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Abstract

“Limits of Arbitrage” theories require that the marginal investor in a particular asset

market be a specialized arbitrageur. Then the constraints faced by this arbitrageur (i.e.

capital constraints) feed through into asset prices. We examine the mortgage-backed

securities (MBS) market in this light, as casual empiricism suggests that investors in the

MBS market do seem to be very specialized. We show that risks that seem relatively

minor for aggregate wealth are priced in the MBS market. A simple pricing kernel based

on the aggregate value of MBS securities prices risk in the MBS market. The evidence

suggests that limits of arbitrage theories can help explain the behavior of spreads in

this market.
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1 Introduction

In the Fall of 1998, spreads on mortgage backed securities (MBS) widened substantially

over Treasuries. At the same time, spreads in other markets also widened.1 These events

were coincident with turmoil in the hedge fund industry and the well publicized troubles of

Long Term Capital Management.

Recent theories (“limits of arbitrage”) suggest a causal link running from the losses

suffered by hedge funds to the widening of spreads.2 Arbitrageurs lost money over this

period and their ability to take risk-positions decreased as their capital fell. As a result,

arbitrageurs sold out of many positions leading to rising spreads.

Figure 1 illustrates the behavior of spreads (over Treasuries) on a sample of mortgage

backed securities. In addition to the high spreads in 1998, note the high spreads in late-

1993/early-1994. Events in this earlier period also fit the limits of arbitrage theory. A

number of mortgage hedge funds lost money in 1993 as interest rates rose. A prominent

example was Askins Capital Management which was rumored to have lost around $400

million.

Figure 1: Mortgage Spreads,  Sep. 93 - Dec. 01
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The option adjusted spreads on a panel of interest-only strips (IO’s) is plotted against time.
The data from10/93 to 3/98 is from Salomon-Smith-Barney.  The data from 4/98 to 12/01 is
hand-collected from Bloomberg.

We provide evidence that advances the case for the limits of arbitrage theory. The

difficulty in judging the theory based on Figure 1 is that the evidence boils down to just the

two data points of 1993 and 1998. Our innovation is to develop and test the implications of

the limits of arbitrage theory for the cross-section of mortgage backed securities. The use

of cross-sectional data substantially increases the data available to test the theory.

The main idea is as follows. We note that the limits of arbitrage theory requires that

1See for example Krishnamurthy (2002) on the 30-year bond spread.
2See, for example, Shleifer and Vishny (1997), Kyle and Xiong (2001) or Gromb and Vayanos (2002).
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the marginal investor in the MBS market is a specialized arbitrageur. Thus the constraints

faced by these arbitrageurs affects asset prices. In contrast, traditional asset pricing theory

assumes that the marginal investor in the MBS market is the same as that in the broad

US capital market. If the marginal investor is a specialized mortgage arbitrageur, then the

relative valuation of assets within the MBS market will also reflect this investor’s preferences.

We develop a theory and tests around this idea.

An MBS is a security whose cash flows are linked to payments of an underlying pool of

(typically consumer) mortgages. Mirroring the underlying consumer mortgage, the MBS is

basically a debt security with a declining principal value. However the difficulty in valu-

ing (and hedging) MBS is that the decline in the principal is linked to actual consumer

prepayments on the underlying pool of mortgages. These prepayments are not just a func-

tion of interest rates, but empirically seem driven by a host of other factors including local

macroeconomic variables, demographics, etc.

To price MBS, Wall Street traders have developed sophisticated statistical models of

consumer prepayment. These models forecast a pattern of cash flows for a given MBS,

which can then be priced using standard techniques. However the traders can directly only

hedge the interest rate components of their models. So, to the extent that the actual pattern

of prepayments differs from the statistical model (in a way that is not captured by interest

rate variation), the traders will be left with residual risk.

We exploit aspects of this residual risk to reach conclusions regarding the marginal

investor in the MBS market. In principle, this residual risk should have a price of close to

zero. One would be hard-pressed to find a correlation between the mortgage prepayments

that are orthogonal to interest rates and aggregate wealth. In our data, the point estimate

of the correlation with aggregate stock returns is 0.017. So, the risk should be diversifiable

and should not carry a risk premium.

The first piece of evidence is that the residual risk is priced. In order to recover actual

security prices in the MBS market, one has to discount with an additional spread - the “op-

tion adjusted spread” (OAS) - in valuing the cash flows based on the statistical prepayment

model. It is common for traders to quote the OAS when pricing a particular MBS, or to

use the OAS to compare different MBS. We have OAS data from a prominent mortgage

trading firm for a panel of MBS securities. We measure the residual risk for each of these

securities, and find a strong linear relation between a security’s residual risk and OAS.

By itself, this result is not conclusive. Note that the OAS is measured relative to a

benchmark financial model - it is analogous to an implied volatility for an option priced using

the Black-Scholes formula. In the same way, it could be that the benchmark prepayment

model is incorrect, and that this bias is most apparent in MBS with high residual risk.

We are more compelled by evidence that the pricing of this residual risk varies in a
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systematic way depending on the total value of the MBS market. This is exactly what one

should find if the marginal investor is specialized to the MBS market.

Suppose that the set of buyers and sellers in the MBS market consist of banks and

traders whose incentives are such that they are paid more when the MBS market performs

well. For example, suppose that their compensation contracts pay them based on their

profits on trading in the MBS market. If as a community these traders are the main holders

of the MBS market, then their net compensation will in fact be highest when the MBS

market rises.

If these banks and traders are the marginal investors in the MBS market, then securities

where the residual risk is correlated with declines in the value of the MBS market will have

higher risk premia. We find this to be the case.

The effect of prepayments on MBS depends on the difference between mortgage coupon

rates and market interest rates. For example, if coupons are much higher than market

interest rates, then faster than expected prepayments decrease the value of mortgages. The

opposite is true when coupon rates are below market interest rates.

We find that the pricing of residual prepayment risk depends on the difference between

the average mortgage coupons and market interest rates. For example, when average coupon

rates are close to market interest rates, prepayments have little effect on the total value of

mortgages. We find that the price of residual risk is very low in these environments (even

for a specific high coupon MBS!)

The evidence forwarded in this paper is consistent with some other recent papers in the

literature. Collin-Dufresne, Goldstein, and Martin (2001) study the corporate bond market.

They find that a simple Merton (1973) model explains very little of the price changes in

a panel of corporate bond prices. Even after including macro factors (stock market, etc.)

they are only able to explain about 25% of price changes. The tantalizing evidence they

present is that the bulk of the remaining price changes are due to a single factor that is

common across all corporate bonds. Unlike us, they are unable to identify either this risk

factor or the marginal investor who is pricing this risk3.

Boudoukh, Richardson, Stanton, and Whitelaw (1997) provide similar evidence for the

MBS market. These authors study the pricing of GNMA securities under a benchmark

model (a multifactor interest rate model) that they propose. They study the errors of this

model in pricing a panel of GNMA securities over a period from 1987 to 1994. Similar to

Collin-Dufresne, Goldstein, and Martin, they find that a single (non-interest-rate) factor

accounts for 80-90% of the common variation in the pricing errors.

Closer to our analysis is the work by Froot and O’Connell (1999) on the market for

3We conjecture that our theory could shed light on their results. We are developing this idea in ongoing

work.
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catastrophe insurance. They note that there are times at which the price of catastrophe

insurance seems to get unusually high. Froot and O’Connell demonstrate that these are also

times in which the capital of all catastrophe insurers is low, and the quantity of insurance

transacted is also low. Like us, they argue that the marginal investor in the catastrophe

insurance market is an institution (the insurers) rather than the broad capital market. They

reconcile the facts as: When the capital in the insurance market is low, the insurers are less

willing to write catastrophe insurance and therefore the prices are high and the quantities

transacted are low.

Merton (1987) is an early attempt to explore the implications of market segmentation for

asset prices. The theory we develop in this paper is closer to the limits of arbitrage literature

in which the marginal investor is a specialized institution, and the constraints faced by

this institution feed through to asset prices. Allen and Gale (1994) study an environment

in which traders must specialize ex-ante in a certain asset market, and this implies that

ex-post there is limited market participation and the wealth of the specialized traders is

critical in setting prices. Similar ideas are explored by Dow and Gorton (1994), Shleifer

and Vishny (1997), Kyle and Xiong (2001) and Gromb and Vayanos (2002). Caballero and

Krishnamurthy (2001, 2002) propose a model of emerging market crises in which the crisis is

an event in which the marginal investor switches from the world capital market to a trader

within the emerging market.

2 Description of the mortgage market

Mortgage backed securities are financial securities that are backed by a pool of underlying

mortgages. As of June 2002 there was about $3.9 trillion worth of securitized mortgages.

As mentioned in the introduction, valuing MBS is complex because the cash-flows from

an MBS will depend on the prepayment behavior of the consumers in the underlying mort-

gage pool. Valuing the MBS is typically a two-step process. First, one assumes prepayment

behavior as a deterministic function of interest rate paths, housing prices and so on (Richard

and Roll 1989, Schwartz and Torous 1990). Then one simulates several interest rate paths,

discounting and averaging the cash-flows based on a term-structure model that is calibrated

to the current market risk-free rates.

The model-implied prices under this methodology typically differ from quoted market

prices. Market participants express this difference by quoting for each security a number

called an Option-Adjusted Spread (OAS). More specifically, after the prepayment option has

been taken into account through a deterministic prepayment function, the OAS is a spread

added to interest rates in the term-structure valuation model in order to recover the quoted

market price of the security (equation (7) below). To the extent that the term-structure
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model is correct, the OAS is a “non-interest rate” risk premium on the security.

We study the OAS on a panel of securities in order to reach conclusions regarding the

marginal investor in the MBS market.

Some market participants view the OAS as a risk-premium for bearing model-prepayment

risk — this is our assumption as well. But it should be clear that OAS could be captur-

ing many other things. To the extent that the term-structure model is mis-specified, the

OAS could reflect an interest rate risk premium. To the extent that the prepayment model

does not accurately reflect the prepayment option, the OAS could be capturing the true

value of the prepayment option. Finally, although we study fairly liquid securities, the OAS

could reflect a liquidity premium. These alternatives will pose a challenge for our empirical

methodology.

We have so far used the generic term mortgage-backed securities, which comprises all

the securities that are subject both to interest rate risk and prepayment risk. In fact, MBS

are very diverse in form. The most typical MBS are the collateral (or passthroughs) which

pass both interest and principal payments of the underlying pool of loans to the investor.

Collateral is often stripped into two derivatives: the IO (Interest-Only) which passes only

the interest payments to the investor, and the PO (Principal-Only) which pays the amount

of principal amortized each month (scheduled amortization and prepayments).

3 Model

In this section we describe a very simple environment for studying the pricing of MBS and

the OAS. We then develop a general equilibrium model and present our main hypotheses

regarding the pricing of MBS.

3.1 Mortgage backed securities with no prepayment risk

Consider a world with a constant interest rate of r and a mortgage-pool with constant

prepayment rate of φ and coupon of c. At any date t, the amount of outstanding of this

mortgage-pool is a(t), where,

da(t)

dt
= −φa(t),

given some a(0). We normalize a(0) = 1.

The IO is defined as the claim on all of the coupons from this mortgage-pool. Thus, the

value of one unit face of the IO is simply,

VIO =

Z ∞
0
e−rta(t)cdt = c

Z ∞
0
e−(r+φ)tdt =

c

r + φ
. (1)
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The PO is defined as the claim on the principal repayment on this mortgage-pool:

VPO =

Z ∞
0
(−da(t))e−rtdt = a(0)− r

Z ∞
0
e−(r+φ)tdt = 1− r

r + φ
. (2)

Finally the value of the mortgage itself — the collateral — is,

VC = VIO + VPO = 1 +
c− r
r + φ

(3)

3.2 Prepayment risk

Our aim is to develop an equilibrium model along the lines of a static CAPM to illustrate

how prepayment risk is priced.

There are two periods, t = 0, 1. We assume that the riskless interest rate is constant

and normalize it to be one. We assume there are K mortgage pools. In each pool, the

mortgage has coupon ck and quantity θk. We assume that mortgages “payoff” at date 1 as

a function of ck, r and φk. We next describe the payoff function.

We assume that the only uncertainty is in the prepayment rate, φk, of mortgage-k. The

mean forecast of φk is φ̄k. Pricing the IO, for example, based on this mean forecast would

yield a value of,

EV kIO =
ck

r + φ̄k
.

The problem is that there is model risk as the actual φk may differ from φ̄k. Let ∆φk =

φk − φ̄k be this variation.4 We assume that ∆φk has mean zero and covariance matrix of

Ω.

For simplicity, we linearize the above valuation expressions and assume that the date 1

value (terminal payoff in our two-period world) of the k-th IO is,

V kIO =
ck

r + φ̄k

³
1− ηk∆φk

´
. (4)

Where ηk = 1/
¡
r + φ̄k

¢
and −ηk ck

r+φ̄k
is the derivative of the IO with respect to the pre-

payment rate.

Likewise the date 1 value of the k-th PO is,

V kPO = 1−
r

r + φ̄k

³
1− ηk∆φk

´
. (5)

Finally, the date 1 value of the k-th collateral is,

V kC = 1 +
ck − r
r + φ̄k

³
1− ηk∆φk

´
. (6)

4Unlike our abstraction, in practice interest rates are uncertain. The logical extension of our model to the

uncertain interest rate case is to write φ̄k(r̃). Then the innovation of ∆φk is the uncertainty in prepayments

that is orthogonal to changes in interest rates. This is the definition we use in the empirical section of this

paper.
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3.3 OAS

Let P kIO and P
k
PO be the date 0 prices of one dollar face value of the IO and PO. The OAS

is defined as the premium to the discount rate of r that is required to recover the market

prices of the securities under the mean prepayment forecast. For example, in the case of

the IO, the OAS is the solution to,

P kIO =
ck

r + φ̄k +OASkIO
(7)

That is the mean prepayment forecast is φ̄k. Evaluated at this forecast, the value of the

IO would be ck

r+φ̄k
. So, the OAS is the premium to r required to recover the actual market

price.5

There are two ways to look at the OAS. First, it may simply reflected a mis-specified

model of the prepayment option. Perhaps informed market participants have a true model

of prepayments which is actually φ̂k. A naive market participant (and the econometrician)

who uses φ̄k would have to introduce the additional discount rate of φ̂k − φ̄k in order to

recover the true market prices.

A second way to look at the OAS is that it is a risk premium. Any time that prices

differ from expected values, the OAS will be non-zero. However, under this interpretation

it may be either an interest rate risk premium or a prepayment risk premium.

In our empirical tests we will try to rule out the alternative hypotheses that the OAS is

due to a mis-specified model of the prepayment option or an interest rate risk premium.

Using the same logic as for the IO, the OAS for the collateral is the solution to,

P kC = 1 +
ck − r −OASkC
r + φ̄k +OASkC

(8)

(i.e. it is the previous valuation expression with an adjustment to r).

Now, from (4) and (6) we see that the date 1 payoff on the collateral is equal, state-by-

state, to the payoff on a one dollar face of bond plus the payoff on ck−r
ck

of the IO. Thus, by

arbitrage,

P kC = 1 +
ck − r
ck

P kIO

Using this relation, along with (7) and (8), we arrive at,

OASkC =
ck − r

ck + φ̄k +OASkIO
OASkIO (9)

5We have defined the OAS as the instantaneous risk premium. The “lifetime” risk premium, defined as

πIO = E [VIO] /PIO − 1 is πIO = OASIO/
¡
r + φk

¢
, where 1/

¡
r + φk

¢
is the duration of the IO. This is

analogous to a stock with risky dividends, where the lifetime risk premium is the instantaneous risk premium

multiplied by the asset’s duration.
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The relation between the OAS on the IO and the collateral depends on the coupon on

the mortgage relative to market interest rates. In a low interest rate environment (r < ck),

the OAS on the IO and the collateral have the same sign. Intuitively this is because shocks

lowering the value of the IO — i.e., faster prepayments — also lower the value of the collateral.

In the high interest rate environment (r > ck), the converse is true, and the OAS of the

collateral has the opposite sign of the IO.

Note that these relations are derived only from arbitrage considerations. We have not

made any statements about the equilibrium, or how risks are priced.6

3.4 Delegation and the marginal investor

The critical assumption that we make — and for which we provide tests — is that a repre-

sentative MBS trader is the marginal investor in this market. Formally, we assume that at

date 0 there is a set of risk-neutral investors (“investors”) with large endowments, as well

as a set of MBS traders (“traders”) with no endowments. The risk-neutral investors find

it unprofitable to invest in the MBS market directly. There is extreme adverse selection: if

the investors try to buy mortgage backed securities, then snake oil salesmen will sell them

stuff that is worth zero. As a result they give their funds to the specialized MBS trader

who invests for them. In order to provide incentives to the MBS trader they give the trader

a linear profit share of α. The problem is that the trader is risk averse. He has utility over

date 1 wealth of,7.

U(w) = E[w]− ρ

2
V ar[w] (11)

i.e. just a mean-variance maximizer.

6The OAS for the PO is defined by

P kPO = 1− r +OASkPO
r + φ̄k +OASkPO

Repeating the arbitrage argument in the text (the payoff on the PO is equal to the payoff on a one dollar

face of bond minus the payoff on r
ck
of the IO), we find that,

OASkPO = − r

φ̄k +OASkIO
OASkIO. (10)

The OAS on the PO and IO have opposite signs. An increase in prepayment hurts the IO but benefits the

PO: Thus the IO and PO have opposite sensitivities to prepayment risk.
7See e.g. Holmstrom and Milgrom (1987) for conditions under which a linear incentive is optimal. Given

the relatively small risks of the MBS market, it is also plausible that the linear quadratic approximation is

a good representation of the trader’s risk attitude.
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3.5 Equilibrium

At date 0, the investors give w0 to the traders. From this the traders purchase a portfolio

of mortgage backed securities. Let xkIO and x
k
PO be the amount of the k-th IO and PO held

in a portfolio. Then,

w = w0 +
X
k

xkIO(V
k
IO − P kIO) +

X
k

xkPO(V
k
PO − P kPO) (12)

is the date 1 value of the trader’s portfolio. Since the trader receives a linear profit share,

his problem is to maximize (11) given (12).

This formulation is a variant of the traditional static CAPM. Deriving the first order

condition for the trader’s portfolio choice problem and then substituting in the market

clearing condition of xkIO = x
k
PO = θk, yields an expression for the price of the IO,

ck

r + φ̄k
− P kIO = −ρα cov

µ
ck

r + φ̄k
ηk∆φk, rM

¶
(13)

where the market return is defined as:

rM =
X
j

θj¡
r + φ̄j

¢2∆φj(r − cj) (14)

The term on the right hand side of (13) is a risk premium for holding prepayment risk.

3.6 Covariance structure

We make the following simplifying assumption on the covariance structure. We write,

∆φk = βkΦ+ ²k (15)

where, Φ is a common shock affecting prepayment across all securities, βk is the loading of

security k on the common shock, and ²k is an idiosyncratic prepayment shock. We normalize

the variance of Φ to be 1.

Under this assumption,8

OASkIO ≈ ρβkα

µX βj

(r + φ̄j)2
θj(cj − r)

¶
The sum term poses a problem for us to identify in the data. It is a weighted sum

of the coupons of all mortgages in the market, where the weights depend on the amounts

8The exact expression is,

OASkIO
r + φ̄k

r + φ̄k +OASkIO
= ρβkα

µX βj

(r + φ̄j)2
θj(cj − r)

¶
.

This expression can be derived from combining (13) with (7), and noting that ηk = 1/(r + φ̄k).
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outstanding of the mortgage and the loading on systematic prepayment risk. To compute

the sum requires us to have data on the entire mortgage market — which we do not have.

Instead, it is common for mortgage traders to follow whether the market as whole is at a

premium or a discount. We compute a weighted average coupon on the liquid benchmarks

in the mortgage market (312 securities). The relation we use in our tests is,9

OASkIO =

Systematic riskz }| {
βk × ρa (c̄− r)| {z }

Market price of risk

(16)

where c̄ is the weighted average coupon and ρa is just proportional to the risk tolerance of

the MBS trader. The approximation of using the simple weighted average for the coupon is

valid when r is in the neighborhood of φ̄j. Alternatively, note that the difference of cj − r
is the dominant factor governing changes in the sum for r near cj.

Loosely speaking, the first term in (16) captures the systematic risk of the mortgage,

and the term involving the average market coupon captures the market price of risk (recall

that ρ is the risk tolerance preference parameter for the MBS trader).

In equilibrium, the market price of risk is proportional to c̄ − r. Intuitively, when

the market as a whole is at a premium — i.e. coupons above r — faster prepayments are

costly to the representative trader. Thus securities whose value decrease because of faster

prepayments command a positive risk premium. This is the reason that the OAS on the

IO is positively related to c̄ − r. In fact, securities whose values increase because of faster
prepayments will carry a negative risk premium in this environment. An example of such

a security is the PO. A little algebra gives us that the OAS for the PO is equal to,

OASkPO = −βk × ρa (c̄− r)× r

φ̄k +OASkIO

Another example of a security whose value increases with faster prepayment is a discount

collateral. A collateral with a coupon below the market interest rate increases in value if

the mortgage prepays faster than expected. Given relation (16) and (9), we can write the

OAS on the collateral as,

OASkC = βk × ρa (c̄− r) (ck − r) × 1

ck + φ̄k +OASkIO
(17)

Thus the OAS on the collateral depends on both whether the market as a whole is at a

premium as well as whether or not a particular security is at a premium. This leads to a

quadratic dependence on r. We test this relation in our empirical work.
9We have also developed a continuous time model to express the relation between the OAS and pre-

payment risk. The resulting expressions are very similar to the ones we have derived in the text. See

http : //econ−www.mit.edu/faculty/xgabaix/papers.htm for details.
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Finally, all of these relations are reversed when the market as a whole is at a discount. In

this case, faster prepayments increase the value of the market. Hence the IO has a negative

risk premium, while the PO commands a positive risk premium.

The dependence of the price of prepayment risk on (c̄− r) is really a general equilibrium
implication. It seems plausible that the relation between βk and the OAS could be spurious,

or due to model mis-specification. But we think that the fact that it depends on the

interaction between βk and (c̄ − r) stems uniquely from equilibrium considerations. Most

of our empirical tests are built around this interaction term.

3.7 Testable empirical predictions

The main predictions of the model are contained in equation (16), which we can unpack as:

OASktIO = βkλt (18)

λt = ρa (c̄t − rt) (19)

where ρa is a constant proportional to the risk aversion of the traders.

• A. In the cross-section, the loading of IO-k on the common component of prepayment
uncertainty explains the OAS on the IO’s.

• B. In the time-series, the difference between the average market coupon, c̄t, and the
market interest rate, rt, explains the evolution of the market price of prepayment risk

λt.

• C. In the cross-section, the residual prepayment risk of security-k (i.e. σ(²k)) is not
priced.

• D. Eq. (17) predicts that the OAS on the collateral is quadratic in the market interest
rate, rt, and is a function of both c

k as well as the average market coupon, c̄t.

The model also points out two alternative explanations for the OAS that our empirical

work must contend with: The OAS may reflect an interest rate risk premium; or, the OAS

may reflect a mis-specified model of the prepayment option. We discuss both of these

possibilities in far greater depth in the next section.

3.8 Discussion

The model we have presented is simplified along many dimensions in order to isolate the

relation between the OAS and prepayment risk. We comment on two omissions in this

subsection: lack of dynamics, and constant interest rates.
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In a dynamic model the current wealth of the arbitrage traders will be an important

state variable. For example, the view that high MBS spreads in 1993 and 1998 were due

to low arbitrageur capital is an essentially dynamic effect. This is a substantive effect that

our model does not capture. Informally, we can think of a changing ρ as proxying for this

effect.

To the extent that the aggregate value of the mortgage market is a sufficient statistic for

the marginal utility of the representative trader, our cross-sectional pricing equations will

be unaffected by the omission of dynamics. Generally, in a dynamic model, the marginal

utility will also depend on changes in the investment opportunity set. If preferences are

close to unit-elastic, the latter effect will be small and our analysis will remain valid.

In assuming constant interest rates, we have eliminated two potentially important effects.

First, there is no place for an interest rate risk premium in the OAS. This is actually easy

to fix. We consider a variant of the model with interest rate uncertainty in subsection 5.1

in order to discuss whether or not the OAS includes an interest rates risk premium. The

second effect we ignore is the relation between interest rate volatility and the valuation of

the prepayment option. It is clear that as interest rate volatility increases, the value of a

bond option will rise as well. Since the prepayment option is a bond option, we expect

that the value of mortgage backed securities will also be affected. Brown (1999) notes a

positive relation between OAS and implied volatilities on Treasury bond options. He argues

that this is evidence that market practice is to use a constant volatility in pricing models

and this also gives rise to the OAS. We will have to take into account these effects in our

empirical work.

Strictly speaking, these latter two observations only apply in the case that our OAS

data is calculated under a mis-specified term structure model. Market practice is to use a

term-structure model that is calibrated to current market risk-free rates and then discount

the cash-flows under the risk-neutral measure implied by the term-structure model. So by

construction, the OAS cannot reflect interest rate risk. A small miscalibration of those

models is possible, but is unlikely to account for OAS as high as 500bp. In any case, it is

easy to reject this alternative based on the evidence we present in the next section.

4 Data and estimation

Our data consist of the OAS for nine IO’s and PO’s (see Table 1) furnished by Salomon-

Smith-Barney. This data is daily and covers a period beginning (for some securities) in

August 1993 and ending in March 1998. We also have data on the historical prepayment

rates (monthly frequency) of the underlying collateral. The nine strips chosen are very

liquid securities and fairly representative in age and coupon of the active secondary market.
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The collateral are all FNMA 30-year conventional loans.

Table 1

IO/POa 249 240 252 272 264 237 270 267 268

Couponb (%) 7.08 7.49 7.95 8.07 8.49 8.48 9.01 8.91 9.64

Agec 58 60 63 27 50 70 80 47 110

a: Securities are identified by their pool number.

b: Weighted average coupon on underlying mortgage pool (±5bp over sample.)
c: Age in months as of July 98.

We also have monthly data on the OAS for six generic FNMA 30-year collateral covering

a period from October 1987 to July 1994. The coupons on these securities range from 7.5%

to 11% and the data was provided by Smith-Breeden. We use this data for some auxiliary

tests. We do not have data on prepayment rates for these securities.

The bulk of our analysis is conducted using the IO data. The main reason we focus on

the OAS of the IO’s (as opposed to the PO’s) is that they are large and hence measured with

less error.10 Of course, both the OAS of the IO and the PO contain the same information,

as we have shown previously. We return to the OAS on the PO’s briefly when we discuss

the interest rate risk premium hypothesis. We construct time series of monthly OAS by

forming simple averages of the daily figures. This reduces micro-structure effects. The data

is an unbalanced panel, with common last observations, but varying initial observations.

There are two steps in testing (18)—(19). We need an estimate of βk, and we need an

estimate of c̄ − r. To form c̄, the average coupon oustanding, we take the “market” to be

represented by 312 liquid securities over the period 1986 to 1998, and then compute the

weighted average of the coupons at each date (weights are amounts outstanding). This

gives us a monthly series of c̄t. We use the 10-year constant maturity Treasury yield as rt.

Most of the underlying mortgages have durations around 10 years.

The estimate of βk is a bit more involved. We first develop a bare-bones statistical

prepayment model. For each IO, we have the historical paydown of its collateral month by

month, expressed as a series skt (single monthly mortality, or monthly prepayment rate).

The prepayment model is,

skt = α0k + α1krt + α2k(rt − rt−1) + α3kaget + ²kt

where, aget is the age of the mortgage (note that coupon is absorbed into α0k). We assume

that the error follows an AR(1) process,

²kt = ρ²kt−1 + ukt
10This is consistent with the evidence in Breeden (1994), who shows that IO’s have higher signal-to-noise

ratio than PO’s and pass-throughs.
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This procedure results in a time-series of ûkt’s for each security. Note that by construction

the ûkt’s are orthogonal to interest rates.
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Figure 2: Standard deviation of prepayment errors
The one-year rolling standard deviation of the errors from the empirical prepayment
model are plotted over time.  There are nine mortgage pools that we study.  As a result,
there are nine standard-deviation series.

Figure 2 shows the time series of Ã
t+6X
s=t−6

û2ks
13

!1/2
.

The figure present a rolling one-year standard deviation of the errors. The standard de-

viations are higher in the beginning of the sample and at the tail end of the sample, but

more or less constant at other times. For this reason, we take the prepayment risk βk to be

constant throughout our sample.

The more striking pattern in the figure is that the rankings by standard deviation are

fairly well preserved over time. Our estimate of βk is based on this relation.

Table 2

IO/PO 249 240 252 272 264 237 270 267 268

βk (st. dev.) 0.083 0.122 0.181 0.465 0.504 0.561 0.479 0.483 0.384

βk (PCA) 0.058 0.120 0.197 0.431 0.612 0.513 0.475 0.538 0.338

idiosynck (PCA) 0.091 0.078 0.086 0.174 0.270 0.181 0.259 0.190 0.213

βk (mtge. model) 1.06 2.10 3.29 4.80 6.67 5.63 6.58 6.63 5.82

We use two proxies for βk. In the first line of Table 2 we present the sample standard

deviations for the errors. In some of our tests we use these standard deviations as βk.
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However, as we have noted before, the idiosyncratic component of the prepayment risk

should not be priced. We do not have the prepayment rates for the entire mortgage mar-

ket. However, on the assumption that our sample is representative, we use a principal-

component’s analysis to extract the common component and the idiosyncratic component

of the prepayment risk.

We focus only on the overlapping observations (22 months) for this analysis.11 The

first eigenvector accounts for 83% of the variance which suggests that equation (15) is a

good representation of the data. The second and third components account for 9% and

3.2% respectively. Table 2 (second line) presents the loading on the first eigenvector for

each security as well as the standard deviation of the residual (third line). We use the

loading on the common factor as βk, and the residual standard deviation as our measure of

idiosyncratic risk. Unfortunately the two vectors are very similar, and as we will see, the

test of prediction (C) is not informative.

We know that the best predictor of skt given the history of past interest rates is non-

linear (prepayment functions are typically complex non-linear functions of the entire path

of interest rates), however our simple approach avoids the difficult task of calibrating such a

complex model. As a check, we also have prepayment forecasts from the prepayment model

of a mortgage trader and have used these residuals to form β’s. The β’s (subject to scaling

factors) look similar, suggesting that our model is reasonable. See the last line of Table 2.

As a preliminary to our main empirical work, we check whether prepayment risk would

be priced if markets were integrated. We form a time series of prepayment risk innovations

from our estimates of ûkt. For each t we compute,

Ut =
1

K

X
k=1..K

ûkt
βk

where the βk’s are the loading on the first eigenvector from the principal component analysis.

We also form a time series of monthly excess returns on the S&P500 (SPt). The two

series have a correlation coefficient of 0.017. We run a regression of,

Ut = A+B × SPt.

The coefficient estimate for B is 0.482 and the t-statistic is 0.125 (N = 53, R2 = 0.0003).

We conclude that the two series are unrelated.

The organization of this empirical section is as follows. In the next subsection we give

a brief account of the events that have marked the mortgage market over our sample by

11We have also done the principal component analysis dropping the security with the shortest time series.

This results in 32 months of overlapping observations. The results are close to what we find for the 22

months.
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looking at the evolution of rt and c̄t. Our main results are in sections 4.2 and 4.3. We

discuss alternative hypotheses and robustness in section 5.

4.1 Interest rates, average market coupon, and OAS

Figure 3: CMT 10-year and Average Coupon
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The yield on the the 10-year constant maturity Treasury note and the average coupon on a
representative sample of 312 liquid benchmarks in the MBS market are plotted over time.

Figure 3 shows the time-series of the CMT 10 year rt, and the outstanding average

coupon c̄t. It is worth noting that the adjustments of the outstanding average coupon are

slow compared to the large movements of market interest rates. Prior to 1993, prevailing

mortgage rates were around 10-11%. There was a large prepayment wave as rates fell in

1992 and 1993. As a consequence, the outstanding average coupon c̄t adjusted down from

values of 9-10% to 7-8%. We follow the evolution of the OAS of the IO’s and PO’s from

1993 to 1998. At the start of this period, interest rates were rising as the U.S. economy was

exiting a recession. The Federal Reserve raised their target rate in February of 1994 and

followed this move with several others. Interest rates rose dramatically during this period.

In 1995, there was another important market rally, as rates fell 200 b.p. from January 1995

to January 1996. Rates fell continuously from March 1997 to July 1998 by slightly more

than 100 b.p. to reach levels as low as those of November 1993. It is also worth noting

though that by the end of our sample period, the outstanding coupon had adjusted down

to 7.5%.

Figure 4 shows the variation of the OAS of the IO’s in our data over the period Autumn
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Figure 4: OAS of the IO’s
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The option-adjusted spreads on a panel of interest only strips is plotted over time.  Each monthly data
point is formed by taking a daily average of the spreads for that month.  The data is from Salomon-Smith-
Barney.

1993 to Spring 1998. One readily observes the large swings of the OAS of the IO’s, from

values above 500 b.p. in the beginning of the period to values close to zero in 1994 and 1996

when interest rates were very high. The OAS of PO’s give a somewhat symmetric image,

although at smaller magnitudes (as predicted by equation (10)). One should also note that

the interest rate alone is not enough to understand the relative magnitude of the OAS of

the IO between 1993 and 1998 when rates were at the same level: OAS are much higher in

1993 than in 1998. This in fact is not a puzzle in light of our derivations, since equations

(18)—(19) tells us that the OAS of the IO is proportional to c̄− r and not r alone. Indeed,
when looking at c̄− r, we find that it is twice as high in 1993 than in 1998.

4.2 Cross-sectional estimates of the market price of risk

We run a cross-sectional regression, one for each month, where we estimate λt based on,

OASktIO = αt + βkλt + ²t

These estimates exploit only the slope of the OAS. The variation in the level is picked up

in αt (for example, αt picks up any time varying interest rate risk premium).

The λt estimates along with other sample statistics using β-stdev are in Table 3. The

estimation errors are uniformly tight and the R2 are high. In fact, for most of the months

the OAS can be clearly ranked by the βk’s. We find this very encouraging for the theory
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because it suggests that prepayment risk has a lot to do with the OAS, and that our measure

of βk is in fact picking up the cross-sectional prepayment risk of the IO’s.

Table 3: Regressions OASkt
IO=λt β-stdev + constantt, for each month t

λt is the market price of risk, β-stdev is the prepayment risk measure

Regression Month λ estimated Std. Error R-squared N (# obs.) Regression Month λ estimated Std. Error R-squared N (# obs.)
Nov-93 1200 211 0.941 3 Jan-96 326 223 0.239 8
Dec-93 1384 129 0.968 4 Feb-96 309 175 0.266 8
Jan-94 980 152 0.892 4 Mar-96 472 64 0.848 8
Feb-94 1041 114 0.932 4 Apr-96 443 62 0.845 8
Mar-94 760 91 0.932 4 May-96 361 51 0.799 8
Apr-94 416 116 0.744 4 Jun-96 421 68 0.862 8
May-94 407 84 0.836 4 Jul-96 409 62 0.809 9
Jun-94 412 65 0.884 4 Aug-96 429 56 0.843 9
Jul-94 303 45 0.876 4 Sep-96 391 48 0.842 9
Aug-94 285 40 0.897 4 Oct-96 334 49 0.803 9
Sep-94 201 132 0.488 5 Nov-96 390 56 0.854 9
Oct-94 208 87 0.713 5 Dec-96 344 58 0.849 9
Nov-94 220 76 0.773 5 Jan-97 246 39 0.837 9
Dec-94 256 89 0.746 5 Feb-97 260 38 0.786 9
Jan-95 203 49 0.815 6 Mar-97 245 30 0.885 9
Feb-95 308 53 0.887 6 Apr-97 242 28 0.871 9
Mar-95 312 75 0.808 6 May-97 176 37 0.642 9
Apr-95 331 74 0.828 6 Jun-97 201 43 0.699 9
May-95 669 179 0.603 7 Jul-97 245 50 0.734 9
Jun-95 1068 266 0.629 7 Aug-97 171 57 0.531 9
Jul-95 932 191 0.661 7 Sep-97 135 61 0.382 9
Aug-95 970 240 0.663 8 Oct-97 197 64 0.601 9
Sep-95 939 196 0.754 8 Nov-97 250 72 0.546 9
Oct-95 701 148 0.731 8 Dec-97 360 85 0.572 9
Nov-95 692 146 0.726 8 Jan-98 303 118 0.398 9
Dec-95 576 161 0.642 8 Feb-98 235 108 0.283 9

Mar-98 324 121 0.421 9

Figure 5 graphs the estimate of λ using β-stdev as well as the one standard deviation

envelopes around the estimate. Also pictured is the difference between c̄t and rt. At a

broad level the two series seem to follow each other. Early in the sample the fit is quite

close. Later in the sample, while the ups and downs in the two series seem to track each

other, the λ estimates seem like a muted version of c̄t − rt.
We conjecture that the more muted relationship later in the period may have to do

with a falling ρ over the sample period. It is well documented that in the 1993/1994 period

a number of mortgage hedge funds suffered losses, and many went out of business. We

conjecture that this led to a loss of capital in the mortgage market and lower capacity for

risk taking. As time passed, capital flowed back into these funds and ρ fell. Froot (2001)

finds this effect in the catastrophe insurance market. We intend to investigate this more in

future work.

Figure 6 graphs the estimate of λ using the β-PCA. The results are similar to those of

Figure 5.
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Figure 5: � Estimates using β-Stdev
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The estimates of the market price of prepayment risk (λ) using the β-Stdev as the measure of
security-specific prepayment risk, is plotted over time.

4.3 Tests using the entire panel

We now report the results of testing our model using the entire panel. Table 3 reports

regressions based on the following model.

OASktIO = αt + γk +A× βk (c̄t − rt) + ²kt
The regression includes both fixed effects and time effects.

Both the OAS series and the (c̄t − rt) series are persistent, so there is correlation in
the standard errors. We correct for this in two ways. First, most of the regressions report

standard errors using the clustering option on STATA (cluster by security). In Table 5, we

also report regressions based on first-differencing the data.

Table 4

Regressions based on the OAS of the IO’s:

OASktIO = αt + γk +A× βk(c̄t − rt) + ²kt.
We also consider idiosynck (c̄t − rt) as an explanatory variable.

βk-stdev βk-PCA

(1) (2) (3) (4) (5)

βk(c̄t − rt) 438.1 (4.13) 546.5 (5.81) 315.1 (5.57) 405.9 (2.73) 218 (0.81)

idiosynck (c̄t − rt) 576 (0.59)

R2 0.93 0.95 0.92 0.93 0.93

N 383 194 189 383 383

Estimates reported with T -statistics based on clustered (by security) standard errors in

parentheses. All regressions have fixed-effects and time-effects (not reported).
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Figure 6: � Estimates using β-PCA
-400

-200

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

la
m

bd
a 

(b
ps

/p
re

p-
ris

k)

-0.5

0

0.5

1

1.5

2

2.5

3

cb
ar

-r

lambda
cbar-r

The estimates of the market price of prepayment risk (λ) using the β-PCA as the measure of
security-specific prepayment risk, is plotted over time.

Columns (1) - (4) of Table 4 contain the verification that our model fits the data.

Column (1) is based on β-stdev, while column (4) is based on β-PCA. Column (2) and (3)

gives the results from two sub-samples. We divided the sample into roughly equal number

of observations. June 1996 is the dividing point between the two sub-samples (there are

less observations early in our sample).

We note the lower (but as significant) coefficient in specification (3) compared to (2).

This accords with our conjecture that there was more risk-bearing capacity (i.e lower ρ) in

the latter half of the sample.

Column (5) contains the result of the following regression:

OASktIO = αt + γk +A× βk (c̄t − rt) +B × idiosynck (c̄t − rt) + ²kt

Our theory predicts that the idiosyncratic risk should not be priced. Unfortunately, as

mentioned earlier, there is not enough independent variation in idiosynck and βk to fashion

a meaningful test of this prediction. Because the two series are so collinear, the standard

errors on the estimates blow-up and neither coefficient is significant.

The persistence in the two data series may raise concerns that the correlation we find is

spurious. Table 4 reports the result of a regression based on first-differencing the series:12

∆OASktIO = αt +A×∆βk (c̄t − rt) + ²kt

The coefficients estimates do fall, but the results remain highly significant. Again there is

a fall in the coefficient in the second half of the sample (specification (2) versus (3)).
12Adding a fixed effect to this regression has little effect since we are first-differencing the data.
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Table 5

Regressions based on the OAS of the IO’s:

∆OASktIO = αt +A×∆βk(c̄t − rt) + ²kt.
βk is the β-stdev.

(1) (2) (3)

∆βk(c̄t − rt) 175.1 (3.07) 222.1 (2.73) 76.3 (2.21)

R2 0.71 0.68 0.81

N 374 186 180

Estimates reported with T -statistics based on robust standard errors in parentheses.

Time dummies not reported.

5 Robustness checks

5.1 Is the OAS due to a mis-specified interest rate model?

As we have noted before, the OAS may be due to a mis-specified term structure model. In

this case, the OAS will reflect an interest rate risk premium.

There are a few reasons to think that this is not the case. If the OAS is picking up

an interest rate risk premium, then we would expect that the OAS on the IO and the PO

would have the same sign, and changes in these OAS would be positively correlated. This

is not the case in the data. To see this, we return to our original valuation expressions for

the IO and PO ((1) and (2)). Previously, in order to arrive at expressions for the pricing of

prepayment risk, we linearized around φ̄k. We also linearize around the interest rate of r.

V kIO =
ck

r + φ̄k

³
1− ηk∆φk − ηk∆r

´
.

Likewise the date 1 value of the k-th PO is,13

V kPO = 1−
r

r + φ̄k

µ
1− ηk∆φk + φ̄k

r
ηk∆r

¶
.

Note that the effect of a change in the prepayment rate has the opposite sign on the

value of the IO and the PO. On the other hand, changing r has the same sign on the value

of the IO and the PO. The latter statement is simply because both the IO and the PO are

bonds, and increasing (decreasing) the market interest rate, lowers (raises) the value of a

bond.

13Note that we have constructed ∆φk to be the innovation to prepayments that is orthogonal to interest

rates. Thus ∆φk and ∆r are uncorrelated.
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This observation helps us to reject the alternative that the OAS is an interest rate risk

premium. Suppose that the market price of interest rate risk was λr. Then deriving the

equilibrium prices of IO and PO lead us to,

ck

r + φ̄k
− P kIO = −ρ

ck

r + φ̄k
cov

³
ηk∆φk, rm

´
+

ck

r + φ̄k
ηkλrσr

while,

1− r

r + φ̄k
− P kPO = ρ

r

r + φ̄k
cov

³
ηk∆φk, rm

´
+

φ̄k

r + φ̄k
ηkλrσr.

It is clear that if the prepayment risk term was zero, then the OAS on the IO and

the PO would have the same sign and changes in the OAS for both IO and PO would be

positively correlated. In fact, the OAS on the IO and the PO typically have opposite signs.

Moreover, changes in these OAS almost always have opposite signs. Figure 7 plots the time

series of the OAS for IO’s and PO’s for four of our securities. The evidence suggests that

the interest rate risk term is subordinate in the determination of the OAS.
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Figure 7: Time series of OAS for IO’s and PO’s
The option adjusted spreads of both IO and PO for four of the mortgage pools are plotted over time.

It may still be possible that there is a small interest rate risk premium in the OAS. But

this should not pollute our estimates. Our basic regressions have time-dummies that will

absorb all time variation in the risk premium. Thus as long as the interest risk premium is

not higher for the securities with higher measured prepayment risk (i.e. β’s), our estimates

will be unaffected.
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5.2 Is the OAS due to a mis-specified model of the prepayment option?

The other leading candidate explanation for the OAS is that it is due to an incorrect model of

the homeowner’s prepayment option. This possibility is harder to dismiss than the interest

risk premium hypothesis. The reason — following on the logic of the previous subsection —

is that faster prepayments lower the value of the IO while raising the value of the PO. This

will naturally give rise to the result that the OAS on the IO’s and the PO’s have opposite

signs (and have changes that have opposite signs). Thus we cannot use a similar argument

to that of the previous subsection.

Let us revisit equation (7), rewritten below:

P kIO =
ck

r + φ̄k +OASkIO

Suppose that informed market participants have a true model of prepayments which is actu-

ally φ̂k. If the average market participant quotes the OAS based on an incorrect assessment

of prepayment and uses φ̄k, then an additional discount rate of φ̂k − φ̄k is required in order
to recover the true market prices. In this case, the OAS is equal to φ̂k − φ̄k.

Note that the OAS on the IO’s in our sample are for the most positive, while those on

the PO are negative. Thus, under the mis-specified model hypothesis, the OAS must be

based on a model which consistently underpredicts prepayments.

It is not clear why underprediction should be a regularity of prepayment models, but we

attempt to control for this possibility in a few ways. If the underprediction can be written

as,

φ̂k − φ̄k = αk + γt,

then the fixed-effects/time-effects regression specification we have used should take care of

mis-specification. That is, for example, if the underprediction was constant across time,

but varying by security, then the αk’s should pick up this mis-specification.

Thus the only case that poses a problem for our results is if the underprediction was

a function of both security and time. This is more generally a virtue of our estimation

strategy. Since our estimation is based on the interaction between a security effect (βk) and

a time effect (c̄t − rt), all alternative hypotheses that have implications either for the time
series or the cross-section, separately, have been controlled for.

Suppose that the underprediction is proportional to φ̄k. That is, suppose that φ̂k is

equal to φ̄k times a constant. This will clearly match the sign patterns of the OAS of the

IO and PO. We run the following regression to account for this possibility,

OASktIO = αt + γk +A× βk (c̄t − rt) +B × skt + ²kt
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where, skt is the actual single month mortality (SMM) for month t. We also run the same

specification using an average of skt where the average is for 13 months centered around

month t.

The results are reported in the first two columns of Table 6. The skt variables are not

significant, while the coefficient on our model does drop but remains highly significant.

Table 6

Regressions based on the OAS of the IO’s:

OASktIO = αt + γk +A× βk(c̄t − rt) + ²kt.
βk is the β-stdev. Additional explanatory variables are:

skt: SMM for security-k, month-t,

s̄kt: one-year moving average of skt,

ck × rt: coupon of security-k interacted with rt.
(1) (2) (3)

βk(c̄t − rt) 228.0 (3.74) 214.5 (4.0) 226.9 (4.27)

skt -12.8 (-0.66)

s̄kt 5.7 (0.15)

ck × rt 16.9 (6.81)

R2 0.93 0.94 0.96

N 374 344 383

All regressions have fixed-effects and time-effects (not reported).

Estimates reported with T -statistics based on clustered (by security) standard errors in

parentheses.

We have mentioned earlier that another explanation behind the OAS may be that traders

use too low an interest rate volatility in their prepayment model. In this case, the prepay-

ment option will be undervalued in the traders’ models, giving rise to a positive OAS for

the IO’s (and a negative one for the PO’s). This effect will vary across the moneyness of

the option, possibly in a non-linear fashion. We control for this possibility by introducing

a term that is quadratic in ck and r:

A(ck)2 +Bckr + Cck +Dr + Er2.

Since our basic regression already has a time-effect and a fixed-effect the terms involving

only ck or only r are already controlled for. So, the regression we run is,

OASktIO = αt + γk +A× βk (c̄t − rt) +B × ckrt + ²t
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The result is in the last column of Table 6. The interaction term is significant suggesting

that there is some mis-specification that distorts the OAS. The coefficient on our model still

remain significant.

Another possible reason for underprediction that has been suggested to us is the “ra-

tional prepayment” hypothesis.14 Banks typically calibrate their prepayment functions to

historical experience. Consumers have in the past exercised their refinancing options sub-

optimally. In particular, in cases where consumers should refinance, they refinance too little

— so low interest rate environments, for high coupon mortgages will be particularly affected.

Now suppose that a smart trader knows that looking to the future, consumers will exercise

their refinancing options more optimally. Then there clearly will be a bias in a model that is

calibrated to historical experience. One side of this bias is that a smart trader will require a

faster prepayment rate for high coupon mortgages in low interest rate environments. Thus

there is underprediction for these mortgages. The underprediction should by related to the

difference between ck and r. We control for this effect in our specifications.

As a comment, the only problem with this hypothesis is that it also implies overpredic-

tion for low coupon mortgages. That is, in the past there has been suboptimal prepayment

of low coupon mortgages. To the extent that consumers shift to more optimal exercise of

their prepayment option, the smart trader will also predict slower prepayment for these low

coupon mortgages. We do not encounter this overprediction in our data. But it is possible

that this effect is small and that our data sample is too short.

Notice that if the bias is simply proportional to ck− r then the fixed-effects/time-effects
specification will control for this possibility. So again, the only possibility that we need to

address is if the bias depends on both ck and r. The results of Table 6 control for this

possibility.

5.3 The quadratic dependence on interest rates

At some level, the mis-specification possibility will always cast a shadow on our results.

Our only defense is to demonstrate results that fit our theory easily, and only fit a very

contorted theory of mis-specification. So far, we have shown that any alternative which

predicts purely a fixed effect or a time effect will not affect our results. An alternative

involving the interaction between coupon and market interest rates will also not affect our

results.

There is one further result of our theory that a mis-specification theory would have to

work very hard to replicate. Our equilibrium theory predicts that the market price of risk

should vary with the average market coupon. Plausibly, a mis-specification theory will only

14We thank John Geanokoplos for this suggestion.

25



link security specific attributes (e.g., the coupon of the specific security being studied) and

the market interest rate to the OAS.

Unfortunately, there is little variation in the average market coupon over the 1993 to

1998 sample. However, from Figure 3 we note the large change in the average coupon over

the 1992 to 1993 period. We have OAS data for passthroughs over this period from Smith-

Breeden. We use this data to test the quadratic relation for the collateral (see equation

(17)) as well as to check whether the average coupon has explanatory power for this data.

The data is for the OAS on FNMA 30-year generic collateral for 8 bonds with coupons

ranging from 7.5% to 11%. Our data spans a period from October 1987 to July 1994. We

estimate the following regression:

OASktC = γk + (α1c̄t + α2rt + α3)× (ck − rt) + ²kt

The main prediction of our theory is that α1 is positive and that α2 is negative. We

will take a positive value of α1 to imply that the average market coupon is an important

explanatory factor. The theory also predicts that α1+α2 = 0, and that α3 should not have

any explanatory power.

The results are reported in Table 7. The first set of regressions are run separately by

bond. The last regression combines all of the data in a panel, and implicitly sets the βk

loadings for each security equal to each other.

The coefficients on c̄t are uniformly positive and significant, as predicted. It is also

encouraging that the magnitudes of α1 and α2 have opposite signs, and the α1+α2 is close

to zero often. α3 is negative and sometimes significant.

A possible explanation for this occasional discrepancy is that a true measure of the

model’s c̄ would include expected values of future coupons. As in the 1980’s and 1990’s

nominal rates were largely declining, a weakly negative α3 captures the market’s expectation

that in the future, the average coupon is going to decrease. Alternatively, this occasional

discrepancy could be due to a mis-specification of the interest rate in our simple empirical

implementation.
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Table 7

Regressions based on the OAS of the collateral:

OASktC = γk + (α1c̄t + α2rt + α3)× (ck − rt) + ²kt
Bond Coupon α1 α2 α3 R2 N

7.5 13.44 (1.9) -9.37 (-2.08) -54.6 (-1.38) 0.26 26

8 19.45 (5.3) -14.17 (-4.48) -73.45 (-2.52) 0.46 28

8.5 14.91 (4.51) -13.51 (-3.96) -41.97 (-1.51) 0.44 28

9 7.69 (5.09) -9.54 (-4.77) -10.35 (-0.72) 0.45 28

9.5 9.30 (7.5) -9.02 (-4.31) -27.29 (-2.02) 0.51 28

10 9.66 (6.79) -8.37 (-3.12) -34.02 (-2.31) 0.49 28

10.5 11.76 (6.83) -7.73 (-2.78) -59.23 (-4.1) 0.51 28

11 7.68 (3.61) -6.99 (-1.83) -24.13 (-1.19) 0.33 28

ALL BONDS 10.03 (10.41) -11.88 (-3.17) -17.25 (-0.83) 0.87 222

ALL BONDS regression uses the entire panel, with bond fixed effects.

Estimates reported with T -statistics based on robust standard errors in parentheses.

5.4 Actual MBS bond returns

We should note that one way to get around the mis-specification issue is to use actual bond

returns as the dependent variable in our regressions. There are a few reason we have not

done this. Actual bond returns are a very noisy estimate of the expected return on the

securities.15 We need more data than we have to implement these regressions. Using the

OAS greatly reduces this measurement error problem. Breeden (1994) provides support for

this approach. He studies a large panel of GNMA securities and finds that the OAS has

strong predictive power for the subsequent returns. The results are reported in Exhibits 72,

73, and 74 of Breeden (1994). We note Exhibit 74 in particular which demonstrates that

the strongest relations is between the OAS for IO’s and subsequent returns.

6 Relation to the MBS literature

The academic work on MBS valuation is primarily concerned with prepayment modeling. In

one line of research, prepayment stems from rational choice by homeowners. This “rational”

prepayment approach was pioneered by Dunn and McConnell (1981) and investigated more

15We can reduce the noise in bond returns if we take a stand on the mortgage prepayment model and

calculate interest rate hedge-ratios. Then we can strip out the interest rate component of actual bond

returns. But this seems no better than using the OAS from the prepayment model of a dealer, as we have

done.
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recently by Stanton (1995) and Longstaff (2002)16. In the other main line of research (and

in the practitioner approach), prepayment behavior is modeled statistically. The justifica-

tion for this approach is that, given the complexity of the constraints faced by consumers,

prepayment behavior on a pool of consumer mortgages is better captured statistically than

by modeling these complex constraints. Examples of the latter approach include Schwartz

and Torous (1989), Richard and Roll (1989), and Patruno (1994).

Our research suggests that it is also necessary to model the uncertainty surrounding

prepayment behavior, which arises naturally once we recognize that homeowners’ cost of

refinancing, for example, will be subject to innovations. In our approach, we directly model

this prepayment uncertainty as an error around a mean prepayment forecast. However there

are many other ways of introducing this prepayment uncertainty, in both the rational as well

as the statistical approach. The important point we make however is that this uncertainty

is priced and that the market price of this uncertainty varies in a systematic way.

Boudoukh et al. (1997) use a novel approach to directly estimate the pricing function

for a panel of GNMA passthroughs as a function of one or two factors (long rate, long rate

and spread). They estimate this function non-parametrically using kernel techniques and

find that the two-factor pricing model performs better (the level captures the refinancing

incentive and the spread proxies for the future behavior of the discount factor used to

discount cash-flows). They only use information in market prices, and focus on a pricing

functional which depends on the yield curve17, thus setting aside prepayment information.

One of their main findings is that the pricing errors under the model have a large common

factor. Our study suggests that prepayment risk18 and the average coupon outstanding in

the market are this common factor.

While the bulk of the academic literature does not address the OAS, market participants

and academics writing in more applied journals recognize that there are important time

patterns in the OAS. Breeden (1994) provides extensive documentation of how the OAS

methodology performs in rich/cheap analysis and hedging the interest rate risk of MBS

portfolios. Breeden concludes that effective durations (duration keeping the OAS constant)

help to reduce risk of pass-throughs and PO’s by 40% and 25%, but perform poorly for the

more risky IO’s. For the latter, hedging is improved by using an empirical duration (i.e. a

statistical estimate of the price elasticity). The correlation between mean returns and OAS

is, however, higher for IO’s than for PO’s and pass-throughs. A closer look at the data

16See Kau and Keenan (1995) for a survey of this line of research.
17Their choice of variables is also constrained by the trade-off between adding variable to the function and

increasing pricing errors.
18Boudoukh et al. do hint at this by looking at the prepayment of the different coupons. They find that for

lower coupons, which have a lot of relocation-based prepayment, prepayment variables explain a significant

fraction of the pricing errors.
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gathered by Breeden reveals that the downward bias of the effective duration in measuring

real duration for collateral is systematic across securities in the discount period of 1992-

1993. Our approach recognizes that OAS should not be considered as a random pricing

residual, and proposes a model that links the uncertainty of prepayment to the OAS and,

solving the market equilibrium, derives their dynamic evolution. For example, we suggest

a change in the common practice of computing duration. The usual practice is to compute

durations under a prepayment model by changing the interest rate, while holding the OAS

fixed. Our works suggests that the OAS is also a function of interest rates and therefore

current practice will yield a biased duration.

7 Conclusion

We provide theory and evidence that the marginal investor in the mortgage-backed securities

market is a trader who is wholly invested in the mortgage market. The theory predicts that

prepayment risk — a risk that is diversifiable in the aggregate — is priced and that the pricing

of this risk depends on the value of the entire mortgage market.

The evidence is consistent with recent “limits of arbitrage” theories. If the marginal

investor is a mortgage trader, then other sources of variation in the mortgage trader’s mar-

ginal utility will also affect MBS prices. For example, if hedge funds are capital constrained

then the capital deployed by hedge funds in the MBS market will be an important state

variable in determining prices. Thus the increase in MBS spreads in the Fall of 1998 also

fits with our evidence.

If a limited amount of capital sets prices in the MBS market then changes in supply will

have important price effects. Customer sales/mortgage securitizations have to be absorbed

by this limited capital, and one would naturally expect prices to fall in such events. That

is, the market will exhibit liquidity effects. The liquidity of the market however has nothing

to do with bid-ask spreads; It reflects the limited capital of MBS traders.

Although our evidence suggests market segmentation, it suggests a fairly subtle form

of segmentation. MBS traders are able to hedge out all interest rate risk via the Treasury

bond market. They only retain the prepayment risk in mortgages. That is the interest rate

component of MBS is priced in an integrated market, only the prepayment risk is priced

locally to the mortgage market.

Our approach also raises a host of issues that could be of interest to academics, both

empirical and theoretical. First, and most importantly, more empirical work should be done

to investigate the issues we have highlighted. We have established our results in a fairly

small sample. Secondly, better prepayment models should be constructed that pay attention

to the variance of the errors in the prepayment forecasts. Models developed thus far just
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assume, because they assume rational prepayments, a zero uncertainty in the prepayment

side. Our analysis highlights that when prepayment uncertainty is non-zero, prices will be

affected.

Finally, the success of our approach for MBS also suggests new directions to explore

in other asset markets. We think that this approach may hold some promise in the bond

market. We conjecture that the term premium in the bond markets should be an increasing

function of the average maturity outstanding in the bond market. The intuition is that when

the average maturity outstanding is high, the market is riskier (the duration is higher), so

that the risk premia, and hence the slope of the yield curve, should be higher. More work

is needed to assess these conjectures.
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