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1 Introduction

In this paper, we construct an equilibrium model of directed search in a
large labor market. Unemployed workers, observing the wages posted at
all vacancies, direct their applications towards the vacancies they �nd most
attractive. At the same time, (the owners of) vacancies post wages taking
into account that their posted wages in�uence the number of applicants
they attract. In our model, each unemployed worker makes a �xed number
of applications, a: Each vacancy (among those receiving applications) then
chooses one applicant to whom it o¤ers its job. When a > 1, there is a
possibility that more than one vacancy will want to hire the same worker.
In this case, we assume that the vacancies in question can compete for this
worker�s services.

When a = 1; our model is the same as the limiting version of Burdett,
Shi, and Wright (2001) (hereafter BSW), albeit translated to a labor market
setting. BSW derive a unique symmetric equilibrium in which all vacancies
post a wage between zero (the monopsony wage) and one (the competitive
wage). The value of this common posted wage depends on the number of
unemployed, u; and the number of vacancies, v; in the market. Letting
u; v !1 with v=u = �; the equilibrium posted wage is an increasing func-
tion of �; i.e., of labor market tightness. This is a model of competitive search
equilibrium, as in Moen (1997). As is well known, this means that equilib-
rium is constrained e¢ cient. Assume there is a cost per vacancy created.
A social planner would choose a level of vacancy creation �or, equivalently
in a large labor market, a level of labor market tightness �to trade o¤ the
cost of vacancy creation against the bene�t of making it easier for workers
to match. Moen (1997) shows that the � the social planner would choose is
the same as the one that arises in free-entry equilibrium.

Our model is also related to Julien, Kennes, and King (2000) (hereafter
JKK). JKK assume that each unemployed worker posts a minimum wage
at which he or she is willing to work, i.e., a �reserve wage,�and that each
vacancy, observing all posted reserve wages, then makes an o¤er to one
worker. If more than one vacancy wants to hire the same worker, then, as
in our model, there is ex post competition for that worker�s services. This
is equivalent to a model in which each worker applies to every vacancy, i.e.,
a = v; sending the same reserve wage in each application. Each vacancy
then chooses one worker at random to whom it o¤ers a job. If a worker
has more than one o¤er, then there is competition for his or her services.
In a �nite labor market, JKK show that the unique, symmetric equilibrium
reserve wage lies between the monopsony and competitive levels. There is
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thus equilibrium wage dispersion in their model. Those workers who receive
only one o¤er are employed at the reserve wage, while those who receive
multiple o¤ers are employed at the competitive wage. In the limiting labor
market version of JKK, the symmetric equilibrium reserve wage converges
to zero, and free-entry equilibrium is again constrained e¢ cient.

When a 2 f2; :::; Ag; where A is �xed, i.e., when each worker makes a
�nite number of multiple applications, our results di¤er radically from those
of BSW and Moen (1997). We show that all vacancies post the monopsony
wage in the unique symmetric equilibrium. As in JKK, this leads to equilib-
rium wage dispersion. Some workers (those who receive exactly one o¤er)
are employed at the monopsony wage, and some workers (those who receive
multiple o¤ers) have their wages bid up to the competitive level. The key
di¤erence, however, is that free-entry equilibrium is ine¢ cient; there is ex-
cessive vacancy creation. Equivalently, the expected wage paid is too low in
equilibrium.

In the next section we derive our basic positive results in a single-period
framework, and in Section 3, we give our results on constrained e¢ ciency.
In Section 4, we present a steady-state version of our model for the case
of a 2 f2; ::; Ag: The key to the steady-state analysis is that a worker who
receives only one o¤er in the current period has the option to reject that
o¤er in favor of waiting for a future period in which more than one vacancy
bids for his or her services. Allowing for free entry of vacancies, this leads
to a tractable model in which labor market tightness and the equilibrium
wage distribution are simultaneously determined. The normative results
that we derived in the single-period model continue to hold in the steady-
state setting. Finally, in Section 5, we conclude.

2 The Basic Model

We consider a game played by u homogeneous unemployed workers and (the
owners of) v homogeneous vacancies. This game has several stages:

1. Each vacancy posts a wage.

2. Each unemployed worker observes all posted wages and then submits
a applications with no more than one application going to any one
vacancy.

3. Each vacancy that receives at least 1 application randomly selects one
to process. Any excess applications are returned as rejections.
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4. A vacancy with a processed application o¤ers the applicant the posted
wage. If more than one vacancy makes an o¤er to a particular worker,
then those vacancies can bid against one another for that worker�s
services.

5. A worker with one o¤er can accept or reject that o¤er. A worker with
more than one o¤er can accept one of the o¤ers or reject all of them.

Workers who fail to match with a vacancy and vacancies that fail to match
with a worker receive payo¤s of zero. The payo¤ for a worker who matches
with a vacancy is w; where w is the wage that he or she is paid. A vacancy
that hires a worker at a wage of w receives a payo¤ of 1� w:

Before we analyze this game, some comments on the underlying assump-
tions are in order. First, this is a model of directed search in the sense that
workers observe all wage postings and send their applications to vacancies
with attractive wages and/or where relatively little competition is expected.
We assume that vacancies cannot pay less than their posted wages. If they
could, directed search would not make sense. Second, we are treating a as
a parameter of the search technology; that is, the number of applications is
taken as given. In general, a 2 f1; 2; :::; Ag: Third, we assume that it takes
a period for a vacancy to process an application. This is why vacancies
return excess applications as rejections. This processing time assumption
is important for our results. It captures the idea that when workers apply
for several jobs at the same time, �rms can waste time and e¤ort pursuing
applicants who ultimately go elsewhere. Finally, we assume that 2 or more
vacancies that are competing for the same worker can engage in ex post
Bertrand competition for that worker. This means that workers who receive
more than one o¤er will have their wages bid up to w = 1; the competitive
wage. There are, of course, other possible �tie-breaking�assumptions. For
example, one might assume that vacancies hold to their posted wages, that
is, refuse to engage in ex post bidding.

We consider symmetric equilibria in which all vacancies post the same
wage and all workers use the same strategy to direct their applications. We
do this in a large labor market in which we let u; v ! 1 with v=u = �
keeping a 2 f1; 2; :::; Ag �xed. We show that for each (�; a) combination
there is a unique symmetric equilibrium and we derive the corresponding
equilibrium matching probability and posted wage. Assuming (for the mo-
ment) the existence of a symmetric equilibrium, we begin with the matching
probability.

LetM(u; v; a) be the expected number of matches in a labor market with
u unemployed workers and v vacancies when each unemployed workers sub-
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mits a applications. Then m(�; a) = lim
u;v!1;v=u=�

M(u; v; a)

u
is the matching

probability for an unemployed worker in a large labor market.

Proposition 1 Let u; v ! 1 with v=u = � and a 2 f1; :::; Ag �xed. The
probability that a worker �nds a job converges to

m(�; a) = 1� (1� �

a
(1� e�a=�))a: (1)

The proof is given in Albrecht, et. al (2003); see also Philip (2003).
Here we sketch the idea of the proof to clarify the relationship between our
matching probability and the �nite-market matching functions presented
in BSW (the standard urn-ball matching function) and JKK (the urn-ball
matching function with the roles of u and v reversed).

We compute m(�; a) as follows. The probability that a worker �nds a
job is one minus the probability that he or she gets no job o¤ers. Con-
sider a worker who applies to a vacancies, and let the random variables
X1; X2; :::; Xa be the number of competitors that he or she has at vacancy
1, vacancy 2, ..., vacancy a: The probability that the worker gets no job
o¤ers can be expressed asX

:::
X x1

x1 + 1

x2
x2 + 1

:::
xa

xa + 1
P [X1 = x1; X2 = x2; :::Xa = xa]:

In general, the random variables X1; X2; :::; Xa are not independent, making
the computation of the joint probability a di¢ cult one. (Albrecht, et. al.
2003 and Philip 2003 give an expression for the joint probability.) The
intuition for dependence is simple. Consider, for example, a labor market in
which u and v are small and in which each worker makes a = 2 applications.
Then, if a worker has relatively many competitors at the �rst vacancy to
which he or she applies, it is more likely that his or her second application has
relatively few competitors. The key to Proposition 1 is that this dependence
vanishes in the limit. In that case, the fact that a worker has an unexpectedly
large number of competitors at one vacancy says next to nothing about the
number of competitors he or she faces elsewhere. The joint probability then
equals the product of the marginals, and the probability a worker gets at

least one o¤er can be computed as 1 �
�P x

x+1P [X = x]
�a
; which, letting

u; v !1 with v=u = �; leads to equation (1).
If a = 1; there is no problem of dependence. The number of competitors

that a worker has at the vacancy to which he or she applies is a bin(u�1; 1v )
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random variable. The probability that a worker gets an o¤er is then

1�
u�1X
x=0

x

x+ 1

�
u� 1
x

��
1

v

�x�
1� 1

v

�u�1�x
=
v

u

�
1� (1� 1

v
)u
�
:

With the notational change of m = v and n = u, this result is the same as
the one given in Proposition 2 of BSW. Taking the limit of this matching
probability as u; v ! 1 with v=u = � gives m(�; 1) = �(1 � e�1=�); as
equation (1) implies. The case of a = v is the polar opposite. In this case,
X1 = X2 = ::: = Xa = u � 1 with probability one, so the probability a
worker gets an o¤er is 1� (u�1u )

v; as in JKK. Taking the limit as u; v !1
with v=u = � gives

m(�) = 1� e��: (2)

The same expression can be derived by taking the limit of m(�; a) as a!1
in equation (1).

For future reference, we note the following properties of m(�; a):
(i)m(�; a) is increasing and concave in �; lim

�!0
m(�; a) = 0; and lim

�!1
m(�; a) =

1;

(ii)
m(�; a)

�
is decreasing in �; lim

�!0

m(�; a)

�
= 1; and lim

�!1

m(�; a)

�
= 0:1

The e¤ect of a on m(�; a) is less clearcut. Treating a as a continuous

variable, we �nd that ma(�; a) ? 0 as
a

1� q
@q

@a
� ln(1 � q) ? 0 where q =

�

a
(1�e

�
a

� ): For moderately large values of � (� > 1
2 ; approximately), m(�; a)

�rst increases and then decreases with a: This nonmonotonicity re�ects the
double coordination problem that arises when workers apply to more than
one but not all vacancies. The �rst coordination problem is the standard
one associated with urn-ball matching, namely, that some vacancies can
receive applications from more than one worker, while others receive none.
With multiple applications, there is a second coordination problem, this
time among vacancies. When workers apply for more than one job at a
time, some workers can receive o¤ers from more than one vacancy, while
others receive none. Ultimately, a worker can only take one job, and the
vacancies that �lose the race�for a worker will have wasted time and e¤ort

1 Interestingly,
m(�; a)

�
is not convex in �; as can be seen immediately by considering

the case of a = 1: The properties of m(�; a) and
m(�; a)

�
given in (i) and (ii) are the

minimal ones required for our normative results in Sections 3 and 4 below.
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while considering his or her application. The matching function derived
in BSW captures only the urn-ball friction, while the one derived in JKK
captures only the multiple application friction. Our matching probability
incorporates both the urn-ball and the multiple application frictions, and
the interaction between these two frictions provides new insights.

Proposition 1 and its implications are only interesting if a symmetric
equilibrium exists. We now turn to the existence question.

Proposition 2 Consider a large labor market in which u; v ! 1 with
v=u = �: There is a unique symmetric equilibrium to the wage posting game.
When a = 1; all vacancies post a wage of

w(�; 1) =
e�1=�

�(1� e�1=�)
: (3)

When a 2 f2; :::; Ag; w(�; a) = 0; and the fraction of wages paid equal to
one is


(�; a) =
1� (1� �

a(1� e
�a=�))a � �(1� e�a=�)(1� �

a(1� e
�a=�))a�1

1� (1� �
a(1� e�a=�))a

:

(4)

The proof is given in the Appendix. The basic idea is as follows. To
prove the existence of a symmetric equilibrium, we show that when a = 1;
the wage given in equation (3) has the property that if all vacancies, with the
possible exception of a �potential deviant,�post that wage, then it is also
in the interest of the deviant to post that wage. When a 2 f2; :::; Ag; then
no matter what the common wage posted by other vacancies, it is always
in the interest of the deviant to undercut that common wage. This forces
the wage down to the monopsony level, which in our single-period model is
w = 0:

The equilibrium wage for the case of a = 1 is equal to one minus the limit
of the price given in Proposition 2 in BSW �again with the appropriate no-
tational change. The tradeo¤ that leads to a well-behaved equilibrium wage,
w 2 (0; 1); when a = 1 is the standard one in equilibrium search theory. As
any particular vacancy increases its posted wage, holding the wages posted
at other vacancies constant, the pro�t that this vacancy generates condi-
tional on attracting an applicant decreases. At the same time, however, the
probability that it will attract at least one applicant also increases. This
tradeo¤ varies smoothly with �; so the equilibrium wage varies smoothly
between zero and one. Thus, as emphasized in BSW (p. 1069), there is a
sense in which frictions �smooth�the operation of the labor market.
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When a 2 f2; :::; Ag; no matter what the value of �, the posted wage
collapses to the Diamond (1971) monopsony level. The intuition for this
result is based on the change in the tradeo¤ underlying equilibrium wage
determination. It is still the case that as any particular vacancy increases
its posted wage, holding the wages posted at other vacancies constant, the
pro�t that this vacancy generates conditional on hiring the applicant at
its posted wage decreases. Likewise, the probability that the vacancy will
attract at least one applicant also increases. It is no longer certain, however,
that attracting applicants will lead to a �lled job �the applicant chosen by
the vacancy may ultimately take another job. Further, even if the vacancy
is able to hire its chosen applicant, it may be able to do so only by engaging
in Bertrand competition with one or more rivals. Essentially, the cost of
increasing the posted wage is the same as in the case of a = 1; the expected
bene�t is lower.

Despite the fact that the posted equilibrium wage is zero when a 2
f2; :::; Ag, there is still a sense in which �the wage�varies smoothly with �:
The expected fraction of wages paid equal to one, 
(�; a); has the following
properties:
(i) 
(�; a) is increasing in � and in a;
(ii) lim

�!0

(�; a) = 0 and lim

�!1

(�; a) = 1:

The fact that 
 is increasing in � is exactly as one would expect �as the
labor market gets tighter, the chance that an individual worker gets multiple
o¤ers increases. To understand why 
 is also increasing in a; it is important
to remember that 
(�; a) is the expected wage for those workers who match
with a vacancy; in particular, those workers who fail to match are not treated
as receiving a wage of zero. Finally, de�ning 
(�) = lim

a!1

(�; a); we can show


(�) =
1� e�� � �e��

1� e�� : (5)

This is the expected wage in a large labor market when each worker sends
out an arbitrarily large number of applications.

3 E¢ ciency

We now turn to the question of constrained e¢ ciency. The result suggested
by the e¢ ciency of competitive search equilibrium holds in our setting when
a = 1; however, when workers make a �xed number of multiple applications,
this result breaks down.
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Suppose vacancies are set up at the beginning of the period and that each
vacancy is created at cost c: The e¢ cient level of labor market tightness2 is
determined as the solution to

max
�>0

� c� +m(�; a):

The �rst-order condition for this maximization is

c = m�(�
�; a): (6)

The equilibrium level of labor market tightness is determined by free entry.
When a = 1; this means

c =
m(���; 1)

���
(1� w(���; 1)); (7)

whereas for a 2 f2; :::; Ag; the condition is

c =
m(���; a)

���
(1� 
(���; a)): (8)

Equations (7) and (8) re�ect the condition that entry (vacancy creation)
occurs up to the point that the cost of vacancy creation is just o¤set by
the value of owning a vacancy. This value equals the probability of hiring
a worker times the expected surplus generated by a hire �equal to 1 minus
the posted wage when a = 1 and to 1 minus the expected wage when a 2
f2; :::; Ag:

Note that �� denotes the constrained Pareto e¢ cient level of labor market
tightness and ��� denotes the equilibrium level of labor market tightness. At
issue is the relationship between �� and ���:

Proposition 3 Let u; v ! 1 with v=u = � and a 2 f1; :::; Ag �xed. For
a = 1; �� = ���: For a 2 f2; :::; Ag, ��� > ��:

Proof. Di¤erentiating equation (1) with respect to � gives

m�(�; a) = (1�
�

a
(1� e�a=�))a�1(1� e�a=� � a

�
e�a=�): (9)

2 In a �nite labor market with u given, the social planner chooses v to maximize �cv+
M(u; v; a); i.e., expected output (equal to the expected number of matches since each
match produces an output of 1) minus the vacancy creation costs. Dividing the maximand
by u and letting u; v !1 gives the maximand in the text.
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For the case of a = 1; equation (6) becomes

c = 1� e�1=� � 1
�
e�1=�:

From equations (1) and (3), in equation (7) we have

m(�; 1)

�
(1� w(�; 1)) = 1� e�1=� � 1

�
e�1=�:

Thus, equations (6) and (7) imply �� = ���:
When a 2 f2; :::; Ag; equation (9) implies that �� solves

c = (1� �

a
(1� e�a=�))a�1(1� e�a=� � a

�
e�a=�); (10)

whereas, using equations (1) and (4), ��� (equation 8) solves

c = (1� �

a
(1� e�a=�))a�1(1� e�a=�): (11)

The right-hand sides of both (10) and (11) are decreasing in �: Since the
right-hand side of (11) is greater than that of (10) for all � > 0; it follows
that ��� > ��:

Posting a vacancy has the standard congestion and thick-market e¤ects
in our model �adding one more vacancy makes it more di¢ cult for the in-
cumbent vacancies to �nd workers but makes it easier for the unemployed
to generate o¤ers. A striking result of the competitive search equilibrium
literature is that adding one more vacancy causes the wage to adjust in such
a way as to balance these external e¤ects correctly. One way to interpret
this is to say that competition leads to a wage equal to the one that would
be dictated by the Hosios (1990) condition in a Nash bargaining model.
Equivalently, one can say (Moen, 1997, p. 387) that the competitive search
equilibrium wage has the property that the marginal rate of substitution
between labor market tightness and the wage is the same for vacancies as
for workers. The �rst part of Proposition 3 shows that this result holds
when one uses an explicit urn-ball (a = 1) microfoundation for the match-
ing function. However, when workers make multiple applications, the result
that ��� > �� indicates that the equilibrium level of vacancy creation is too
high. Equivalently, the equilibrium expected wage is below the level that
would be indicated by the Hosios condition. The e¤ects of the marginal va-
cancy are more complicated with multiple applications than in the urn-ball
model. Adding one more vacancy makes it less likely that each incumbent
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vacancy will attract any applicants but, conditional on attracting an appli-
cant, makes it more likely that the incumbent vacancy �wins the race� for
that applicant. Adding another vacancy to the market puts upward pres-
sure on the (expected) wage but not to the extent required to achieve the
e¢ cient level of entry.

It is interesting to note that the equilibrium outcome is again Pareto ef-
�cient when we let a!1: To see this, simply substitute the expressions for
m(�) and 
(�) from equations (2) and (5) into the e¢ ciency and equilibrium
conditions. This is Proposition 2.5 in JKK. In a companion paper, Julien,
Kennes, and King (2002) show that equilibrium in a �nite labor market with
a = v is also constrained e¢ cient if one assumes a particular wage determi-
nation mechanism; namely, vacancies o¤ering jobs to workers who have no
other o¤ers receive all of the surplus (w = 0) but vacancies o¤ering jobs to
workers who do have other o¤ers receive none of the surplus (w = 1). Julien,
Kennes, and King (2002) interpret this result in terms of what they call the
Mortensen rule (Mortensen 1982) �that e¢ ciency in matching is attained
if the �initiator� of the match gets the total surplus.3 By mimicking our
proof of Proposition 2, we can show that this assumed wage determination
mechanism is in fact the symmetric equilibrium outcome in a directed search
model with wage posting when a = v:

An intuition for why we �nd constrained e¢ ciency with a = 1 and as
a ! 1 but not with a �xed, �nite number of multiple applications is that
with a = 1 and as a ! 1; only one coordination problem a¤ects the oper-
ation of the labor market, whereas with a �xed a 2 f2; :::; Ag; the urn-ball
and the multiple applications coordination problems operate simultaneously.
Adjusting the wage can only solve one coordination problem at a time.

4 Steady State

We now turn to steady-state analysis for a labor market with directed search
and multiple applications. We work with the limiting case in which u; v !1
with v=u = � and a 2 f2; :::; Ag �xed. Since only the ratio of v to u matters
in the limiting case, we normalize the labor force to 1; thus, u is interpreted

3The intuitions for constrained e¢ ciency (i) in a large labor market when a = 1 and
(ii) when a = v are thus quite di¤erent. When a = 1; constrained e¢ ciency is a result
of competition, and competition requires a labor market su¢ ciently large that individual
vacancies have negligible market power. When a = v; constrained e¢ ciency is a result of
perfect monopoly power �the entire surplus goes to the vacancy if there is no competition
for the applicant it selects and to the worker if he or she winds up having the monopoly
power. The monopoly intuition does not require that the labor market be large.
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as the unemployment rate.
In steady-state, workers �ow into employment with probabililty m(�; a)

per period. We assume that matches break up exogenously with probability
�; giving the countervailing �ow back into unemployment. Similarly, jobs

move from vacant to �lled with probability
m(�; a)

�
and back again with

probability �. Steady-state analysis thus allows us to endogenize vacancies
and unemployment. More importantly, moving to the steady state means
that those unemployed who fail to �nd an acceptable job in the current
period can wait and apply again in the future. In the case of a = 1; this
isn�t particularly interesting since, in equilibrium, there is no gain to waiting.
However, with multiple applications, the ability of the unemployed to hold
out for a situation in which vacancies engage in Bertrand competition for
their services, albeit at the cost of delay, implies a positive reservation wage.
This leads to a simple and appealing model in which labor market tightness
and the reservation wage are simultaneously determined. On the one hand,
the lower is the reservation wage of the unemployed, the more vacancies
�rms want to create. On the other, as the labor market becomes tighter,
i.e., as � increases, the unemployed respond by increasing their reservation
wage.

The analysis proceeds as follows. Suppose the unemployed set a reser-
vation wage R: With multiple applications, the wage-posting problem for a
vacancy is qualitatively the same as in the one-period game. Whatever com-
mon wage might be posted at other vacancies, each individual vacancy has
the incentive to undercut. In the one-period game, this implies a monopsony
wage posting of w = 0; in the steady state, this same mechanism implies
a dynamic monopsony wage posting of w = R: In addition, the probability
that an unemployed worker �nds a job in any period and the probability
that he or she is hired at the competitive wage, conditional on �nding a job,
are the same as in the single-period model; i.e., equations (1) and (4) for
m(�; a) and 
(�; a) continue to apply.

We begin by examining the value functions for jobs and for workers. A
job can be in one of three states �vacant, �lled paying the competitive wage,
and �lled paying R: Let V; J(1); and J(R) be the corresponding values. The
value of a vacancy is

V = �c+ 1

1 + r
fm(�; a)

�
[
(�; a)J(1)+ (1� 
(�; a))J(R)]+ (1� m(�; a)

�
)V g:

Maintaining a vacancy entails a cost c; which is incurred at the start of
each period. Moving to the end of the period, and thus discounting at
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rate r; the vacancy has hired a worker with probability
m(�; a)

�
. With

probability 
(�; a); the worker who was hired had his or her wage bid up
to the competitive level, thus implying a value of J(1): With probability
1 � 
(�; a) the worker was hired at w = R; thus implying a value of J(R):

Finally, with probability 1 � m(�; a)

�
; the vacancy failed to hire, in which

case the value V is retained.
Free entry implies V = 0: Given V = 0, there is no incentive for vacancies

competing for a worker to drop out of the Bertrand competition before the
wage is bid up to w = 1 (thus justifying the notation J(1)). This in turn
implies that we also have J(1) = 0: Inserting these equilibrium conditions
into the expression for V gives

m(�; a)

�
(1� 
(�; a))J(R) = c(1 + r):

At the same time, the value of employing a worker at w = R is

J(R) = (1�R) + 1

1 + r
[(1� �)J(R) + �V ]:

Again using V = 0; we have

J(R) =
1 + r

r + �
(1�R):

Combining these equations gives the �rst steady-state equilibrium condition,

c =
m(�; a)

�
(1� 
(�; a))1�R

r + �
: (12)

A worker also passes through three states �unemployed, employed at
the competitive wage, and employed at R: The value of unemployment is
de�ned by

U =
1

1 + r
fm(�; a)[
(�; a)N(1) + (1� 
(�; a))N(R)] + (1�m(�; a))Ug;

where N(1) and N(R) are the values of employment at w = 1 and w = R;
respectively. These latter two values are in turn de�ned by

N(1) = 1 +
1

1 + r
f(1� �)N(1) + �Ug

N(R) = R+
1

1 + r
f(1� �)N(R) + �Ug:
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The reservation wage property, i.e., N(R) = U; then implies

U =
1 + r

r
R

N(1) =
(1 + r)

r(r + �)
(r + �R):

Inserting these expressions into the expression for U and rearranging gives
the second steady-state equilibrium condition,

R =
m(�; a)
(�; a)

r + � +m(�; a)
(�; a)
: (13)

The �nal equation for the steady-state equilibrium is the standard �ow
(Beveridge curve) condition for unemployment. Since the labor force is
normalized to 1, this is

u =
�

� +m(�; a)
: (14)

Equations (13) and (14) show that, as is common in this class of models,
once labor market tightness (�) is determined, the other endogenous vari-
ables �in this case, R and u �are easily determined. Using equation (13)
to eliminate R from equation (12) gives the equation that determines the
steady-state equilibrium value of �; namely,

c =
m(�; a)

�

1� 
(�; a)
r + � +m(�; a)
(�; a)

: (15)

Using our results on the properties of m(�; a) and 
(�; a); we can show that

the right-hand side of equation (15) equals
1

r + �
as � ! 0; that it goes to

zero as � ! 1; and that its derivative with respect to � is negative for all
� > 0: Equation (15) thus has a unique solution for each c 2 (0; 1

r + �
]:

The natural next step is to compare equilibrium steady-state labor mar-
ket tightness with the constrained e¢ cient value of �: The planner�s problem
is to choose the level of labor market tightness that maximizes the discounted
value of output net of vacancy costs for an in�nitely lived economy. That
is, the planner�s problem is to maximize

1X
t=0

�
1

1 + r

�t
(1� ut � c�tut)

subject to
ut+1 � ut = m(�t; a)ut � �(1� ut)

13



with u0 given.
The current-value Hamiltonian for this problem is

H(�; u) = 1� u� c�u+ �[m(�; a)u� �(1� u)]

with necessary conditions

@H

@�
= �cu+ �m�(�; a)u = 0

r
:
� = �@H

@u
= 1 + c� � �[m(�; a) + �]:

Evaluating at the steady-state, and eliminating �; gives

c =
(1 + c�)m�(�; a)

r + � +m(�; a)
: (16)

Now we can compare the levels of labor market tightness implied by
equations (15) and (16). Using equations (1) and (4), equation (15) can be
rewritten as

c(r + � +m(�; a)) = (1 + c�)(1� �

a
(1� e�a=�))a�1(1� e�a=�): (17)

Using equation (9), equation (16) can be rewritten as

c (r + � +m(�; a)) = (1+c�)(1� �
a
(1�e�a=�))a�1(1�e�a=�� a

�
e�a=�): (18)

As in the single period analysis, let �� be the constrained e¢ cient level of
labor market tightness, i.e., the value of � that solves equation (16), and
let ��� be the equilibrium level of labor market tightness, i.e., the value of
� that solves equation (15). Comparing equations (15) and (16) yields the
following:

Proposition 4 Let u; v ! 1 with v=u = � and a 2 f2; :::; Ag �xed. Then
in steady state, ��� > ��:

Proposition 4 indicates that, as in the single-period analysis, when the
unemployed make a �xed number of multiple applications per period (a 2
f2; :::; Ag), equilibrium is constrained ine¢ cient. Speci�cally, there is too
much vacancy creation. This result holds even though the ability of the
unemployed to reject o¤ers in favor of waiting for a more favorable outcome
in some future period implies a dynamic monopsony wage above the single-
period monopsony wage of zero.
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5 Concluding Remarks

In this paper, we construct an equilibrium search model of a large labor
market in which workers, after observing all posted wages, submit a �xed
number of applications, a 2 f1; :::Ag; to the vacancies that they �nd most at-
tractive. We derive the symmetric equilibrium matching probability and the
common posted wage. When a = 1; our analysis is a large labor market ver-
sion of BSW. However, when a 2 f2; :::Ag; i.e., when workers make multiple
applications, the symmetric equilibrium of our model is radically di¤erent.
With multiple applications, the match probability in our model re�ects the
interplay of two coordination failures �an urn-ball failure among workers
and a multiple-application failure among vacancies. In addition, when work-
ers make more than one application, all vacancies post the monopsony wage,
but there is dispersion in wages paid. Workers who receive only one job o¤er
are paid the monopsony wage, but those who receive multiple o¤ers get the
competitive wage. When workers make a single application or when they
apply to an arbitrarily large number of vacancies, equilibrium is constrained
e¢ cient; but when workers make a �nite number of multiple applications,
too many vacancies are posted. These results, both positive and normative,
carry over from the single-period model to a steady-state framework.

Directed search is an appealing way to model equilibrium unemploy-
ment and wage dispersion. In reality, workers do direct their applications to
attractive vacancies, but unemployment nonetheless persists as a result of
coordination failures on both sides of the labor market. In addition, those
workers who are lucky enough to generate competition for their services
do in fact have their wages bid up. The contribution of this paper is to
show that these realistic features can be captured in a tractable equilibrium
model.
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6 Appendix �Proof of Proposition 2

As discussed in the text, we need to show that when a = 1; w(�; 1) has the
property that if all vacancies, with the possible exception of a �potential
deviant,� post that wage, then it is also in the interest of the deviant to
post that wage. When a 2 f2; :::; Ag; we need to show that no matter what
the common wage posted by other vacancies, it is always in the interest of
the deviant to undercut that common wage, thus driving w(�; a) to zero.

Let D denote the potential deviant, posting a wage of w0; and let N
denote the nondeviant vacancies, each posting the common wage, w: D�s
expected pro�t is

�(w0;w) = (1�w0)P [D gets applicant]P [selected applicant doesn�t have another o¤er]

Let k be the probability that any individual applies to D; where k 2 [0; 1]:
In symmetric equilibrium, k must be the same for all workers. As u ! 1,
k must go to zero; otherwise, (i) D gets an applicant with probability one
and (ii) any applicant to D has an in�nity of competitors and therefore gets
the job with probability zero. Therefore, we set k = �=u: We characterize �
below, but for now we take � as given.

Let XD be the number of applications received by D: As u!1; XD is
approximately Poisson (�); so

P [D gets applicant] = P [XD > 0] = 1� e��:

Note that the probability that a worker who applies to D is o¤ered that job
is 1X

x=0

1

x+ 1

e���x

x!
=
1

�
(1� e��):

Call this probability qD:
Next, consider a worker who has applied to and been o¤ered a job at D:

We need to �nd the probability that none of this worker�s other applications
(all of which go to N vacancies) also lead to an o¤er. The probability that a

worker applies to any particular N vacancy is
a� �

u

v � 1 : (A worker sends a� 1
applications to N vacancies with probability 1; the ath application goes to
an N vacancy with probability 1� �

u : There are v�1 N vacancies.) Consider
an N vacancy to which the worker o¤ered a job by D also applied. Let XN

be the number of applications received by that vacancy in addition to that
of the D applicant. XN is approximately Poisson (a� ): (The number of other
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potential applicants goes to in�nity; the probability that any one potential
applicant actually applies to the N vacancy in question goes to zero, and the
product of these 2 terms goes to a=�:) The probability that the applicant
o¤ered the D job also gets the N o¤er is

1X
x=0

1

x+ 1

e�a=�(a� )
x

x!
=
�

a
(1� e�a=�)

Call this probability qN : Then

P [selected applicant doesn�t have another o¤er] = (1� qN )a�1:

We thus have

�(w0;w) = (1� w0)(1� e��)(1� qN )a�1:

Note that the intensity of applications to D; �; depends on w0; through the
indi¤erence condition, but the �nal term, (1� qN )a�1; does not.

Each worker must be indi¤erent between (i) sending all a applications
to N and (ii) sending 1 application to D and the other a � 1 to N: The
possible payo¤s for a worker who sends all a applications to N are

(i) 1 if 2 or more of these applications are accepted; this occurs with
probability 1� (1� qN )a � aqN (1� qN )a�1

(ii) w if only 1 application is accepted; this occurs with probability
aqN (1� qN )a�1

(iii) 0 if neither application is accepted; this occurs with probability
(1� qN )a:
The expected payo¤ for a worker who sends both applications toN vacancies
is thus

1� (1� qN )a � aqN (1� qN )a�1 + waqN (1� qN )a�1:

The possible payo¤s for a worker who sends 1 application to D and the other
a� 1 to N are

(i) 1 if 2 or more applications are accepted; this occurs with probability

qD(1� (1� qN )a�1) + (1� qD)(1� (1� qN )a�1 � (a� 1)qN (1� qN )a�2)
= 1� (1� qN )a�1 � (1� qD)(a� 1)qN (1� qN )a�2;

(ii) w0 if only the application to D is successful; this occurs with proba-
bility qD(1� qN )a�1
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(iii) w if only one application to N is successful; this occurs with prob-
ability (1� qD)(a� 1)qN (1� qN )a�2

(iv) 0 if no applications are successful; this occurs with probability (1�
qD)(1� qN )a�1
The expected payo¤ for a worker who sends 1 application to D and a� 1 to
N is thus

1�(1�qN )a�1�(1�qD)(a�1)qN (1�qN )a�2+w0qD(1�qN )a�1+w(1�qD)(a�1)qN (1�qN )a�2:

Equating the two expected payo¤s implicitly de�nes �(w0;w; �): Di¤eren-

tiating with respect to w0; taking into account that
dqD

d�
= �1� e

�� � �e��

�2
;

and substituting for qD and qN gives

d�

dw0
=

�(1� e��)(1� �
a(1� e

�a=�))

(1� e�� � �e��)
�
(a� 1) �a(1� e�a=�)(1� w) + w0(1�

�
a(1� e�a=�))

�
Since 1 � e�x � xe�x > 0 for all x > 0 and 1 � w; we have

d�

dw0
> 0 (as

expected) and
d2�

dw02
< 0:

Turning back to D�s optimization problem, �(w0;w) is proportional to
(1 � w0)(1 � e��): Maximizing with respect to w0; the �rst-order (Kuhn-
Tucker) condition is

�(1� e��) + (1� w0)e�� d�
dw0

� 0 with equality if w0 > 0:

Note that if there is an interior solution, the second-order condition holds.
We are interested in the possibility of an interior solution at w0 = w:

Consider �rst the case of a = 1: If w0 = w; then � = 1=�. Substituting and
solving gives

w(�; 1) =
e�1=�

�(1� e�1=�)
Consider next the case of a 2 f2; :::; Ag: In this case w0 = w implies � = a=�.
Substituting the expression for

d�

dw0
into the �rst-order condition gives.

(1� w)�e��(1� 1
� (1� e

��))

(1� e�� � �e��)
�
(a� 1)1� (1� e��)(1� w) + w(1�

1
� (1� e��))

� � 1
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This can be rewritten as

(1�w)e��(�2��(1�e��)) �
�
1� e�� � �e��

��
(a� 1)(1� e��)(1� w) + w(� � (1� e��))

�
Or

�2e�� + (a� 2)�e��(1� e��)� (a� 1)2(1� e��)2
(1� e��) � w(��a(1�e��)+(a�1)2�(1�e��)2)

Only a corner solution exists with w(�; a) = 0 if this is a strict inequality.
Note that as � ! 0; the RHS ! 0 and, using a L�Hôpital�s Rule argu-

ment, so does the LHS. Note also that

dRHS

d�
= w(1� ae�� + (a� 1)2(1� e��)2 + 2(a� 1)2�(1� e��)e��) > 0;

while

dLHS

d�
=
�e��((1� e��)2((a� 1)(a� 2) + �(a� 2)) + (1� e�� � �)2

(1� e��)2 ;

which is negative for a 2 f2; :::; Ag: Thus, in this case, we have a corner
solution with w(�; a) = 0:

Finally to derive 
(�; a); note that in symmetric equilibrium qN = qd �
q = �

a(1� e
�a=�): A fraction 1� (1� q)a of all workers get a job. A fraction

1 � (1 � q)a � a(1 � q)a�1 of all workers receive multiple o¤ers. Thus, a
fraction

1� (1� q)a � a(1� q)a�1
1� (1� q)a

of the workers who �nd a job receive the competitive wage. Substituting for
q gives equation (4). QED
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