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Abstract 
 
In this paper we incorporate the term structure of interest rates in a standard inflation forecast targeting 
framework. Learning about the transmission process of monetary policy is introduced by having 
heterogeneous agents - i.e. the central bank and private agents - who have different information sets 
about the future sequence of short-term interest rates. We analyse inflation forecast targeting in two 
environments. One in which the central bank has perfect knowledge, in the sense that it understands 
and observes the process by which private sector interest rate expectations are generated, and one in 
which the central bank has imperfect knowledge and has to learn the private sector forecasting rule for 
short-term interest rates. In the case of imperfect knowledge, the central bank has to learn about private 
sector interest rate expectations, as the latter affect the impact of monetary policy through the 
expectations theory of the term structure of interest rates. Here following Evans and Honkapohja 
(2001), the learning scheme we investigate is that of least-squares learning (recursive OLS) using the 
Kalman filter. We find that optimal monetary policy under learning is a policy that separates estimation 
and control. Therefore, this model suggests that the practical relevance of the breakdown of the 
separation principle and the need for experimentation in policy may be limited. 
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INTRODUCTION 1 
 
As pointed out by Bullard (1991), in the three decades since the publication of the 
seminal work on rational expectations (RE) in the early 1960s, a steely paradigm was 
forged in the economics profession regarding acceptable modelling procedures. 
Simply stated, the paradigm was that economic actors do not persist in making foolish 
mistakes in forecasting over time.  
 
Since the late 1980s researchers have challenged this paradigm by examining the idea 
that how systematic forecast errors are eliminated may have important implications 
for macroeconomic policy. Researchers who have focused on this question have been 
studying what is called ‘learning’, because any method of expectations formation is 
known as a learning mechanism. Thus, since the late 1980s a learning literature, or 
learning paradigm, developed. An excellent introduction to – and survey of – this 
paradigm is presented in Evans and Honkapohja (2001).  
 
A different strand of literature in the economics profession has been dealing with 
optimal control or dynamic optimisation.  
 
In general there are few papers in the literature that combine the themes of learning 
and (optimal) control. An exception is recent and important work by Wieland 
(2000a,b). Wieland (2000a) analyses the situation where a central bank has limited 
information concerning the transmission channel of monetary policy. Then, the CB is 
faced with the difficult task of simultaneously controlling the policy target and 
estimating (learning) the impact of policy actions. Thus, the so-called separation 
principle does not hold, and a trade-off between estimation and control arises because 
policy actions influence estimation (learning) and provide information that may 
improve future performance. Wieland analyses this trade-off in a simple model with 
parameter uncertainty and conducts dynamic simulations of the central bank’s 
decision problem.  
 
In this paper we incorporate the term structure of interest rates in a standard inflation 
forecast targeting framework. Learning about the transmission process of monetary 
policy is introduced by having heterogeneous agents - i.e. the central bank and private 
agents - who have different information sets about the future sequence of short-term 
interest rates. We analyse inflation forecast targeting in two environments. One in 
which the central bank has perfect knowledge, in the sense that it understands and 
observes the process by which private sector interest rate expectations are generated, 
and one in which the central bank has imperfect knowledge and has to learn the 
private sector forecasting rule for short-term interest rates. In the case of imperfect 
knowledge, the central bank has to learn about private sector interest rate 
expectations, as the latter affect the impact of monetary policy through the 
expectations theory of the term structure of interest rates. Here following Evans and 
Honkapohja (2001), the learning scheme we investigate is that of least-squares 
learning (recursive OLS) using the Kalman filter.  
 
                                                 
1 Eric Schaling thanks CentER for Economic Research at Tilburg University and the Research 
Department of the Bank of Finland for hospitality during the formative stages of the research for this 
paper. Correspondence to Prof E. Schaling, Department of Economics, RAU, PO Box 524, 2006 
Auckland Park, Johannesburg, Republic of South Africa, + 27 (11) 489-2927, ESC@EB.RAU.AC.ZA 
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We find that optimal monetary policy under learning is a policy that separates 
estimation and control. Therefore, this model suggests that the practical relevance of 
the breakdown of the separation principle and the need for experimentation in policy 
may be limited. 
 
The remainder of this paper is organized as follows. Section 2 discusses the basic 
inflation targeting framework and the term structure of interest rates. In Section 3 we 
solve for the optimal monetary policy rule under perfect knowledge. Imperfect 
knowledge and the Kalman filter are introduced in Section 4. We conclude in Section 
5. The appendices contain the derivation of results for convergence and the optimal 
policy rules under perfect knowledge and learning.  
 
2 THE ENVIRONMENT 
 
Monetary policy is conducted by a central bank that controls a short-term nominal 
interest rate ti , and that has an exogenously given inflation target, *π . The authorities 
aim to minimize deviations of inflation from its assigned target. Consequently, the 
central bank will choose a sequence of current and future short-term nominal interest 
rates to meet the objective 
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Here π is the inflation (rate) in year t , *π  is the central bank’s inflation target, while 
the parameter δ (which fulfils 0 < δ < 1) denotes the discount factor (i.e. a measure of 
the policy horizon). The expectations operator E refers to the policymaker’s 
expectations. This expectation is conditional on the central bank’s information set in 
period t. 
 
As in Rudebusch and Svensson (2002), inflation and output are linked by the 
following short-term Phillips-curve relationship:2 
 

111 ++ −+= tttt z ηαππ  (2.2) 
 
The variable z represents the (log of the) output gap in period t where potential output 
has been normalized to zero, finally η  is a i.i.d  productivity (supply) shock 
 
The output gap is determined by the following dynamic relationship: 
 

1211 ++ +−= tttt dRzz ββ  (2.3) 
 
where R is the long-term real interest rate and d is an i.i.d. demand shock. Again, this 
relationship is similar to Rudebusch and Svensson (2002). The differences are that 
here the output gap depends on the long-term real interest rate rather than the short-
term real interest rate, and that they consider an additional lagged z term. 
 

                                                 
2 Rudebusch and Svensson (2002) consider additional lags of inflation.  
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We assume that the short real rate ( tr ) and the long real rate ( tR ) are related by the 
following version of the Pure Expectations Hypothesis (PEH) 
 

)( 1

^

ttttt RREDRr −−= +  (2.4’) 

The expectations operator
^
E  refers to the private sector’s expectations. Here rt 

represents the real yield to maturity on a one-period bond which is traded on the 

interbank money market. The expectations operator 
^
E  refers to private agents’ 

(possibly subjective) expectations. The LHS denotes the (one-period) real holding 
period return on a long-term bond. The latter’s real yield to maturity (Rt) is the long-
term real interest rate. The parameter D is defined such that D + 1 is equal to 
Maccaulay’s duration.3 
 
For our purposes it turns out to be convenient to rewrite this equation to express the 
current long real rate as a convex combination of the current short real rate and the 
expected long real rate in the next period: 
 

D
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Note that the long and short real interest rates will be equal if the parameter k is equal 
to zero. In that case the duration of the long-term bond will be equal to one and there 
is no distinction between short and long term interest rates.  Note that this equation 
can be rewritten as 
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Thus, in equation (2.4) the long term real interest rate is a weighted average of the 
current ex ante real short rate and the expected future sequence of future short real 
rates over the 1+t - infinity horizon. 
 
The current short-term real interest rate will be equal to: 
 

1+−= tttt Eir π  (2.6) 
 
Here ti  is the instrument of the central bank (i.e. the nominal interest rate on the inter-
bank money market) and 1+ttE π represents the expected rate of inflation in period t+1 
conditional on the information set in period t. 

                                                 
3 For more details see Eijffinger, Schaling and Verhagen (2000), hereafter ESV.  
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3 IMPLEMENTING INFLATION TARGETING UNDER PERFECT 
KNOWLEDGE 
 
To get some straightforward results, we assume that the central bank understands and 
observes the process by which private sector inflation expectations are generated. This 
is the benchmark case of perfect knowledge. We model least-squares learning by the 
central bank in section 4.  
 
3.1 Timing of Events 
The timing is that first the private sector (PS) sets its expectation about the sequence 

of future short real rates – that is, it chooses 1

^

+tt RE  - and the central bank (CB) then 

chooses tr (through the choice of ti , given 11

^

++ = ttt EtE ππ ). The policymaker’s best 

response, 

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1,, tttttt REEzr π  maximizes the monetary authority’s payoff 

given 
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1ttt REE . The model is completed by imposing rational expectations on the 

policymaker, namely, 
^

1

^

1 ++ =





ttttt REREE . More specific, in the case of perfect 

knowledge the CB understands and observes the process by which PS interest rate 
expectations are generated.4 How those expectations are generated remains to be 
specified. The equilibrium ex ante real interest rate is given by the solution of this 

equation, and is denoted by 




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
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



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^

1
* ,, tttttt REEzr π . To summarize, the above case of 

discretion can be represented as follows. Then, also at time t the CB sets the interest 
rate based on strict inflation targeting (SIT) and on its correct observation of PS 
expectations. Figure 3.1 illustrates. 
 
Figure 3.1 Discretion: Timing of Events 
Time t  
Stage 1: 
 
• PS forecasts sequence of 

future interest rates, i.e. sets 

1

^

+tt RE . 

Stage 2:  
 
• CB decides on monetary 

policy according to strict IFT , 

i.e. sets 







+1

^
* ,, ttttt REzr π . 

 
3.2 Optimality 
In Appendix B.1 we show that the first-order condition of this optimization problem 
is5  
 

*
2 ππ =+ttE  (3.1) 

 
                                                 
4 So, the central bank knows how much policy ‘is in the pipeline’ according to financial markets.      
5 See Bullard and Schaling (2001) and Schaling (2004)  for examples of the method of solving for the 
optimal policy.  
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Substituting from the constraints it can easily be established that can be easily 
established that the closed form solution for the ex ante real interest rate is 
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The difference with standard Taylor-type monetary policy rules is that now the CB 
responds to three state variables: inflation, output and the private sector forecast of the 
long real rate. If 0→k  there is no term structure, and the policy rule collapses to 
Svensson’s (1997) version of the Taylor rule (hereafter the Svensson-Taylor rule). 
 
An interesting characteristic of this solution is that the central bank's optimal level of 
short-rates is inversely related to PS expectations about its future short rates (because 
of the minus sign on the term 1+tt RE ). For example, if the PS expects rates to go up in 
the future, as a consequence (ceteris paribus; given its inflation target) rates can be 
lower today (and vice versa). The latter (reverse case), i.e. the PS expects rates to go 
down, and as a consequence the CB raises (or talks about raising them) reminds us of 
the old joke about the Bundesbank: 'The BuBA is just like cream, the more you stir it, 
the thicker it gets'.6 The reason for this is that the central bank’s inflation forecast - 
given other state variables such as the present inflation rate and the present output gap 
– depends on the present level of the real long term interest rate, tR . So, an optimal 
forecast implies an optimal level of this variable. Since the optimal long-term rate 
(that is consistent with strict IT) is a weighted average of the present ex ante optimal 

real rate and 1

^

+tt RE , i.e. 1

^
** )1( ++−= tttt REkrkR , the higher 1

^

+tt RE  the lower the 
optimal ex ante real rate can be. Similarly lower expected interest rates necessitate a 
tighter policy stance today to compensate. 
 
An important limiting case of equation (3.2) is when 0→k  and there is no difference 
between long-term and short-term interest rates. Then the policy rule collapses to  
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ttt zr

2

1*

21

11
β
β

ππ
βα

+
+−=      (3.3) 

 
which – as in Svensson (1997, p 1119) – is essentially a version of the simple policy 
rule popularized by Taylor (1993).7 This result will be referred to as the ‘Svensson-
Taylor’ rule. 
 
3.3 The Rational Expectations Solution 
It remains to present the rational expectations solution. This is the case where private 
sector interest rate expectations are formed rationally; i.e. private agents think that the 
CB will implement inflation forecast targeting in each and every period. That is, they 
think that the CB will set policy according to *

2 ππ =+ttE t∀ . 

                                                 
6 In addition, the Deutsche Bundesbank always considered the long-term interest rate as a reflection of 
the credibility of its monetary policy. 
7 Taylor rules are often written in terms of nominal interest rates, but given the definition of tr  the 
rules in equations (3.2) and (3.3) can easily be interpreted in these terms.  
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As a first step, solve for the long-term real interest rate. Substituting (3.2) into 
equation (2.4) we obtain 
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The solution for the output gap and inflation under strict IT is  
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Leading equation (3.4) by one period and substituting from equations (2.2) and (3.5) 
we get 
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where ut+1= ( )
1

21
1
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1 11
++ −

+
ttd η

βαβ
β  is a composite white noise shock, i.e. a linear 

combination of the demand and supply  shocks (both white noise).  Rearranging and 
taking PS expectations at time t gives  
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This is now the solution for the rational expectation of next period’s long real rate 
from the perspective of the private sector. Note that the benchmark case of the model, 
that of perfect knowledge, relates to the situation where both the policymaker, and the 
private sector have rational expectations. More specific, in the case of perfect 
knowledge the CB understands and observes the process by which PS interest rate 
expectations are generated. In turn those expectations are consistent with the solution 
for the long-term real interest rate implied by strict IT.  
 
Plugging expression (3.8) into the CB’s optimal policy rule (3.2) yields  
 

( )
( ) ( ) ( )

( ) ttt z
k

k
k

kr
−
++

+−
−

+
=

1
1

1
1

2

11*

21

1

β
ββππ

βα
β      (3.9)  

 
This equation is the equivalent of equation (3.6) of Eijffinger, Schaling and Verhagen 
(2000) (ESV).8 However, the equations are not strictly comparable because the 
optimal real interest rate in ESV is in ex post terms, whereas in (3.9) it is in ex ante 
terms. 
 
3.5 Comparing the Rules 

                                                 
8 However, the equations are not completely identical because the optimal real interest rate in ESV is in 
ex post terms, whereas in (3.9) it is in ex ante terms. 
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It is interesting to compare the optimal rule with the Svensson-Taylor rule. Table 3.1 
summarizes the parameter values used in our calibrated economy. We use standard, 
illustrative values for 1α , 1β  and 2β . We chose the shocks η and d from a normal 
distribution with mean zero and variance 078.022 == dσση . 
 
Table 3.1 Parameter Configuration 1  
Parameter Controls Value 

1α  Response of inflation to the output 
gap 

1 

1β  Output persistence 0.7 

2β  Elasticity of the output gap with 
respect to the long-term real 
interest rate 

1 

k  Duration of the long bond 0.5 
2
dσ  Variance of the shock to the 

output gap 
0.078 

2
ησ  Variance of the supply shock 0.078 

*π  Policymaker’s inflation target 0 
1 We illustrate our analytical findings using these calibrations. 
 
In Figures 3.1 and 3.2 we display the last 100 of 10.000 observations on the short-term 
ex ante real interest rate for both the optimal rule ( 5.0=k ) and the Svensson-Taylor rule 
( 0=k ). Both systems are calculated based on the same realized sequence of shocks. We 
use 100 observations to keep the Figure relatively clear. The primary feature of the 
optimal rule is that the interest rate appears to be more volatile than according to the 
Svensson-Taylor rule. Figure 3.2 clearly shows that the mean-squared deviation of the 
interest rate is higher for the optimal rule as compared with the Svensson-Taylor rule. 
We will now provide some intuition for this result. 
 
From equation (3.9) we see that the optimal response of the short-term interest rate to 
its determinants becomes stronger if the duration of the long bond ( D ) increases - 
that is the parameter k  becomes larger. This result is driven by a decrease in policy 
leverage over the long real rate since the latter will now to a greater extent be 
determined by expected future short real rates at the expense of the present short real 
rate. However, provided central bank preferences are constant over time, a change in 
duration will not alter the central bank’s optimal intermediate target as expressed in 
equation (3.1). Therefore, the central bank will have to manipulate its instrument 
more aggressively in order to attain the same desired effect on the long-term real 
interest rate.  



 9 
 

Figure 3.1 Short-Term Interest Rate - Svensson-Taylor Rule 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.2 Short-Term Interest Rate - Optimal Rule 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 IMPLEMENTING INFLATION TARGETING UNDER LEARNING  
 
The case of perfect knowledge can be represented as follows.  First, at time t  the 
central bank sets its expectation (forecast) for private sector interest rate expectations. 

Next, also at time t  the private sector sets its forecast, 11

^
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real interest rate for period 1+t . Then, the CB sets the interest rate at time t  based on 
its own forecast of the long-term real interest rate, where - importantly - the forecast 
turns out to be correct.  
 
The main problem in practice for a central bank is that private sector agents - financial 
analysts, investment bankers, institutional investors, etc. - have become more and 
more sophisticated in analyzing and predicting future monetary policy actions of the 
central bank. This increased degree of sophistication of private sector agents makes it 
harder for the central bank to understand private sector expectations. Hence, the idea 

that the CB can forecast or - what is actually equivalent – observe 1

^

1 ++ = ttt REx  
without error is hardly realistic. This assumption will now be relaxed. 
 
4.1 The Kalman Filter 
Suppose the CB can no longer forecast private agents’ interest rate 
expectations 1+tx without error. Assume that the CB has a forecast 1+tt yE  at time t  of 

1+tx  which it subsequently uses to set the short-term interest rate tr at time t .  
 
More specifically, let ty  be the CB’s noisy signal on tx  
 

ttt xy ε+=  (4.1) 
 
where ty  is the central bank’s signal of tx , and tε  is its measurement error. 9  The 
only information available to the CB when it sets policy at time t  is its forecast of 
y which is conditional on past values of y ; i.e. [ ] [ ],...2,1,111 == −+++ nyyEtyE nttt . 
Even ex post, the CB cannot observe separately the two components of y , x and ε .10 
We assume the measurement error is normally distributed with mean zero and 
variance 2

εσ . So, the central bank’s signal is unbiased, but not without error. An 
important limiting case of (4.1) is when 02 →εσ  and we are back to the previous case 
of perfect knowledge, i.e. tt xy = . 
 
To make the problem more tractable we set 11 =α  and 0* =π . These assumptions 
have the advantage of reducing the dimension of the state space in the central bank’s 
optimal filtering problem. In this way we avoid what Ljungqvist and Sargent (2000) 
call the ‘curse of dimensionality’.11  
 
Under the above simplifying assumptions equation (3.8) reduces to 
 
                                                 
9 Subscript ‘ t ’ denotes variables that are observed or determined at time t , except for the variables 
x and y  where the subscript t  refers to the time period for which the expectation, x , or its noisy 
observation, y , is held. 
10 A real world counterpart of our signal processing can be that CBs may get data on PS interest rate 
expectations (say interest rate futures), which is then taken as a signal of the true PS expectation. Here 
we focus on one learner: the CB (whose rationality is thus bounded), and let’s assume the PS has 
rational expectations (rationality not bounded).  In future we may want to look at two-sided learning 
where both the PS and the CB are learning. 
11 For the technical details see Appendix D of Schaling (2003).  
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11
2

1
−− == ttt wwx γ

β
β   where 21 / ββγ ≡  and )( 111 −−− −−≡ ttt zw π     (3.8’) 

 
Note that the situation above can be represented as the case where the CB believes 
that private sector interest rate expectations follow the stochastic process  
 

ttt wy εγ += −1  (4.2) 
  
corresponding to the true (actual) law of motion of PS interest rate expectations, but 
that γ is unknown to them (this can be seen by substituting the expression for private 
sector interest rate expectations (3.8’) into equation (4.1)). Thus, here we assume that 
the central bank employs a reduced form of the expectations formation process that is 
correctly specified.12   
 
So, we assume that equation (4.2) is the perceived law of motion (PLM) of the central 
bank and that the policymaker attempts to estimate γ . Following Evans and 
Honkapohja (2001), this is our key bounded rationality assumption: we back away 
from the rational expectations assumption, replacing it with the assumption that, in 
forecasting private sector inflation expectations, the central bank acts like an 
econometrician. 
 
The central bank’s estimates will be updated over time as more information is 
collected. Letting 1−tc  denote its estimate through time 1−t , the central bank’s one-
step-ahead forecast at 1−t , is given by 
 

111 ][ −−− = tttt wcyE  (4.3) 
 
Under this assumption we have the following model of the evolution of the economy. 
Let tΩ  be the central bank’s information set for time t . Suppose that at time 1−t  the 
central bank has data on the economy from periods ntt −−= ,...,1τ . Thus the time 

1−t  information set is { } 1
1 , −

−=− =Ω t
ntt wy τττ . Imagine that we have already calculated 

the ordinary least squares estimate 1−tc  of γ in the model ( )2
21 ,; εσγ−− tt wy . Given the 

new information, which is provided by the observations 1, −tt wy , we wish to form a 
revised or updated estimate of γ . Here tc is the CB’s OLS estimate of γ in the model 
( )2

1 ,,; εσγ−tt wy . 
 
The timing of events is summarized in Figure 4.1 below.  
 

                                                 
12 Instead - as pointed out by Orphanides and Williams (2002) - the learner may be uncertain of the 
correct from and estimate a more general specification, for example, in our case a linear regression 
with additional lags of expected inflation which nests (4.2). 
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Figure 4.1 Imperfect Knowledge: Timing of Events 
Time t  Time 1+t  
Stage 1: 
 
• CB forecasts PS interest rate 

expectations using tc  and 

tw ; i.e. sets 

[ ] [ ]11 ++ = tttt yExE . 

Stage 2:  
 
• 2a) PS forecasts long-term 

real interest rate, i.e. sets 
tt wx γ=+1  

• 2b) CB decides on monetary 
policy, i.e. sets 
( )][,, 1

*
+ttttt yEzr π . 

Stage 3:  
 

• 3a) Nature chooses 1+tε , and 

111 +++ += ttt xy ε realizes. 
• 3b) CB observes the signal 

1+ty and forms a revised 

estimate 1+tc . 
• Back to stage 1,  for time 

1+= tt  etc. 
 
 

 
Using data through period t , the least squares regression parameter for equation (4.2) 
can be written in recursive form (see Appendix D of Schaling (2003) for details) 
 

( )111 −−− −+= tttttt cwycc κ  (4.4) 
 

111 −−− −= ttttt pwpp κ  (4.5) 
 

12
1 )( −
−= εσκ ttt wp  (D.10) 

 
The method by which the revised estimate of γ is obtained may be described as a 
filtering process, which maps the sequence of prediction errors into a sequence of 
revisions; and 12

1 )( −
−= εσκ ttt wp  may be described as the gain of the filter, i.e. the 

Kalman gain.  
 
Equations (4.4) and (4.5) are known as the updating, or smoothing equations. These 
updating equations represent the learning channel, through which the current 
realizations of inflation and the output gap13 affects next period’s estimate or beliefs 

1+tb , whereb  is a 1 x 2 row vector of state variables containing the mean and variance 
of the estimate, i.e. [ ]'ttt pcb = .  
 
4.2 The Case of Passive Learning 
In order to get some analytical results, we now consider the case of passive learning. 
This is the case where the central bank disregards the effect of current policy actions 
on future estimation and prediction. In this case the policy maker treats control and 
estimation separately.  
 
The central bank will first choose tr  to minimise the expected loss based on its 
current parameter estimate (its belief about γ ). Then, a white noise shock 1+tε occurs 
and a new realization 1+ty  can be observed. Before choosing next period’s control 

                                                 
13 Note that )( ttt zw −−≡ π . 
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1+tr the central bank will proceed by updating its estimate (belief) using the new 
information ( )1, +tt yw . 
 
In case of imperfect knowledge –and a passive learning policy in which the central 
bank separates estimation and control, see Wieland (2000b, pp. 506-507) - that is a 
central bank who does not internalize the effect of current policy actions on future 
beliefs - in stage 2b) of Figure 4.1 we have 
 

( )
( )
( ) ( ) ][

11
1

1
1 ^

1
2

1

2
+−

−
−

+
+

−
= tttttt REE

k
kz

kk
r

β
β

π
β

 (4.6) 

 
where the central bank’s forecast of market expectations of future rates is governed by  
 

ttttt wcREE =





+1

^
 (4.7) 

 
Plugging (4.7) in equation (4.6), we get the solution for the central bank’s policy rule 
under passive learning 
 

( )
( )
( ) ( ) ( )tttttt zc

k
kz

kk
r +

−
+

−
+

+
−

= π
β

β
π

β 11
1

1
1

2

1

2

 (4.8) 

 
(For a proof see Appendix C.1). Note that now we have four state variables in the 
policy rule: inflation, output, the existing parameter estimate, and nominal GDP.14 In 
addition to raising interest rates in response to inflation and output being above target 
and trend, respectively, the central bank now also responds to the level of nominal 
GDP. Note that the GDP term in the interest rate rule does not occur because the level 
of GDP enters the central bank’s loss function.15 
 
If nominal GDP tt z+π is above (below) its target level (of zero), the central bank 
raises (lowers) short-term interest rates. The reason it does this, is that the central 
bank’s optimal level of short-rates is inversely related to its expectation of the PS 
expectations about its future rates twγ , which in turn is inversely related to the level of 
GDP ( ( )ttt zw −−= π ).16 Thus, the central bank's optimal level of short-rates is 
inversely related to its expectation of the PS expectations about its future short rates. 
For example, if the CB expects the PS to expect that rates go up in the future, as a 
consequence (ceteris paribus) short-term interest rates can be lower today (and vice 
versa).  
 
We also find that – in so far as nominal GDP is concerned - the policy rule now 
becomes state-contingent, as the parameter c  is in general unequal to γ , and moves 
                                                 
14 Or three state variables, if we split-up nominal GDP in inflation and output. 
15 For a recent paper where the central bank targets nominal income growth, see Mitra (2003). 
16 The occurrence of the third GDP term in the policy rule is not, however, a general result. It depends 
on the specific simplifying assumptions made about the slope of the Phillips curve and the level of the 
inflation target.  
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in real time. This means that the central bank’s optimal response to the deviation of 
nominal GDP and its target level also becomes state-contingent. Over time the 
estimate converges (for a proof, see Appendix A) to the true parameter and the policy 
under passive learning converges to optimal monetary policy under perfect knowledge 
(3.9).17  
 
4.3 Optimal Monetary Policy under Learning 
We now examine how the nature of optimal monetary policy is affected by learning 
considerations. Under imperfect knowledge the central bank chooses ∞

=tr ττ }{ so as to 
maximize  
 









−∑

∞

=

−

t

t

tE
τ

τ

τ

πδ 2

2
        (B.1’) 

 
subject to (2.2) and 
 

'
122211 )1()( ++ ++−−+= ttttttt dkcrkzkcz πββββ     (C.1.3) 

 
tty θ=+1          (C.2.2) 

 
( ) ttttttt czc θϖπϖ +++=+ )1(1       (C.3.1) 

 
tt ϖκ =+1          (C.3.3) 

 
( )( ) 12

1
−

+ +−= εσπψκ tttt z        (C.4.1) 
 

( ) ttttt pzp )1(1 ++=+ πω        (C.4.2) 
 

ttp ψ=+1          (C.4.3) 
 
Note that nonlinearities enter the problem in five places. First, the output equation 
becomes nonlinear. This can be seen from the presence of the ‘product terms’ tt zc  
and ttc π  on the right-hand side of (C.1.3). There is a third nonlinearity, as the product 
terms tt zc  and ttc π  on the right-hand side of the updating equation (C.3.1) are 
multiplied by the Kalman gain tt ϖκ =+1 . Since the prediction variance also moves 
over time, we have two more nonlinearites. First, the Kalman gain in equation (C.4.1) 
depends on the products of the prediction variance ttp ψ=+1 and the inflation and 
output realizations tπ  and tz . Second, the prediction variance itself is governed by 
the nonlinear first-order difference equation (C.4.2).  
 
In Appendix C.2 we show that the first-order condition can be expressed as 
 
                                                 
17 With 11 =α , 0* =π , and ( )ttttt zwRE +−==+ πγγ

^

1 , where 1
21
−= ββγ  . 



 15 
 

02 =+ttE π          (B.9) 
 
which is identical to the FOC for the cases of passive learning (see Appendix C.1) 
and perfect knowledge (see Appendix B.1). This means that the optimal policy is 
identical to the passive policy. Put differently, estimation and control can be separated 
and the so-called separation principle holds. Therefore, we can now study the optimal 
rule under imperfect knowledge in terms of equation (4.8).  
 
4.4 Comparing Optimal Policy under Perfect Knowledge and Learning 
Now we compare the optimal rule under learning with the optimal rule under prefect 
knowledge. Table 4.1 summarizes the parameter values (in addition to the values 
already mentioned in Table 3.1). 
 
Table 4.1 Additional Parameter Values 
Parameter Controls Value 

2
εσ  Variance of the measurement 

error  
1 

0p  Initial value of the prediction 
variance 

3 

0c  Initial value of the parameter 
estimate 

0.75 

γ  True value of the parameter 0.7 
 
In Figures 4.2 and 4.3 we display the first 100 of 10.000 observations on the short-term 
ex ante real interest rate for both the optimal rule under perfect knowledge and the 
optimal rule under learning.18 As can be seen from Table 4.2, the primary feature of the 
optimal rule under learning is that the interest rate exhibits less persistence than the 
interest rate under perfect knowledge. This feature reflects the phenomenon that the 
latter rule is linear in state with constant parameters, whereas the optimal rule under 
learning is state-contingent, i.e. has time-dependent coefficients that move with the 
updating of the parameter estimate. 
 
Table 4.2 Summary Statistics of first 100 Observations 
Case Rule under Perfect Knowledge Rule under Learning 
Mean -0.03579 0.12795 
Variance 1.94518 1.89131 
Coefficient for AR(1) term -0.3988 -0.2666 
 
 
Due to convergence to the true parameter in the learning case, the two rules are almost 
identical in the last 100 observations. Therefore those observations are not shown. We 
illustrate convergence with Figures 4.4 and 4.5. 
 

 
 
 

                                                 
18 Due to convergence to the true parameter in the learning case, the two rules are almost identical in 
the last 100 observations. 



 16 
 

 
Figure 4.2 Short-Term Interest Rate – Optimal Rule under Perfect Knowledge 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Short-Term Interest Rate – Optimal Rule under Learning 
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Figure 4.4 Optimal Learning- Convergence of the Parameter Estimate to the 
True Value 0.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Optimal Learning - Prediction Variance of the Parameter Estimate 
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5 EVALUATION AND CONCLUDING REMARKS 
 
In this Section we put our main result – that the optimal policy under learning 
coincides with the passive policy, i.e. that the optimal policy can separate estimation 
and control – in the context of the dual control literature. We informally discuss how a 
trade-off between estimation and control might resurface in our model, but find the 
argument unconvincing.  
 
It is interesting to observe that our one-period objective function differs from Wieland 
(2000b, p. 506). Using the notation of this paper, Wieland considers  
 
( ) ( ) 2*2* )(, ttttt rryyryL −+−= λ   (5.1) 

 
(where he sets 0* =tr  ).  Thus, in his set-up both the control tr and the signal ty  affect 
the agent’s pay-off. A similar objective function is used by Beck and Wieland (2002) 
and Kiefer and Nyarko (1989). Apparently, the loss function (5.1) is standard in the 
dual control literature. 
 
In the literature on learning and control, the stochastic process to be controlled is 
usually static in nature. Using the notation of this paper 
 

ttt ry εβα ++=  (5.2) 
 
where ty  is the target variable and tr  is the control variable.19 Under perfect 
knowledge of α  and β , tr  will be a function of these parameters and as such will be 
constant. With this type of constraint the optimal value of the control variable under 
passive learning is a function of the estimates of parameters (certainty-equivalence 
rule) or a function of the parameter estimates and their variances and covariances 
(myopic rule). Kiefer and Nyarko (1989) show that beliefs  and actions tr  converge in 
the limit. However, the risk is that if tr  converges too quickly, then beliefs may also 
converge to incorrect values. The need for policy experimentation is therefore 
relevant here. 
 
The story is different if the process to be controlled is dynamic and the RHS includes 
the lagged dependent variable, say 
 

tttt yuy εδβα +++= −1  (5.3)  
 
In this case, under learning the optimal value of tr  will be a function of the parameter 
estimates and 1−ty . In essence at any point in time, tr  will be reacting to past shocks 
hitting 1−ty  and thus actions tr  will never converge (or settle down). The upshot is 
that as long as the policy maker chooses to react to the state variable 1−ty , the control 
variable tr  will also be stochastic. Kiefer and Nyarko (1989) have shown that beliefs 

                                                 
19 An example is Wieland (2000a,b) who studies the problem of a single decision maker, who attempts to 
control a linear stochastic process with two unknown parameters, just like (5.2). 
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would converge with probability 1 to the truth if actions tr  do not converge. This 
finding implies that with the RHS variables ( tr  and 1−ty ) showing variations, beliefs 
will converge with probability 1 to the truth.  
 
In our paper, instead of (5.2) and (5.3) we have 
 

ttt wy εγ += −1  (4.2)  
 
Thus, it appears that we also need to control a dynamic process. However, our one-
period objective function differs markedly from the standard objective function of the 
dual control literature (5.1). 
 
Note that intuitively strict inflation targeting in our model can be re-interpreted  in 
terms of the dual control literature. For, strict inflation targeting can be thought of as 
the case where the CB is only interested in minimizing 
 
( ) 2* )(, tttt rrryL −=   (5.4) 

 
that is, in stabilizing the interest rate at its - time-dependent -  target level, where the 
target level is given by  
 

( )
( )
( ) ( ) ( )tttttt zc

k
kz

kk
r +

−
+

−
+

+
−

= π
β

β
π

β 11
1

1
1

2

1

2

*  (4.8) 

 
Of course, this is simply the case where the central bank –in implementing inflation 
targeting under imperfect knowledge of the term structure of interest rates - follows 
its optimal monetary policy rule under learning (with coincides with the passive 
policy). Thus, the main difference with the standard literature on learning and control 
is that in our case the regression to be estimated is different from the process to be 
controlled, as ty does not appear in our utility function.20 
 
Conversely, if we set 0=λ  in (5.1) the central bank’s objective function coincides 
with the input-target model that is often used in studies of learning by doing such as 
Jovanovich and Nyarko (1996) and Foster and Rosenzweig (1995). In this case it is 
also possible to back out an optimal level of the control tr , i.e. a certain monetary 
policy setting that now does not minimizes deviations of inflation from the target, but 
tries to minimize the deviation between the signal ty and a certain target level.  
 
Since there is an intuitive correspondence between this target level and the state 

variable 
^

1+= ttt REx , we can think of this case as the case where the central bank is 

                                                 
20 That is, we have the central bank which is estimating the process of private sector expectation 
formation with tw  on the RHS of the regression. Since tw  never settles down due to supply and 
demand shocks, we have central bank beliefs converging with probability 1 to the truth, i.e.  Therefore 
in our model, the central bank’s passive learning policy will lead in the limit to the full information 
rational expectations solution.  
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interested in learning the true value of the level of market expectations per se. Thus, 
here the CB is not targeting inflation, but is targeting ‘knowledge about the markets’. 
 
Then the question is what could be the value of ‘experimentation’ in our model? The 
answer is: probably a higher sample variance of tw  leads to a more precise estimate. 
That is the central bank can engineer a higher volatility in tw  by ‘not stabilizing the 
shocks too well’. This means that the central bank should deviate from the optimal 
reaction function (4.8) for the case of strict inflation targeting, rule such that the 
process for tw  becomes more volatile. Some intuition for this is provided by Figure 
5.1. 
 
Figure 5.1 Constant Interest Rate Rule - Convergence of the Parameter Estimate 
to the True Value 0.7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5.1 displays the first 100 of 10.000 observations on the convergence of the 
parameter estimate under a constant real interest rate rule, more specifically for the case 
where the real interest rate stays at is equilibrium or neutral level – which here is 
normalized at zero. If we compare Figure 5.1 with Figure 4.4 – which illustrates 
convergence under the optimal interest rate rule – we have an important result. Thew 
speed of convergence under a constant interest rate rule is much higher than under the 
optimal rule! 
 
This suggests that indeed there is a trade-off between learning and control if the signal 
enters the utility function. So, in the case that ( )*yyt −  is an argument in the central 
bank’s loss function – that is if 0≠λ in equation (5.1), we are back in the 
neighbourhood of the standard dual control literature and the separation principle will 
break down, indicating that estimation and control cannot be separated.  
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However, it is hard to see how the objective function (5.1) can be justified. Inflation 
targeting has become the dominant monetary policy strategy for the major central 
banks in the world since the late 1990s.21 So, it is clear that the deviation of inflation 
from its assigned target should be in their objective function. Why, however, would 
the central bank be interested in limiting the deviation between its noisy observations 
of market expectations, ty , and the true values of those expectations.? The only clear 
rationale would be if it needs to know those market expectations as an essential part 
of the monetary transmission mechanism. This is the avenue we have followed in this 
paper. However, apart from the need to learn these expectations for the sake of 
controlling inflation there is no reason whatsoever why understanding those 
expectations in itself should be one of the goals of monetary policy. Therefore, there 
is no good case for havingλ different from 0 and therefore also no good case 
supporting a trade-off between estimation and control. Therefore, this model suggests 
that the practical relevance of the breakdown of the separation principle and the need 
for experimentation in policy may be limited. 
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APPENDIX A CONVERGENCE OF STOCHASTIC RECURSIVE 
ALGORITHMS 
 
A.1 SAMPLE HAS BEEN GENERATED BY NATURE 
 

Let ∑
=

−
−=

t

i
it wtR

1

2
1

1 )(  (A.1.1) 

 
Then in estimating the model ttt wy εγ += −1 , the least squares formula for the parameter 
estimate tc can be written in recursive form  
 

)( 111
11

1 −−−
−−

− −+= ttttttt cwywRtcc    
 
or replacing ty by ttw εγ +−1 ,  
 

))(( 111
11

1 ttttttt cwwRtcc εγ +−+= −−−
−−

−  (A.1.2) 
 
(A.1.1) can also be written in recursive form 
 

)( 1
2

1
1

1 −−
−

− −+= tttt RwtRR  (A.1.3)  
 
(the system (A.2) and (A.3) is the same as Evans and Honkapohja (2001) (hereafter 
EH) equation (2.9) pp. 33) 
 
To put (A.1.2) and (A.1.3) in standard form we rather use 1−tR  instead of tR  on the 
RHS of this equation. The appropriate way to handle it is to define another variable 
S such that tt RS =−1  (see EH page 37). The system then becomes 
 

))(( 111
1
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1
1 ttttttt cwwStcc εγ +−+= −−−
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−
−  (A.1.4) 
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Next rewrite equation (A.1.4) as  
 

]))(([ 1111
1
1

1
1 tttttttt ccTwwStcc ε+−+= −−−−

−
−

−
−  (A.1.4’) 

 
where T implicitly defines the mapping from the PLM to the ALM 
 
( ) γ=−1tcT  (A.1.6) 

 
The interpretation of the ALM is that it describes the stochastic process followed by 
the economy if forecasts are made under the fixed rule given by the PLM. Here of 
course that stochastic process, the ALM, is the data generating process (DGP) (here 
the sample is generated by nature) – which is independent of the PLM - and the PLM 
is the recursive estimate of the ALM (or nature). 
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The system (A.1.4’)-(A.1.5) is now implicitly in standard form with the following 
definition of variables: 
 

)',( ttt Sc=θ ; )',,( 1 tttt wwX ε−=  and 1−= tgt  
 
So the system (A.1.4’)-(A.1.5) can now be written as 
 

( )ttttt XtQg ,, 11 −− += θθθ  (A.1.7) 
 
In the case above the state vector tX  follows an exogenous stochastic process; i.e. the 
sample has been generated by nature. However, as pointed out by EH, p. 35 this is not 
at all essential. In particular, in the general framework, tX can be permitted to follow 
a VAR (vector autoregression) with parameters that depend on )',( 111 −−− = ttt Scθ . 
Evans and Honkapohja (2001) state that this issue is discussed fully in Chapters 6 and 
7 of their book, and is relevant for the cases of passive and optimal learning. 
 
The function Q expresses the way in which the estimate 1−tθ  (or rather a vector of 
parameter estimates or beliefs) is revised in line with last period’s observations. Here, 

1−tθ  will include all components of 1−tc  and tt RS =−1 , tX is the state vector that 
includes the effects of tw , 1−tw  and tε , and tg is a deterministic sequence of ‘gains’ - 
i.e. a non-increasing sequence of positive numbers - satisfying 1  lim =

∞→ tt
tg . We are 

interested in the conditions under which θθ =
∞→ tt
  lim , where θ  solves either 

( ) 0, =θtXEQ  in the case that { }tX is drawn from a distribution that is stationary or 

( ) 0,  lim =
∞→

θtt
XEQ  in the case that { }tX is asymptotically stationary (for the latter case 

see Appendix A.2)). 
 
As pointed out by Sargent (1993, pp. 39-41), it has been discovered that the limiting 
behavior of a sequence { }tθ determined by stochastic difference equation (A.1.7) is 
described by an associated differential equation, 
 

( )τθτ
θ ,XEQ

d
d

=  (A.1.8) 

 
where ( )θ,XEQ  is the expected value of ( )θ,XQ , evaluated with respect to the 
asymptotic stationary distribution of { }tX  and τ  denotes “notional” or “artificial” 
time (see EH pp. 31).  
 
Having shown that the system can be placed in standard SRA (stochastic recursive 
algorithm) form, the next step is to compute the associated ODE. Therefore, we have 
to compute ( )θ,XEQ . 
 
The easiest way to do this is to look at the two components of Q separately. The first 
component of Q , giving the revisions to 1−tc  is given by 
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( ) ( )[ ]ttttttttc ccTwwSXtQ εθ +−= −−−−
−
−− )(,, 1111
1
11  (A.1.9) 

 
Hence, fixing the value of c and S , and computing the expectation over tX we get 
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Similarly, the second component of Q  is given by 
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Hence fixing the value of c and S and computing the expectation over tX we get  
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Since ( ) 22
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2

wttt wVarEwEw σ=== − , 01 =− ttEw ε , and 1)1/(lim =+
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 we obtain 
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 (A.1.12) 

 
SSch wS −= 2),( σ  (A.1.13) 

 
where 22

1
2

wtt EwEw σ== −  is the unconditional second moment of tw .  In the case 
where the sample has been generated by nature, to make sure that the (asymptotic) 
variance 22

1
2

wtt EwEw σ== −  exists one can, for example, permit tw  to follow a 
stationary exogenous AR (autoregressive) process, driven by a white noise shock with 
bounded moments. 
 
The stochastic approximation approach associates an ordinary differential equation 
(ODE) with the stochastic recursive algorithm, 
 

( ) ))((, τθθ
τ
θ

τ hXEQ
d
d

==  (A.1.14) 

 
We can write the differential equation component by component to obtain 
 

( ) ( ) )())((,
2

ccT
S

chcXEQ
d
dc w −===

σ
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τ τ  (A.1.12’) 
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d
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w −=== 2))((, στ
τ τ  (A.1.13’) 
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As pointed out by EH, p. 38 this system is recursive (that is we ‘first’ compute the 
variance of the estimated parameter, or the ‘Kalman gain’ and then proceed in 
updating the estimate) and the second equation is globally stable22 with 2

wS σ→  from 

any starting point. It follows that 1
2

→
S

wσ
from any starting point, provided S is 

different from zero along the path, and hence that the stability of the differential 
equations (A.1.12’) and (A.1.13’) is determined entirely by the stability of the smaller 
dimension non-homogenous equation 
 

( ) γ
τ

+−==−= cAcccT
d
dc )(  (A.1.15) 

 
where I have used (A.1.6). 
 
Clearly γ=c  is a stationary solution. The general solution [see e.g. Sargent (1993, p. 
41)] is 
 

( )( ) tectc −−+= γγ 0)(  
 
which converges to γ for any initial value )0(c .  
 
A.2 CONVERGENCE UNDER PASSIVE LEARNING 
 
In the case where the central bank engages in estimation and control the data 
generating process for tw  is not exogeneous anymore. Rather it follows an AR(1) 
process where the coefficient on the lagged term is a function of tc . To see this, first 
solve for the long-term real interest rate. Substituting (4.8) into equation (2.4) and 
combining the result with (3.8’) we obtain 
 

[ ]ttttt wckzR )11

2

1

2

γ
β
βπ

β
−−

+
+=      (4.9) 

 
Then, we need the equilibrium equations for inflation and output gap23: 
 

( )[ ] ( )[ ] 11 11 ++ +−−−−−−= tttttt dckzckz πγγ      (4.10) 
 

11 ++ −+= tttt z ηππ  (2.2) 
 

Then adding (4.10) and (2.2) we get 
 

( ) 1111 )( ++++ +++−=+ ttttttt dzckz ηπγπ  (A.2.1) 

                                                 
22 Clearly 2

wS σ=  is a stationary solution. The general solution [see e.g. Sargent (1993, p. 41)] is 

( )( ) t
ww eStS −−+= 22 0)( σσ  which converges to 2

wσ for any initial value )0(S .  
23 The solution for the output gap z can readily be obtained by substituting (4.9) into (2.3).  
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or, in terms of tw  
 

( ) )( 111 +++ +−−= ttttt dwckw ηγ  (A.2.2) 
 

The difference with the case of an exogenous data sequence is that now we need to 
make sure that 2lim tt

Ew
∞→

 (which depends on the magnitude of )( γ−tck in the AR(1) 

process) exits and is finite. The reason is that since we are interested in local 
convergence, it is necessary that in deriving the ODE, the process (A.2.2) be 
asymptotically stationary. For this we need to have cct =  sufficiently close to γ ( the 
fixed point of interest) such that  1|)(| <−γck . Then the process  
 

( ) )( 111 +++ +−−= tttt dwckw ηγ  (A.2.3) 
 
will have a bounded second moment in the limit. Let )()]([lim 2 cVarcwE wtt

=
∞→

. Denote 

the stationary points for c and S by c and S  respectively. The ODE system is 
 

 ( ) ))((
)(

, ccT
S

cVar
Sch

d
dc w

c −==
τ

 (A.2.4) 

 

( ) ScVarSch
d
dS

wS −== )(,
τ

 (A.2.5) 

 
Then as in Appendix (A.1) the stability of the ODE system (A.2.4) and (A.2.5) 
depends on the local stability of (A.2.4) at γ=c .  The general solution in real time 
will be  
 

( )( ) tectc −−+= γγ 0)(  
 
while the stationary solution will be γ=)(tc .   
 
APPENDIX B OPTIMAL MONETARY POLICY UNDER PERFECT 
KNOWLEDGE 
 
The central bank chooses ∞

=tr ττ }{ so as to maximize 
 









−−∑

∞

=

−

t

t

tE
τ

τ

τ

ππδ 2*)(
2

 (B.1) 

 
subject to 
 

111 ++ −+= tttt z ηαππ  (2.2) 
 

1211 ++ +−= tttt dRzz ββ  (2.3) 
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1
ˆ)1( ++−= tttt REkrkR  (2.4) 

 
We can reformulate the problem above as choosing the indirect control variable 

∞
=tu ττ }{  to maximize  

 









−−∑

∞

=

−

t

t

t xE
τ

τ

τ

πδ 2*)(
2

       (B.2) 

 
subject to 
 

11 ++ ++= tttt uxx ξ         (B.3) 
 
where  1+= ttt Ex π is the new state variable,  11 += ttt zEu α is the new control variable 
and 1111 +++ +−= ttt dαηξ .24 We solve this problem by the method of Lagrange 
multipliers.25 
 
The Lagrangian for this problem is  
 





















−−−−−−= ∑
∞

=
+++

+−
−

t

t
t

t uxxxEL
τ

τττττ
τ

τ

τ

ξµδπδ )(*)(
2 111

12  (B.4) 

 
The first order conditions are 
 

01 ==
∂
∂

+tt
t

E
u
L µδ  (B.5) 

 

0*)( 1 =+−−−=
∂
∂

+tttt
t

Ex
x
L µδµπ  (B.6) 

 
From equation (B.5) we have 01 =+ttE µ . Using this result in equation (B.6) gives 
 

*)( πµ −−= tt x  (B.7) 
 
Leading equation (B.7) by one period and taking expectations at time t  yields 
 

*)( 11 πµ −−= ++ tttt xEE  (B.8) 
 

                                                 
24 Equation (B.3) is derived by leading (2.2) by one period and taking expectations as of time t+1. This 
gives 11121 ++++ += tttt zaE ππ . The RHS variables can be decomposed as follows: 

111 +++ −= tttt E ηππ and )( 11111 +++ += tttt dzEz αα . Then we have 

11111121 ++++++ +−+= tttttttt dzEEE αηαππ . 
25 For a discussion of the relative merits of the methods of dynamic programming and Lagrange, see 
Schaling (2001).  
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Since we have defined 211 +++ = ttt Ex π , using (B.5) and the law of iterated expectations 
the first order condition can be expressed as  
 

*2 ππ =+ttE  (B.9) 
 
Finally we combine (B.9), (2.2), (2.3) and (2.4) to get equation (3.2) in the main text. 
 
APPENDIX C.1 PASSIVE LEARNING 
 
In the case of passive learning at stage 1 the central bank first forms a sample estimate 
of the unknown parameter γ, and takes this estimate ct as given when it subsequently 
sets policy at stage 2 in the same period. Thus, the setup of the problem is similar to 
the case of perfect knowledge analyzed in Appendix B.1 - but with the additional 
simplifications that  0* =π and 11 =α . 
 
The model can now be written as follows. For the output gap, as before we 
decompose 1+tz  into the central bank’s forecast 1+tt zE and its forecast error.  To do 
this, first take expectations of (2.3) and (2.4) at time t  
 

]ˆ[)1( 12211 ++ −−−= ttttttt REkErkzzE βββ      (C.1.1) 
 
Combining (C.1.1) with equation (4.6) we get 
 

tttttt

tttttt

zkckcrkz
wkcrkzzE

2221

2211

)1(           
)1(

βπβββ
βββ

++−−=
−−−=+

    (C.1.1’)

 

The actual process for 1+tz is given by  
 

122211 )1( ++ +++−−= tttttt dzkkrkzz γβγπβββ     (C.1.2) 
 
Subtracting (C.1.1’) from (C.1.2) yields 
 

'
11

'
122211 )1()(

++

++

+=

++−−+=

ttt

ttttttt

dzE

dkcrkzkcz πββββ
    (C.1.3) 

 
Note that now the output equation becomes nonlinear. This can be seen from the 
presence of the ‘product terms’ tt zc  and ttc π  on the right-hand side of (C.1.3).  
 
The term 12

'
1 ))(( ++ ++−−= ttttt dzckd πγβ  is the central bank’s forecast error with 

respect to next period’s level of the output gap. Compared to the case of perfect 
knowledge it can be seen that this error now consists of two terms: (i) the additive 
demand shock 1+td , and (ii) a term that depends on its recursive forecast error of  
market expectations of next period’s long real interest rate ))((2 ttt zck +−− πγβ . It 
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is clear that if γ→tc , 1
'

1 ++ → tt dd and results collapse to those under prefect 
knowledge (for the case that 0* =π and 11 =α ).   
 
The algebra is now the same as in Appendix B.1, except that we have '

1+td  instead of 

1+td . That is, we can reformulate the problem above as choosing the indirect control 
variable ∞

=tu ττ }{  to maximize  
 









−∑

∞

=

−

t

t

t xE
τ

τ

τδ 2)(
2

        (C.1.4) 

 
subject to 
 

'
11 ++ ++= tttt uxx ξ         (C.1.5) 

 
where all variables are defined as before and '

11
'

1 +++ +−= ttt dηξ .  
 
Following the same logic as in Appendix B.1, the first order condition can be 
expressed as  
 

02 =+ttE π          (B.9) 
 
Finally we combine (B.9) with (2.2) and (C.1.1’) to get equation (4.8) in the main 
text. 
 
APPENDIX C.2 OPTIMAL LEARNING WITH VARIABLE GAIN AND 
VARIABLE PREDICTION VARIANCE  
 
The central bank chooses ∞

=tr ττ }{ so as to maximize (B.1’) subject to (2.2) and 
 

'
122211 )1()( ++ ++−−+= ttttttt dkcrkzkcz πββββ     (C.1.3) 

 
tty θ=+1          (C.2.2) 

 
( ) ttttttt czc θϖπϖ +++=+ )1(1       (C.3.1) 

 
tt ϖκ =+1          (C.3.3) 

 
( )( ) 12

1
−

+ +−= εσπψκ tttt z        (C.4.1) 
 

( ) ttttt pzp )1(1 ++=+ πω        (C.4.2) 
 

ttp ψ=+1          (C.4.3) 
 



 31 
 

 
The Lagrangian for this problem is 
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(C.4.4) 

 
The first order conditions are 
   
 

0)1( 2
12 =−−=

∂
∂

+tt
t

Ek
r
L µδβ  (C.2.4) 

( ) [ ] 0)(1 3
1

32
12 =+++−+=

∂
∂

++ tttttttttt
t

EzEzk
c
L µπϖδµµπδβ  (C.3.7) 
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1

3
1 =+=

∂
∂

++ ttttt
t

EEL µδµδϖ
θ

 (C.3.8) 

 

04 =−=
∂
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t
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L µ  (C.2.9) 
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 (C.3.10) 
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( )[ ] ( ) 07
1

6
1

3
1 =+++++=

∂
∂

+++ ttttttttttttt
t

EpzEEzcL µπδµδµθπδ
ϖ

 (C.4.7) 

 

[ ] 0)(1 87
1

7 =−+++−=
∂
∂

+ ttttttt
t

Ez
p
L µµπϖδµ  (C.4.8) 

 

( ) 0)( 8
1

5
1

12 =++−=
∂
∂

++
−

tttttt
t

EEzL µδµπσδ
ψ ε  (C.4.9) 

 
From equation (C.2.4) and (C.2.9) we have 02

1 =+ttE µ and 04
1

4 == +ttt E µµ  
respectively. Then, from (C.3.8) we see that 03

1 =+ttt E µϖ . Using, this information 
C.4.5), (C.4.6) and (C.3.7) simplify to 
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 (C.4.6’) 

 
03

1
3 =+− +ttt E µδµ  (C.3.7’’) 

 
Since we are dealing with the case of a non-zero gain, (C.3.8) implies 03

1 =+ttE µ . 
Then (C.4.7) simplifies to  
 

( ) 07
1

6
1 =++ ++ ttttttt EpzE µπµ  (C.4.7’) 

 
From equation (C.3.10) we have 65

tt µµ = , so that 6
1

5
1 ++ = tttt EE µµ . We can then 

rewrite (C.4.7’) as 
 

( ) 7
1

5
1 ++ +−= ttttttt EpzE µπµ  (C.4.7’’) 

 
Using (C.4.7’’) in  (C.4.5’)  and (C.4.6’) we get 
 

( ) 0])([ 7
1

121
1

1 =++++−− +

−

+ ttttttttttt EzpE µϖπσψδµδµπ ε    (C.4.5’’) 
 

( ) 0])([ 7
1

121
1

2 =++++− +

−

+ tttttttttt EzpE µϖπσψδµδµ ε    (C.4.6’’) 
 
Now it can easily be seen that the term in square brackets appearing before 7

1+ttE µ  is 
zero by definition. To see this note that the constraints containing the Kalman gain 

1+tκ  (i.e. (C.4.1) and (C.3.3)) imply that  ( ) tttt z ϖπσψ ε −=+
− )(12 . With this result 

equations (C.4.5’’) and (C.4.6’’) will collapse to 
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01
1

1 =+−− +tttt E µδµπ        (C.4.5’’’) 
 

01
1

2 =+− +ttt E µδµ         (C.4.6’’’) 
 
These equations correspond with the first order conditions (B.5) and (B.6) 
respectively for the case of perfect knowledge (see Appendix B.1).26  
 
Hence, the first order condition is  
 
 02 =+ttE π  (B.9) 
 
 
 
   

                                                 
26 There 02 =tµ  as we have only one constraint, formulated in terms of the inflation forecast 

1+= ttt Ex π  rather then in terms of the actual inflation rate, and the output forecast 1+tt zE becomes 
the (indirect) control . 


