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Abstract

A large number of microeconomic decision variables such as investments, prices,

inventories or employment are characterized by intermittent large adjustments.

The behavior of those variables has been oftenmodeled as following state-dependent

rules. The optimality of such state-dependent rules depends crucially on the con-

tinuous observation of the relevant state, an assumption which is far from being

fulfilled in practice. We propose an alternative model, where at least part of

information about the relevant state variable is infrequent. We study several al-

ternatives. We start with the special case where innovations are infrequent, but

are readily observed. Only in this case are optimal rules state-dependent. We

then explore the common case of infrequent and delayed information. It may

arrive at deterministic times, like periodic macroeconomic statistics, or stochasti-

cally, when some events trigger announcements. Part of the relevant information

may be continuously observed, while the other part is only observed infrequently.

The resulting rules are time and state dependent, characterized by trigger and

target points that are functions of the time spent since the last time of informa-

tion arrival. We derive the conditions which characterize the optimal rules and

provide numerical algorithms for each case.



1. Introduction

In the last decade, the macroeconomic literature paid considerable attention to

the potential aggregate effects of intermittent large adjustments in microeconomic

decision variables1 such as investments, prices, inventories or employment.2 Mi-

croeconomic decision rules were modeled as state-dependent rules, where it was

assumed that the relevant state variable is continuously and perfectly observed.

These rules were justified by the existence of kinked adjustment costs (Harrison,

Selke and Taylor, Bertola and Caballero, 1990). For example, in pricing models

economic agents observe continuously and at no cost the frictionless optimal level

of prices and reevaluate constantly at which level they should set their price if

they were to change it. Since adjusting their price entails a cost, they weigh this

cost against the expected benefits from the change and end up adjusting their

price infrequently. As pointed out by Woodford (2002), the assumptions underly-

ing these models are not particularly realistic. Faced by the costs associated with

information collection or decision-making, firms often reconsider pricing policy at

a particular time of year. In this paper we reexamine individual optimal rules in

realistic situations where information is infrequent but where deciding to change

economic variables still involves adjustment costs. Information may arrive peri-

odically or when some events occur. We analyze several variations which capture

different economic settings and derive for each the optimal decision rule.

Examples of such exogenous intermittent flows of information are pervasive:

macroeconomic statistics such as inflation, level of employment or GNP are pub-

1We are referring to models of state-dependent rules. In fact, ten years before the start of
this literature, time-dependent pricing rules became an essencial ingredient for the Keynesian
reaction to the rational expectations revolution. However, the only microeconomic decision
variable of interest was price. Examples of macroeconomic models built on time-dependent
pricing rules are Fischer (1977), Taylor (1979), and more recently, Ball (1994), Ireland (1997),
and Bonomo and Carvalho (1999).

2For prices, see Caplin and Spulber (1987), Caplin and Leahy (1991), Caballero and Engel
(1992 and 1993), Tsiddon (1993) and Almeida and Bonomo (2002); for investment, Caballero
and Engel (1999); for inventories, Caplin (1985); for consumption of durables, Caballero (1993)
and for employment, Caballero, Engel and Haltiwanger (1994).
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lished periodically, dividends of firms are announced only at certain dates, infor-

mation arrives in asset markets after regular closings on weekdays and holidays.

In all these cases, agents do not observe continuously the variable of interest.

We start by introducing infrequent information in its simplest analytical set-

ting. If we assume that the new information is generated infrequently, but is

readily observed, the optimal rule is still state-dependent, characterized by an

inaction region which is time invariant. This is similar to Ss rules used in the

literature. The type of decision rule is modified when innovation is generated

continuously but it is observed infrequently. Then, it is reasonable to assume that

the amount of new information revealed to the decision maker is positively related

with the time elapsed since she was last informed. From here on we will refer to

this type of information release as delayed.

We first assume that this delayed information arrives at random rates, to

compare more directly with the infrequent but immediate release case. Then the

inaction region for the relevant state variable depends on the time elapsed since

the last observation. Thus, the optimal rule is both time and state dependent.

We then proceed by assuming that the delayed information arrives at determin-

istic times. Then, the inaction range is radically enlarged at instants before the

revelation of information, implying that in these instances it is always optimal to

wait3.

A feature of optimal rules with delayed information is the possibility of unin-

formed adjustments, based only on the long run trend of the frictionless process

for the control variable. This possibility happens if the trend is large enough

3In Bonomo and Garcia (2001), we also determine the optimal policy in the presence of
both lump-sum adjustment costs and infrequent information about the value of the frictionless
optimal level of the control variable but we assume that the stochastic process of the frictionless
optimal value of the control variable has no drift, simplifying the problem considerably. We
found that the optimal rule is for agents to adjust or not depending on the state at times of
information arrivals. It is characterized by a single parameter s, which determined the inaction
range (−s, s) for the discrepancy between the frictionless optimal value of the control variable
and its actual value, at times of information arrival. This simplicity allowed us to proceed
further, by aggregating the optimal rules and deriving macroeconomic implications.
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compared to the average period between information arrivals. Then, we can ra-

tionalize pricing rules with preset adjustments between optimal adjustments, used

in the macro literature (see Fischer , Yun, 1996, and Woodford, 1999). This type

of rule seems realistic if inflation is sufficiently high, which is an implication of

our model. Conversely, according to our model, there will be no uninformed ad-

justment if the trend is small, which seems consistent with the evidence of pricing

rules for low inflation economies (see Blinder et al., 1998, for US evidence).

Next we analyze an intermediate but more realistic situation where part of the

information arrives continuously and freely to the agent, while another part arrives

infrequently. We also assume in this case that the infrequent arrival of information

is deterministic. In this situation, some adjustments may occur given the partial

information acquired continuously, over and above the adjustments which take

place given the whole information. If the free information is the price level, this

rule will lead to adjustment by the inflation rate in between optimal adjustments.

This indexation rule is a realistic representation of price and wage setting rules

followed in high inflation countries, as it happened in Brazil, Israel and Chile. It

was also used in the literature to analyze the consequences of indexation for the

cost of disinflation (see Bonomo and Garcia , 1994 for price setting, and Jadresic,

2002, for wage setting applications).

All the above problems can be characterized by dynamic programming with

two conveniently chosen state variables: the elapsed time since the last information

arrival, and the conditional expectation of the discrepancy between the friction-

less optimal value and the actual value of the control variable, given the current

information of the agent. Finding an optimal rule in the case of infrequent and

free information consists in finding trigger upper and lower barriers {l(τ), u(τ)}
and an optimal target point c(τ) for this expected discrepancy, as a function of

the time elapsed since the last information arrival. The Bellman equation which

characterizes our value function in case of no adjustment or information collec-

tion is rewritten as a partial differential equation in time and space. Boundary

conditions which depend on the various cases regarding the arrival of information
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and the presence of adjustment or information costs are imposed. The solution,

which depends on both the differential equation and the boundary conditions, is

solved numerically using various algorithms based on finite difference methods.

The rest of the paper is organized as follows. In Section 2, we develop a basic

framework for analyzing decisions under infrequent information and adjustment

cost, which will be used throughout the models. In section 3 we present models

with immediate information where the optimal rules are state-dependent. In sec-

tion 4 we derive optimal rules in models of infrequent delayed information and

adjustment costs. The last section concludes.

2. The basic problem under infrequent information

We start by setting up the problem in a context where the agent does not have

access continuously to new information. As in the standard case, we assume that

the agent controls a variable xt and that the frictionless optimal value of this

control variable, denoted x∗t , follows a Markovian stochastic process.

When the control variable drifts away from its optimal level, the agent incurs an

instantaneous flow cost which, for simplicity, is assumed to be equal to l(xt−x∗t )2dt,
where l is an arbitrary constant. To reduce the discrepancy between the control

variable and its optimal level, the agent has to pay a lump-sum adjustment cost

k. Time is discounted at a constant instantaneous rate ρ.

Suppose now that the agent does not have access continuously to the informa-

tion about x∗. Then, she must form a probabilistic assessment of its value at time

t, x∗t , from the time of the last information arrival, say s, in order to evaluate the

expected flow cost of deviating from the frictionless optimal value, Es(xt − x∗t )
2.

We can then decompose the instantaneous expected flow cost as:

Es(xt − x∗t )
2 = (xt −Esx

∗
t )
2 +Es(x

∗
t − Esx

∗
t )
2 (2.1)

The first term in the right-hand side represents the known cost of deviating

from the expected optimal level as the second represents the expected cost of not
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observing the optimal level continuously. Let us examine the first term. If there

were no adjustment costs, xt will be set equal to Esx
∗
t , reducing the first part of

the deviation cost to zero. In the presence of an adjustment cost, the agent must

optimally solve the trade-off between letting xt drift away from its expectation

and paying the cost to adjust. As for the second term we know that it is zero when

information is always available and is free. If information is costly, but there is

no adjustment cost, the agent can reduce the second term by paying information

costs. The optimal policy will therefore account for the trade-off between letting

the second term increase and paying more information costs. If information is

exogenously infrequent, the agent cannot reduce immediately the second term

but, as we will see, the adjustment decision will be influenced by it.

From the structure of the problem and from the assumption that the stochastic

process for x∗ is Markovian, it is clear that the value function at any time is

determined by two state variables: the known deviation of xt from its expected

frictionless optimal level defined as

yt = xt −Esx
∗
t (2.2)

and the time elapsed since the last information arrival4

τ = t− s. (2.3)

We can therefore express Es(xt− x∗t )
2 as a function f(yt, τ) which can be written

as:

f(yt, τ) = y2t + V ars(x
∗
s+τ ) (2.4)

where V ars(.) denotes the variance conditional on the information at time s.

4To have a discrepancy xs − x∗s at the time of information arrival s gives a value function
starting at t that is identical to the value function starting at time v when information arrived
at time v−(t−s) and the discrepancy xv−(t−s)−x∗v−(t−s) = xs−x∗s. Therefore, the discrepancy
x− x∗ is a sufficient state variable for the value function at times of information arrival.
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With lump-sum adjustment costs, resetting of the control variable will be

infrequent. Between two adjustments, the value function - the minimized value of

the program of the agent - should obey the following Bellman equation:

V (yt, τ) = f(yt, τ)dt+ e−ρdtV (yt+dt, τ + dt) (2.5)

This Bellman equation will be valid for all cases analyzed in this paper, includ-

ing the full information case. The cases will vary according to the assumptions

made about the stochastic process of x∗t (and therefore yt) and the boundary

conditions imposed.

3. Optimal rules with immediate information

Wewill present first the known case of continuous full information, which will serve

as a benchmark. We will then introduce infrequent information in its simplest

setting: the innovation in the frictionless stochastic process x∗ follows a Poisson

process with a fixed variance. In this particular setting of infrequent information

there is no delay in the arrival of information. As a consequence, optimal control

rules are still state-dependent. Indeed, at any time, only the known discrepancy

between the optimal and the actual value of the control variable matters.

When information is immediate the setup is a particular case of our general

framework of the last section where s is always equal to t. Hence, Esx
∗
t = x∗t and

τ will always be equal to zero. Thus, there is only one state variable yt, which

becomes:

yt = xt − x∗t

The deviation cost function will simplify to:

f(yt, 0) = y2t

And the general Bellman equation will be reduced to:
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V (yt) = y2t dt+ e−ρdtV (yt+dt) (3.1)

3.1. Continuous innovation

This is a well-known case, and we report it for comparison purposes (see Dixit,

1993). We assume, for simplicity, that x∗t follows a Brownian motion:

dx∗t = µdt+ σdWt (3.2)

where W is a Wiener process.

Observe that, when no control is exerted yt follows the process

dyt = −µdt+ σdWt

Applying Ito’s lemma we can rewrite the Bellman equation.(3.1) as the follow-

ing stochastic differential equation:

1

2
σ2V 00(y)− V 0(y)µ− ρV (y) + y2 = 0 (3.3)

This is a well known case, and the general solution is given by:

V (y) =
y2

ρ
+
−2yµ
ρ2

+
σ2

ρ2
+
2µ2

ρ3
+Aeαy +Beβy (3.4)

where

α =
µ−

p
µ2 + 2ρσ2

σ2
, and (3.5)

β =
µ+

p
µ2 + 2ρσ2

σ2
(3.6)

The optimal rule is characterized by (l, c, u), where l and u are respectively

the lower and upper barriers which trigger control and c is the optimal target

point. Therefore, the value function should satisfy several conditions. First, an

optimality condition:

Vy (c) = 0 (3.7)
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Then, two value matching conditions between l and c and between u and c,

which express that the differences in the value function at the barriers and at the

optimal target point should be equal to the adjustment cost:

V (l) = V (c) + k, (3.8)

V (u) = V (c) + k (3.9)

Thus, we must also have:

Vy(l) = 0 (3.10)

Vy(u) = 0 (3.11)

The conditions (3.7), (3.10) and (3.11), known as smooth pasting conditions,

and the value matching conditions (3.8) and (3.9) imposed on the value function

expression 3.4 allow us to determine the constants A, B and the policy parameters

l, u and c. Figure 1 illustrates a trajectory of the state variable yt with the

following values of the parameters: µ = 0.1, σ = 0.1, k = 0.01, ρ = 0.025. The

figure shows that whenever yt hits the lower or the upper barrier the agent pays

the cost k and reduce the discrepancy to c. It should also be noticed that when

µ > (<)0, c > (<)0, since the drift in the frictionless optimal process will move

the discrepancy in the opposite direction when there is no adjustment. The upper

and the lower barriers u and l are not symmetric with respect to c either.
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As mentioned above, this kind of rule has been used to model inventories,

prices, employment, and investment. It has important features of the microeco-

nomic behavior: there is inaction, and intermittent adjustments. However, it

rests on the assumption that all the relevant information arrives continously and

is immediately known.

3.2. Infrequent but immediate information

In this subsection we assume that we observe the desired level for the control

variable x∗, but that the innovation is infrequent. Specifically, we assume that it

follows a Poisson process with constant arrival rate λ, and that, conditional on

the arrival, the innovation has zero mean and fixed variance distribution. Then:

dx∗ = µdt+ σεdq
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where q is a Poisson arrival process with intensity λ, and ε is a standard normal

random variable. When there is no control y will evolve according to the following

stochastic differential equation:

dy = −µdt+ εσdq

Then, the differential form of the Bellman equation (3.1) can be written as:

−Vy(y)µ− (ρ+ λ)V (y) + λE [V (y + σε)] + y2 = 0

The general solution is given by:

V (y) = Aeβ1y +Beβ2y + Vp(y) (3.12)

where eβysolves the homogeneous equation, which implies that the βs are the

solutions to:

1

2
β2σ2 = ln

³
1 +

ρ

λ
+

µ

λ
β
´

One particular solution would correspond to the case of never adjusting. This

will be given by:

Vp(y) =

Z ∞

0

λe−λτ
∙Z τ

0

e−ρs
¡
y2 − 2yµs+ µ2s2

¢
ds+ e−ρτ [EVp(y − µτ + σε)]

¸
dτ

The solution to this equation can be obtained by the method of undetermined

coefficients. We guess that Vp(y) = ay2 + by + e, substitute it in the equation

above and iterate to find:

a =
1

ρ
(3.13)

b =
−2µ
ρ2

(3.14)

As before the smooth pasting and value matching conditions (3.7), (3.10),

(3.11), (3.8), and (3.9) are boundary conditions which should be satisfied, deter-

mining the constants A and B, and the policy parameters l, c, and u.
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Figure 2 below shows various adjustment possibilities of the discrepancy be-

tween the control variable and its optimal level. First, a jump (denoted by a small

circle in the figure) caused by the arrival of a lump of information brings the dis-

crepancy outside the lower barrier triggering an adjustment to c. In the second

instance of the Poisson arrival of information the discrepancy process jumps but

stays within the barriers: there is no adjustment. There is also the possibility

of an uninformed adjustment if the discrepancy reaches its lower level before an

information arrival.

Instances of infrequent economic news which are known as soon as they happen

can be a financial crash, a catastrophic event such as an earthquake, the discovery

of an oil field, an accidental death of a company CEO, etc. Abstracting from

innovations of other types which happen on a continuous basis, we can imagine

that innovations are only of this random and lumpy type and compute the optimal

rule as just described.
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Table 1 below compares the values of the barriers and of the target level for

the continuous Brownian case and two Poisson infrequent information cases with

different intensities. To compare the continuous case to the infrequent Poisson

cases we choose λ = 1 in order to equalize the conditional variances of the two

discrepancy processes. The first result is that the barriers are wider under the

infrequent information λ = 1 case than in the continuous case. The second result

is that, as the Poisson intensity increases, the barriers become more symmetric

around the target level. This is due to the symmetry of the Poisson process.

Indeed, given a fixed µ, when λ is increased the Poisson process becomes relatively

more important.

Table 1

Values of barriers and optimal target under continuous and infrequent

immediate information

µ = 0.1, σ = 0.1, k = 0.01, ρ = 0.025
Continuous Infrequent Infrequent

λ = 1 λ = 5
u 0.1954 0.2329 0.2616
c 0.0527 0.0712 0.0343
l -0.1379 -0.1293 -0.2144

Although we characterized the control rule as two-sided Ss rules in both the

infrequent information case and in the standard continous information case, there

are qualitative differences between the controlled processes. With continous infor-

mation, adjustments in the same direction have always the same size, while in the

infrequent information case this rarely happens. Adjustments may be triggered

by new information or by the deterministic trend. In the latter case we have unin-

formed adjustments. The possibility of generating uninformed adjustments is an

interesting feature of infrequent information models, since several decision rules

described in the literature entail this type of adjustment (e.g. Fischer, 1976).
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4. Optimal rules under Delayed Information

In the previous section, all information, continuous or infrequent, was readily

available. In those cases, the optimal rules under adjustment costs were state-

dependent. In this section, there will be lapses of time during which no information

is available although we could think that some innovation is happening. Then each

information arrival will encapsulate all the innovations about the optimal value of

the control variable which occured during the last lapse. Examples are pervasive

in economic life. The release of macroeconomic statistics and some economic news

are examples of such infrequent and delayed information processes. In the former

case arrival is deterministic while in the latter it can be seen as random. We show

that in both cases the optimal rule becomes time-and-state dependent.

We start by the case of random information, which can be obtained by slightly

changing the “immediately available but infrequent information” case of the pre-

vious section. Then, we explore the case where information about the optimal

control level arrives at constant time intervals. Finally, we add more realism by

recognizing that some flow of information arrives continuously between the dis-

crete information arrivals while part of the information still arrives infrequently

at constant time intervals.

All the problems with infrequent and delayed information will be solved nu-

merically using finite difference methods. Thus, for each case, we first formulate

the problem analytically and then present an algorithm for solving the problem

numerically.

4.1. Random Information Arrival

4.1.1. Analytical formulation

We assume that x∗ follows a Brownian motion as in (3.2), but it is only observed

at a random time, which has a negative exponential distribution. Then, when

there is no control, the expected discrepancy y will have a trend −µ . If there is
an information arrival, there will be an innovation with zero mean and variance
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proportional to the time elapsed since the last information arrival. Formally,

when there is no control the expected discrepancy y will evolve according to the

following differential equation:

dy = −µdt+ εσ
√
τdq (4.1)

where q is a Poisson arrival process with intensity λ, and ε is a standard normal

random variable.

Notice the similarity of this case with the immediate but infrequent information

case of the previous section. However, the jumps in the state variable y have

different sources: under immediate information, y = x − x∗ jumps whenever x∗

jumps, while under the delayed information y = x − Esx
∗ jumps when a jump

occurs at s (from a given value s < t to t) due to the arrival of information about

x∗.

An important difference is that the time since the last information arrival τ

now matters. Although the probability of an information arrival does not depend

on τ , the amount of information at each arrival (as measured by the variance of

the accumulated innovation in x∗ during this period) is proportional to τ . Thus,

the flow costs of being uninformed about the optimal level x∗ are also increasing

with τ :

f (yt, τ) = y2t + σ2τ (4.2)

Therefore, the barriers will depend on τ .

We now look for rules {l(τ), c(τ), u(τ)}0≤τ<∞ where l(τ), u(τ), c(τ) represent
lower and upper trigger points and target point, respectively. Using (4.1) and

(4.2), we can write the differential form of the Bellman equation (2.5) as:

−Vy(y, τ)µ+Vt(y, τ)−(ρ+λ)V (y, τ)+λE
£
V (y + σε

√
τ , 0)

¤
+y2+σ2τ = 0 (4.3)

Since adjustment costs are lump-sum, adjustment will be made to the point

that minimizes intertemporal costs. Then:
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c(τ) = inf
y
{V (y, τ)} (4.4)

Since it is always possible to pay the adjustment cost k and to adjust to c(τ),

we have that

V (y(τ), τ) = min {V (y(τ), τ), V (c(τ), τ) + k} (4.5)

It is clear that if l(τ) and u(τ) are trigger points, then:

V (l(τ), τ) = V (c(τ), τ) + k (4.6)

V (u(τ), τ) = V (c(τ), τ) + k

The time variable τ can take any positive value. Hence, we need to find the value

function and the trigger and target points for each positive time. We use finite

difference methods to solve the problem numerically.

4.1.2. Numerical algorithm

In order to find the optimal rule {l(τ), c(τ), u(τ)}, we need to find the value
function. We start by discretizing the partial differential equation(4.3), using the

explicit difference method. We make the following approximations:

y ≈ i4 y (4.7)

t ≈ j 4 t

Vt ≈
vi,j+1 − vi,j

4t

Vy ≈
vi,j+1 − vi−1,j+1

4y

and we obtain:

vi,j = p0.vi,j+1+p
−.vi−1,j+1+

λ

ρ+ 1
4t

12X
k=−12

π(k).vi+k.σ,0+

Ã
1

ρ+ 1
4t

!
.
£
(i.4 y)2 + σ2.j.4 t

¤
(4.8)
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where π (.) is a discretization of the normal distribution, and

p0 =

Ã
1

ρ+ 1
4t

!µ
−µ
4y

+
1

4t

¶
,

p− =

Ã
1

ρ+ 1
4t

!
µ

4y
.

Thus, if we have the value function for all states at time j+1, we can use equation

(4.8) to find the value function at time j.We start with an arbitrary value function

for τ very large and proceed backwards using the difference equation in the same

way as before until arriving at zero. If τ is large enough, the value function found

should be a good approximation for τ small. Although the initial value function

is arbitrary, if τ is large enough and if the discount rate ρ is not too big, it will

have little importance for the value function evaluated at a small τ .

4.1.3. The optimal rule

Figure 3 shows the functions l(τ), c (τ) , u(τ), which characterize the optimal rule.

Since we have a negative drift in the process of y, uninformed adjustments are

always upwards. As a consequence only the lower barrier is binding at times of

no adjustment. The upper barrier is used only at time of information arrivals,

where τ = 0, and remains constant. The lower bound function, l(τ), is slightly

decreasing. The reason is that the option value of waiting for an information

arrival increases with τ due to a higher amount of innovations missed. We also

depicts a sample trajectory for y, where we show two information arrivals. In the

first one, y jumps to a point below the lower barrier triggering adjustment to c.

In the second information arrival, y jumps upwards to a point inside the inaction

range. Thus, there is no adjustment. Observe also in the figure that everytime

there is an information arrival τ is reset to zero.

The general features of this case are that the rules are characterized by trigger

and target functions of the time elapsed since the last information arrival. When
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there is no information, adjustment is only triggered by the trend and it moves

the control variable in the same direction as the drift of the frictionless variable.

Therefore, only the lower barrier (for a positive trend) or the upper barrier (for

a negative trend) can be binding. The lower barrier (upper barrier) decreases

(increases) with τ . Therefore, in the case of a positive drift, we have a decreasing

lower barrier function and a decreasing target function for τ greater then zero.

When information is revealed τ becomes zero and y may jump in any direction.

Then, when τ is zero we have both an upper and a lower barrier. As a result,

as in the case before, we can have uninformed adjustments between information

arrivals and informed or “optimal” adjustments triggered by information arrivals.

It is also possible that an information arrival will not trigger any adjustment.

0    0.5  1    1.5  0 0.25 0 0.5   
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

adjust adjust 

k = 0.01     
σ = 0.1 
µ = 0.1    
ρ = 0.025 

λ = 1 

information
arrival    

information
arrival    

o 

o 

τ 

u 

c 

l 

17



4.2. Deterministic Information Arrival

4.2.1. Analytical formulation

As mentioned before, one important source of infrequent and delayed information

is the release of economic statistics. This is done usually at regular intervals of

times. How is the problem changed if now information arrives deterministically

at regular intervals of time T?

TWhen no control is exerted, and there is no information arrival (for 0 <

τ < T ), the expected discrepancy y will have a deterministic trend µ and no

innovation. Then, it will evolve according to the following differential equation:

dy = −µdt

The flow cost, f(y, τ) will still be given by (4.2). As a consequence, we can

rewrite equation (2.5) as the following differential equation:

−Vy(y, τ)µ+ Vt(y, τ)− ρV (y, τ) + y2 + σ2τ = 0 (4.9)

Again we look for rules {l(τ), c(τ), u(τ)}0≤τ≤T . But observe that now τ is

bounded by T .

Since adjustment costs are lump-sum, we know that adjustment will be made

to the point that minimizes intertemporal costs. Conditions (4.4), (4.5), and (4.6)

are still valid.

However since information arrives deterministically, we need to tie the value

function just before the arrival to the value fuction after the arrival. When in-

formation arrives, the known discrepancy will receive a shock with distribution

N(0, σ2T ), and τ is reset to zero. Then we have the following additional condition:

V (y, T ) = EV (y + σ
√
Tε, 0) (4.10)

where ε is a random variable with distribution N(0, 1).
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4.2.2. Numerical algorithm

In order to find the optimal rule {l(τ), c(τ), u(τ)}, we need to find the value
function. We start by discretizing the partial differential equation (4.9) using the

explicit difference method. Making the same approximations as in (4.7) we arrive

at:

vi,j = p0.vi,j+1 + p−.vi−1,j+1 +

Ã
1

ρ+ 1
4t

!
.
£
(i.4 y)2 + σ2.j.4 t

¤
(4.11)

where

p0 =

Ã
1

ρ+ 1
4t

!µ
−µ
4y

+
1

4t

¶

p− =

Ã
1

ρ+ 1
4t

!
µ

4y

Thus, if we have the value function for all states at time j+1, we can use equa-

tion (4.11) to find the value function at time j. We use the following algorithm.

We guess values for the function at time zero. It is important that it satisfies

condition (4.5). We then use the expectation equation (4.10) to find the value

function at time T . We find the y that minimizes the function at T , c (T ). We

then use condition (4.5) to determine the new value at T . We use the difference

equation (4.11) to find the value function at time T −4t. We then find the value

of y that minimizes the function at T−4t, and so on, until we arrive at time zero.

We then test if the value function just found at zero is close enough (according

to some convergence criterion set a prioiri) to the value we had at the previous

iteration before. If the value functions are different we begin another iteration of

the same procedure, continuing in the same way until convergence.

After convergence we use conditions (4.4), and (4.6) for each τ to find c(τ),

u(τ), and l(τ).
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4.2.3. The Optimal Rule

Figure 4 illustrates the optimal rule, characterized by the lower barrier function

l(τ), target function c(τ), and upper barrier parameter u. Observe that, again in

this case, when there is no information flow to the agent, there are only upward

adjustments. The upper barrier will be used only at times of information arrival.

We illustrate a sample path for y. Initially y is close to zero, and arrives at time

1 inside the inaction region, but outside the inaction region for τ = 0. Then, the

accumulated shock is revealed and y jumps to the position marked with o, outside

the new inaction range. An immediate adjustment is triggered to c (0). Then,

with no information, y decreases at a constant rate from c(0), and so on.

Although in both random and deterministic information arrival cases the rules

are similar, there is a distinguishing feature. In the deterministic case the inaction

range becomes arbitrarily large just before information arrival. The reason is

clear: the option value of waiting becomes very large when information is about

to arrive. This is a testable implication. One should see less adjustments just

before important announcements.
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4.3. Part of information continuously observed

4.3.1. Analytical formulation

In fact there is almost a continuous flow of some information, although some

important information arrives infrequently. We intend to capture this fact by

extending the previous model in the following way. We assume that there are two

kinds of information, one called idiosyncratic, which is continuously observed, and

another one, called aggregate, which arrives at deterministic times.

In this case, when there is no adjustment and no aggregate information ar-

rival, y changes continuously because of the idiosyncratic information, which has
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standard deviation parameter σi:

dy = −µdt+ σidwi.

Aggregate information impacts also the expected costs of deviating from the

optimal level. Then, the instantaneous cost function is given by:

f(yt, τ) = y2t + σ2aτ

where σa is the standard deviation of aggregate shocks. Hence, the differential

form of the Bellman equation is written as:

1

2
σ2i Vyy(y, τ)− Vy(y, τ)µ+ Vt(y, τ)− ρV (y, τ) + y2t + σ2aτ = 0 (4.12)

The conditions that determine c (4.4), the adjustment option condition (4.5),

and the conditions that determine l and u (4.6) remain the same. However, the

condition that ties the value function at time 1 and at time 0 is altered:

V (y, T ) = EV (y + σa
√
Tε, 0).

We apply the numerical procedures described in the previous subsection to the

modified equations.

4.3.2. Numerical algorithm

Discretizing the partial differential equation using the explicit difference method,

and making the same approximations as in (4.7), we arrive at:

vi,j = p0.vi,j+1 + p−.vi−1,j+1 + p+.vi+1,j+1 +

Ã
1

ρ+ 1
4t

!
.
£
(i.4 y)2 + σ2a.j.4 t

¤
(4.13)
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where

p0 =

Ã
1

ρ+ 1
4t

!Ã
−
µ

σi
4y

¶2
+
1

4t

!

p− = 0.5

Ã
1

ρ+ 1
4t

!Ãµ
σi
4y

¶2
+

µ

4y

!

p+ = 0.5

Ã
1

ρ+ 1
4t

!Ãµ
σi
4y

¶2
− µ

4y

!

We use the same algorithm as in the section above to arrive at the solution.

4.3.3. The optimal rule

Figure 5 shows the rules and one sample path for y. For τ between zero and

one, it oscillates according to the idiosyncratic stochastic component. When it

reaches the lower barrier, adjustment is triggered to c(.) of the respective τ . These

adjustments take into consideration only part of the relevant information. When

τ reaches 1 aggregate information arrives and y jumps. If it is outside the inaction

range at zero, an adjustment is triggered to c(0).

A feature of this setting is that no totally uniformed adjustment occurs. The

agent uses the information readily available for adjustment if she evaluates that

the discrepancy is large enough. If our control variable is individual price or

wage, and if the continuous information is the price level we have a rule that

generates adjustments by the price level between fully informed or “optimal ”

adjustments. In fact these price adjustments are state-dependent rather than

time-dependent, being more similar to trigger clauses in wage contracts. Despite

the continuous flow of information, the inaction range becomes again very large

before the deterministic time of information arrival. Thus, the implication that

one should not see adjustments before an important information announcement

is not specific to that special setting.
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5. Conclusion

In this paper we explore the consequences of infrequent information for decision

making when there are adjustment costs. The rule followed by the agents are

more complex than the usual state-dependent rules. In general, the inaction

ranges depend on the time elapsed since the last information arrival.

There is room for uninformed adjustments when there is no new information

arriving but the trend of the control variables must be large enough. When

some important variable for the optimal control variable is observed, there can be

adjustments based on its realization even when important information about the

optimal level of the control variable has not been released. A robust fact is that

there should be no adjustments just before the release of important information

about the optimal level of the control variable.

We hope that the paper will stimulate applications in areas where microeco-

nomic inaction seem realistic: pricing, investment, inventories, and employment.

One natural extension to be made entails assuming that information is costly,

and the information cost is separated from the adjustment costs5. The same state

variables defined in this paper could be used, and the optimal rule should still be

time-and-state dependent.

5When both adjustment cost and information costs cannot be separated the optimal rule is
to set a fix level for the control variable for a predetermined amount of time. The rule is then
time-dependent. See Bonomo and Carvalho (2003) for an application to nominal price rigidity.
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