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Abstract

We provide necessary and sufficient conditions for observed outcomes

in extensive game forms, in which preferences are unobserved, to be ra-

tionalized first, partially, as a Nash equilibrium and then, fully, as the

unique subgame-perfect equilibrium. Thus, one could use these condi-

tions to find that play is (a) consistent with subgame-perfect equilibrium,

or (b) not consistent with subgame-perfect behavior but is consistent with

Nash equilibrium, or (c) consistent with neither.

Keywords: Revealed Preference, Consistency, Subgame-Perfect Equi-

librium.
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1 INTRODUCTION

How can one test whether play in a game is consistent with equilibrium when

we cannot observe the players’ preferences? As a number of recent papers

(Zhou 1997, Sprumont 2000, Ray and Zhou 2001, Sprumont 2001, Bossert and

Sprumont 2002, , Zhou 2002, Bossert and Sprumont 2003, Carvajal 2003) have

discussed, one can observe the outcome in a variety of game forms and extend

the lessons of revealed preference theory for individual choice to concepts of

equilibrium play in games.

Sprumont (2000) has taken up the issue for normal form games. Sprumont

considers finite sets of actions, Ai, one for each player, i; the product set, A, is

called the set of joint actions. A joint choice function, f , assigns to every possible

subset B of A a non-empty set. A data set is a realization of a joint choice

function. A data set is Nash rationalizable if there exist preference orderings

on A such that for every B, f(B) coincides with the set of Nash equilibria for

the game defined by the set of actions B with those preferences. Sprumont

provides necessary and sufficient conditions (Persistence under Expansion and

Persistence under Contraction) for a data set in a normal game form to be Nash

rationalizable.

As a complement to the work of Sprumont, Ray and Zhou (2001) consider

situations in which the players move sequentially with perfect information. They

fix an extensive game form (tree) G with complete information. A reduced game

form, G′, is obtained from G by deleting branches of G. A unique outcome is

observed for each reduced game form. For Ray and Zhou, the data are the out-

comes of all possible reduced game forms. They provide necessary and sufficient

conditions (Acyclicity of the Base Relation, Internal Consistency and Subgame

Consistency) for a data set in an extensive game form to be rationalizable as

the unique subgame-perfect equilibrium in every reduced game form.

We are interested in the differences between Nash and subgame-perfect be-

havior in extensive games. Notice that in extensive game forms, we assume that

we observe outcomes and not strategies (complete plans of actions), whereas in
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the work on normal game forms, strategies (equivalently, actions) are assumed

to be observed. Thus, a data set in an extensive game form has missing obser-

vations compared to the corresponding normal form data set. Therefore, one

cannot use Sprumont’s conditions for Nash rationalization in an extensive game

form by testing the conditions in the corresponding normal game form. To see

this, consider the data set from the game tree (and all reduced forms) as in

Figure 1a. The tree has two choice nodes; player 1 moves in the first node and

has two choices, namely L and R. Player 2 moves in the second (after player

1 moves L) and also has two choices, namely l and r. There are 3 possible

(non-trivial) reduced game forms as shown in the figure.

[Insert Figures 1a and 1b here]

The corresponding normal game form obviously has a 2x2 structure as shown

in Figure 1b. There are 4 possible (non-trivial) reduced normal forms. Clearly,

if we observe the outcomes in the trees G, G1, G2, and G3, we do not observe

player 2’s choice of action when player 1 chooses to play R in the corresponding

normal game form G4.

It is indeed possible to observe data in extensive game forms that are not

rationalizable by subgame-perfect equilibrium, yet can still be rationalized as

Nash behavior. Consider for example, the following two distinct data sets, as

described in Figures 2a and 2b, on the same game trees as in Figure 1a.

[Insert Figures 2a and 2b here]

Neither of these data sets satisfies the subgame consistency condition of Ray

and Zhou and therefore cannot be rationalized as a subgame-perfect equilibrium.

The data in Figure 2a, however, can be rationalized by a Nash equilibrium.

The choice of player 1 to play R in the game form G can be justified as a

Nash behavior on his part that assumes that player 2 would play r (although

actually, player 2 prefers to play l when given the choice).1 The data in Figure
1This is precisely the case of “incredible threat” often used to show the difference between

Nash and subgame-perfect equilibrium in extensive form games.
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2b, however, cannot be rationalized even by Nash equilibrium as there is no

choice of player 2 that could justify player 1’s choice of playing R in the game

form G.

Also, notice that, under the (revealed) preferences that rationalize the out-

comes in Figure 2a, the game G has multiple Nash equilibria. There is a Nash

equilibrium (indeed, subgame-perfect) outcome (L, l) in the game, which how-

ever is not observed, as we assume that only one outcome is observed in each

reduced game form.

In this paper, we first provide a necessary and sufficient condition for partial

Nash rationalization; i.e., we rationalize the data in each reduced game as one

of the possibly multiple Nash equilibria. For each game form G′, we consider

strategies that are consistent with the observed outcome in the reduced game.

If there exist strict preferences such that any one of these strategies can be

shown to be a best response for each player i, given that the other players’

strategies are fixed, then clearly the observed outcome is consistent with Nash

behavior. This motivates our necessary and sufficient condition, called Extensive

Form Consistency, which compares the outcomes of a set of reduced extensive

form games, varying the set of feasible strategies for one player while the other

players’ strategies are fixed. For example, in the data in Figure 2b, there are

two strategies consistent with the given outcome in the game form G, namely,

(R, l) and (R, r); if we fix player 2’s strategy at either l or r, we see from the

outcomes of the reduced games G2 and G3, that player 1 prefers to play L. Our

extensive form consistency is not satisfied here and R cannot be rationalized as

Nash behavior in game G. In the data set in Figure 2a, the condition is satisfied

and the outcome in game G can be rationalized using the strategy profile (R, r),

as from G3, player 1 prefers to play R.

We then provide a condition, Subgame-Perfect Consistency, which uses ob-

servations of reduced game outcomes that are proper subgames below a node

with at least one active player other than the one at that node, to ensure that

the strategies played are consistent with not only Nash but also with subgame-

perfect behavior. The data set in Figure 2a does not satisfy this condition
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because player 2 is active in G1, which is a proper subgame of G, and is ob-

served to move l; under this circumstance, we know from G2, player 1 prefers L

to R. Thus the outcome R in G violates subgame-perfect consistency.

2 ANALYSIS

2.1 Set-up

We study n-person extensive form games with perfect information. The struc-

ture is identical to that in Ray and Zhou (2001). We therefore maintain their

terminologies and the notations as much as possible.

An extensive game form G is a finite rooted tree with set of nodes, X , with

a distinct initial node x0, and a precedence function p : X/x0 → X . If p(y) = x,

then x is called an immediate predecessor of y. Also y is called an immediate

successor of x, or y ∈ s(x). Let S(x) denote the set of all successors of x. A

node z is called a terminal node, or an outcome, if there exists no x ∈ X such

that p(x) = z. The set of all terminal nodes is Z. A path ρ is a finite sequence of

nodes: (xk : k = 0, . . . , m) where xk = p(xk+1) for each k and xm is a terminal

node. A path leading to a terminal node xm, ρ(xm), can be uniquely identified.

The set of non-terminal nodes, X/Z, are partitioned into n subsets, {X1,

X2,..., Xn}, where Xi, called the player i’s partition, is the set of nodes at which

player i moves; player i’s moves determine one y ∈ s(x) for each x ∈ Xi. A pure

strategy ti for player i specifies a unique choice at each node in Xi. The set of

pure strategies available to player i is Ti.

Definition 1 A reduced extensive game form G′ of an extensive game form G

is an extensive game form consisting of (i) terminal nodes Z ′ ⊆ Z and (ii) all

the non-terminal nodes that belong to ρ(z′) for any z′ ∈ Z ′.

Thus, any set of terminal nodes Z ′uniquely refers to the reduced game form

G′. As with G, the set of non-terminal nodes in G′ can also be partitioned into

n many player-partitions, {X ′
1,..., X ′

n}.
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Let Γ be the set of all possible reduced extensive game forms of an extensive

game form G.

Player i is active in any (reduced) game form G′ if X ′
i is non-empty with at

least one node x ∈ X ′
i such that |s(x)| ≥ 2.

Definition 2 For each reduced extensive game form G′ and a non-terminal

node x ∈ X ′/Z ′, the subgame form beginning at x, G′
x, is the reduced extensive

game form consisting of (i) terminal nodes Z ′(x) = Z ′ ∩ S(x) and (ii) all the

non-terminal nodes that belong to ρ(z′) for any z′ ∈ Z ′ ∩ S(x).2

A pure strategy t′i for player i in G′ specifies a unique choice of an immediate

successor y ∈ s(x) at each node x in X ′
i . The set of pure strategies available to

player i is T ′
i . Clearly, although Z ′ ⊆ Z, T ′

i may not be a subset of Ti.

For any (reduced) extensive game form G′ a strategy profile t′ = (t′1, . . . , t
′
n)

determines an outcome Ω(t′) = z′, where Ω : ΠiT
′
i → Z ′.

Definition 3 For any G′ ∈ Γ and the corresponding pure strategy sets 〈T ′
1, ..., T

′
n〉,

let T ′′
i ⊆ T ′

i for all i be non-empty sets of pure strategies. A strategy-reduced

extensive game form G′′ is an extensive game form consisting of (i) terminal

nodes Z ′′ ⊆ Z ′ with z′′ ∈ Z ′′ such that z′′ = Ω(t′′) for some t′′ ∈ ΠiT
′′
i and (ii)

all the non-terminal nodes that belong to ρ(z′′) for any z′′ ∈ Z ′′.

Clearly, a strategy-reduced extensive game form G′′ is a reduced game form

(of the original game G).3 Starting from G′ ∈ Γ and a fixed strategy profile

t′, we then look at a set of strategy-reduced extensive game forms in which the
2The subgame form G′

x is thus the reduced game form consisting of the path from x0 to x

and the subgame below the node x.
3Another way to look at the strategy-reduced extensive game forms is to consider the

corresponding normal form representations. Formally, from a reduced extensive game form

G′, one can uniquely define a normal game form H′ as the set of players (1, . . . , n), the set

of strategies for each player T ′
i , and the function Ω : (t′1 , . . . , t′n) → Z′. A reduced normal

game form H′′ of a normal game form H′ consists of a list 〈T ′′
1 , . . . , T ′′

n 〉 of nonempty subsets

T ′′
i ⊆ T ′

i for all i and the corresponding outcomes Ω(t′′). From every H′′ one can then

uniquely define a corresponding extensive game form G′′ defined by Z′′ ⊆ Z with z′′ ∈ Z′′ iff

z′′ = Ω(t′′) for some t′′ ∈ 〈T ′′
1 , . . . , T ′′

n 〉.
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other players’ strategies are fixed, while varying the set of feasible strategies for

player k maintaining the strategy t′k feasible.

Definition 4 For any G′ ∈ Γ and the corresponding pure strategy sets 〈T ′
1, ..., T

′
n〉,

given a t′ = (t′1, . . . , t
′
n) where t′i ∈ T ′

i , and a particular player k, an individually-

strategy-reduced extensive game form G′′(t′, k) is a strategy-reduced extensive

game form with t′k ∈ T ′′
k ⊆ T ′

k, and T ′′
j = t′j for all j 6= k.

Definition 5 A binary individually-strategy-reduced extensive game form G′′(t′, k; 2)

is an individually-strategy-reduced extensive game form consisting of |Z ′′| = 2.

Suppose each player i has preferences over Z described as a strict ordering

Q∗
i over Z. Let the players play reduced games G′(Q∗) for every G′ ∈ Γ. Let

O : Γ → Z be the outcome function. We observe O(G′) ∈ Z ′ and thus the

unique path ρ(O(G′)) for every G′ ∈ Γ. We do not observe strategies; thus

players’ intended moves off the path cannot be observed.

Definition 6 An outcome function O is partially rationalized by Nash equilib-

rium in strict preferences if for all i, there exists Qi over Z such that O(G′)

coincides with a Nash equilibrium of the game G′(Q) for every G′ ∈ Γ.

Similarly, an outcome function O is fully rationalized by subgame-perfect

Nash equilibrium in strict preferences if for all i, there exists Qi over Z such

that O(G′) coincides with the unique subgame-perfect Nash equilibrium of the

game G′(Q) for every G′ ∈ Γ.

2.2 Conditions

Condition 1 Extensive Form Consistency (XC): For any G′ ∈ Γ and the cor-

responding pure strategy sets 〈T ′
1, . . . , T

′
n〉 with the outcome O(G′) = z′, there

exists a t∗ = (t∗1, . . . , t
∗
n) with t∗i ∈ T ′

i for all i and Ω(t∗) = z′ such that for all

i, for all binary individually-strategy-reduced extensive game forms G′′(t∗, i; 2),

O(G′′(t∗, i; 2)) = z′.
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Condition 2 Subgame-perfect Consistency (SPC): For each game G′, consider

each non-terminal node x ∈ X ′/Z ′ such that x ∈ ρ(O(G′)) with player i such

that x ∈ Xi. For each non-terminal node y ∈ s(x) such that (i) y /∈ ρ(O(G′),

and (ii) there is at least one active player other than i in G′
y, O(O(G′), O(G′

y)) =

O(G′).

2.3 Revealed Preferences

Given an outcome function O, following Ray and Zhou (2001), one can construct

incomplete preference orderings for players over the terminal nodes. Consider

the paths that lead to two different terminal nodes u and v. Take the player i

who has to play at the node where these two paths diverge. Player i’s preference

over u and v can be determined by his choice in the reduced game form G′ which

has only two terminal nodes, u and v. This incomplete order, Pi, for player i,

is known as the revealed base relation. Formally, for any u, v ∈ Z, let x be the

node at which the paths to u and v diverge. If x ∈ Xi, then uPiv if and only

if u = O(G′), where G′ is the reduced game form which has only two terminal

nodes, u and v.

Lemma 1 If XC is satisfied, then the revealed base relation is acyclic.4

Proof. Suppose we have a cycle in the revealed base relation for some player

i involving the terminal nodes z1, z2, ..., zk such that z1Piz2Pi . . . zkPiz1. Con-

sider the reduced extensive game form G′ characterized by the set of terminal

nodes Z ′ = (z1, z2, . . . , zk). This is clearly a game form where only player i is

active and chooses among the nodes in Z ′. Wlog, suppose, O(G′) = z1. Now XC

implies that the outcome in the individually-strategy-reduced extensive game

form consisting only of z1 and zk is z1, which contradicts zkPiz1. Hence we

cannot have a cycle in the revealed base relation.

Lemma 2 An acyclic base relation can be extended to a strict ordering on Z

which is complete and acyclic (equivalently, transitive, for a complete ordering)

4Ray and Zhou (2001) take acyclicity as one of their conditions.
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for each player i.

Proof. We are omitting the proof here. It follows from a routine argument

using Zorn’s lemma (cf. Richter 1966, Theorem 1).5

2.4 Results

Theorem 1 XC is necessary and sufficient for partial Nash rationalization in

strict preferences.6

Proof. Necessity is straightforward and hence we only show sufficiency

here. From the previous lemmas we know that if XC is satisfied, we can define

a complete transitive strict ordering Qi on Z for all i that is consistent with

the base preference relation Pi. We will show, for each game G′, there exists

a strategy profile such that the outcome corresponding to the profile is the

observed outcome O(G′) and that the strategy profile is a Nash equilibrium of

the game G′(Q). We know, for each game G′, there exists a t∗ = (t∗1, . . . , t
∗
n) with

t∗i ∈ T ′
i for all i and Ω(t∗) = O(G′) satisfying XC. If every player follows this

strategy, then the outcome is O(G′). Let us show that these strategies indeed

constitute a Nash equilibrium for every G′. Suppose any player i deviates and

plays any other strategy t̃′i to induce a different outcome z̃′. By XC, the outcome

of the binary individually-strategy-reduced extensive game form G′′(t∗, i; 2) with

Z ′′ = {z̃′, z′} is z′. Hence, by the revealed base relation, z′Piz̃′ implying z′Qiz̃′.

Therefore player i cannot deviate and be better off.

Theorem 2 XC and SPC together are necessary and sufficient for full ratio-

nalization by subgame-perfect Nash equilibrium in strict preferences.

Proof. Once again, necessity is straightforward and hence we only show

sufficiency here. From the previous theorem we know that for each game G′,

there exists a t∗ = (t∗1, . . . , t
∗
n) with t∗i ∈ T ′

i for all i and Ω(t∗) = O(G′) that

5See the first part of the proof of the main theorem in Ray and Zhou (2001).
6This theorem is the extensive game form analog of Sprumont’s Theorem 3 for normal

form games.
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constitutes a Nash equilibrium for every G′. We will prove that these outcomes

coincide with the outcomes of the subgame perfect Nash equilibrium that can

be constructed using the complete transitive revealed strict ordering Qi as in

Lemma 2. Suppose this is not true. Then there must exist a reduced game G′

in which there exists a node x such that these outcomes do not constitute a

subgame perfect equilibrium for the subgame form beginning at x, G′
x, but they

do for G′
w, for all w ∈ s(x). For, if such an x does not exist, we would be able

to find an infinite sequence of nodes {xk} with xk = p(xk+1), for each k, which

contradicts the assumption that the game always ends. Suppose at G′
x, player

i is active, that is, x ∈ X ′
i . As play at G′

x is not subgame-perfect but is for all

subgames succeeding x, then it must be true that, given Qi, player i can deviate

at x from the outcome path ρ(O(G′)) and obtain an outcome that he prefers to

O(G′). If x /∈ ρ(O(G′)) then player i cannot change the outcome by deviating

at x. So let us assume x ∈ ρ(O(G′)). Suppose player i deviates and moves to

a successor y ∈ s(x) such that y /∈ ρ(O(G′). If y is a terminal node then con-

sider the binary individually-strategy-reduced extensive game form G′′(t∗, i; 2)

with Z ′′ = {O(G′), y}. If y is a non-terminal node and the subgame G′
y has

player i as the only active player then consider the binary individually-strategy-

reduced extensive game form G′′(t∗, i; 2) with Z ′′ = {O(G′), O(G′
y)}. By XC,

the outcome of either binary individually-strategy-reduced extensive game form

is O(G′). Hence, by the revealed base relation, player i cannot deviate and be

better off. Now suppose y is a non-terminal node and the subgame G′
y has at

least one active player other than i. Then by SPC, O(O(G′), O(G′
y)) = O(G′).

Therefore, again by the revealed base relation, player i cannot deviate and be

better off.7

7As in Ray and Zhou’s (2001) proof, this argument uses the one deviation property (as in

Lemma 98.2 of Osborne and Rubinstein, 1994) which is a necessary and sufficient condition

for subgame-perfect equilibrium.
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3 CONCLUSION

In this paper we provide separate testable restrictions for Nash and subgame-

perfect equilibrium. Our two conditions together are equivalent to the three

conditions proposed by Ray and Zhou for subgame-perfect rationalization. The

advantage however is that our conditions can be used to test for Nash behavior

alone and also to distinguish between Nash and subgame-perfect behavior.

Our conditions are also constructed in such a way that violations of these

conditions refer specifically to players and nodes. Checking these conditions can

help identify the players and the nodes where subgame-perfect or Nash behavior

are not observed. Thus, even though the data come from a collective choice

situation of a multi-player game, we can recover information about individual

rationality. This could be relevant to obtain results to rationalize observed

outcomes using other notions of rationality such as multiple rationales (Kalai,

Rubinstein and Spiegler, 2002).

One possible criticism of our test for Nash behavior could be that the re-

strictions are described over observable outcomes and unobservable strategies.

Note that, however, for the class of games we consider, the set of unobservable

strategies that are consistent with an observed outcome is finite. Thus, the tests

can be carried out in finitely many steps for a given data set. Tests of this form

have been used in the previous literature. For example, Diewert and Parkan

(1985) developed nonparametric tests that require checking whether there ex-

ists a real solution to a (linear) programming problem defined over observed

and unobserved variables.
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