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Abstract 
The paper applies methods of functional data analysis –  functional auto-regression, principal components 
and canonical correlations – to the study of the dynamics of interest rate curve. In addition, it introduces a 
novel statistical tool based on the singular value decomposition of the functional cross-covariance operator. 
This tool is better suited for prediction purposes as opposed to either principal components or canonical 
correlations. Based on this tool, the paper provides a consistent method for estimating the functional auto-
regression of interest rate curve. The theory is applied to estimating dynamics of Eurodollar futures rates. 
The results suggest that future movements of interest rates are predictable only at very short and very long 
horizons. 
 
 
1. Introduction 
Interest rates are both a barometer of the economy and an instrument for its control. In 
addition, evolution of interest rates enters as a vital input in valuation of many financial 
products. Consequently, the evolution of interest rates is of great interest to both 
macroeconomics scholars and financial economists. 
 
It is a widespread opinion that interest rate dynamics can be completely described in 
terms of 3 factors, which are often modeled as principal components of the interest rate 
variation. Indeed, more than 95% percent of the variation can be decomposed in 3 
factors. However, recent research (Cochrane and Piazzesi (2002)) has suggested that this 
opinion may have flaws. 
 
The new evidence indicates that projecting interest rate curve to the 3 main principal 
components severely handicaps the ability to predict future interest rates. In particular, it 
appears that the best predictors of interest rate movements are among those factors that 
do not contribute much to the overall interest rate variation. 
 
If not principal components, then what statistical tool is appropriate to the analysis of 
interest rates predictability? One possibility is the canonical correlation analysis, a tool 
that along with principal components was invented by Harold Hotelling in early 1930s. 
This tool should be modified, of course, to account for functional nature of interest rate 
data (Leurgans, Moyeed, Silverman (1993)). It turns out, however, that there is a 
statistical technique that is even better suited for the prediction purposes. The technique is 
based on the singular value decomposition of the cross-covariance operator. The 
technique seems to be relatively novel and we call it singular factor analysis. We place 
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this technique in framework of functional auto-regression (Bosq 1995), which is natural 
for modeling dynamic functional data.  
 
As an application, we illustrate the method using ten years of data on Eurodollar futures 
contracts. Consistently with previous research, we find that the best predictors of future 
interest rates are not among the largest principal components but are hidden among the 
residual components. We also find that the best level of predictability is at the 1-day and 
1-year ahead horizons. 
 
Our analysis contribute to a long standing problem of whether the interest rates are 
predictable. Some research (Duffee (2002), Ang and Piazzesi (2003)) indicates that it is 
hard to predict better than simply assuming random walk evolution. This means that 
today’s interest rate is the best predictor for tomorrow’s interest rate, or, for that matter, 
for the interest rate one year from now. The subject, however, is torn with controversy. 
Cochrane and Piazzesi (2002) and Diebold and Lie (2002) report, on the contrary, that 
their methods improve over random walk prediction. We find that the controversy may be 
result of whether the researchers choose to restrict attention to 3 main principal 
components or not. 
 
The limitation of our approach is that we do not attempt to use non-interest rate 
information such as the current level and innovation in inflation, GDP growth rate and 
other macro variables. Recently it was discovered (Ang and Piazzesi (2003)) that there is 
a significant correlation in the dynamic of macro variables and interest rates. We believe 
that after suitable modification our method can also be applied to include macro 
variables. 
 
We also do not aim to derive implications of the interest rate predictability neither for the 
control of economy by interest rate targeting, nor for the management of financial 
portfolios. We believe that methods of  functional data analysis may be as useful in the 
problems of control as in the problems of estimation. With respect to the financial 
applications, we want to point out that predictability of future interest rates does not 
necessarily imply arbitrage opportunities. Rather the relevant question is whether 
portfolios that correspond to the predictable combinations of interest rates generate 
excess returns that cannot be explained by traditional risk factors. This is a question for a 
separate research effort.  
 
The rest of the paper is organized as follows. The model is described in Section 2. The 
principal component method of estimation is in Section 3. A modification of canonical 
correlation method is in Section 4. The data are described in Section 5. The results of 
estimation of principal components are briefly summarized in Section 6. The results of 
estimation of singular factors are in Section 7. And Section 8 concludes. 
 
2. Model 
Let )(TPt  denote time t  price of a coupon-free bond with maturity at time Tt + . 
Assume this function is differentiable in T . Then we can define forward rates as  
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The interest rate can conceivably exist for every positive maturity, which is less than a 
certain bound T . But in practice, only a discrete subset of these interest rates is 
observable at each moment of time. In addition, the maturities of observable interest rates 
are typically change from time to time and an interpolation procedure is usually used to 
infer the curve of the interest rates. These facts mean that a natural way to model the 
interest rates is as an imperfectly observed function of the continuous parameter T . 
 
Let us abuse the notation and use )(Tft  for the forward rate curve with the subtracted 
mean, )()( TfTft − . We will model the forward interest rates as evolving according to 
one of the following functional auto-regressions: 
 
(A)  [ ] )()()( TTfTf ttt ερδ +=+  
or  
(B)  [ ] )()()()()( TTfTfTfTf ttttt ερ δδ +−=− −+ , 
or  
(C)  [ ] )()()()( TTfTfTf tttt ερδ +=−+ , 
where )(Tft  is an random variable that takes values in the real Hilbert space of square-
integrable functions on ],0[ T , ρ  is a Hilbert-Schmidt integral operator, and )(Ttε  is a 
strong H-white noise in the Hilbert space.  
 
The assumption that coefficient operator, ρ , is a Hilbert-Schmidt integral operator 
means that ρ  acts as follows 

dTTxTSTx )(),()(:
0
∫
∞

→ ρρ , 

where ∫ ∫
∞ ∞

∞<
0 0

2),( dSdTTSρ . 

 
Because of this assumption, model (C) is not reducible to model (A): If operator ρ  is 
Hilbert-Schmidt, operator ρ+I  is not, and vice versa. 
 
All these models are particular cases of the general model  

(M)   [ ] )()()()(
0

TTfLDTf tt

n

i

i
iit δδ ερ +

=
+ ++= ∑ , 

where L  is the time-shift operator: 
)()(: TfTfL tt δ−→ , 

and iD  and iρ  are differential and integral operators. However, we will not work in this 
generality.  
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In intuitive terms, in model (A) the expectation of future values of the forward rate curve 
is determined by the current values. In model (B) the expectation of the future changes is 
determined by the past changes. In model (C) the expectation of the future changes of the 
forward rate curve is determined by the current values of the curve 
 
We aim to estimate operator ρ  using a finite sample of imperfectly observed curves and 
predict the future curve using this estimate. In the following sections we describe several 
approaches to the estimation.  
 
We conclude this section by briefly describing the formalism of Hilbert space valued 
random variables and explaining how it relates to a more familiar language of random 
processes. 
 
Consider an abstract real Hilbert space H . Let function nf  map a probability space 
(Ω,A,P) to H . We call this function an H-valued random variable if the scalar product 

),( nfg  is a standard random variable for every g  from H .3  
 
Definition 1. If ∞<fE , then there exists an element of H , denoted as Ef  and called 
expectation of f , such that  

HgEfgfgE ∈= any for ),,(),( . 
 
Definition 2. Let f  be an H-valued random variable, such that ∞<2fE  and 0=Ef . 
The covariance operator of  f  is the bounded linear operator on H , defined by 

[ ] HgffgEgC f ∈= ,),()( . 
If 0≠Ef , one sets Efff CC −= . 
 
Definition 3. Let 1f  and 2f  be two H-valued random variables, such that 

∞<∞< 2
2

2
1 , fEfE  and 021 == EfEf . Then the cross-covariance operators of 1f  

and 2f  are bounded linear operators on H  defined by 
[ ]
[ ] .,),()(

,,),()(
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Definition 4. A sequence { }Znn ∈,η  of H-valued random variables is said to be H-
white noise if 
1) 

n
CEE nn ηηση ,0,0 22 =∞<=<  do not depend on n  and 

                                                 
3 The definitions that follow are slight modifications of those in Chapters 2,3 of Bosq (2000). 
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2) nη  is orthogonal to mη ; mnZmn ≠∈ ,, ; i.e., 
{ } .,any for ,0),)(,( HyxyxE mn ∈=ηη  

{ }Znn ∈,η  is said to be a strong H-white noise if it satisfies 1) and 
2’) { }Znn ∈,η  is a sequence of i.i.d. H-valued random variables. 
 
Example: Stochastic Processes 
Consider a set of stochastic processes, )(Tfi , on interval ],0[ T . Let 0)( =TEfi  for each 
T . Let the covariance function of each process be ),()()( TSTfSEf iiii Γ= , and cross-
covariance function between two processes be ),()()( TSTfSEf ijji Γ= . Assume that with 

probability 1 the sample paths of the processes are in ],0[2 TL . Each stochastic process 
defines an H-valued random variable with zero mean. The covariance operator of if  is 
the integral operator with kernel ),( TSiiΓ : 

  ∫ Γ
T

iif dTTgTSTgC
i 0

)(),()(: a , 

and the cross-covariance operator of if  and jf  is the integral operator with kernel 
),( TSijΓ . We will abuse notation and identify variance and covariance operators with 

their kernels.  
 
3. Estimation by Principal Components 
The natural estimator for the mean forward curve, )(Tf , is  

∑
=

=
n

i
i Tf

n
Tf

1
).(1)(ˆ

δ  

To define an estimator of ρ , we relate it to covariance and cross-covariance operators.  
 
Consider for definiteness model (C). Let 11Γ  be variance operator of random curve tf and 

12Γ  be the cross-covariance operators for curves )(Tft  and )()( TfTf tt −+δ . From the 
model we know that  

[ ]{ }
{ }

,'),'()',(

')()'()',(

][)()(),(

11

12

∫
∫

Γ=

=

−=Γ +

dSTSSS

dSTfSfSSE

TfSfSfETS

tt

ttt

ρ

ρ
δ

 

or, in operator form  
1112 Γ=Γ ρ  

Assuming that 11Γ  is invertible, we have 1
1112
−ΓΓ=ρ . The natural procedure would be to 

substitute estimates of the covariance and cross-covariance operators into this formula. 
As we will see shortly, substituting the empirical covariance and cross-covariance 
operators will not work properly, so we will need to modify this procedure. In this section 
we focus on the estimation procedure that uses principal components. 
 
The kernels of the empirical covariance and cross-covariance operators are  
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Unfortunately, empirical covariance operator 11Γ̂  is singular and cannot be inverted. We 
must use a regularization method to obtain a consistent estimate of ρ . The regularization 
method, advocated by Bosq, uses the principal components of the empirical covariance 
operator. The idea is to determine how the operator acts on the components of )(Tft  that 
contribute most of the variation. 
 
 Let 

nkπ  is the projector on a set of nk  eigenvectors of 11Γ̂ , associated with the largest 
eigenvalues. Denote the span of this eigenvectors as 

nkH  and define the regularized  

covariance and cross-covariance estimates '
1111

ˆ~
nn kk ππ Γ=Γ   and '

1212
ˆ~

nn kk ππ Γ=Γ . These 
are simply the empirical covariance and cross-covariance operators restricted to 

nkH .  
Then define  

nn kk ππρ 1
1112

' ~~~ −ΓΓ= . 

Note that ρ~  is 1
1112

~~ −ΓΓ   on  
nkH , and zero on the orthogonal complement to 

nkH . The 
claim is that under certain conditions this estimator is consistent.  
 
Assume that ρ  is a Hilbert-Schmidt operator . Let 1

211 )( −−= λλa , and 
{ }1

1
1

1 )(,)(max −
+

−
− −−= iiiiia λλλλ  for 1>i ,  

where iλ  are eigenvalues of the covariance function ),( 2111 TTΓ  ordered in the decreasing 
order. 
Theorem 1. If for some 1>β  

( ),)(log
1

4/11∑ −− =
n

n

k

jk nnOa βλ  

then nρ
~ . is consistent in operator norm induced by 2L  norm: 

0~
2 →−

Ln ρρ  a.s. 
 
Proof: This is a restatement of Theorem 8.7 in Bosq. 
 
The condition of the theorem requires that the eigenvalues of the covariance matrix do 
not approach zero too fast, and that the eigenvalues are not too close to each other. 
The efficiency of the estimation procedure depends on the judicious choice of 
parameter nk . A possible approach is to select nk  so that it minimized a norm of 
empirical prediction error on a sub-sample of data. 
 
4. Canonical Correlations and Singular Factors 
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The estimation method outlined in the previous section may perform very badly if it 
happens that the best predictors for future evolution of interest rates have nothing to do 
with the largest principal components. In this case we would better off by searching for 
predictors directly without first projecting interest rates on the largest principal 
components.  
 
Statisticians long ago recognized the need for a method of finding the most important 
relations between two random vectors. In early 1930s Harold Hotelling, who previously 
invented the principal components, suggested a new method of data analysis, the 
canonical correlation analysis (CCA). This method is described in detail in Anderson 
(1984). In the classical situation we are given two random vectors, ix  and iy . We are 
looking for vectors of coefficients, iu  and iv  that maximize correlations ),( vuuxCov  
subject to constraints 1)()( == vyVaruxVar . Here ux  and vx  mean the scalar products. If 
no other constraints are imposed, then the maximized covariance is called the first 
canonical correlation of x  and y , and the maximizing vectors )1(u  and )1(v  are called 
the first canonical variates.  
 
The second canonical correlation is determined by the same maximization problem with 
added constraints that ux  and vy  must be uncorrelated with xu )1(  and yv )1( . The 
following canonical correlations and variates are defined in a similar fashion. 
 
The definition suggests finding the solutions by a sequence of constrained maximizations. 
Another approach is to note (by writing out the Lagrange multiplier conditions) that this 
problem is equivalent to finding such λ  that guarantees the existence of nontrivial 
solutions of the following equation: 

0
2221

1211 =















Γ−Γ

ΓΓ−
v
u

λ
λ

, 

where ijΓ  are variance-covariance matrices of vectors x  and y . 
 
This set-up can be generalized in a straightforward way to the functional case. But in 
estimation a difficulty arises. The classical method of estimation is by substituting the 
sample variances and covariances for the population variances and covariances. This 
procedure breaks down and gives inconsistent estimates if the data are functional. 
Intuitively the reason is that the number of degrees of freedom is larger than the number 
of curves in the sample, so there is a potential for finding spurious high correlations. 
 
A consistent method for estimating the canonical correlations was suggested by 
Leurgans, Moyeeed and Silverman (1993). Its essence is that functions that enter the 
maximization problem are penalized for roughness. They called this method smoothed 
canonical correlation analysis and proved it consistency.  
 
The estimation of functional autoregression can then proceed as in the case of principal 
components, by using the canonical variates as the basis for dimension reduction. If iu  
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and iv  are the canonical variates and iλ  is a canonical correlation, then the coefficient 
operator of the auto-regression, ρ , simply maps iu  to iivλ . Substituting the consistent 
estimates for the canonical variates and correlations in this expression we can expect to 
get the consistent estimate of ρ . 
 
While canonical correlations are useful for exploring the relationships in the data, they 
may, however, have deficiencies from the point of view of prediction. The reason is that 
it may easily happen that 2 linear combinations have a large correlation but the 
correlation will explain only little of future variation. At the same time, linear 
combinations with lower correlation may help more in explaining the future variation. 
Consequently, focusing attention on finding the largest correlations may be not the best 
strategy for prediction. 
 
As an analogy, consider 3 agricultural crops and a single predictor, the amount of 
precipitation during the previous winter. Harvests of the first crop are very volatile and 
unrelated to the predictor, harvests of the second are a bit less volatile and have a 
correlation of about 80% with the predictor. Finally, the third crop has very steady 
harvests and their variation can be almost perfectly predicted by the precipitation amount. 
Assuming that only one crop can be chosen for prediction, which one to choose? 
 
The answer depends on the preferences of the forecaster but it seems likely that in many 
situations the second crop will be chosen for prediction. For example, this is a likely 
outcome if the purpose is to predict the market price of the crop and the demand for all 
the crops is equally elastic.  
 
Our situation is similar. Often it is reasonable to aim for non-perfect but economically 
most significant prediction. 
 
In a sense, we need something in between the method of principal components that pays 
most attention to the largest components of variance and the method of canonical 
correlations that pays most attention to the largest correlations. A suitable alternative 
criterion appears to be the expectation of the scalar product of the predicted curve with 
the realized curve subject to a certain normalization. In the remainder of this section we 
will develop methods based on this criterion. 
 
Let tg  and tf  are two curves in H  and our task is to predict tg  using tf . Let R  be a 
linear bounded real functional, ℜaHR : , where ℜ  is the space of real numbers. By the 
Riesz theorem it can be represented by a function, )(TR : 

∫
T

dTTRTfTfR
0

)()()(: a . 

Let F  be a linear H-valued function, HF aℜ: . By linearity, it also can be represented 
by a function, )(TF : 

xTFxF )(: a . 
 
We will look for R  and F  that maximize 
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(P)  ( )tt FRfgE ,  subject to 1≤R  and 1≤F .  
We will say that the solution of this problem is the first singular value, and the 
maximizing function R  is the first singular factor. We will also say that function F  is 
the curve of  first singular factor loadings. 
By way of comparison, the problem of finding the first canonical correlation is the 
problem of maximizing  
(P1)  ( )tt FRfgE ,  subject to 1≤tRfE  and 1≤tFgE . 
Thus the problem is different only by a constraint imposed on functions R  and F . In 
comparison with problem P1, the constraints in problem P essentially prevents these 
functions from exaggerating importance of those linear combinations of tf  and tg  that 
have low variance.  
 
In functional form problem (P) can be written as  

∫∫∫ ∫ Γ=






 





 dSdTSRSTTFdTdSSfSRTFTgE

T T

tt )(),()()()()()(max 120 0
 

subject to  

[ ]∫ ≤
T

dTTR
0

2 1)(  and [ ]∫ ≤
T

dTTF
0

2 1)( . 

 
Essentially we are looking for a function R  that has the unit norm and whose image 

R12Γ  has the maximal possible norm. This is the problem of finding the largest singular 
value and the corresponding singular vector of operator 12Γ . We can solve it by finding 
eigenvalues and eigenvectors of operator 12

*
12ΓΓ  that has kernel 

dTSTTSSS
T

),(),(),( 2120 1122112
*

12 ΓΓ=ΓΓ ∫ . 

 
Function R  is the eigenfunction that corresponds to the largest eigenvalue of this 
operator.  When R  is found, RRF 1212 / ΓΓ= .  
 
Finding the next factor is essentially the same maximization problem, subject to the 
additional constraint that R  must be orthogonal to the first factor 1R . This implies that 
the solution of the maximization problem is the second singular value and the 
corresponding singular vector of operator 12Γ . We can continue this operation and define 
the set of factors, iR , that we will call singular factors. Corresponding functions iF  will  
be called singular factor loadings. 
 
We can improve the method using the idea of smoothing from Leurgans, Moyeed and 
Silverman (1993) and use the maximization with adjusted constraints: 

1][ ≤+ RR α  and 1][ ≤+ FF α , 
where ][ f  penalizes function f  for roughness. 
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Given that the singular factors and loadings are estimated, we can address the problem of 
finding the best predictor. First thing to note is that it is easy to estimate the coefficient 
matrix in the auto-regression in terms of singular factors and loadings.  
 
Indeed, singular factors and loadings give a convenient representation of cross-
covariance operator. Assume for simplicity, that there is only a finite number, k , of non-
zero singular factors. Take them as basis vectors and complete them to an orthogonal 
basis in H . Operator 12Γ  in this basis acts as follows 



 =

Γ
.0

,...,1
:12 otherwise

kiifF
R ii

i

λ
a  

 
Define ii RG 11Γ= . Since 1

1112
−ΓΓ=ρ , operator ρ  acts as follows: 



 =

.0
,...,1

:
otherwise

kiifF
G ii

i

λ
ρ a  

 
It is natural to estimate operator ρ  by substituting the empirical counterparts of singular 
factors and loadings into this formula. Let functions iR̂  be k  first eigenfunctions of 

12
*

12
ˆˆ ΓΓ , functions iF̂  be eigenfunctions of *

1212
ˆˆ ΓΓ , variables iλ̂  be corresponding singular 

values and ii RG ˆˆˆ
11Γ= . Define ρ̂  as the linear extension of the following action: 



 =

.0
,...,1ˆˆˆ:ˆ

otherwise
kiifFG ii

i
λρ a  

 
Theorem 2 (Consistency) As n  approaches ∞ , operator ρ̂  converges in norm to ρ  
with probability 1. 
 
Proof is based on the following lemmas 
Lemma 1 Operators 12Γ̂  and 11Γ̂  are consistent (in norm) estimates of 12Γ  and 11Γ . 
 
Lemma 2 Let A  be a self-adjoint Hilbert-Shcmidt operator with eigenvalues 

0...1 >>> kλλ . If Â  is a consistent estimate of A , then its first k  eigenvectors and 
eigenvalues are consistent estimates of the first k  eigenvectors and eigenvectors of 
operator A . 
 
Lemma 3 If vector e  is estimated consistently by ê , and operator Γ  is estimated 
consistently in norm by Γ̂ , then vector eΓ  is estimated consistently by êΓ̂ . 
 
Lemma 4 If a linear operator, A , has finite rank and is given by its action on a basis as 

iii feA λa: , and if iii fe ˆ,ˆ,λ̂  are consistent estimates for iii fe ,,λ , then 

operator Â  given by action feA ii
ˆˆˆ:ˆ λa , is a consistent in norm estimate of A . 
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Given the estimate of the operator ρ , we can compute predictions as tfρ̂ . 
 
5. Data 
We use daily settlement data on the Eurodollar that we obtained from Commodity 
Research Bureau. The Eurodollar futures are traded on Chicago Mercantile Exchange. 
Each contract is an obligation to deliver a 3-month deposit of $1,000,000 in a bank 
account outside of the United States at a specified time. The available contracts has 
delivery dates that starts from several first months after the current date and then go each 
quarter up to 10 years into the future. The settlement is in cash. 
 
The available data start in 1982, however, we use only the data starting in 1994 when the 
trading on 10-year contract appeared. We interpolated available datapoints by cubic 
splines to obtain smooth forward rate curves. We restricted the curve to points that are 30 
days from each other to speed up the estimation. We also removed datapoints with less 
than 90 or more than 3480 days to expirations. That left us with 114 points per curve and 
2507 valid dates. 
 
The main difference of futures contract from the forward contract is that it settled during 
the entire life of the contract, while in the forward contract the payment is made only at 
the settlement date. This difference and variability of short-term interest rates make the 
values of the contracts different (see Hull for an explanation ). While the difference in 
values is small for short maturities, it can be significant for long maturities. There exists 
methods to adjust for this difference but for our illustrative purposes we will simply 
ignore this difference. 
 
The rate on the forward contract is approximately the forward rate that we defined above. 
Indeed, the buyer of the contract expects to have a negative cash flow (forward price) on 
the settlement date and a positive cash flow ($100,000) 3 months after the settlement 
date. He has the following alternative investment: he buys a discount bond that will pay 
$100,000 three months after the settlement date. This costs $100,000 )( δ+× TPt , where 
δ  denotes 3 months. He complements this by selling a discount bond that matures on the 
settlement day. If his overall investment is zero, then he is sure that on the settlement day 
he can make a payment of at least $100,000 )(/)( TPTP tt δ+× . By arbitrage 
considerations we see that the price of the forward contract is $100,000 times the forward 
rate.  
 
The next chart illustrate the evolution of Eurodollar forward rate curves. 
 
Figure 1. Forward Curve Evolution. 
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Note: The forward curves correspond to Eurodollar rates from January 1994 to December 
2003. The calendar time on the left axis and the time to maturity is on the right axis. Both 
are measured in working days. 
 
6. Principal Components 
Principal component factors 
Table 1. Eigenvalues of the forward rates variance matrix. 
Eigenvalue 
113.02 
10.96 
0.815 
0.1253 
0.0648 
0.024 
Note: The estimates are from the daily Eurodollar forward rates data. 
 
The results of estimation suggest that the rank of operator ρ  is around 3. This 
corresponds well to the findings in the previous empirical literature that suggest that the 
evolution of the term structure can be decomposed into evolution of 3 main factors: level, 
slope and curvature. The next Chart shows the eigenvectors of the covariance matrix of 
forward rates that corresponds to the highest eigenvalues of the operator.  
 
Figure 2. Eigenvectors of the variance matrix. 
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Note: The eigenvectors are estimated using the daily data on the Eurodollar forward rates. 
 
Clearly the eigenvectors correspond to the usual factors of the term structure dynamics. 
The blue line corresponds to the “level” factor. It has the largest eigenvalue. The green 
line is the “slope” factor. It has the second largest eigenvalue. And the red line is the 
“curvature” factor. 
 
Dynamics of principal component factor loadings 
The picture below illustrates how loadings on the principal component factors changed 
over time. 
Figure 3. Time Evolution of Factor Loadings 
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Note: On the horizontal axis the calendar time in working days since January 1994. On 
the vertical line is the value of the factor loading. The blue line is for the loading on the 
“level”, the green is for the “slope”, and the red is for the “curvature”. The principal 
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component curves were estimated using the entire data period from January 1994 till 
December 2003. 
 
It is clear from this picture that the “level” is the most important contributor to the 
interest rates, followed by the “slope” and the “curvature”.  Some mean reversion in the 
dynamics is also apparent.  
 
 
Estimates of coefficient operator  
Operator ρ  maps the term structure curve to a linear combination of the factor curves. 
The action of operator I−ρ  on the factor curves themselves is given by the matrix in 
Table 2: 
 
Table 2. Estimate of operator I−ρ  in the basis of eigenvectors. 
-0.21 0.1 1.48 
-0.12  -0.43  -0.77 
0.00 -0.05 -0.74 
Note: The coefficients are estimated from the daily data and all coefficients are 
multiplied by 100 for convenience. 
 
 What is surprising about this matrix is that it is non-symmetric and that the off-diagonal 
elements are quite large compared with diagonal elements.  This observation suggests 
two possible explanations. The first one is that the dynamic of the model is more complex 
than the simple mean reversion. The second one is that the estimates of the off-diagonal 
elements are not sufficiently precise.  First, we address the issue of dynamics. 
 
Operator ρ  have 1 real and 2 complex eigenvalues. All of them are less than 1 in 
absolute value so the operator is stable in the sense that it corresponds to a stable 
dynamical system: the deviation from the mean tends to the zero eventually The 
complexity of the dynamics can be seen from the following Figures. 
 
Figure 4. Dynamics of factor loadings. 



 15

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

 
Note: The horizontal axis shows the loading on the “level” factor. The vertical axis shows 
the loading on the “slope” factor. The loading on the curvature factor is not shown. Its 
initial value was set equal to 1. 
 
This picture shows evolution of the factor loadings with different initial values in the 
absence of external noise, so it illustrates impulse response function for a particular 
impulse. While the loadings are seen to converge to zero eventually, the convergence is 
not monotonic. The “level” initially increases before converging to zero, and the slope at 
some point becomes negative. 
 
We can address the concern about the precision of the estimates by plotting the results of 
the estimation as the number of data increases: 
 
Figure 5. The evolution of matrix entries of the estimate of operator ρ . 
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Note: The operator ρ  is estimated using the daily data on the Eurodollar forward rates. 
The estimation is on the rolling basis so it uses all the information available at the time of 
estimation. 
 
This chart suggest that certain of the entries in the coefficient operator are indeed 
unstable over time. It turns out that these are all entries that are over the main diagonal. 
The entries on the main diagonal and below are sufficiently stable. 
 
Figure 6. The evolution of lower-diagonal matrix entries of the estimate of operator ρ . 
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Note: The operator ρ  is estimated using the daily data on the Eurodollar forward rates. 
 
Forecasting 
An important characteristic of a model is its forecasting performance out of sample. We 
compare the performance of our model with that of the simple random walk model and 
with the performance of the model by Diebold-Li. The following charts plot the 
performance of these models for different forecasting ranges. The performance in these 
charts is measured by the realized mean squared error (MSE) of the prediction. 
 
7. Estimation by Singular Factors 
 
Singular values and singular factors 
 
Table 3 Singular values for different time intervals and models 
C daily C yearly B Daily B Yearly A Daily A Yearly 

0.0518 10203 0.0022 22242 12719 746.3225
0.0007 135 0.0001 144 119 30.4738
0.0001 0 0 0 1 0.0378

 
 
The next figure shows the two largest singular factor curves R , corresponding factor 
loading curves F  and curves G  for models A, B and C estimated on daily data. 
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Figure 7 Singular factors and loadings. 
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Model B 
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Model C 
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Note: The singular factors and loadings are estimated the daily data on the Eurodollar 
forward rates. The left panel shows singular factors, the middle panel shows the 
corresponding factor loadings, and the right panel shows functions G . The solid blue line 
is for the fist singular factor and the dotted magenta line is for the second singular factor. 
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