P-value is

min{1− F̂bs,t(Ft)} for all admissible t,

where F̂bs,t is the bootstrap estimation of the F -distribution at the break date t. These
P-values turn out to be too conservative, bringing about a huge loss of power. Christiano
(1992) has come to the same conclusion in a similar case of search for breaks.

To obtain a critical value that takes into account the structure of our model, there
are two approaches: the Andrews and Ploberger’s approach and the bootstrap approach.
In these methods, we take into account the fact that the break was chosen endogenously
on the basis of the maximum F -value or minimum bootstrap P-value.

4.1 The Andrews and Ploberger’s approach (asymptotic)

If we use the asymptotic estimate of bi, Andrews (1993; 2003) and Andrews and Ploberger
(1994) tabulate critical values for the asymptotic distribution of the supremum of Gaus-
sian or χ2 set of variables, i.e., taking into account the endogenous character of the
selecting mechanism. If we use the bootstrap estimate of bi, there is no method in the
literature that computes the asymptotic P-value of the test. Moreover, in the case of
unit root series, or conditional series explained by a marginal series containing one or
more breaks, the statistics are neither pivotal nor asymptotically pivotal. The asymp-
totic distribution would be very difficult to calculate. Therefore, we do not develop this
approach.

4.2 The bootstrap approach

We bootstrap the set of Ft-values adopting the following approach.
To generate the bootstrap samples, we follow the same way as for the estimation. We

run regression (4) under null of i − 1 breaks imposed, such that the two dummies for
last (ith) estimated break are not included. The bootstrap errors terms are generated
in the same way as for the estimate (parametrically or non-parametrically). Then the
estimated parameters together with bootstrap error terms are used to create a recursive
bootstrap sample x∗t following Equation 6. The resampling is repeated Btest times, so
that Btest bootstrap samples are obtained. Btest is not necessarily equal to Best. Btest

must be chosen as for classical bootstrap tests, depending on the distortions, especially
on the skewness and the kurtosis of the statistics.

This time, however, we perform the whole testing procedure for each of these samples.
We compute the bootstrap P-value as follows. For each of the bootstrap samples the test
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statistic τ is computed. The test statistics can be either or both the following :

τ = max{Ft} equivalent to the use of τ = min{1− F̂as(Ft)}, (9)

τ = min{1− F̂bs,t(Ft)} for all admissible t . (10)

The bootstrap distributions of the statistic (obtained in the manner of empirical distri-
bution) for each admissible time of break t are used to get the P-values. This procedure
follows closely Christiano (1992).

The combination of the bootstrap approach for the test with the bootstrap estimation
of the break point can be called a double bootstrap. This type of bootstrap is computa-
tionally costly and we do not use it for Monte Carlo experiments, but we use it for real
data.

5 Monte Carlo experiments

In this section we evaluate the performances of the statistic tests and of the estimators
using Monte Carlo experiments. We provide the bias and the standard deviations of the
estimators, and the P value plots and the power–size curves of the tests.

5.1 Monte Carlo design

Each of the experiments contains S = 1024 replications. Each replication consists of
generating a simulated series on which we apply the methods. The data generating
processes (DGP) that we use are the set of processes defined by the equation 1b or 1a.
We use two types of DGP to generate the simulated series. For the first type of DGPs,
we do not impose a unit root hypothesis. For the second type of DGPs, we impose this
hypothesis 4. To be realistic, we choose the parameter values as the estimates from real
data set that we eventually modify (see Appendix A).

For the bootstrap methods, we choose: Btest = 99 and Best = 99. We saw that
even with a small number of bootstrap replications, chosen to save computing time for
simulations, the results are quiet robust. For the application with real data, we use
a more substantial number of replications. Since the convergence of the estimators is
very fast, we use only 3 reestimations for the “exogenous” asymptotic tests and 1 for
the endogenous bootstrap tests. In our experiments, the methods with splitting lead to
results close to the ones without splitting, and a little worse. So, we present results only
for methods without splitting. However, the methods with splitting could be useful when
the variance changes greatly before and after a break and if one does not want to specify
this feature in the model (it will be better if we do). It can be also useful to verify that
the method with splitting is stable.

At the end of a Monte Carlo experiment of S simulations, we obtain a set of S P-values
for each statistic test, and a set of S estimations for each estimator. Note that the tests
are run for each potential break date, so we obtain a set of P values for each of the tests
but also for each of the break date. We also obtain a set of estimations for each of the
estimators and for each potential break dates. We use the same set of random number
for each experiment to reduce the experimental error in the comparison of the methods.

4We use this DGP to have a first idea about the average performance of the method over a large set
of values for the parameters.
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The estimates of the bias and the standard deviations of the estimators are computed
as follows:

b̂ias = Ê(b̂i)− bi =
1

S

S∑
s=1

b̂i − bi,

standard error:
1

S − 1

S∑
s=1

(b̂i − Ê(b̂i))
2.

In case of multiple breaks, we suppose that the closest break is the one estimated by
the estimator. But the bias can lead to wrong conclusions concerning the effectiveness
of the estimators since: if a break is not in the middle of the time range, there are more
possible realisations for the estimator in a side of the break rather than the other. This
feature leads to a bias depending on the location of the break in the time range whereas
the histograms of the estimators display maxima almost exactly at the break. Then, we
decide to provide the maximum of the histogram of the estimators.

Remark 1: The choice of the sample size T and the standard deviation σe of
the model
Generally, in Monte Carlo experiments, σe is only a scale parameter and it does not have
any impact on the performances of the methods, and one presents the results for various
sample sizes. But in the case of structural breaks, σe is not a scale parameter compared
to the size of the break (intuitively, if σe is large, a break is less distinguishable from a
random shock). It is impossible to present here the results for all the combinations of
(T, σe), but we do not need so, since an experiment for a large T is equivalent (in the sense
of the information contained in the series) to a smaller T with a smaller σe. So, we decide
to present the results only for the sample size and the variance of our real data (as reported
later in this paper), that are realistic parameters for general macroeconomic series. For
information, we did simulations for T ∈ {256, 512, 1024} and various σe (between 0.1 and
10). Of course the performances of the methods become better as T and σe increase,
even though the results do not differ qualitatively. Thus, what we present is sufficient to
illustrate the behaviour of the methods 5.

Remark 2: How to calculate the first values of the simulated series
In the unit root case, the starting value of the series belong to the parameter set, thus,
to be close to real data, we put the simulated initial value equal to the first observation
of the real series. In the stationary case, the first observations of the real series cannot
be chosen because they are not necessarily generated from the distribution of the DGP
with our imposed hypothesis. If one does so, the consequence is that the estimators
do not distinguish these unlikely points with structural breaks. To solve this problem,
we calculate the distributions of the first observations, when it is easy, and we generate
simulated values from these distributions. But with exogenous regressors, it can be very
difficult. Therefore, we calculate only approximations of these distributions in this case,
then generate some additional points before time t = 1 for allowing the simulated series
to approach the true distributions, and then we truncate the series to obtain observations
between 1 and T .

5The full set of results is available on request from the authors.
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5.2 The case of a stationary marginal process

In the case of stationary time series, theory says that bootstrap method performs asymp-
totically better than the asymptotic method. But in finite sample, there are some rare
examples where the bootstrap is unstable. Moreover, in general, it can suffer from size
distortions. Nevertheless, the bootstrap tests in our Monte Carlo experiments have opti-
mal performances.

For calibrating our simulations, we can note, from our bootstrapped ADF tests, that
the UK interest rate is I(0). We then use it to guide us in the choice of the parameters
in our simulations.

5.2.1 Hypothesis of no break in the series

The estimated model of the UK interest rate under the hypothesis of no break is

xt = −0.7600 + 0.0158 t + 1.2898 xt−1 +−0.4385 xt−2 + et

et ∼ D(0, 1.8114,−1.2163, 6.8540)

t ∈ {1, . . . , 110}

where D is the modified empirical distribution of the residuals with (in brackets) its four
moments, i.e. mean, standard error, skewness, kurtosis respectively. In this case, the
performances of the estimators are not applicable since there is no break to estimate. For
the tests, we present the probabilities of rejecting the null hypothesis of “no break” against
“one break”. Since “no break” is the true, the probabilities are the true probabilities
of rejecting the null. These are the sizes of the tests. We decide to present also the
performances of the tests for testing “one break” against “two breaks”. That is, if the
first break is accepted (that arises in any cases), the true probabilities of rejecting the
null of “no more break (more than the one that was found)”, so, it is also sizes of the
tests. Figure 5 reports the results.

5.2.2 Hypothesis of one break in the series

The estimated model of the UK interest rate under the hypothesis of one break is

xt = −0.7124− 0.0097 t + 1.2284 xt−1 − 0.4512 xt−2 + 2.4520 Mt + 0.0004 Dt + et

et ∼ D(0, 1.7430,−1.3214, 7.0716)

t ∈ {1, . . . , 110}
Mt = I(t ≥ 47)

Dt = (t− 47 + 1)I(t ≥ 47)

Since this break is not necessarily significant in the original time series, we should generate
series that look breakless, but in this case we will not be able to measure the power of the
tests. Thus, we increased the size of the amplitude of the break compared to the series
by reducing by 2 the standard deviation of the error terms in the DGP for simulations:

et ∼ D(0, 1.7430/2,−1.3214, 7.0716).

To do this, we divide by 2 each component of the sample in which we draw the error
terms.
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Figure 5: Stationary case: No and One Break
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Table 1: One Break, Break Estimators

Estimator Mean Bias Standard Density
Deviation maximum

Asymptotic 50.5068 3.5068 18.9138 46.4375
Parametric bootstrap 51.7818 4.7818 18.4119 46.4375
Nonparametric Bootstrap 50.9116 3.9116 17.1371 46.4375

The performances of the estimators are applicable for the first break. The results are
presented in Table 1. Since there is only one break, there is no difference between with
or without splitting the sample.

The performances of the tests are assessed for the following hypothesis considerations:

1. “no break” against “one break” (power of the tests),

2. “one break” against “two breaks” (size of the tests),

3. “two breaks” against “three breaks” (size of the tests).

Since for the first break, the null hypothesis of no break is false and the alternative of
one break is true, the probabilities of rejecting the null are not the size of the tests but
the probabilities of accepting the alternative when it is true, what are called the powers
of the tests. See Figures 5 for the results.

5.2.3 Hypothesis of two breaks in the series

The estimated model of the UK interest rate under the hypothesis of two breaks is

xt = −1.7662 + 0.1404 t + 1.0713 xt−1 − 0.3956 xt−2

+1.8697 M1,t − 5.0104 D1,t − 0.1583 M2,t + 0.0056 D2,t + et

et ∼ D(0, 1.5789,−0.5210, 3.4676)

t ∈ {1, . . . , 110}
M1,t = I(t ≥ 48)

D1,t = (t− 48 + 1)I(t ≥ 48)

M2,t = I(t ≥ 20)

D2,t = (t− 20 + 1)I(t ≥ 20)

For the same reason as above, we reduce by 2 the standard deviation of the error terms
in the DGP for simulations.

The performances of the estimators are applicable for the two first breaks. The results
are presented in Table 2.

The performances of the tests are assessed for the following hypothesis considerations:

1. “no break” against “one break”: power of the tests,

2. “one break” against “two breaks”: size of the tests,

3. “two breaks” against “three breaks”: size of the tests,
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Table 2: Two Breaks, Break Estimators

Estimator without splitting Mean Bias Standard Density
for the 1st break Deviation maximum

Asymptotic 51.9414 3.9414 12.2672 48.0625
Parametric bootstrap 52.5583 4.5583 11.7295 51.3125
Nonparametric Bootstrap 53.4069 5.4069 10.9326 53.6984

Estimator without splitting Mean Bias Standard Density
for the 2nd break Deviation maximum

Asymptotic 20.7803 0.7803 5.8156 20.4375
Parametric bootstrap 22.6985 2.6985 8.4471 20.4375
Nonparametric Bootstrap 22.2532 2.2532 8.7553 20.6825

4. “three break” against “four breaks”: size of the tests.

See Figure 6 for the results.

5.3 The case of a marginal process with a unit root

In our knowledge, in the case of I(1) processes, there is a gap of bootstrap theory. Only
Monte Carlo experiments can give an idea of the performance of bootstrap in this situa-
tion.

From our bootstrapped ADF tests, we can conclude that the UK income is I(1). We
then use it to guide our simulations in the case of unit root processes.

5.3.1 Hypothesis of no break in the series

The estimated model of the UK income under the hypothesis of no break is

xt = 0.0056 + xt−1 + et

et ∼ D(0, 0.0110, 0.3501, 5.5339)

t ∈ {1, . . . , 110}

See Figure 7 for the results.

5.3.2 Hypothesis of one break in the series

The estimated model of the UK income under the hypothesis of one break is

xt = −0.0001 + 0.0012 t + xt−1 − 0.0160 Mt − 0.0012 Dt + et

et ∼ D(0, 0.0107, 0.1693, 4.4626)

t ∈ {1, . . . , 110}
Mt = I(t ≥ 16)

Dt = (t− 16 + 1)I(t ≥ 16)

As in the stationary case, since the break is not necessarily significant in the original
time series, we increased the size of the break by dividing it by 2 the standard deviation
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Figure 6: Stationary case: Two Breaks
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Figure 7: Integrated case: No and One Break
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Table 3: One Break, Break Estimators

Estimator Mean Bias Standard Density
Deviation maximum

Asymptotic 30.9482 14.9482 26.5415 16.3047
Parametric bootstrap 30.3136 14.3136 28.1061 16.3047
Nonparametric Bootstrap 30.1608 14.1608 26.9022 16.3047

Table 4: One Break, Break Estimators in the fixed parameter case

Estimator without splitting Mean Bias Standard Density
for the 1st break Deviation maximum

Asymptotic 41.9814 25.9814 28.3791 16.3047
Parametric bootstrap 43.9686 27.9686 27.2796 16.3047
Nonparametric Bootstrap 44.4705 28.4705 26.7002 16.4091

Estimator without splitting Mean Bias Standard Density
for the 2nd break Deviation maximum

Asymptotic 32.9346 19.9346 29.4630 14.6641
Parametric bootstrap 29.6262 16.6262 27.0769 14.6641
Nonparametric Bootstrap 31.2554 18.2554 28.3191 14.5000

of the error terms in the DGP for simulations:

et ∼ D(0, 0.0107/2, 0.1693, 4.4626).

The results are presented in Table 3. See Figures 7 for the results dealing with the
performances of the tests.

5.3.3 Hypothesis of two breaks in the series

The estimated model of the UK income under the hypothesis of two breaks is

xt = −1.7662 + 0.1404 t + 1.0713 xt−1 − 0.3956 xt−2

+1.8697 M1,t − 5.0104 D1,t − 0.1583 M2,t + 0.0056 D2,t + et

et ∼ D(0, 1.5789,−0.5210, 3.4676)

t ∈ {1, . . . , 110}
M1,t = I(t ≥ 48)

D1,t = (t− 48 + 1)I(t ≥ 48)

M2,t = I(t ≥ 20)

D2,t = (t− 20 + 1)I(t ≥ 20)

For the same reason as above, we divide by 2 the standard deviation of the error terms in
the DGP for simulations. The performances of the estimators are applicable for the two
first breaks. The results are presented in table 4. The biases are very large in this case
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Table 5: One Break, Break Estimators

Estimator Mean Bias Standard Density
Deviation maximum

Asymptotic 78.6855 0.6855 2.2866 78.1172
Parametric bootstrap 82.5974 4.5974 2.5379 83.9575
Nonparametric Bootstrap 82.7128 4.7128 2.5011 83.5960

because the breaks are at the beginning of the series. But we can see, by looking at the
density maxima, that the estimators performs well. See Figures 8 for the results dealing
with the performances of the tests.

5.4 The conditional process

For these simulations, we add marginal variables in the regressor matrix to explain the
conditional variable. When the regressors are not stationary, especially with structural
breaks, the statistics are very far from pivotal. The asymptotic distributions are very
difficult to calculate, and the bootstrap could encounter problems. Our Monte Carlo
experiments show the opposite.

For the two marginal series, we choose the real interest rate and the real income. We
then generate simulated conditional series. For the choice of the model parameters, we
are inspired from the UK money demand.

5.4.1 Hypothesis of no break in the series

Under this hypothesis, the series seem to be not cointegrated, leading to the invalidation
of the estimation. So, simulations are not provided in the context. However, it can seen
in the Section 6 how to treat this situation.

5.4.2 Hypothesis of one break in the series

The estimated model of the UK Money Demand under the hypothesis of one break is

yt = 0.1520− 0.0049 t + 0.6729 yt−1 + 0.5478 x1,t + 0.0008 x2,t − 0.0281 Mt + 0.0044 Dt + et

et ∼ D(0, 0.0109, 0.4649, 4.5921)

t ∈ {1, . . . , 110}
Mt = I(t ≥ 78)

Dt = (t− 78 + 1)I(t ≥ 178)

where x1 is the income and x2 is the interest rate. We reduce by 2 the standard deviation
of the error terms in the DGP for simulations. The results are presented in table 5. See
Figures 9 for the results dealing with the performances of the tests.
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Figure 8: Integrated case: Two Breaks
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Figure 9: Conditional series: One Break
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Table 6: One Break, Break Estimators in the fixed parameter case

Estimator without splitting Mean Bias Standard Density
for the 1st break Deviation maximum

Asymptotic 78.7803 0.7803 3.2443 77.3125
Parametric bootstrap 82.9564 4.9564 5.4773 85.4375
Nonparametric Bootstrap

Estimator without splitting Mean Bias Standard Density
for the 2nd break Deviation maximum

Asymptotic 43.2725 3.2725 17.1408 39.9375
Parametric bootstrap 46.1376 6.1376 16.5890 39.9375
Nonparametric Bootstrap

5.4.3 Hypothesis of two breaks in the series

The estimated model of the UK money demand under the hypothesis of two breaks is

yt = 0.4245− 0.0039 t + 0.6964 yt−1 + 0.4591 x1,t + 0.0012 x2,t

−0.0282 M1,t − 0.0194 D1,t + 0.0038 M2,t − 0.0001 D2,t + et

et ∼ D(0, 0.0104, 0.1959, 4.7722)

t ∈ {1, . . . , 110}
M1,t = I(t ≥ 78)

D1,t = (t− 78 + 1)I(78)

M2,t = I(t ≥ 40)

D2,t = (t− 40 + 1)I(t ≥ 40)

We divide by 2 the standard deviation of the error terms in the DGP for simulations.
The performances of the estimators are applicable for the two first breaks. The results
are presented in table 6. See Figures 10 for the results dealing with the performances of
the tests.

6 Empirical application: modelling UK money de-

mand

To show the importance of taking into account the presence of breaks in macroeconomic
time series, we present two modellings of the relation between the UK money demand
and the real income and the interest rate. First, a simple model is used where the money
demand is directly explained by the real income and the interest rate. Second, a more
complicated model is used where the marginal models (with their breaks) are integrated
into the conditional model to create a reduced form of the system. The graphs of the
series are reported in figure 11.
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Figure 10: Conditional series: Two Break
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Figure 11: The three series
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6.1 First modelling: cointegration

We start with a simple model. We explain the money demand by a constant term, a
trend term, the real income and the interest rate. Structural breaks in this relation will
be added in a second step. Since both the money demand and the incomes are I(1)
series, we will test for cointegration among the series. We do not consider lags of money
demand, otherwise, they will capture the unit root feature in case of noncointegration.
If there is cointegration, the error terms of the regression described above should be
I(0). For testing the integration order of the error terms, parametric and nonparametric
bootstrapped versions of the augmented of Dickey-Fuller (ADF) tests are applied on
the residuals, with unilateral and bilateral bootstrap P values (see appendix B). The
number of bootstrap replications being 999. For selecting the number of augmentations,
the residuals from the ADF regressions are tested for serial correlation using Ljung-Box
and Box-Pierce tests (from 1 to 8 lags) until they look like white noise. The number of
augmentations is 0 here. All tests have been conducted by using our own programs via
Gauss software.

6.1.1 Modelling without break

Table 7 provides the bootstrap P values of the ADF tests in the relation without break.
The results suggest that the variables are strongly noncointegrated.

Table 7: bootstrap P values of the ADF tests on the residuals

parametric bootstrap (Gaussian)

Regressions Unilateral P values Bilateral P values

AR(1) 0.5275 0.8048
AR(1) + const 0.8098 0.4024
AR(1) + const + trend 0.8158 0.3864

nonparametric bootstrap

Regressions Unilateral P values Bilateral P values

AR(1) 0.5265 0.7888
AR(1) + const 0.8208 0.3844
AR(1) + const + trend 0.8218 0.3744

6.1.2 Estimation of the breaks

We estimate and test for one, two, and three breaks in the UK money demand. We do not
split the sample, and apply three reestimations for the breaks for the estimation as well
as for the tests. Since the bootstrap estimators leads to very similar results to those for
asymptotic estimators, we provide only the results for this latter method. A large number
of bootstrap replications must be used for estimation. Concerning the tests, we provide
the results for the exogenous asymptotic test, and both the endogenous parametric and
nonparametric bootstrap tests using BTest = 999. Table 8 provides the estimations of the
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location of the breaks. A great stability can be remarked for the estimates, in this case,

Table 8: Asymptotic Estimates

Number of simultaneous 1rt break 2nd break 3rd break
estimations

1 85 — —
2 85 40 —
3 85 40 30

a reestimation is not necessary. Table 9 provides the P values for the presence of the
last estimated break. These results suggest us the presence of only one break at t = 85.

Table 9: P values

Break Asymptotic Parametric bootstrap non parametric bootstrap

1st: b1 = 85 0.001 0.0000 0.0000
2nd: b2 = 40 0.4080 0.2332 0.3413
3rd: b3 = 30 0.4699 0.2192 0.3363

For verifying the stability of these results, we split the sample and apply again the tests
on the first subsample: t = 1 to t = 84. The results with splitting confirm the previous
results.

6.1.3 Modelling with one break

Now, we consider the same model, but we add one break at t = 85 (it was determined
previously). We rerun the bootstrapped ADF tests and we obtain the results in table
10. Exceptionally, we take 9999 bootstrap replications in order to gain precision because
the P values are very small. The number of augmentations is 0 again. By adding only
one break, we obtain a dramatically different conclusion: now the variables appear to be
strongly cointegrated.

6.2 Second modelling: co-breaking

We use now a more complicated model. First, the location of the breaks in marginal
models is estimated. Next, the marginal models are integrated into the conditional model
to create a reduced form of the system: the conditional model is estimated by replacing
income and the interest rate by their explanatory variables, i.e. by their lags and their
breaks. Following the estimation of the marginal models, the conditional model with its
own breaks is estimated.

For the estimations of the break locations, we use the asymptotic estimator that is
sufficient in our situation. Estimations are done without splitting (including breaks one
by one). Three re-estimations are processed. The nonparametric bootstrap test is used
with 999 bootstrap replications. For deciding whether a break is significant, a significance
level of 0.10 is chosen. 0.10 is larger than the usual significance level of 0.05. However,
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Table 10: ADF tests with one break

parametric bootstrap (Gaussian)

Regressions Unilateral P values Bilateral P values

AR(1) 0.0000 0.0000
AR(1) + const 0.0000 0.0000
AR(1) + const + trend 0.0001 0.0002

nonparametric bootstrap

Regressions Unilateral P values Bilateral P values

AR(1) 0.0000 0.0000
AR(1) + const 0.0000 0.0000
AR(1) + const + trend 0.0000 0.0000

since the significance level must decrease to zero when the sample size goes to infinite for
not over-estimating the break number, the level must also increase (reasonably) when the
sample size is small for not under-estimating the break number (because the tests may
be not very powerful). The stars in the tables indicate the P values that are significant.

6.2.1 Breaks in income

For the past information set, the first lag of the variable is chosen. The first part of
table 11 provides the sequential estimates for two breaks (with re-estimations), three
breaks, four breaks, and eight breaks. The estimation in the beginning of the series
seems unstable. Perhaps this is due to a progressive structural change. Probably there
are biases induced by other breaks. Nevertheless, we must be careful when estimating
the first breaks. In a first time, we run tests with three re-estimations (see first line in
the second part of table 11). Only the third break seems significant. Since it can disturb
the detection of the two first breaks, we rerun the tests fixing the third break: 85 (see
second line if the second part of table 11). Thus, we rerun the sequential tests by putting
the third break (85) as known (see second line of second part of table 11). The second
break (44) now appears significant. However, the first break (18) is not significant, but,
when a third break estimation with re-estimation is done, the break date 18 becomes 20
and 15, that are jointly significant. The same feature arises when the date 44 is imposed.
We can conclude that the date 18 is spurious and explained by the presence of two true
break dates that are too close: 20 and 15. There is a second justification for this choice:
when more than four estimations are done (with re-estimations, and thus, less biased) 18
disappears in favour to 20 and 15. We can conclude that the four breaks are significant:
at dates 41, 85, 20, and 15.

6.2.2 Breaks in interest rate

For the past information set, the two first lags of the variable are chosen. The second
line of table 12 provides the sequential estimates (with re-estimations). The estimation
is relatively stable, we run tests with only one re-estimations, that is sufficient here (see
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Table 11: Breaks in Income

Break No 1 2 3 4

Two locations 16 13
Three locations 18 44 85
Four locations 18 41 85 39
Eight locations 20 41 85 39

P value 0.5976 0.7077 0.0440* 0.4004
P value 0.2943 0.0711* known 0.0420*
Associated breaks 44,18 44 85 44,20,15
P value 0.2773 known 0.0220* 0.0551*
Associated breaks 85,18 44 85 85,20,15

third line table 12). Only the second and the fourth breaks seem significant. We rerun
the tests fixing the second break: 20 (see fourth line table 12) this allows to see that the
first break (48) is in fact significant. We also rerun the sequential tests by putting the
fourth break (23) as known (see fifth line of table 12). Now 31 appears jointly significant
with 48 and 20. We can conclude that the fourth first breaks are significant.

Table 12: Breaks in Interest Rate

Break No 1 2 3 4

Break locations 48 20 31 23

P value 0.5445 0.0521* 0.1111 0.0130*
P value 0.0080* known 0.1221 0.0070*
P value 0.0200* 0.0651* 0.0310* known
Associated breaks 31,20,48 29,20 25 23

6.2.3 Breaks in the money demand as a marginal

The money demand is explained only by its past and dummies. For the past information
set, the two first lags of the variable are chosen 6. The second line of table 13 provides
the sequential asymptotic estimates of the break locations in the money demand series.
These estimates are very stable: the re-estimations do not change the estimates. Thus,
to save computing time, tests are processed without re-estimations. After a first test
sequence, the second and the third breaks seem significant, but not the first (see third
line of table 13). But as for the estimation where the next breaks can bias the estimates of
the first breaks, the inference can suffer from the same problem: since for testing for the
first breaks, the regression is not well specified, the first breaks can appear not significant
(since the test interprets the shape of the tested break as ”normal” and not as a break
according to the rest of the series since there are other (non-detected) breaks in the rest
of the series). Thus, we rerun the sequential tests by putting the second break (20) as

6The choice was done as previously, using tests for residual independence and the BIC.
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known (see fourth line of table 13). The first break (41) now appears significant. We can
conclude that the three first breaks are significant 7.

Table 13: Breaks in the money demand as marginal

Break No 1 2 3 4

Break location 41 20 85 8

P value 0.4024 0.0180* 0.0551* 0.2943
P value 0.0320* known 0.0350* 0.2743

6.2.4 Co-breaking analysis

Table 14 reports the estimated breaks in the three series and it is clear that the money

Table 14: Breaks in the three series

Break No 1 2 3 4

Income 41 85 20 15
Interest rate 48 20 31 23
Money demand 41 20 85

demand and the income have the same breaks. But since the money demand was esti-
mated as a marginal, the breaks of the explanatory variables (that are not specified in a
regressive model) will appear in the money demand. Thus, we cannot know whether the
detected breaks in the money demand are totally explained by the explanatory variables
or if the events that provoked these structural changes have their own effect on the money
demand. Then, we estimate the breaks in the money demand conditionally to its past,
income and interest rate.

6.2.5 Breaks in money demand conditionally to income and interest rate

Finally, we estimate the conditional model by replacing income and the interest rate by
their explanatory variables: we replace the income by its first lag and its breaks and the
interest rate by its two first lags and its breaks (except at date 20 which is common with
the income). The ability to detect co-breaking at a date between money demand and
an explanatory variable disappears since the breaks in the explanatory variables are now
specified. Only the own breaks of the money demand will appear (see table 15).

For seeing whether specifying these breaks is really useful in the UK money demand
modelling, the Ljung-Box and Box-Pierce tests are run on the residuals of the regression
without and with these two breaks. Table 16 presents the P values of these tests. The
stars * correspond to the significant P values at the 0.05 level. Table 16 shows that two
other breaks, in addition to the breaks coming from the marginal processes, have to be
defined for specifying much better the regression model.

7Some other explorations was done on the fourth break, but it does not appear significant.
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Table 15: Own Breaks in Money Demand

Break No 1 2 3 4

Break locations 39 59 10 90

P value 0.0485* 0.0566* 0.3131 0.1697

Table 16: P values of the tests for independence of the residuals of the UK money demand
regression

Regression without the own breaks of the money demand
Lag(s) 1 2 3 4

Ljung-Box test 0.0090* 0.0213* 0.0440* 0.0041*
Box-Pierce test 0.0100* 0.0238* 0.0490* 0.0054*
Regression with the own breaks of the money demand
Lag(s) 1 2 3 4

Ljung-Box test 0.1027 0.2578 0.0576 0.0022*
Box-Pierce test 0.1075 0.2676 0.0656 0.0031*

7 Conclusion

In this paper we propose bootstrap tests as criterion for stopping sequential search of
breaks. Monte Carlo experiments show that the bootstrap tests have remarkably good
performances, even for integrated series (where there is a gap of theory for the moment),
and for nonstationary regressors in the sense of break (where tests can suffer from large
distortion generally). The only problem comes from the fact that the first estimations
can be disturbed (biases for the estimators, and less significant for the test statistics)
due to the misspecification of the rest of the series. This problem is independent from
the bootstrap methodology, and seems unavoidable for all the procedures existing in the
literature for determining the number of breaks. The solution we propose, which we
included in the bootstrap methodology, is a re-estimation of the first breaks knowing
next breaks. Finally, we show in a simple application the importance of taking into
account breaks for determining co-integration, and the usefulness of these procedures for
determining co-breaking.
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A Monte Carlo design: the choice of the parameter

values

We choose the parameter values for the simulation experiments as the estimates from
real data set that we eventually modify. The estimates are constructed in the following
way:

1. Parametric and nonparametric bootstrapped versions of the augmented of Dickey-
Fuller (ADF) tests are performed , with unilateral and bilateral bootstrap P values
(see appendix B), to see whether the series can be considered I(1) or not. The ADF
regressions are augmented until the residuals are white noise using Ljung-Box and
Box-Pierce tests (with 1 to 8 lags). The number of bootstrap replications is 999.

2. We choose the hypothesis under which we want to assess the performances of the
estimators and tests: 0 break, 1 break, 2 breaks, etc.

3. We estimate the model using the real data, under the hypothesis that the series are
I(1) or I(0), and that there is/are n break(s).

4. The breaks are estimated by the asymptotic sequential research, with three reesti-
mations. The number of lag of the dependent variable that we take into account is
determined by the number of augmentations in the ADF tests.

5. The parameters are estimated using OLS procedure. In the case of cointegration,
the estimators are “superconsistent”. The number of lags is determined by the
Ljung-Box and Box-Pierce tests (with 1 to 8 lags) and the BIC (the results are
quite similar with both the methods).

We must specify the distribution of the error terms et, that are determined using the
sample distribution of the residuals and corrected in the same way that nonparametric
bootstrap. The residuals are eventually modified for emphasising the breaks (see details
in section 5). For the starting points, since they are part of model parameters in the I(1)
case, we put them equal to the values of the corresponding observations of the real series.
In the I(0) case, we try to compute the marginal law (see section 5).

Note that since the number of breaks is imposed, the estimation of the model is not
necessarily correct, but the goal of this estimation is to obtain a DGP following the
hypothesis that we impose and the nearest to the real data.

B Bootstrapped ADF tests

The following variables have to be defined:

• B, the number of bootstrap replications,

• p, the number of augmentations in the ADF regressions.

B has to be chosen as large as possible, depending on the characteristics of the computer.
The choice of p is more difficult. We recall that the ADF regressions are:

∆yt = αyt−1 + β1∆yt−1 + . . . + βp∆yt−p + et,
∆yt = constant + αyt−1 + β1∆yt−1 + . . . + βp∆yt−p + et,
∆yt = constant + trend + αyt−1 + β1∆yt−1 + . . . + βp∆yt−p + et,
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where yt is the time series, and et are the error terms, t goed from 1 to T . We propose
the following procedure for chosing p: The procedure starts at p = 0. The residuals
of each ADF regressions with p augmentations are tested for independence using both
the Ljung-Box’s and Box-Pierce’s tests. The number of autocorrelation coefficients taken
into account for the Ljung-Box’s and Box-Pierce’s tests go from 1 to 8. If the residuals
are not independent, p is incremented by 1 until the residuals look independent.

The steps of the bootstrapped ADF test are the following:

1. The Student test statistics for α for each ADF regression are computed. Let the
statistics be denoted tα. At this step, the residuals can be kept to be tested for
independence.

2. The boostrap procedure needs a DGP for generating simulated samples under the
null. This DGP is determined by estimating the model under the null using the
data and the OLS procedure.

3. The bootstrap loop starts now. The simulated error terms, denoted eb
t , are generated

for a sample. There are four ways for generating the simulated error terms:

(a) Parametric bootstrap: The simulated error terms are drawn from the normal
distribution

eb
t ∼ N(0, s2),

where s is the standard error of the error terms estimated from the ADF
regression using the data.

(b) Basic nonparametric boostrap: The simulated error terms are drawn by ...

(c) Nonparametric bootstrap with corrected degree of freedom: since E(ê2
t ) 6=E(e2

t )
where ê2

t ) are the residuals of the ADF regression, but E(ê2
t ) =

For our program, the parametric and the second nonparametric bootstrap are cho-
sen.

4. The simulated time series under the null, denoted (yb
t )t, is generated recursively

using both the following steps:

(a) first, define ∆yb
t recursively:

∆yb
t = β̂1∆yb

t−1 + . . . + β̂p∆yb
t−p + eb

t ,

∆yb
t = ̂constant + β̂1∆yb

t−1 + . . . + β̂p∆yb
t−p + eb

t ,

∆yb
t = ̂constant + ̂trend + β̂1∆yb

t−1 + . . . + β̂p∆yb
t−p + eb

t ,

The p first values for yb
t can be chosen equal to the the p first values of yt,

interpreted as initial conditions. (Another way is to choose them randomly.)

(b) second, compute yb
t :

yb
t = y1 +

t∑
i=2

yb
i .

y1 is an initial condition.

5. The Student test statistics for α for each ADF regression are computed using the
simulated series (yb

t )t. Let the statistics be denoted tbα.
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6. The steps 3–5 are done again B times. A set of statistics tbα, b = 1, . . . , B, is then
obtained for each the three ADF regressions, and for each both the parametric and
nonparametric bootstraps (thus there are six statistics).

7. The bootstrap P value is finally computed depending on the test hypothesis:

(a) If the null hypothesis H0 : α = 0 is tested against the alternative hypothesis
H1 : α < 0, the classical P value is

puni =
1

B

B∑

b=1

I(tbα ≤ tα),

where I is the indicator function. This P value corresponds to an unilateral
test.

(b) If the null hypothesis H0 : α = 0 is tested against the alternative hypothesis
H1 : α 6= 0, the classical bootstrap P value is

pbilsym
=

1

B

B∑

b=1

I(|tbα| ≥ |tα|).

This P value corresponds to a bilateral test.

(c) In the case where the null hypothesis H0 : α = 0 is tested against the al-
ternative hypothesis H1 : α 6= 0, we also propose the following bootstrap P
value:

pbilasym
= 2 min{puni, 1− puni}.

This P value also corresponds to a bilateral test, but it takes into account the
asymmetry of the statistic distribution in addition. This P value can be found
in Davidson and MacKinnon (1993), chapter 5, in the context of confidence
regions.

In our program, the two last P values are used.

8. Finally, a significance level is chosen and compared to the P values. If a P value is
lower to the significance level, H1 is retained, otherwise H0 is retained.
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