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Abstract

We examine the formation of networks among a set of players whose payoffs depend
on the structure of the network. We focus on games where players may promise or de-
mand transfer payments when forming links. If players may only make such transfers on
the links they are directly involved with, then there are many settings where inefficient
networks are the only equilibrium outcomes, and we fully characterize the supportable
networks. If externalities are nonpositive and a convexity condition is satisfied, then
efficient networks are supportable as equilibria with such direct transfers. If players
can also make positive transfers to pay for links they are not involved with, then a
convexity condition alone is sufficient for an efficient network to be supportable as an
equilibrium. In cases where transfers can be made contingent on the network, then
any efficient network is supportable as an equilibrium. We also consider a refinement
of equilibrium that allows pairs of players to coordinate their promises and demands
on a link. If players can make payments to prevent the formation of a link as well
as to form it, then all efficient networks are supportable via the pairwise equilibrium
refinement.
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1 Introduction

Many social, economic, and political relationships may be thought of as a network of bilateral
relationships. This ranges from friendships to trading relationships to political alliances. As
the structure of the network of relationships can have a profound impact on the welfare of
all the involved parties, it is essential to develop a good understanding of which networks
are likely to form and how this depends on the specifics of the circumstances. This paper
contributes to a growing literature that models network formation.1

Our purpose in what follows is twofold. First, we wish to provide models that will help
us to study network formation when the players involved can bargain on possible transfers
at the time of forming relationships. For example, when two airlines form a code-sharing
agreement, included in that agreement are details on how to split the costs and revenues on
cross-booked passengers. Without some transfer payments (in currency or in kind), many
such agreements would never exist. This is true in wide variety of network settings, and so we
develop models where the formation of links and the agreement over transfers are agreed to
at the same time. Second, we wish to understand how the formation of networks depends on
the types of transfers that are allowed. For instance, in many settings one player’s welfare
might depend on how other players are linked. When is it important that a player can
make transfers that are contingent on the relationships that another player has? When is
it important for players to be able to subsidize relationships between other players? As the
formation process and the types of transfers that might be feasible varies with the setting,
having an idea of how network formation depends on these aspects of the formation process
will help us understand which networks we should expect to see.
This paper fits into a recent literature that examines network formation when players act

in their own interest and their payoffs may depend on the structure of the network. In such
contexts, Jackson and Wolinsky (1996) showed that the networks that maximize society’s
overall payoff will often not be stable in an equilibrium sense, regardless of how payoffs
are re-allocated (subject to some basic conditions). Their perspective was one where the
allocation of payoffs is already set as a function of the network when players decide which
links to form. They showed that were simple settings such that, for any allocation of payoffs
satisfying an anonymity and component balance condition, the networks that were formed
by individuals would fail to maximize overall societal welfare. While they also showed that
there are a variety of settings where link formation will lead to efficient networks, their
result is still bothersome in that even the ability to reallocate payoffs fairly widely does not
overcome difficulties with network externalities (even with complete information).
In recent papers, Currarini and Morelli (2001) and Mutuswami and Winter (2002) show

that, at least in some settings, the difficulty of efficient network formation can be overcome
if players bargain over the allocation of payoffs at the same time as the network forms. They
model network formation as a sequential process where players move in turn and announce
the payoff that they demand and the links that they are willing form. The network that
forms as a function of the announcements is the largest one such that the demands are

1See Jackson (2003b) for a survey of the literature that is most closely related to our work here.
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compatible with the value that is generated. They show that the equilibria of such games
are efficient networks, assuming that there are no externalities across network components
and that some payoff conditions are satisfied. Part of the intuition is that by moving in
sequence and making such take it or leave it demands, players can extract their marginal
contribution to an efficient network, and this provides correct incentives.
These papers make an important point that the ability to determine payoffs in conjunc-

tion with link formation may aid in the emergence of efficient networks. However, these
sequential games have special features and are better for illustrating the importance of tak-
ing such bargaining seriously, than for providing reasonable models of network formation.
In particular, the end-gaming and finite extensive forms drive the results. Moreover, Cur-
rarini and Morelli (2001) and Mutuswami and Winter (2002) provide some conditions for
the support of efficient networks, but do not give us much of a feel for how generally this
might hold, or how this depends on the structure of the process.
Here, we take the important message from these papers that a simultaneous determination

of payoffs and link structure can be a critical determinant of which networks form. However,
we take a very different approach to modeling these issues, both in the class of games that
we consider, and the types of questions that we ask. First, in order to find games that
have some robust structure to them, we look at simultaneous move games. While arguably
network formation is generally far from simultaneous, these games have a critical feature
that is absent from the finite extensive forms. In particular, once the network has formed,
no player(s) would benefit from changing their promised or demanded transfers and the links
that they form. If one added further stages to the finite extensive forms and allowed players
to come back to revisit their actions, the outcomes would change dramatically. As when
whatever network formation process reaches some sort of stable point, it should be that no
player could gain from some further deviation, the simultaneous move games capture this
quite directly. Second, we try to develop a fuller characterization of the networks that can
be supported and how this varies with the structure of the externalities and players’ payoffs.
Third, we tie the type of transfer that is available in the game to the type of networks
that are supportable. We compare the networks that emerge when players can only make
payments with regards to links that they are involved with, to those networks that emerge
when players can subsidize the formation of links that they are not directly involved with.
We also study how the ability to make payments contingent on the whole architecture of
the network affects network formation. The support of efficient networks ties back to these
variations in game structure in intuitive ways relating to the type of externalities present,
and the convexity (or lack thereof) of the payoffs. As different applications tend to have
different availability of transfers, understanding how outcomes change with transfer structure
is vital.

2 Modeling Networks

Players and Networks
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The set N = {1, . . . , n} is the set of players.2
A network g is a list of which pairs of players are linked to each other. A network is then

a list of unordered pairs of players {i, j}.
For any pair of players i and j, {i, j} ∈ g indicates that i and j are linked under the

network g.
For simplicity, we write ij to represent the link {i, j}, and so ij ∈ g indicates that i and

j are linked under the network g.
For instance, if N = {1, 2, 3} then g = {12, 23} is the network where there is a link

between players 1 and 2, a link between players 2 and 3, but no link between players 1 and
3.
Let gN be the set of all subsets of N of size 2. The network gN is referred to as the

“complete” network.
G = {g ⊂ gN} denotes the set of all possible networks on N .
For any network g ∈ G, let N(g) be the set of players who have at least one link in the

network g. That is, N(g) = {i | ∃j s.t. ij ∈ g}.
Given a player i ∈ N and a network g ∈ G, let Li(g) denote the set of links in g involving

player i, Li(g) = {jk ∈ g|j = i or k = i}.
Paths and Components
A path in a network g ∈ G between players i and j is a sequence of players i1, . . . , iK

such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1}, with i1 = i and iK = j.
Looking at the path relationships in a network naturally partitions a network into different

connected subnetworks that are commonly referred to as components.
A component of a network g, is a nonempty subnetwork g′ ⊂ g, such that

• if i ∈ N(g′) and j ∈ N(g′) where j 
= i, then there exists a path in g′ between i and j,
and

• if i ∈ N(g′) and ij ∈ g, then ij ∈ g′.

Thus, the components of a network are the distinct connected subnetworks of a network.

Utility Functions

The utility of a network to player i is given by a function ui : G → IR+. Let u denote
the vector of functions u = (u1, . . . , un),
We normalize payoffs so that ui(∅) = 0.
For any network g ∈ G and subset of links � ⊂ g, let

mui(g, �) = ui(g)− ui(g \ �)

be the marginal utility for player i from the links � relative to the network g.

Externalities

2For background and discussion of the model of networks discussed here, see Jackson (2003b).
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The class of utility functions that we consider here is arbitrary, and thus considers very
general types of externalities. At times, it is useful to talk about specific forms of externali-
ties. To that end, the following definitions of externalities in payoffs are useful.

The profile of utility functions u satisfies no externalities if ui(g) = ui(g + jk) for all g,
jk /∈ g, and i /∈ jk.
The profile of utility functions u satisfies nonpositive externalities if ui(g) ≥ ui(g + jk)

for all g, jk /∈ g, and i /∈ jk.
The profile of utility functions u satisfies nonnegative externalities if ui(g) ≤ ui(g + jk)

for all g, jk /∈ g, i /∈ jk.

These definitions of externalities are not exhaustive. There are some settings that do not
satisfy any of the above cases, as it may be that some links result in positive externalities
and others in negative externalities, or the nature of the externality may differ depending on
the players in question and/or the starting network. Nevertheless, these definitions capture
many settings of interest and prove useful in talking about some interesting special cases in
what follows.

Values and Efficiency

Let vu denote the total value as a function of the network, that is

vu(g) =
∑

i

ui(g).

A network g ∈ G Pareto dominates a network g′ ∈ G relative to u if ui(g) ≥ ui(g
′) for

all i ∈ N , with strict inequality for at least one i ∈ N .
A network g ∈ G is Pareto efficient relative to u if it is not Pareto dominated.
A network g ∈ G is efficient relative to u if it maximizes vu(g).

In a world where transfers are possible, efficiency and Pareto efficiency (allowing for
transfers) are equivalent. Thus, our main focus here is on efficient networks.3

3 Network Formation Games

We consider several models of network formation where various types of transfers are
available, and examine which networks emerge as equilibria and how that depends on the
structure of transfers. There are two basic versions of the game that we consider which differ
as to whether players can make transfers on links that do not involve them. Later, we also
consider variations of these games when transfers can be contingent on the network that
forms. Thus, we consider four main variations of network formation games.

3For a detailed discussion of various notions of efficient networks in the presence of transfers, see Jackson
(2003a).
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The Direct Transfer Network Formation Game

Every player i ∈ N announces a vector of transfers ti ∈ IRn−1. We denote the entries in
this vector by tiij, across the n − 1 potential links that involve i. The announcements are
simultaneous.
Link ij is formed if and only if tiij+tjij ≥ 0. Formally, the network that forms as a function

of the profile of announced vectors of transfers t = (t1, . . . , tn) is

g(t) = {ij | tiij + tjij ≥ 0}

In this formation game, player i’s payoff is

ui(g(t))−
∑

ij∈g(t)

tiij.

The interpretation is that a player announces a transfer for each possible link that he
or she might form. If the transfer is positive, then it represents the amount that the player
promises to pay to the other player involved in that link. If the transfer is negative, then it
represents the amount that the player must receive in order to be willing to form the given
link.
It is conceivable in this game that tiij + tjij > 0. Here, we hold both players to their

promises. For instance, if tiij > −tjij > 0, then player i ends up making a bigger payment
than player j demanded. Player j only gets his or her demand, and the excess payment is
wasted. In equilibrium, this will never arise as either player would benefit from deviating.
As will become clear, the game would work equally well if we simply made the transfer in
this case either the max or the min of the two promises/demands; as regardless of how this
is specified equilibrium will imply that the two will exactly match in equilibrium whenever
they are compatible. The same is true of the other games we consider.

The Indirect Transfer Network Formation Game

Every player i announces a vector of transfers ti ∈ IR(n−1)!. We denote the entries in the
vector ti by tijk, as varying across all possible links jk.
It is required that if i /∈ jk, then tijk ≥ 0. Thus, i can make demands on the links that

i is involved with (it is permissible to have tiij < 0), but can only make promises to pay for
links that i is not directly involved with.
Link jk is formed if and only if

∑
i∈N tijk ≥ 0. Formally, the network that forms as a

function of the profile of announced vectors of potential transfers t = (t1, . . . , tn) is

g(t) = {ij | ∑
i∈N

tijk ≥ 0}

In this formation game, player i’s payoff is

ui(g(t))−
∑

jk∈g(t)

tijk.
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The variation of this link formation game from the previous one is that players are also
allowed to make promises to pay to help support links that they are not directly involved in.
That is, player i may promise to contribute a payment tijk for the formation of link jk. The
restriction that they can only subsidize links that they are not involved with reflects that
feature that a player cannot prevent other agents from forming links among themselves, but
can subsidize such link formation.

Network Formation Games with Contingent Transfers

In the games we have defined above, players only have a limited ability to condition
their actions on the actions of other players. That is, the games do not allow players to say
something of the form: “I will pay you to form link ij, but only if link jk is also formed.”
It turns out that being able to make this kind of contingent promise is very important.
To this end, we consider a variation of each of the above games for the case where a

player can make their promises/demands contingent on the network that forms.
Thus, i announces a vector ti(g) contingent on g forming, for each conceivable nonempty

g ∈ G. In the direct transfer game, ti(g) ∈ IRn−1 for each i, while
There are many possible ways to determine which network forms given a set of contingent

announcements. We pick one, but it will become very clear that the results are robust to
this choice. There is an ordering over G, that is captured by a function σ which maps G
onto {1, . . . ,#G}. The network that forms is then determined as follows. First look at g1

such that σ(g1) = 1. Look at the profile of transfers t(g1). Look at g(t(g1)). If g(t(g1)) = g1

then stop. Otherwise, continue to g2. Stop at the first k such that g(t(gk)) = gk. If there is
no such k, then the empty network forms.
This defines the network that forms as a function of announced profile of contingent

transfers, which we again denote g(t), with the understanding that t is now simply a larger
vector that includes payments in all sorts of contingencies. The payoffs to the players are
then as before, using the vector of transfers t(g(t)).

Equilibrium and Supporting a Network

Given a vector of transfers t for one of the four variations of the game, a players payoff
is then

πi(t) = ui(g(t))−
∑

jk∈g(t)

tijk

in the non-contingent game,4 and

πi(t) = ui(g(t))−
∑

jk∈g(t)

tijk(g(t))

in a contingent game.

4This equation includes tijk, even when i /∈ jk, and such transfers are not included in the direct transfer
game. Simply set tijk = 0 when i /∈ jk for the direct transfer game.
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A vector t forms an equilibrium of one of the above games if it is a pure strategy Nash
equilibrium of the game. That is, t is an equilibrium if

π(t) ≥ π(t−i, t̂
i),

for all i and t̂i.

We say that a network g is supported via a given game relative to a profile of utility
functions u = (u1, . . . , un) if there exists an equilibrium t of the game such that g(t) = g.

A Comment on Simultaneous Move Games

A critical advantage of considering a simultaneous version of network formation is that
after seeing the resulting network and transfers, players will not wish to make further changes
to their transfers and links. This is not true if one instead models network formation sequen-
tially, by having the players move in some order. It could be that the resulting network and
transfers would not be stable if players could then come back and make further changes.

Regardless of whether one thinks that network formation is simultaneous, the conditions
imposed by equilibrium are necessary conditions for any process to come to a stable position.
That is, the equilibrium conditions that are derived here are conditions that capture the idea
that we have arrived at a network such that no players would gain from further changes.

A Refinement: Pairwise Equilibrium

There is one issue introduced by the simultaneity of the link formation game. It allows
for a multiplicity of equilibrium networks as a result of a coordination failure. This is easily
overcome with any of a variety of simple refinements, as we now discuss.

Example 1 Why refine?

Consider the following 2 player example, where all of the above transfer games are equiv-
alent.

� �

1 1

� �

0 0

Note that there are two supported networks. One is the empty network and the other
is complete network (one link). For instance, to support the complete network we can set
t112 = t212 = 0. To support the empty network, we can set t

1
12 = t212 = −t, where t ≥ 1. The

second equilibrium is one in which the link is not formed because both players expect the
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other to make an unreasonable demand, and so it is a best response for each them to make
unreasonable demands.
Note that this second equilibrium supporting the empty network survives an elimination

of weakly dominated strategies and is also a trembling hand perfect equilibrium.5 To elim-
inate this equilibrium using standard refinements would require the machinery of iterative
elimination of strategies, which is cumbersome in games with a continuum of actions.
Alternatively, we should expect players forming a link to be able to coordinate their

actions on that formation, as the real-life process that we are modeling would generally
already involve some form of direct communication. This suggests a very simple refinement.

Given t, let t−ij indicate the vector of transfers found simply by deleting tiij and tjij.

A vector t forms is a pairwise equilibrium of one of the above games if it is an equilibrium
of the game, and there does not exist any ij /∈ g(t), and t̂ such that

(1) πi(t−ij, t̂
i
ij, t̂

j
ij) ≥ πi(t),

(2) πj(t−ij, t̂
i
ij, t̂

j
ij) ≥ πj(t), and

(3) at least one of (1) or (2) holds strictly.6

This refinement asks whether or not there are any two agents who have not formed a
link, who could benefit from mutually changing their demands/promises to add a link.
Note that the reason the refinement only worries about the addition of links is that players

can already unilaterally sever links (simply by increasing their demands) and so equilibrium
already captures the essential features of that case.7

Example 2 Nonexistence of Pairwise Equilibria

As opposed to pure strategy Nash equilibria which always exist for all of the games we
have discussed, there are some settings in which pairwise equilibria do not exist. Here is
such an example. Each player gets 0 in the empty network.

5Demanding −t fares well in the case where the other agent happens to offer at least t.
6This is easily seen to be equivalent to requiring that both (1) and (2) hold strictly.
7There are many other refinements we could also consider - for instance in the indirect transfer game

allowing all agents to change their t’s on a given link. Once one allows for such group deviations, it makes
sense to go all the way to allowing more general groups deviations. At that point one is led to something that
is equivalent to the concept of strongly stability with side payments of Jackson and van den Nouweland (2001).
Such a refinement is quite stringent, and while it has the nice property of only supporting efficient networks,
it only applies in situations where there is substantial room for communication between all individuals.
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1

0 0

1

1

The empty network is a (pure strategy Nash) equilibrium, but not a pairwise equilibrium:
two players can set zero demands to form a link and get 1 > 0. No network that has at
least two links can be an equilibrium. Any such network must have some player who gets
a negative payoff, who can then get a payoff of at least 0 by setting negative transfers on
both links (below -3). Finally, a network with one link cannot be a pairwise equilibrium.
For example, if the player who is not linked demanded −3.5 and a player who already has
one link offered 3.5, both players would benefit.

4 The Direct Transfer Game

We now provide an analysis of the simplest game, and the one that might best capture the
type of direct bargaining that we expect to arise in many applications: the direct transfer
network formation game.
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We first provide an example that shows that there exist utility functions for which the
efficient network is not supported by any equilibrium in the direct transfer game.

Example 3 Inefficient Network Formation with Direct Transfers and Positive Externalities

� � �

u1(g)=2 u2(g)=0

1 2 3

u3(g)= -1

All other networks result in a utilities of 0 for all players.
Consider any equilibrium t and resulting network g(t). It must be that t323 ≤ −1 if the

network {12, 23} = g(t), as otherwise 3 would benefit by lowering t3. If t223 ≥ 1 ≥ −t323, then
2 will benefit by lowering t223, regardless of what other links have formed as u2 is 0 for all
networks. Thus, the network {12, 23} cannot be supported in equilibrium.

This example shows us that the set of networks that can be supported via the network
formation game with direct transfers will have some limitations and that only in some cases
will efficient networks be supported. More generally, it points out that we will need in-
direct transfers in order to support efficient networks in some situations where there are
externalities.

Let us get a fuller understanding of what networks can be supported as equilibria under
the network formation game with direct transfers. While Example 3 suggests that direct
transfers may not always handle externalities, there are hurdles which go even beyond this.
Even in cases without externalities, the game must account for payoffs from many different
possible deviations in terms of sets of links that might be deleted.

Example 4 The Efficient Network is Not Supportable in the Complete Absence of Exter-

nalities.

Consider a three-player society and a profile of utility functions described as follows. Any
player gets a payoff of 0 if he or she does not have any links. Player 1 gets a payoff of 2 if
she has exactly one link, and a payoff of 1 if she has two links. Player 2 gets a payoff of -2
if he has exactly one link, and a payoff of 0 if he has two links. Player 3’s payoff function is
similar to that of player 2: he gets a payoff of -2 if he has exactly one link, and a payoff of
0 if he has two links.
It is clear from this specification that all players’ payoffs depend only on the configuration

of their own links and so there are absolutely no externalities in payoffs. This payoff structure
is pictured in the network below.

11



❏
❏

❏
❏

❏
❏

❏❏

❏
❏

❏
❏

❏
❏

❏❏

✡
✡

✡
✡

✡
✡

✡✡

✡
✡

✡
✡

✡
✡

✡✡

� �

� �

� � �

�

�

❏
❏

❏
❏

❏
❏

❏❏

✡
✡

✡
✡

✡
✡

✡✡

� �

� �

� � �

�

�

❏
❏

❏
❏

❏
❏

❏❏

✡
✡

✡
✡

✡
✡

✡✡

�

�

�

�

�

�

u1 = 1

u2 = 0

u3 = 0

2

0

−21

−2

−2 2

−2

0

2

0

−22

−2

0 −2

u1 = 0

u2 = 0

u3 = 0

Let us check that there is no equilibrium of the direct transfer game that supports the
unique efficient network (the complete network). By setting t22i ≤ 0 for each i, player 2 gets
a payoff of at least 0. The same is true for player 3. Thus, players 2 and 3 must have a payoff
of at least 0 in any equilibrium. Now, suppose that the complete network were supported in
an equilibrium. It follows that t11i ≥ 0 for at least one i, or otherwise one of players 2 and 3
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would have a negative payoff. Without loss of generality, say that t112 ≥ 0. Player 1’s payoff
is 1− t112− t113. Suppose that player 1 deviates and changes t

1
12 so that t

1
12+ t212 < 0. Then the

network that forms will be 12, 23 and player 1’s payoff is then 2− t113 which is greater than
1− t112 − t113 (since t

1
12 ≥ 0). This is a contradiction, and so the complete network cannot be

supported by any equilibrium.

This example is quite damaging to the hopes of sustaining efficient networks via the direct
transfer game. The example is a bit unexpected (by us, at least) in the following sense. If
there are no externalities in the network at all, then the value generated can be attributed
directly to the links themselves and only affects the players involved in those links. In such
a situation, at first glance, it would seem that the players involved in any given link could
make transfers that support that link in situations where the total marginal benefit from
that link are positive. What is missing from this reasoning is that a given player might
have many different combinations of links that they might consider deleting. Each of these
combinations might require different transfers to support the links. Indeed, this is the heart
of the network balance condition. It might be that some of these combinations are in conflict
with each other. In the above example, it is the possibilities that either player 2 or 3 might
sever both of his or her links that lies in conflict with what player 1 can get by severing a
single link at a time.
This gives us an idea of what characteristics a link formation process must have in order

to always support efficient networks. Two things will be needed. First, indirect transfers are
needed in order to take care of externalities, as suggested Example 3. Second, Example 4
suggests that we will also need the transfers to be contingent on the network that is formed.
In that way the transfers can adjust to the particular combination of links that are formed.
We come back to investigate contingencies more fully below.

While Examples 3 and 4 suggest that the direct transfer game will fall short of support-
ing efficient network in two important regards, there are still many setting with externalities
and/or complementarities among links where efficient networks are supported as the equi-
libria of the direct transfer network formation game.
We now provide a characterization of the networks that are supportable in games with

direct transfers, and identify some settings where direct transfers suffice to support efficient
networks. First, we offer the complete characterization.

A Complete Characterization of Networks Supported by Direct Transfers: The
Network Balance Condition

A set of nonnegative weights {µi

}i∈N,
∈Li(g) is balanced relative to a network g if∑


⊂Li(g):ij∈


µi

 =

∑

⊂Lj(g):ij∈


µj



for each ij ∈ g.
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The network g is balanced relative to the profile of utility functions u if∑
i

∑

∈Li(g)

µi

mui(g, �) ≥ 0.

for every balanced vectors of weights.

We should emphasize that the balance conditions identified here are quite different from
the balance conditions used in cooperative game theory. These are not weights that are
balanced across coalitions and agents, but equal across particular player-link pairs. These
are tailored to the pairwise considerations in network formation, as they should be.

Proposition 1 A network g is supportable as an equilibrium of the direct transfer network

formation game relative to the profile of utility functions u if and only if it is balanced relative

to the profile of utility functions u.

The proof of Proposition 1 appears in the appendix. As one might expect, it uses duality
theory from linear programming to turn the equilibrium support conditions into a set of
balance conditions.
Proposition 1 only characterizes supportability, and not supportability via pairwise equi-

librium. Clearly this provides necessary, but not sufficient conditions for supportability via
pairwise equilibrium. The additional constraints imposed by pairwise equilibrium seem to be
difficult to capture in a balance sort of condition. Nevertheless, we can identify a sufficient
condition, as follows.

Proposition 2 If a network g is supportable via pairwise equilibrium by the direct transfer

network formation, then it is balanced relative to the profile of utility functions u. Conversely,

if u satisfies nonnegative externalities, and g is efficient and balanced relative to u, then g is

supportable via pairwise equilibrium by the direct transfer network formation game.

More generally, we show the following lemma.

Lemma 1 If g is efficient and supportable via the direct or indirect transfer game, and u

satisfies nonnegative externalities, then g is supportable in pairwise equilibrium.

While the balance conditions are not so obviously interpreted directly, they turn out
to be quite useful as is illustrated in the following identification of sufficient conditions for
supportability.

Distance-Based Payoffs and Stars

Let d(i, j) denote the distance between i and j in terms of the number of links in the
shortest path between them (setting d(i, j) =∞ if there is no path).
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Say that a profile of utility functions is distance-based if there exist c and f such that

ui(g) =
∑
j �=i

f(d(i, j))− c|Li(g)|

for all i, where c ≥ 0 is a cost per link, and f is a nonincreasing function.
A distance-based payoff structure is one where players may get benefits from indirect

connections, but where those benefits are determined by the shortest paths. Special cases
of distance-based payoffs are the connections model and truncated connections models of
Jackson and Wolinsky (1996). In such settings, “star” networks play a very central role, as
captured in the following proposition.

Proposition 3 If u is distance-based, then the unique efficient network structure is

(i) the complete network gN if c < f(1)− f(2),

(ii) a star encompassing all players if f(1)− f(2) < c < f(1) + (n−2)f(2)
2

, and

(iii) the empty network if f(1) + (n−2)f(2)
2

.

In the case where c is equal to f(1)− f(2) or f(1) + (n−2)f(2)
2

, there are can be a variety
of network structures that are efficient. Nevertheless, the star is still efficient in those cases.
The proof of Proposition 3 is an easy extension of the proof of a Proposition in Jackson

and Wolinsky (1996), but we include it in the appendix for completeness.

Distance-based settings are ones where efficient networks turn out to be supportable,
and via pairwise equilibrium. Even though there are externalities, say in a star network, any
player i who enjoys externalities is directly connected to the center who is responsible for
providing those externalities. This allows players to pass on their benefits to the center, and
helps in supporting the star as an equilibrium. This is captured in the following corollary to
Propositions 1 and 2.

Corollary 1 If u is distance-based, then some efficient network is supportable via the

direct transfer game and is also supportable via pairwise equilibrium.

The claim is easy to see directly in cases where either the empty or complete networks are
efficient. Consider the remaining case where f(1)−f(2) ≤ c ≤ f(1)+ (n−2)f(2)

2
, and thus a star

involving all players is efficient. Here, we verify the balance conditions. An agent i connected
to the center j in a star has only one link, we can simply set µi

{ij} = c for any c ≥ 0. Then
for the center j, it must be that

∑

⊂Lj(g):ij∈
 µ

j

 = c. The fact that a star is balanced then

follows from noting that cmui(g, ij)+ cµj(g, ij) = 2f(1)+ (n− 2)f(2)− 2c ≥ 0 in situations
where the star is efficient, and noting that the center’s payoff is additively separable across
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links.8 Proposition 2 implies that we can support an efficient g as a pairwise equilibrium,
noting that there are nonnegative externalities in a distance-based u (as adding a link that
does not involve i can only increase i’s payoff as it may decrease the distance between i and
some other agent, but does not impose a cost on i)

Supportability with Nonpositive Externalities and Convexity in Own-Links

In looking for other sufficient conditions for supportability, Examples 3 and 4 are helpful.
Examples 3 suggests that we should look at situations where externalities are nonpositive.
Example 4 suggests a restriction that marginal payoffs from a given set of links be at least
as high as the sum of the marginal payoffs from separate links. This condition is formalized
as follows.
A profile of utility functions u are convex in own-links if

mui(g, �) ≥
∑
ij∈


mui(g, ij)

for all i, g, and � ⊂ Li(g).

Under these two conditions efficient networks are supportable, as stated in the following
proposition.

Proposition 4 If utility functions are convex in own-links and satisfy nonpositive exter-

nalities, then any efficient network g is supportable via the direct transfer game. If utility

functions are convex in own links and satisfy no externalities, then g is supportable via a

pairwise equilibrium.

As an example of a setting where we might see convexity in own-links and nonpositive
externalities, consider some sort of research partnerships between firms in an oligopoly. For
instance, an agreement might lead to the lowering of cost by a firm. If there are diminishing
returns to entering into more such relationships, then the convexity in own-links is satisfied.
The nonpositive externalities arise as agreements between other firms lowers rivals’ costs.
[[Elaborate on this example.]]

A special case of convexity in own links, is the case where payoffs are separable across
links.

Link-Separable Payoffs
Let us say that payoffs are link-separable, if for each player i there exists a vector wi ∈

IRn−1, where wijk is interpreted as the net utility from jk, and such that

ui(g) =
∑
jk∈g

wijk.

8This also gives us an idea of which transfers support a star as an equilibrium with agent 1 as the center.
Setting ti1i = f(1) + (n − 2)f(2) − c, tiji = −(n − 1)f(1) for j > 1, and t11i = −[f(1) + (n − 2)f(2) − c] for
each i. It is easily seen that these form an equilibrium that supports the star.
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This condition states that agents view relationships completely separately. A special case
is where they only care about the value of their own links.

Corollary 2 If payoffs are link-separable and have nonpositive externalities, then any ef-

ficient network g is supportable via the direct transfer game. Furthermore, if payoffs are

link-separable and have no externalities, then g is supportable via a pairwise equilibrium if

and only if g is efficient.

The first statement and first part of the second statement follow from Proposition 4. To
see the only if claim, suppose to the contrary that g is supportable via a pairwise equilibrium
but not efficient. Then there exists g′ such that

∑
i ui(g

′) >
∑

i ui(g). As payoffs are link
separable and have no externalities, either there exists ij ∈ g\g′ such that wiij + wjij < 0
or there exists ij ∈ g′\g and wiij + wjij > 0. In the first case, g cannot be supported as
an equilibrium, because one of the two players has an incentive to increase her demanded
transfer thereby severing the link; in the second case, g cannot be supported as a pairwise
equilibrium, since will exist a pair of compatible transfer such that the players have an
incentive form the link.

While the above Proposition and Corollary show us that if externalities are nonpositive
and payoffs are convex in own-links, then the direct transfer game suffices to support efficient
networks; we should emphasize we have also seen that there are also some situations that
move beyond this where direct transfers still suffice to support efficient networks. As we have
seen in Corollary 1, there are interesting classes where transfers support efficient networks
even though both convexity in own-links and nonpositive externalities are violated.

5 Indirect Transfers

As we have seen above, cases where there are positive externalities can make it impossible to
support an efficient network via a network formation game with direct transfers. Allowing for
indirect transfers will help support efficient networks in situations where there are positive
externalities, as players can agree to subsidize links that would indirectly benefit them.
While moving to the game with indirect transfers helps us in this way, a different “convexity”
problem arises. In the indirect transfer game convexity in own-links is no longer enough to
overcome the difficulty faced in terms of affecting several links at once, as a player’s deviation
(for instance lowering a subsidy) can result in the severance of links not involving that player.
This is illustrated in the following example.

Example 5 Efficient Network are not Supportable with Indirect Transfers and Convexity in

Own-Links
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Consider a three-player society with payoffs as pictured for networks of one or more links,
and payoffs equal to 0 on the empty network.
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The complete network is efficient but is not the outcome of any equilibrium of the indirect
transfer network formation game. Let us sketch the argument. Consider any player i. Player
i must offer to subsidize the link jk by an amount of at least .4, as otherwise at least one of
j and k will have an incentive to “sever” the link (set their demand to no more than −.2).
Find some player i and a link ij such that tiij ≥ 0. Such a link must exist if the complete

network is supported. Consider the following deviation: player i reduces the payment on the
link jk and “severs” link ij (setting tiij to be low enough so that ij does not form). In that
case, the only link formed is link ik, and player i’s base payoff is the increased, and transfers
have decreased which is strict improvement for player i.
The above network is convex in own-links, as the marginal utility of any second own-

link is negative while the marginal utility of any set of two own-links is always positive.
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However, note that the convexity in links fails more generally. The marginal utility to player
1 at the complete network of the links 12,23 is negative, while the marginal utility of 23 at
the complete network is 1.1, and the marginal utility of 12 is -.2, so the sum of the marginal
utilities is positive. Indeed, this is the source of the problem in the example

Convexity in All Links

A profile of utility functions u are convex in all links if

mui(g, �) ≥
∑
jk∈


mui(g, jk)

for all i, g, and any � ⊂ g.

We can now state the following proposition.

Proposition 5 If payoffs are convex in all links, then any efficient network g is support-

able via the indirect transfer game. If payoffs also have nonnegative externalities, then g is

supportable via pairwise equilibrium.

A prominent example where these conditions are satisfied is that of trading networks.
Imagine that a group of players (possibly individuals, firms, countries) are involved in bi-
lateral trading or risk-sharing relationships, where gains from trade may pass through the
network. This leads to nonnegative externalities. Also, the marginal benefit of adding a new
trader decreases in the number already connected, so that payoffs are convex in all links.
[[elaborate on this example.]]

6 Network Contingent Transfers

While the ability of players to make indirect transfers helps in supporting networks, there
are still convexity conditions that are necessary to support efficient networks. We now
move to exploring contingent transfers to see how that helps. We do this in two parts:
first, considering contingent transfers together with direct transfers, and second, considering
contingent transfers together with indirect transfers. Let us start with direct transfers.
Let us look back at the reason that the network in Example 3 could not be formed in

the direct transfer game. Here, player 1 would like to subsidize the formation of the link 23.
However, that is not permitted if transfers can only flow along links. Thus, we saw that the
network could not be supported as an equilibrium of the direct transfer game, but could be
supported as an equilibrium of the indirect transfer game.
However, we might also consider another possibility. Player 1 might make transfers to

player 2, which are then passed on to player 3. The difficulty is that if player 1 makes this
transfer to player 2, then player 2 might as well not form the link with player 3 and keep
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the transfer. This can be rectified if transfers can be made contingent on the network that
forms.
As we see now, allowing transfers to be contingent on the network that forms has a big

impact on the set of networks that can be supported as equilibrium networks, even when
only direct transfers are possible.

Proposition 6 Consider the contingent version of the direct transfer game and any u.

There exists an equilibrium where the network g is formed and the payoffs are y ∈ Ren where

yi ≥ 0 for all i ∈ N(g) if and only if
∑

i∈N(g′) ui(g) =
∑

i∈N(g′) yi for all g
′ ∈ C(g), and

yi 
= ui(g) implies i ∈ N(g).

Corollary 3 Consider the contingent version of the direct transfer game. Consider any

u and network g such that
∑

i∈N(g′) ui(g) ≥ 0 for all components g′ ∈ C(g). There exists an

equilibrium supporting g. Moreover, there is an equilibrium corresponding to each allocation

y ∈ IRn such that
∑

i∈N(g′) ui(g) =
∑

i∈N(g′) yi for each g′ ∈ C(g) and yi = ui(g) or yi < 0

implies i /∈ N(g).

While Proposition 6 provides for a very wide set of networks to be supported as equilibria,
it is limited by the fact that transfers cannot flow across separate components of a network
in the direct transfer game, even if payments are contingent. If we allow for such indirect
transfers, then there are additional networks that can be supported.9

Proposition 7 Consider the contingent version of the indirect transfer network formation

game. Consider any u, any network g, and any allocation y ∈ IRn
+ such that

∑
i yi = vu(g),

and yi > ui(g) implies i ∈ N(g). There exists an equilibrium where g is formed and payoffs

are y.

Corollary 4 Consider the contingent version of the indirect transfer network formation

game, and any u. Any efficient network such that disconnected players earn zero payoffs is

supportable. Moreover, there is an equilibrium supporting each allocation y ∈ IRn
+ such that∑

i yi = vu(g) and yi > 0 implies i ∈ N(g).

9The y’s in Proposition 7 are required to be nonnegative. One can also support the networks from
Proposition 6 that are not covered in this Proposition through the construction used there. The difference
is that here one sometimes needs a player not in N(g) to subsidize the formation of a component that has a
negative value to its members. For this to work, it must be that the disconnected player earns a nonnegative
payoff, or they would withdraw their subsidies. Rather than break this into separate cases, we have simply
worked with the assumption of nonnegative payoffs.
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Pairwise Equilibria with Contingent Transfers

Propositions 6 and 7 have counterparts for pairwise equilibrium,10 provided the network
being supported is efficient and there are nonnegative externalities. This is a simple extension
of Lemma 1.

7 Transfers to Prevent Link Formation

We can see from the following example, that in cases with negative externalities; even indirect
transfers and contingent payments are not enough to support an efficient network as a
pairwise equilibrium.

Example 6 Negative Externalities and Inefficient Pairwise Equilibria

Consider a society with four players. If one link forms, the two involved players each get
a payoff of 3.

� �

3 3

� �

0 0

If two (separate) links form, then the four involved players each get a payoff of 1.

� �

1 1

� �

1 1

All other networks lead to a payoff of 0.
Here, the only pairwise equilibria are inefficient.11 Two players who are completely

disconnected would always benefit from forming a link, and there is no way to give them

10In order to define pairwise equilibrium, allow players i and j to vary their announcements tiij(g) for all
g.

11The efficient network is supportable as an equilibrium, where the two disconnected players fail to form
a link because each demands too large a transfer. This, again, is a case where pairwise equilibrium is a
reasonable refinement.
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incentives not to from the efficient network. Here, two players who form a link would like to
pay the other players not to form a link.

A Game with Payments to Prevent Link Formation

As we saw in the last example, the ability to pay players not to form a link can help in
supporting efficient networks as pairwise equilibria in the presence of negative externalities.
Let us explore such a game.
We first describe the game in the case without contingencies. Consider the indirect link

formation game, with the following modification. Each player announces two transfers per
link, instead of just one. This pair of announcements by player i relative to link jk is denoted
ti+jk and ti−jk . Again, these must be nonnegative if i /∈ jk, and can be anything otherwise.
Player i also announces mi

j ∈ {+,−} for each j 
= i. The interpretation is that i is declaring
whether the default decision on link ij is not to add ij or to add ij.
In particular, g(t,m) is determined as follows.

• If mi
j 
= mj

i , then ij /∈ g.

• If mi
j = mj

i = +, then ij ∈ g if and only if
∑

k t
k+
ij ≥ 0.

• If mi
j = mj

i = −, then ij /∈ g if and only if
∑

k t
k−
ij ≥ 0.

Payoffs are then

ui(g(t))−
∑

jk∈g(t),mj
k
=mk

j =+

tijk −
∑

jk/∈g(t),mj
k
=mk

j =−
tijk.

For this game, equilibrium is again pure strategy Nash equilibrium, and pairwise equilib-
rium also considers joint deviations by a pair of players ij on their announcements relative
to link ij (i and j may change mi

j, m
j
i , t

i+
ij , t

j+
ij , t

i−
ij and tj−ij ).

The contingent version of the game is the version where the ti and mi
j’s are announced

as a function of g.

To see how the game defined above allows payments to prevent link formation, reconsider
Example 6.

Example 7 Negative Externalities with Payments to Prevent Links

Consider the payoff function of Example 6. Let us find a pairwise equilibrium of the
game with payments not to form links that supports an efficient network. Let us support the
efficient network {12}. Have all players set ti+12 ({12}) = 0. Set t1−34 ({12}) = t2−34 ({12}) = 1/2
and t3−34 ({12}) = t4−34 ({12}) = −1/2, and m3

34(g) = m4
34(g) = − for all g, and mi

ij(g) = +
otherwise. For any other transfers set ti·ij(g) = −2, and ti·jk(g) = 0 when i /∈ jk.
Here, players 1 and 2 pay players 3 and 4 if the link 34 is not formed. It is straightforward

to check that this is a pairwise equilibrium.
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Proposition 8 In the contingent game with indirect transfers to form or not to form links,

any efficient network is supportable via pairwise equilibrium.

[[Add the proof to the appendix: start with an equilibrium that supports the efficient
network with contingent payments and indirect transfers. Alter this to pay to prevent any
links that would benefit from forming. Also handle case where payoffs to disconnected players
might be ¡0.]]

8 Concluding Remarks

We have shown that ...

9 Relation of Supportable Equilibria to Pairwise Sta-

bility

In this section, we compare the networks that are supportable via direct transfers to pair-
wise stability concepts that identify networks that are supportable without any transfers.
This gives some feeling for the differences between transfer-based solutions and ones where
payments are fixed.
The following definitions identify networks that are stable when the payoffs are fixed

before the formation process.12

A network g is pairwise stable with respect to a profile of utility functions u if

(i) for all i and ij ∈ g, ui(g) ≥ ui(g − ij), and

(ii) for all ij /∈ g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

This is a self-evident solution concept that requires that no player benefit by severing a
link and no two players benefit by adding one.

A network g is strongly pairwise stable with respect to a profile of utility functions u if

(i) for all i and � ⊂ Li(g), ui(g) ≥ ui(g \ �), and

(ii) for all ij /∈ g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

12The first two definitions are from Jackson and Wolinsky (1996). Strong pairwise stability is discussed
by Jackson and Wolinsky (1996, section 5), but is not named.
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This solution concept is stronger than pairwise stability in that it allows players to sever
sets of links rather than just considering one link at a time.

The next definition is a way of incorporating transfers into the study of network formation
without actually modeling the bargaining process explicitly.13

A network g is pairwise stable with transfers with respect to a profile of functions u if

(i) ij ∈ g ⇒ ui(g) + uj(g) ≥ ui(g − ij) + uj(g − ij), and

(ii) ij /∈ g ⇒ ui(g) + uj(g) ≤ ui(g − ij) + uj(g − ij).

Part (ii) captures the idea that there are no two players who could add a link between
them, together with some transfers, and both be better off. Part (i) captures the idea that
if a link is in the network, then there must be some transfer (possibly 0) for which both
players do not wish to delete the link.

While the notions of pairwise stability and strong pairwise stability can differ quite a bit
from the equilibria of the direct transfer game, the notion of pairwise stability with transfers
captures some of the spirit of the equilibria of the direct transfer game.

Proposition 9 The set of networks supportable as pairwise equilibria is exactly the inter-

section of those networks that are supportable via the direct transfer game and the networks

that are pairwise stable with transfers.

The relationship between supportable networks, pairwise equilibria, and the other pair-
wise stability concepts is outlined in the following proposition. The relationships between
the solution concepts that are outlined in Proposition 10 are captured in the following Venn
diagram.

13This differs from the concept of pairwise stability allowing for side payments that is discussed by Jackson
and Wolinsky (1996). That concept had a stronger requirement in (i), requiring that ui(g) ≥ ui(g − ij) and
uj(g) ≥ uj(g− ij). If transfers are possible in sustaining a network, and not just in deviations, then arguably
the definition here is more appropriate.
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Equilibrium (Supportable)

Pairwise Stable

Strongly
Pairwise Stable

Pairwise Equilibrium

Proposition 10

(i) The set of pairwise equilibria is a subset of the set of equilibria.

(ii) If a network g is strongly pairwise stable relative to a profile of utility functions u, then

it is supportable via the direct transfer game and it is pairwise stable.

(iii) There exist u and g for which g is strongly pairwise stable (and thus pairwise stable

and supportable), but not supportable via pairwise equilibrium.

(iv) There exist u and g for which g is supported via pairwise equilibrium (and thus sup-

portable) and pairwise stable but not strongly pairwise stable.

(v) There are networks that are supportable and not pairwise stable nor supportable via

pairwise equilibrium.

(vi) There are networks that are pairwise stable and not supportable (nor supportable via

pairwise equilibrium, nor strongly pairwise stable).

(vii) There are networks that are both supportable and pairwise stable, but not strongly pair-

wise stable nor supportable via pairwise equilibrium.

(viii) There are networks that are supportable via pairwise equilibrium and not pairwise sta-

ble.
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(ix) There exist networks that are strongly pairwise stable (and thus pairwise stable) and at

the same time supported via pairwise equilibrium (and thus supportable).

Proof of Proposition 10: (i) follows from the definition of pairwise equilibrium. The
pairwise stable part of (ii) is direct. To see the other part of (ii), set tiij = tjij = 0 for each
ij ∈ g, and tiij = −X for each ij /∈ g, for some X > 0. For large enough X this forms an
equilibrium. To see (iii), consider the empty network in Example 9. To see (iv), see Example
10. To see (v), consider the empty network in Example 1. To see (vi), see Example 8. To
see (vii), see Example 11. To see (viii), see Example 9. To see (ix), see the complete network
in Example 1.

The examples illustrating the claims in Proposition 10 are as follows.

Example 8 Pairwise stable but not Supportable.
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Example 9 Supportable via Pairwise Equilibrium but not Pairwise Stable

� �

u1(g)=2 u2(g)=-1

1 2
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u1(g)=0 u2(g)=0

1 2

Example 10 Supportable via Pairwise Equilibrium and Pairwise Stable but not Strongly

Pairwise Stable
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All other networks have value of 0. The network {12, 23} is supportable via pairwise
equilibrium and pairwise stable but not strongly pairwise stable.

Example 11 Supportable and Pairwise Stable but not Strongly Pairwise Stable nor Sup-

portable via Pairwise Equilibrium

This is the same as Example 10, except that the complete network leads to u1 = 6,
u2 = −3, and u3 = −1. The network {12, 23} is still supportable and pairwise stable, but
no longer supportable via pairwise equilibrium.
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11 Appendix

Proof of Proposition 1: The network g is supported via an equilibrium of the direct
transfer network formation game relative to the profile of utility functions u if and only if
there exists a vector of transfers t such that:

• ∑
ij∈
 t

i
ij ≤ mui(�), for all players i and subsets of their links � ⊂ Li(g), and

• tiij + tjij ≥ 0 for all ij ∈ g.

Furthermore, we know that in equilibrium, we cannot have tiij + tjij > 0 for any ij, as
then either one of the players would strictly benefit by lowering their tiij.

14

Therefore, to check whether g is supportable, we can solve the problem
mint

∑
ij∈g t

i
ij + tjij

subject to:
−∑

ik∈
 t
i
ik ≥ −mui(�),∀i ∈ N, � ⊂ Li(g) and

tiij + tjij ≥ 0∀ij ∈ g

and verify that the solution satisfies:
min

∑
tiij + tjij = 0.

The dual of this problem is15

max{µi
�
}i∈N,�∈Li(g),{νij}ij∈g

−∑
i

∑

∈Li

µi

mui(g, �) subject to∑


⊂Li(g):ij∈
 µ
i

 − νij = −1, for all ordered pairs i ∈ N and ij ∈ g, and

µi

 ≥ 0 for all i ∈ N and � ⊂ Li(g), νij ≥ 0 for all ij ∈ g.

Since we are free to choose any the νij’s do not appear in the objective function, this
problem is equivalent to
max{µi

�
}i∈N,�∈Li(g),{νij}ij∈g

−∑
i

∑

∈Li

µi

mui(g, �) subject to∑


⊂Li(g):ij∈
 µ
i

 − νij =

∑

⊂Lj(g):ij∈
 µ

j

 − νij for all ordered pairs i ∈ N and ij ∈ g, and

14We can set tiij = tjij = −X for some large enough scalar X for any ij /∈ g, to complete the specification
of the equilibrium strategies.

15By standard techniques, one can write the tiij = ti+ij − ti−ij , where ti+ij and ti−ij are both nonnegative.
Working across the two inequalities generated by each one of these, we find the equality to -1.
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µi

 ≥ 0 for all i ∈ N and � ⊂ Li(g).

As the objective can be set to 0 by setting all of the µi

’s to 0, we need only verify that∑

i

∑

∈Li

µi

mui(g, �) is at least 0 for all sets of µ

i

’s that satisfy the constraints. The con-

straints correspond to the definition of balanced weights, and thus the proposition follows.

Proof of Proposition 2: Given Propositions 10 and 1, the first statement follows directly.
Thus, the result follows from Lemma 1.
Proof of Lemma 1: Consider t supporting g in either game. In the indirect transfer game,
for any ij /∈ g and k /∈ ij, without loss of generality rearrange transfers so that tkij = 0. Since
g is efficient, and satisfies nonnegative externalities, it must be that ui(g+ ij)+uj(g+ ij) ≤
ui(g) + uj(g), and so mui(g, ij) +muj(g, ij) ≤ 0. Given that tkij = 0 for all k /∈ ij, it follows
that any joint deviation by i and j on ij that leads to an improvement for one player, must
lead to a loss for the other player.

Proof of Proposition 4: Let g be an efficient graph, then for all link ij we must have∑
k

muk(g, ij) ≥ 0.

As the game has nonpositive externalities, this implies that for all links muk(g, ij) ≤ 0 for
all k 
= i, j. Hence, mui(g, ij) +muj(g, ij) ≥ 0. Now by convexity in own-links, mui(g, �) ≥∑

ij∈
 mui(g, ij) for any � ⊂ Li(g). Hence∑
i

∑

⊂Li(g)

µi

mui(g, �) ≥ ∑

i

∑

⊂Li(g)

µi



∑
ij∈


mui(g, ij)

=
∑

i

∑
ij∈g

mui(g, ij)
∑


⊂Li(g):ij∈


µi



=
∑
ij∈g

(mui(g, ij)
∑


⊂Li(g):ij∈


µi

 +muj(g, ij)

∑

′⊂Lj(g):ij∈
′

µj

′)

Now, by balancedness,
∑


⊂Li(g):ij∈
 µ
i

 =

∑

′⊂Lj(g):ij∈
′ µ

j

′ = νij ≥ 0. Hence,∑

i

∑

⊂Li(g)

µi

mui(g, �) ≥

∑
ij∈g

νij(mui(g, ij) +muj(g, ij)) ≥ 0,

which is the required balance condition.
The Second statement obtains from Lemma 1.

Proof of Proposition 3:(i) Given that f(2) < f(1)−c, any two players who are not directly
connected will improve their utilities, and thus the total value, by forming a link.
(ii) and (iii). Consider g′, a component of g containing m players. Let k ≥ m− 1 be the

number of links in this component. The value of these direct links is k(2f(1) − 2c). This
leaves at most m(m − 1)/2 − k indirect links. The value of each indirect link is at most
2f(2). Therefore, the overall value of the component is at most

k(2f(1)− 2c) + (m(m− 1)− 2k)f(2). (1)

30



If this component is a star then its value would be

(m− 1)(2f(1)− 2c) + (m− 1)(m− 2)f(2). (2)

Notice that
(1)− (2) = (k − (m− 1))(2f(1)− 2c− 2f(2)),

, which is at most 0 since k ≥ m− 1 and c > f(1)− f(2), and less than 0 if k > m− 1. The
value of this component can equal the value of the star only when k = m− 1. Any network
with k = m − 1, which is not a star, must have an indirect connection which has a path
longer than 2, getting value at most 2f(2). Therefore, the value of the indirect links will be
below (m− 1)(m− 2)f(2), which is what we get with star.
We have shown that if c > f(1)− f(2), then any component of a efficient network must

be a star. Note that any component of a efficient network must have nonnegative value.
In that case, a direct calculation using (2) shows that a single star of m + m′ individuals
is greater in value than separate stars of m and m′ players. Thus if the efficient graph is
nonempty, it must consist of a single star. Again, it follows from (2) that if a star of n
players has nonnegative value, then a star of n + 1 players has higher value. Finally, to
complete (ii) and (iii) notice that a star encompassing everyone has positive value only when

f(1) + (n−2)
2

f(2) > c.

Proof of Proposition 5: Let g be an efficient network. If ij /∈ g, let the transfers be
tiij = tjij = −X and tkij = 0 for k /∈ ij, where X is sufficiently large to be exceed the largest
marginal utility of any agent for any set of links. If ij ∈ g, by efficiency

∑
k muk(g, ij) ≥ 0. If

muk(g, ij) ≥ 0 for all k set all the transfers tkij = 0. If mui(g, ij) < 0 and/or muj(g, ij) < 0

then set the corresponding tiij and or t
j
ij equal to the marginal utility, and then for each k

such that muk(g, ij) > 0 set t
k
ij ∈ [0,muk(g, ij)] so that

∑
l t

i
ij = 0. This is possible by the

efficiency of g.
These t are such that for any ij ∈ g, mul(g, ij) ≥ tlij whenever l ∈ ij or l /∈ ij and tlij > 0.

Let us argue that this forms an equilibrium of the indirect transfer game.
First, note that by the definition of X, if there exists an improving deviation, there will

exist one that only changes t’s on links in g.
By convexity in all links, if there exists a deviation that is improving for some l on tl on

some set of links, then there exists some deviation that involves at most one link tlij, with
the possibility that l ∈ ij. For ij ∈ g, increasing transfers is costly and does not change
the outcome. Reducing transfers implies that the link will not be formed. Such a deviation
cannot be profitable as mul(g, ij)− tlij ≥ 0 if l ∈ ij or if l /∈ ij and tlij > 0. It is not possible
to lower tlij below 0 if l /∈ ij.
The last claim in the Proposition follows from Lemma 1.

Proof of Proposition 6: The necessity of
∑

i∈N(g′) ui(g) =
∑

i∈N(g′) yi for all g
′ ∈ C(g), and

yi 
= ui(g) implies i ∈ N(g) follow from the balance of transfers across components and the
observation that in equilibrium the transfers will sum to 0 on any link that is formed.
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To complete the proof, let us show that any such network g and allocation y can be
supported as an equilibrium.
Let Y = 2max{maxi |yi|; maxi,g′ |ui(g

′)|}.
For g′ 
= g, set tiij(g

′) = −Y for all i and j.

For g, set transfers as follows. For any ij /∈ g set tiij = tjij = −Y .
For ij ∈ g we set transfers as follows.
Consider a component g′ ∈ C(g).
Find a tree h ⊂ g′ such that N(h) = N(g′).16

Let player i be a root of the tree.17 Consider each j who has just one link in the tree.
There is a unique path from j to i. Let this path be the network h′ = {i1i2, . . . , iK−1iK},
where j = i1 and i = iK .
Iteratively, for each k ∈ {1, . . . , K} set18

tikik−1ik
=

∑
k′<k

yik′ − uik′ (g)

and
tikikik+1

=
∑
k′≤k

−
(
yik′ − uik′ (g)

)
Do this for each path in the tree.
For any link ij ∈ g but ij /∈ h, set tiij = tjij = 0.
Under these transfers, g will be the network that forms and y will be the payoff vector.

Let us check that there are no improving deviations.
Consider a deviation that leads to another network g′ 
= ∅ being formed. This must

involve a net loss for any i as i’s payoff must be below ui(g
′)−Y . Next, consider a deviation

that leads to the empty network. It must be that that the deviating player is i ∈ N(g) in
which case the new payoff is 0 for i, which cannot be improving as yi ≥ 0. So, consider a
deviation by a player i that still leads to g being formed. Player i’s promises tiij(g) can only
have increased, which can only lower i’s payoff.

Proof of Proposition 7:
Let Y = 2max{maxi |yi|; maxi,g′ |ui(g

′)|}.
For g′ 
= g, set tiij(g

′) = −Y for all i and j, and set tijk(g
′) = 0 for i /∈ jk.

For g, set transfers as follows. Let A = {i|yi > ui(g)} and B = {i|yi < ui(g)}.
For i ∈ A let �i(g) be the number of links that i has in g. Set tiij(g) =

−yi+ui(g)

i(g)

if ij ∈ g

and set tiij(g) = −Y if ij /∈ g, and tijk = 0 otherwise.

16A tree is a network that consists of a single component and has no cycles (paths such that every player
with a link in the path has two links in the path).

17A root of the tree is a player who lies on any path that connects any two players who each have just one
link in the tree.

18For k = 1 only the second equation applies, and for k = K only the first applies.

32



For i ∈ B let

λi =
ui(g)− yi∑

j∈B uj(g)− yj

.

Then for i ∈ B set

tijk(g)

= λi

(
yj − uj(g)

�j(g)
+

yk − uk(g)

�k(g)

)
if jk ∈ g, j ∈ A and k ∈ A,

= λi

(
yj − uj(g)

�j(g)

)
if jk ∈ g, j ∈ A and k /∈ A,

= −Y if jk /∈ g and i ∈ jk, and

= 0 otherwise.

For i /∈ A ∪B, set tiij = −Y if ij /∈ g and tijk = 0, otherwise.
Under these transfers, g will be the network that forms and y will be the payoff vector.

Let us check that there are no improving deviations.
Consider a deviation that leads to another network g′ 
= ∅ being formed. This must

involve a net loss for any i as i’s payoff must be below ui(g
′) − Y . Next, we consider a

deviation by a player i that leads to the empty network. This cannot be improving as
yi ≥ 0. So, consider a deviation by a player i that still leads to g being formed. Player i’s
promises tijk(g) can only have increased, which can only lower i’s payoff.

Proof of Proposition 9: It is clear that the set of pairwise equilibria is a subset of the
set of equilibria of the direct transfer game. Let us show that any network supportable as a
pairwise equilibrium is also pairwise stable with transfers. Consider a pairwise equilibrium

t̂. For any link ij ∈ g, player i prefers to announce t̂iij than any transfer X such that

X + t̂jij < 0. Hence, ui(g)− t̂iij ≥ ui(g − ij). Similarly, uj(g)− t̂jij ≥ ui(g − ij). Summing up

the two inequalities, ui(g)+uj(g)− ( t̂iij+ t̂jij) ≥ ui(g− ij)+uj(g− ij) and as ( t̂iij+ t̂jij) ≥ 0,
ui(g) + uj(g) ≥ ui(g − ij) + uj(g − ij). Conversely, suppose that ij /∈ g. If ui(g) + uj(g) >

ui(g − ij) + uj(g − ij), define a new transfer vector t̃ where t̃hkl = t̂hkl for all kl 
= ij and
t̃iij = ui(g)−ui(g− ij)−ε, t̃jij = uj(g)−uj(g− ij)−ε where ε is chosen so that t̃iij+ t̃jij ≥ 0. It
follows that ui(g(t̃))−∑

k,ik∈g(̃t) t̃
i
ik = ui(g− ij)−∑

k �=j,ik∈g(̃t) t̂
i
ik + ε > ui(g(t̂))−∑

k,ik∈g(̂t) t̂
i
ik

and similarly, uj(g(t̃))− ∑
k,jk∈g(̃t) t̃

j
jk > uj(g(t̂))− ∑

k,jk∈g(̂t) t̂
j
jk, contradicting the definition

of pairwise equilibrium.
Finally, let us argue that any network g that is supportable and is also pairwise stable

with transfers is supportable as a pairwise equilibrium. Consider an equilibrium t̂ that
supports g. We argue that t̂ must also be a pairwise equilibrium. Suppose to the contrary
that there exists some ij /∈ g such that

ui(g + ij)− ∑
ik∈g

tiik − t̂iij ≥ ui(g)−
∑
ik∈g

tiik
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and
uj(g + ij)− ∑

jk∈g

tjjk − t̂jij ≥ uj(g)−
∑
jk∈g

tjjk,

with one inequality holding strictly, and where t̂iij + t̂jij ≥ 0 (as otherwise the link ij does
not form and the payoffs could not have changed). Thus,

ui(g + ij)− t̂iij + uj(g + ij)− t̂jij > ui(g) + uj(g).

Since t̂iij + t̂jij ≥ 0 it follows that

ui(g + ij) + uj(g + ij) > ui(g) + uj(g),

which contradicts the fact that g is pairwise stable with transfers.
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