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Abstract

The aim of this article is to characterize the saturation spaces that appear in inverse problems.

Such spaces are defined for a regularization method and the rate of convergence of the estimation

part of the inverse problem depends on their definition. Here we prove that it is possible to define

these spaces as regularity spaces, independent of the choice of the approximation method. Moreover,

this intrinsec definition enables us to provide minimax rate of convergence under such assumptions.
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1 Introduction

An inverse problem deals with the estimation of an unknown function ϕ which is not observed directly

but through an implicit relation to solve. Generally speaking, let ϕ be our functional interest parameter

which belongs to a Hilbert space Φ. We denote S a random variable and the associated cumulative

distribution function F ∈ z. Our objective is to study the solution of the relation:

A(ϕ,F ) = 0 (1.1)

where A is an operator defined on Φ×z.
Let S1, ...., Sn be realizations of the random variable S. Since F is unknown, we have to replace

it by an estimator F δ and the associated estimated solution ϕδ is defined through:

A(ϕδ, F δ) = 0 (1.2)

In order to study the convergence of the solution ϕδ of (1.2) to the true solution ϕ of (1.1), we

need to check if the inverse problem is well-posed or not. If the problem is well-posed, then we can

define a unique solution stable under small perturbation (like replacing F by F δ). In that case, under

classical regularity assumptions on the true solution ϕ, we are able to prove the consistency and derive

the optimal rate of convergence. Let illustrate that by some examples.

A classical example is the GMM estimation in finite dimension.Let assume S ∈ IRm a random

vector and F the associated cumulative distribution function; let h be an operator defined on IRm ×Φ
and valued in IRr. We assume that h is integrable for any ϕ and consider the following problem:

IEF [h(S, ϕ)] = 0

When ϕ is finite dimensional, we obtain the usual moment conditions of the GMM method. It has

been extensively studied (Hansen 1982, Hall 1993).

Another example in econometrics of well-posed inverse problem is the following.

Consider S = (X,Y,Z) ∈ IR3 and assume that ϕ is the solution of:(
y0(x) = mF (x, y(x))

y(x0) = y0

where mF (x, y) = IE [Z |X = x, Y = y ] . A classical economic application has been developed by Haus-

man and Hausman and Newey on the analysis of the variation of consumer surplus, associated to a

variation of price. We can rewrite the problem the following way:

ϕ(x) =

xZ
x0

mF (t, ϕ (t))dt
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The existence and uniqueness of a solution is the result of the application of Cauchy-Lipchitz theorem

and under the assumption that ϕ ∈ C2(I) where I is a neighborhood of the initial condition (x0, y0) ,

we are able to prove the consistency and the optimality of the rate of convergence (see Vanhems and

Loubes and Vanhems for an extension).

However, the regularity assumptions imposed of ϕ in order to achieve the optimal rate of conver-

gence may be more complicated when the inverse problem is not well-posed. In this paper, we will

focus on linear ill-posed inverse problem and we want to characterize solutions of:

r = Tϕ (1.3)

for a specific situation where the exact data r are not known, but only an approximation rδ such that

kr−rδk ≤ δ. T is a linear compact operator that is supposed to be known. For example, we may think

of an observation model ri = rδi + εi where εi are observation errors. In our setting we will always

assume T is known but the result coud easily be extended when T is unknown and is estimated by

T δ. In that case,the observable data are given by the relation:

rδ = T δϕ = r + (T δ − T )ϕ

We will suppose here that our inverse problem is ill-posed. Then, if we consider the equation:

rδ = Tϕδ (1.4)

the solution ϕδ of (1.4) is not a good approximation of ϕ due to the unboundedness of the inverse

operator T−1.

Such kind of ill-posed linear inverse problems occurs frequently in econometrics. For general

references, we refer to Cavalier and Tsybakov 2000, Ermakov 189, O’Sullivan 1996. Let us detail for

example the case developed by Darolles, Florens Renault 2002.

Note S = (Y,Z,W ) a random vector; the probability distribution on S is characterized by its

joint cumulative distribution function F . For a given F , we consider the Hilbert space L2F of square

integrable functions of S and we denote L2F (Y ), L
2
F (Z), L

2
F (W ) the subspaces of L2F of functions

depending on Y , Z or W only. Then, the objective is to study the function ϕ ∈ L2F (Z) solution of

the functional equation:

IE [Y − ϕ (Z) |W ] = 0 (1.5)

This relation can be rewritten in the following way:

Tϕ = r

where r = IE [Y |W ] and Tϕ = IE [ϕ (Z) |W ] .
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Another classical is the deconvolution problem, studied in particular by Carrasco and Florens

(2002). Let X a random variable with density f unobserved. The problem to solve is:

X = Y + Z

We assume that Y and Z are independent variables, with respective densities ϕ and g; g is known and

ϕ is our interest parameter. The equation to study is then the following:

f(x) =

Z
ϕ(y)g(x− y)dy

which an ill-posed integral equation to solve.

More generally speaking, the usual way to solve ill-posed inverse problems is to try to regularize

them. The equation we will consider up to the end is the following:

Tϕ = r

and we will assume that:

[A1] : T is a compact operator defined on an hilbert space of L2-functions Φ.

Then, T ∗T is a compact self-adjoint positive operator from Φ to Φ. Therefore, we can define an

orthonormal basis of eigenfunctions (ϕi)i≥0 (for the L
2-norm) and positive eigenvalues

¡
λ2i
¢
i≥0 such

that: 
λ20 = kTk2
∀i ∈ IN, λ2i+1 ≤ λ2i

λ2n − >
n−>∞

0

In order to have identification of our interest parameter, we need to assume that:

[A2] : ∀i ∈ IN, λ2i > 0

To ensure the overidentification of ϕ, we need a last assumption:

[A3] : r ∈ R(T ) +N(T ∗)

Then, we consider the unique solution ϕ of:

T ∗Tϕ = T ∗r

Since T ∗T is not compact, its inverse is not bounded and the approximated solution obtained when

replacing r by rδ may not converge to the true solution ϕ. Therefore, we cannot directly inverse the

operator T ∗T but we try to approximate it by a regularization operator which inverse is continuous

and which converges to the true operator T ∗T . In what follows, we define a regularization operator

Rα which converges to (T ∗T )−1 as α decreases to zero (but not too fast in order to ensure the stability

of the solution). Then we can construct ϕδα = RαT
∗rδ, the regularized estimator of the solution of the

ill-posed inverse problem. Write also ϕα = RαT
∗r the regularized of the real data r. The estimator

should verify ϕδα− > ϕ when α and δ go to zero.
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There exists various examples of regularization operators. A well-known method is called spectral

cut-off. The idea is the following: instead of using the all sequence of eigenvalues, let cut it up to one

fixed value and define:

ϕα =
X

i:λ2i>λ
2
α

1

λ2i
hT ∗r, ϕiiϕi

Another possibility, called Tikhonov regularization, is to increase the value of the
¡
λ2i
¢
i≥0 by

adding a positive number like:

ϕα =
X
i≥0

1

α+ λ2i
hT ∗r, ϕiiϕi

Generally speaking, this regularization operator depends on a smoothing parameter α which con-

verges to 0. Moreover, in order to prove the convergence of ϕδα to ϕ, we usually have to impose another

constraint: kϕα − ϕk2 = O(αβ) where the parameter β controls the convergence of the regularised

solution to the true one. We define the space Φβ such that: Φβ =
n
ϕ; kϕα − ϕk2 = O(αβ)

o
.

In what follows, the sub-space defined by this condition is called saturation space. As a matter

of fact, such spaces determine the longest sets where a regularization scheme provide estimators

converging at an optimal rate of convergence. The objective of our work is then to characterize this

condition in terms of regularity assumptions of both the function ϕ and the operator T . Moreover,

under classical smoothness assumptions for the operator T , the space will only depend on ϕ.

The condition ϕ ∈ Φβ is crucial to obtain the rate of convergence and also appears in many ill-
posed inverse problems (see for example Loubes Vanhems 2002) but up to now, the link between the

space Φβ, the regularity of the function ϕ and the operator T was not clearly established.

Therefore, the main goal of this paper is to try to characterize this space Φβ and we show that its

definition is independant of the type of regularization; moreover we can characterize this space only

through regularity assumptions on ϕ, which enables us to check the minimax properties of Darolles

Florens Renault estimator.

Even if in this work we only consider linear inverse problems, it is possible to study in a similar

way the nonlinear case, when replacing the assumptions over T by assumptions over DT (ϕ) (the

differential of T with respect to ϕ). For a close study of nonlinear inverse problem, we refer to Ludena

Loubes 2003.

The plan of this article is the following: we first derive the main characterisation of the space Φβ;

then, we show that using this characterization, we are able to fing the minimax rate of convergence

and at last we stress the link with Sobolev spaces.
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2 Characterization of saturation spaces for regularization method

Consider the general ill-posed integral linear inverse problem:

r = Tϕ

where ϕ is the true functional interest parameter which belongs to an Hilbert space Φ ⊂ L2(X) ;

L2(X) is the Hilbert space of square integrable real valued functions depending on X, a random real-

valued variable. Moreover T is a linear operator defined on L2(X) to L2(Y ) (with Y a real-valued

random variable). At last we define the function r which belongs to an Hilbert space Ψ ⊂ L2(Y ) .

Then, T ∗ : L2(Y )− > L2(X) will be the adjoint of T .

We assume that T ∗T satisfy the three assumptions [A1], [A2] and [A3] and write (λ2n, ϕn) the

associated spectral value decomposition and Eλ the spectrum of T ∗T . Therefore, we introduce the

following integral notation:

T ∗Tϕ =
X
n

λ2n < ϕ,ϕn > ϕn =

Z
λdEλϕ.

We have for every continuous function g:

g(L∗L)ϕ =
Z

g(λ)dEλϕ =
X
n

g(λ2n) < ϕ,ϕn > ϕn. (2.1)

As a result, for every regularization scheme Rα, there exists a function gα such that

ϕα =
X
i≥0

gα(λ
2
i ) hT ∗r, ϕiiϕi

=
X
i≥0

λ2i gα(λ
2
i ) hϕ,ϕiiϕi

which is equivalent to

ϕα =

Z
λgα(λ)dEλϕ

For example, the Tikhonov’s regularized estimator is defined by a function

gα =
1

λ+ α
.

Then we have

ϕα − ϕ = gα(T
∗T )T ∗r − ϕ = (gα(T

∗T )T ∗T − I)ϕ

=

Z
(λgα(λ)− 1)dEλϕ = fα(T

∗T )ϕ.

where fα (λ) = λgα(λ)− 1 .
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We have also the following useful equality:

kϕα − ϕk2 =
Z kTk2

0
f2α(λ)dkEλϕk2. (2.2)

At last, define, for β ≥ 0 the set Xβ =

(
ϕ ∈ Φ : P

i≥0
hϕ,ϕii2
λ2βi

< +∞
)

Theorem 2.1 If λβ|fα(λ)|2 ≤ αβ, then

ϕ ∈ Xβ ⇒ kϕα − ϕk2 = O(αβ) (2.3)

If there exists a constant γ such that ∀λ ∈ [cα, kTk2], λβ|fα(λ)|2 ≥ γαβ, then we get the following

implication

kϕα − ϕk2 = O(αβ) ⇒ ϕ ∈ Xβ. (2.4)

Proof. For the first part, we assume that ϕ ∈ Xβ . Then,

kϕα − ϕk2 =
+∞X
i=0

f2α(λ
2
i ) hϕ,ϕii2

and

f2α(λ
2
i ) ≤

αβ

λ2βi

Since ϕ ∈ L2 , we find that kϕα − ϕk2 = O(αβ) .

For the second part, using (2.2) we get:

kϕα − ϕk2 =
Z kTk2

0
f2α(λ)dkEλϕk2

≥
Z kTk2

cα
f2α(λ)dkEλϕk2 ≥ γ2αβ

Z kTk2

cα
λ−βdkEλϕk2

= O(αβ).

As a result,
R kTk2
cα λ−βdkEλϕk2 = O(1), which proves that ϕ ∈ Xβ .

Therefore, we have obtained a first characterization of the saturation space Φβ that involves the

eigenvalues of the operator T ∗T and the coefficients hϕ,ϕii of ϕ in the decomposition on the basis of
eigenfunctions (ϕi)i≥0.

The result we present now show more precisely the link between the operator T and the set Φβ.

Indeed, we would like to characterize the saturation space using the smoothing properties of the

integral operator T and the following proposition will help us to do so.

Proposition 1 Xβ = R
£
(T ∗T )β/2

¤
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Proof. - Let assume first that ϕ ∈ R
£
(T ∗T )β/2

¤
. Then, we know that: ∃ψ ∈ L2 : ϕ = (T ∗T )β/2 ψ

which is equivalent to

ϕ =
+∞X
i=0

λ
β/2
i hψ,ϕiiϕi

Therefore, we have:
NX
i=0

hϕ,ϕii
λ
β/2
i

=
NX
i=0

hψ,ϕii

which converges since ψ ∈ L2 . So, R
£
(T ∗T )β/2

¤ ⊂ Xβ .

- Assume now that ϕ ∈ Xβ and denote ψ =
+∞P
i=0

hϕ,ϕii
λβi

ϕi . We know that ψ exists and belongs to

L2 since ϕ ∈ Xβ . Moreover, we have: ϕ =
+∞P
i=0

λβi hψ,ϕiiϕi and Xβ ⊂ R
£
(T ∗T )β/2

¤
.

As a consequence, under the assumptions of Theorem (2.1), we have the equality of the two sets

Φβ = {ϕ, : kϕ− ϕαk2 = O(αβ)} = Xβ = {ϕ, : ∃ω ∈ L2, ϕ = (T ∗T )β/2ω}.

It provides a characterization of the saturation spaces Φβ in terms of functionnal spaces, independent

of the chosen regularization method. As a consequence, the sets Φβ can be characterized as functional

sets, where the regularity of the operator T is linked with the regularity of the function ϕ.

3 Link with Sobolev spaces

In order to characterize the saturation space Φβ, we need to assume some regularity conditions on

the operator T . We then introduce the notion of fractional Sobolev spaces Hs where s ∈ IR∗+ and we

make the following assumption:

[A4]: T is a smoothing operator of order t.with respect to the space Hs

This is equivalent to say that:

T : Hs− > Hs+t

or, using the ellipticity property , that:

∀ϕ ∈ L2(X), kTϕk2 ∼ kϕk2H−t

Remark 2 Such a property can be expressed using the kernel function of the integral operator T .

Indeed, assume that:

Tϕ(x) =

Z
k (x, y)ϕ(y)dy

Then, imposing some regularity on T is equivalent to imposing some derivative properties on the

kernel k. For example, in the case developed by Darolles, Florens and Renault, k represents a condi-

tional density.
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Therefore, under the assumption [A4], (T ∗T )β/2 is a smoothing operator of order tβ and we have

in particular:

(T ∗T )β/2 : L2(X)− > Htβ

This result is useful to characterize the saturation space Φβ since under the assumptions of theorem

(2.1), we know that Φβ = R
h
(T ∗T )β/2

i
.

Hence, the condition ϕ ∈ Φβ implies that ϕ ∈ Htβ, the Sobolev space of order tβ. As a consequence,

the operator T is such that:

T : Φβ ⊂ Htβ −→ Ht(1+β).

4 Minimax rate of convergence for inverse problems

The objective of this sectin is to use the result of theorem (2.1) in order to obtain the minimax rate

of convergence achieved on Φβ.

Let introduce first some notations.

∀δ > 0, and for all subspaceM of L2(X), define

Ω(δ,M) = sup{kϕk, : ϕ ∈M, : kTϕk ≤ δ}. (4.1)

Set also, for a regularization operator R,

∆(δ,M, R) = sup{kRϕδ − ϕk, : ϕ ∈M, : rδ ∈ ∇, : kr − rδk ≤ δ}. (4.2)

This quantity measures the quality of approximation of the regularization method R for functions in

the setM.

Lemma 4.1

∆(δ,M, R) ≥ Ω(δ,M).

Proof. Let ϕ ∈M, such that kTϕk ≤ δ. As a result, for a choice of rδ = 0, we get r = Tϕ is such

that krk ≤ δ. Hence, taking the supremum over all x ∈M, we get

∆(δ,M, R) ≥ Ω(δ,M).

Thanks to the previous section, we know that:

for β ≥ 0, Xβ = R(T ∗T )β/2 = {ϕ ∈ Φ, : ∃ω ∈ L2(X), : ϕ = (T ∗T )β/2ω} .
The set Xβ can be written using the following decomposition

Xβ = ∪ρ>0Xβ,ρ,with

Xβ,ρ = {ϕ ∈ Φ, : ∃ω ∈ L2(X), : kωk ≤ ρ, : ϕ = (T ∗T )β/2ω}.
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Using Lemma (4.1), a lower bound for Ω(δ,M) will give the lower rate of convergence for the

approximation method R. This rate determines the difficulty of the issue. The following proposition

gives this rate of convergence.

Proposition 4.2

Ω(δ,Xβ,ρ) = δ
β

β+1ρ
1

2ρ+1 .

Proof. The proof of the previous result falls into 2 parts and is closely linked with the work of Ludena

Loubes.

First, using the definition of Xβ we get

kϕk = k(T ∗T )β/2ωk
≤ k(T ∗T )β/2+ 1

2ωk β
β+1 kωk 1

β+1

≤ k(T ∗T ) 12ϕk β
β+1 kωk 1

β+1

≤ kTϕk β
β+1 kωk 1

β+1

≤ δ
β

β+1 ρ
1

ρ+1 .

Then, recall that the eigenvalues λn are decreasing towards 0, as n increases. Hence, set δn = ρλβ+1n .

As a result µ
δn
ρ

¶ 1
β+1

= λn

is an eigenvalues of the operator T ∗T . The associated eigenvector ϕn satisfies kϕnk = 1. Set now

ψn = ρ(T ∗T )β/2ϕn ∈ Xβ,ρ.

We have

ψn = ρ(T ∗T )β/2ϕn = ρλβnϕn

= δ
β

β+1
n ρ

1
β+1ϕn = δ

β+2
β+1
n ρ−

1
β+1ϕn.

So, we get

kTψnk2 =< T ∗Tψn, ψn >= δ2n.

As a consequence

Ω(δn,Xβ,ρ) ≥ kψnk = δ
β

β+1
n ρ

1
2β+1 ,

which gives the desired upper bound.

For every ϕ ∈ Φβ, we get the following rate of convergence:

kϕδα − ϕk2 ≤ kϕδα − ϕαk2 + kϕα − ϕk2

≤ O(αβ) + kRα(r
δ − r)k2

≤ O(αβ) +
δ

α
.
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An optimal choice for the regularization parameter is α ∼ δ
1

β+1 . So, for estimating a function ϕ ∈ Φβ,
an upper bound for the rate of convergence is given by δ

β
β+1 . This result, together with Proposition

(4.2), prove that the rate of convergence in δ
β

β+1 is a minimax rate of convergence for the inverse

problem (1.3).

When T is not observed, we consider an estimate Tn → T . The observable data are then given by the

relation

rδ = Tnϕ = r + (L̂n − T )ϕ.

As a result we get the following correspondance

δn = k(T̂n − T )ϕk2.
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