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Abstract

Consider a multilateral bargaining problem where negotiation is conducted by a
sequence of bilateral bargaining sessions. We are interested in an environment where
bargaining protocols are determined endogenously. During each bilateral bargaining

session of Rubinstein (1982), two players negotiate to determine who leaves the bar-
gaining and with how much. A player may either make an o®er to his opponent who
would then leave the game or demand to leave the game himself. Players' ¯nal distri-
bution of the pie and a bargaining protocol constitute an equilibrium outcome. When
discounting is not too high, we ¯nd multiple subgame perfect equilibrium outcomes,
including ine±cient ones. As the number of players increases, both the set of discount
factors that support multiple equilibrium outcomes and the set of the ¯rst proposing
player's equilibrium shares are enlarged. The ine±ciency in equilibrium remains even
as the discount factor goes to one.
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1 Introduction

Bargaining problems deal with situations where a number of players negotiate how to share

their gains obtained through trade. In a seminal paper, Rubinstein (1982) studied a highly

stylized non-cooperative bilateral bargaining model with discounting, and showed that the

subgame perfect equilibrium is unique and its outcome is e±cient. Multilateral bargaining

problems are generally more complicated. When it is infeasible or too costly for all players to

negotiate at the same time and the same place, the bilateral bargaining framework provides

a simple and attractive alternative.

Here we analyze a multi-agent bilateral bargaining model where players negotiate via a

sequence of bilateral bargaining sessions. In each bilateral bargaining session, two players

negotiate via Rubinstein's (1982) bilateral bargaining framework. After a partial agreement,

one player e®ectively leaves the game and the other player moves to the following bilateral

bargaining sessions. The proposing player may either make an o®er to his opponent to leave

or demand to leave the bargaining himself. The bargaining protocol is hence determined

endogenously by the proposing player's choice of the type of proposals.

Consider a situation where, for simplicity, three players negotiate to share a pie of size one,

and every player has a simple linear utility function and a common discount factor ± 2 (0; 1).

The negotiation is conducted by two separate bilateral bargaining sessions. Without loss of

generality, assume that players 1 and 2 bargain during the ¯rst session. Who bargains with

player 3 in the second session is crucial in ¯nding equilibrium outcomes. If player 2 always

bargains with player 3 in the second session, by backward induction, it is not hard to see

that the players' shares in the equilibrium are

Ã
1

1 + ±
;

±

(1 + ±)2
;

±2

(1 + ±)2

!
: (1)

Suppose the negotiation is conducted by the \demand protocol" where during the ¯rst

session between players 1 and 2, the proposing player always demands a certain amount of

the pie to leave the bargaining, which leaves the other player to bargain with player 3 in
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the second session. Now which player, either player 1 or 2, will bargain with player 3 in the

second bargaining session depends on who is the proposing player when a partial agreement

is reached between players 1 and 2. It is involved but nevertheless straightforward to show

that such a protocol leads to a unique equilibrium outcome where player 2 accepts player 1's

demand immediately, then agrees with player 3 to split the remainder of the pie according

to Rubinstein's shares. Players' shares in the equilibrium are given by

Ã
1

1 + ± + ±2
;

±

1 + ± + ±2
;

±2

1 + ± + ±2

!
: (2)

Alternatively, we may consider the \o®er protocol" where the proposing player always

o®ers certain amount of the pie to his opponent to leave the bargaining in the ¯rst session.

Then the proposing player of a partial agreement between players 1 and 2 will bargain

with player 3 in the second session. This o®er protocol also predicts a unique and e±cient

equilibrium outcome, where players' shares are given by

Ã
1

1 + 2±
;

±

1 + 2±
;

±

1 + 2±

!
: (3)

It is straightforward to show that both (2) and (3) converge to the corresponding Nash

bargaining solution (1/3,1/3,1/3) as ± goes to one, but solution (1) does not.1

In this paper, we consider this kind of multi-agent bilateral bargaining model where

the bargaining protocol is determined endogenously by proposing strategies. Except in the

last bargaining session, the proposing player may choose between making an o®er to his

opponent to leave and demanding to leave the bargaining himself. Solutions (2) and (3)

suggest that a proposing player would prefer demanding to making an o®er. When the

proposing player may choose between an o®er and a demand, there is indeed an equilibrium

where the proposing player always demands to leave the bargaining in every period, with (2)

as the equilibrium outcome. When the discount factor is not too small, however, there are

other equilibria as well in games with more than two players. But the o®er protocol never

1Suh and Wen (2003) show that, in a general setup, the unique equilibrium outcome from either the
demand protocol or the o®er protocol converges to the Nash (1950) cooperative bargaining solution in the
corresponding bargaining problem.

3



arises in equilibrium for any discounting factor. The issue of ine±cient equilibria appears

due to the multiplicity of equilibrium outcomes. As the number of players increases, both

the set of discount factors that supports multiple equilibrium outcomes, and the set of the

¯rst proposing player's equilibrium shares are enlarged. The maximum loss of e±ciency

hence increases with respect to the number of players and the discount factor. For example

in games with four players, as players become su±ciently patient, the ¯rst player's highest

equilibrium share could be su±ciently close to one and his lowest equilibrium share could

be su±ciently close to zero. The game with four players has multiple equilibrium outcomes

(including ine±cient ones) as long as the discount factor is not less than 0.544.

This paper follows the line of research that extends Rubinstein's (1982) bilateral model to

the multilateral case. Because of its simplicity and strong predictability, Rubinstein's model

has been widely adopted as a basic bargaining framework in the literature.2 Generalizing

Rubinstein's (1982) result to multilateral bargaining models has been less successful. For

example, bargaining models of Haller (1986), Herrero (1985), and Sutton (1986) predict that

any partition can be supported as an equilibrium outcome when discounting is not too high,

while all these models reduce to Rubinstein's (1982) model in the bilateral case. One key

factor for the existence of multiple equilibrium outcomes in these models is the unanimity of

agreement. Although our model also has multiple equilibrium outcomes, it is more closely

related to the multilateral bargaining models of Chae and Yang (1988, 1990, 1994), Huang

(2002), Jun (1987), Krishna and Serrano (1996), Suh andWen (2003), and Yang (1992) where

partial agreements are allowed. In these bargaining models, one player makes a proposal and

his opponents may either accept or reject, either sequentially or simultaneously. A player

e®ectively leaves the bargaining after accepting an o®er. The ability to accept an o®er and

leave is not a®ected by other players' rejections of the proposal. Consequently, these models

restore the uniqueness of equilibrium with outcome akin to either (2) or (3). Since there is

2For recent developments in the multilateral bargaining literature, refer to Asheim (1992), Baliga and
Serrano (1995), Cai (2003), Chatterjee and Sabourian (2000), Muthoo (1999), Osborne and Rubinstein
(1990), Serrano (1993), and Vanntelbosch (1999).
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always a unique equilibrium that is also e±cient, these results are not a®ected by when a

partial agreement is honored, either immediately or until a full agreement is reached. When

there are multiple and ine±cient outcomes, such as in the model studied in this paper, the

time to honor a partial agreement becomes important.3

The rest of this paper is organized as follows. In Section 2, we set up the model where

the proposing player can choose between two types of proposals, demand and o®er. Section

3 is devoted to the analysis of the model with three players, in order to demonstrate some of

the key arguments. In Section 4, we investigate the general case and analyze its equilibrium

outcomes. Section 5 provides some concluding remarks. The proofs of propositions are given

in the Appendix.

2 The Model

A ¯nite number of players, 1; 2; : : : ; n, negotiate how to split a pie of size 1. The negotiation is

conducted through (n¡1) bilateral bargaining sessions where players 1 and 2 negotiate in the

¯rst session. In each bilateral bargaining session, two players bargain for a partial agreement.

A partial agreement speci¯es a share to the player who agrees to leave the negotiation. The

other player moves to the following bargaining sessions to split the remainder of the pie with

the rest of the players in a similar fashion. In the last session, the two players (one of them

must be player n) simply negotiate how to split the remainder of the pie between them.

Each bilateral bargaining session follows the bilateral bargaining framework of Rubinstein

(1982). In any period, one player, called the proposing player, makes a proposal and the other

player, called the responding player, may either accept or reject the standing proposal. If the

responding player rejects the proposal then the game proceeds to the next period where the

current responding player will be the proposing player, and so on. If the responding player

accepts the standing proposal then the current bargaining session ends and the accepted

proposal becomes a partial agreement. Which player moves to the following sessions depends

3Refer to Cai (2000) where the cause of the ine±ciency or delay is not from the existence of multiple
equilbria but from the advantage of holding up the bargaining process.

5



on the nature of the partial agreement. The proposing player i can make two types of

proposals: either demand xi for himself to agree to leave the game or o®er yi to the responding

player to agree to leave the game. Since the proposing player can always make one type of

proposal unacceptable, for example the proposing player could demand all the remainder

of the pie or o®er nothing to the responding player, it is equivalent whether the proposing

player is allowed to make both types of proposals or to make only one type proposal. If

proposing player i's demand xi is accepted then player i will receive xi and leave the game

and the responding player will negotiate with the rest of the players. If the responding

player accepts o®er yi then the responding player will receive yi and leave the game, and

player i will negotiate with the rest of the players. Assume that the player with a lower

index initiates a proposal in any bargaining session. Denote the bilateral bargaining session

between players i and j as BG(i; j), that has the following structure:

BG(i; j) - ni ¡
¡
¡

@
@
@

xi

yj

$

%

nj ¡
¡¡µ

BG(j; j +1)
A

XXXXXXXz
R

nj
@
@@R
BG(i; j + 1)

A

»»»
»»»»:

R

nj ¡
¡
¡

@
@
@

xj

yj

$

%

ni ¡¡¡µ
BG(i; j + 1)

A

XXXXXXXz
R

ni
@
@@R
BG(j; j +1)

A

»»»
»»»»:

R

¾

½

»

¼
Figure 1. The Bilateral Session Between Players i and j.

By allowing the proposing player to choose between two types of proposals, the bargain-

ing protocol is determined endogenously in equilibrium by the proposing player's strategy

choices. Since this model has multiple equilibrium outcomes, including ine±cient ones, as-

sume that the player who accepts an o®er or whose demand is accepted will consume his

share immediately for simplicity. Otherwise, we would need to trace when the last session

ends.

A typical outcome is as follows. Players 1 and 2 negotiate during the ¯rst session. After

reaching a partial agreement, one of them (either player 1 or player 2, depending on the type
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of the proposal accepted) negotiates with player 3, and so on. All players have a common

discount factor ± 2 (0; 1) per bargaining period. It is assumed that there is no discounting

between consecutive bargaining sessions. The existence of discounting between consecutive

sessions will not a®ect the qualitative aspect of our results. According to those speci¯cations,

player i's payo® is ±ti ¢ si where si 2 [0; 1] is the share of the pie player i receives in period ti.
In the case where player i never reaches any partial agreement, his payo® is zero and ti is set

to be in¯nity. Accordingly, there are certain restrictions on the speci¯cation of outcomes.

For example, the feasibility implies that s1 + s2 + ¢ ¢ ¢+ sn = 1. If ti = 1 then tj = 1 for

all j > i, which means if player i does not have an agreement neither does any player after

player i. For any player i, ti is either the ¯rst or the second largest element of ft1; t2; ¢ ¢ ¢ ; tig,

which means that there is at most one player before player i will have an agreement after

player i by the sequential nature of bilateral bargaining sessions.

The model has perfect information and so histories and strategies are de¯ned in the usual

way. A history summarizes all the actions played in the past and a strategy pro l̄e speci¯es

an appropriate action for the acting player after every history. Any strategy pro¯le induces a

unique (either ¯nite or in¯nite) outcome path and the players evaluate their strategies based

on their payo®s from the induced outcome path. In the rest of this paper, we will study

subgame perfect equilibrium outcomes.

3 The Three-Player Game

In this section, we consider the model with 3 players. Since the model has ¯nite bargaining

sessions, the model is analyzed by backward induction. Therefore, studying the model with

3 players is not only the starting point of our analysis, but also provides us with some basic

intuition and methodology used in the general analysis.

Note that there are only two bargaining sessions. Recall the last session is a standard

Rubinstein game. Even if the proposing player proposes either an o®er or a demand, such

a modi¯cation will not change players' equilibrium strategies in this last session. Therefore,
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there is a unique equilibrium that is also e±cient. The equilibrium outcome depends on the

partial agreement in the ¯rst session. In particular, if we denote the share to the player who

left the game after the ¯rst session as X then the equilibrium outcome in the second session

is that two players agree on the following shares immediately,

Ã
1¡X
1 + ±

;
(1¡X)±
1 + ±

!
; (4)

where (1¡X)=(1 + ±) is the share to the player from the ¯rst session and (1 ¡X)±=(1 + ±)

is player 3's share. We now analyze the players' strategic interaction during the ¯rst session.

Because of the proposing player's option to choose between two types of proposals, the

analysis is made signi¯cantly di®erent by the new elements in the model. In what follows,

we will ¯rst establish the existence of a perfect equilibrium for any discount factor, and then

characterize all perfect equilibrium outcomes.

Comparing outcomes from (2) and (3), it is obvious that player 1 prefers outcome (2) to

outcome (3) for any ± 2 (0; 1). This observation suggests that the proposing player prefers
making an acceptable demand rather than an acceptable o®er. Proposition 1 asserts that for

any discount factor, there is a perfect equilibrium where the proposing player always makes

an acceptable demand in any period, which leads to (2) as the equilibrium outcome.

Proposition 1 For any ± 2 (0; 1), the model has an e±cient equilibrium where the proposing

player always demands 1=(1+±+±2), and the responding player accepts any demand no more

than 1=(1 + ± + ±2) or any o®er no less than ±=(1 + ± + ±2) during the ¯rst session. The

equilibrium outcome is given by (2).

The equilibrium of Proposition 1 is stationary and symmetric between players 1 and 2.

It is the standard argument that the proposing player should not make any unacceptable

proposal. When comparing between an acceptable demand and an acceptable o®er, the

acceptable demand dominates the acceptable o®er given that the proposing player always

makes an acceptable demand in the future.
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On the other hand, it is not an equilibrium where both players always make acceptable

o®ers during the ¯rst session. Given players' proposing strategies, solution (3) suggests that

a responding player in the ¯rst period would accept any proposal that leads to ±=(1 + 2±)

and the proposing player would have 1=(1 + 2±) from making the acceptable o®er. If the

proposing player demands x then the responding player will accept as long as

1 ¡x
1 + ±

¸ ±

1 + 2±
) x · 1 + ± ¡ ±2

1 + 2±
;

which is higher than 1=(1 + 2±). Therefore, the proposing player would prefer to make the

acceptable demand (1 + ± ¡ ±2)=(1 + 2±) rather than the acceptable o®er which leaves him

1=(1 + 2±).4

It is not always the case that the acceptable demand dominates the acceptable o®er,

however. The following Proposition 2 demonstrates that when the discount factor is not too

small, the model has a stationary but asymmetric perfect equilibrium where player 1 always

makes an acceptable demand but player 2 always makes an acceptable o®er during the ¯rst

session.

Proposition 2 If ± 2 (0; 1) satis¯es the following inequality

± ¸ 1

1 + ±
; (5)

then there is a perfect equilibrium where, during the ¯rst session, player 1 always demands

1=(1 + ±) and accepts any proposal which gives him no less than ±=(1 + ±), and player 2

always o®ers ±=(1 + ±) and accepts any proposal which gives him no less than ±=(1 + ±)2.

The equilibrium outcome is given by (1).

Condition (5) requires that ± ¸ (
p
5 ¡ 1)=2 ' 0:618. Notice that player 1 always makes

an acceptable demand and player 2 always makes an acceptable o®er so that the equilibrium

strategies specify the bargaining protocol where players 1 and 2 bargain in the ¯rst session

4Outcome (3) can, nevertheless, be supported by a non-stationary perfect equilibrium when there are
multiple equilibrium outcomes. Refer to Proposition 5 below.

9



and players 2 and 3 in the second session. Player 2's strategy of making an acceptable o®er

may seem counter-intuitive. Given the switching in proposing strategies, player 1 certainly

bene¯ts since player 1's payo® when proposing is 1=(1+ ±). Therefore, player 2's acceptable

demand cannot be too high given that player 1's ¯nal payo® from such a proposal has to be

at least ±=(1 + ±), which implies that player 2 cannot demand more than (1 ¡ ±). On the
other hand, player 2 can guarantee himself 1=(1+ ±)2 by o®ering ±=(1+±) to player 1, which

is not less than (1¡ ±) under condition (5):

± ¸ 1

1 + ±
() 1

(1 + ±)2
¸ 1 ¡ ±:

Analogic to Proposition 2, the model has another stationary but asymmetric equilibrium

where player 1 always makes an acceptable o®er and player 2 always makes an acceptable

demand. The proof of Proposition 3 is similar to that of Proposition 2.

Proposition 3 Under condition (5), there is a perfect equilibrium where during the ¯rst

session, player 1 always o®ers ±=(1 + ±) and accepts any proposal which gives him no less

than ±=(1+±)2, and player 2 always demands 1=(1+±) and accepts any proposal which gives

him no less than ±=(1 + ±). The equilibrium outcome is
Ã

1

(1 + ±)2
;

±

1 + ±
;

±

(1 + ±)2

!
:

Propositions 2 and 3 indicate that the model has multiple perfect equilibrium outcomes

when ± is not too small. Indeed Propositions 1, 2 and 3 give all the extreme equilibrium

outcomes for di®erent values of ±. In what follows, we derive the supremum and in¯mum of

a player's equilibrium payo®s by adopting Shaked and Sutton's (1984) method.

By Proposition 1, we know that the set of equilibrium payo®s to any player is not empty.

Also by symmetry between player 1 and player 2 during the ¯rst session, the supremum

and in¯mum of player 1's equilibrium payo®s when player 1 proposes are the same as those

of player 2's when player 2 proposes. Denote the supremum and in¯mum of the proposing

player's equilibrium payo®s during the ¯rst session in the three-player model as M3 and m3,

respectively. Both M3 and m3 depend on the discount factor ±.
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Note that the proposing player will never make a proposal where the responding player's

payo® is more than ± ¢M3. On the other hand, the responding player will never accept any

proposal where his payo® is less than ± ¢ m3. Denote the proposing player's demand by x

and o®er by y. The conditions for demand x and o®er y to be acceptable are, respectively,

± ¢m3 · 1¡ x
1 + ±

· ± ¢M3; and ± ¢m3 · y

1 + ±
· ± ¢M3: (6)

Then m3 and M3 are the in¯mum and supremum of the maximum of x and y=(1 ¡ ±),

since the proposing player chooses between making a demand and an o®er, subject to the

acceptability conditions (6). More speci¯cally, we have the following two conditions for m3

and M3:

m3 = max

(
x subject to (1 ¡ x)=(1 + ±) ¸ ±M3

(1¡ y)=(1 + ±) subject to y ¸ ±M3

= max

(
1¡ ±(1 + ±)M3;

1¡ ±M3

1 + ±

)
: (7)

Notice that in (7), the responding player's continuation payo® after rejection is ±M3 which

is the best situation for the responding player. On the other hand, in the worst situation to

the responding player where his continuation payo® is ±m3, the proposing player will obtain

M3, so we have

M3 = max

(
1¡ ±(1 + ±)m3;

1¡ ±m3
1 + ±

)
: (8)

Solving (7) and (8), we have the following proposition:

Proposition 4 Conditions (7) and (8) yield

m3 =M3 =
1

1 + ± + ±2
when ± <

1

1 + ±
; (9)

m3 =
1

(1 + ±)2
; M3 =

1

1 + ±
when ± ¸ 1

1 + ±
: (10)

Proposition 4 asserts that the perfect equilibrium outcomes of Propositions 1|3 are

indeed extreme equilibrium outcomes. Even in the case of the three-player case where the
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second session has a unique equilibrium outcome, allowing players to choose proposing strate-

gies leads to multiple equilibrium outcomes. Figure 2 below illustrates player 1's equilibrium

shares in the model with three players.

±

m3;M3

1

1

0.618

1
1+±+±2

1
1+±

1
(1+±)2

1
2

1
4

0

Figure 2. Player 1's equilibrium shares when n = 3.

In addition to those e±cient equilibrium outcomes, there are other e±cient and ine±cient

equilibrium outcomes. Since either player 1 or player 2 bargains with player 3 in the second

session where there is a unique equilibrium outcome, the restriction on the outcome that

can be supported by equilibrium is that player 3's payo® has to be ± fraction of the payo®

to either player 1 or 2. Proposition 5 completely characterizes the equilibrium outcomes in

the three-player case.

Proposition 5 Under condition (5), vector (v1; v2; v3) can be supported by a subgame perfect

equilibrium if and only if 9 T ¸ 1 and x 2 (0; 1) such that for i; j = 1; 2 and i 6= j

vi = ±
T¡1 ¢ x; and vj = ±

T¡1 ¢ 1¡ x
1 + ±

; (11)

and players' payo®s satisfy

v1 ¸ 1

(1 + ±)2
; v2 ¸ ±

(1 + ±)2
; v3 = ±vj: (12)
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Proposition 5 provides not only e±cient equilibrium outcomes (T = 1) but also ine±cient

equilibrium outcomes (T > 1) as well. The set of e±cient equilibrium payo®s shapes like

an \X" on the unit simplex. Any ine±cient equilibrium payo® is a convex combination of

0 and a point in such an \X" where player 1's payo® is bounded below by 1=(1 + ±)2 and

player 2's payo® is bounded below by ±=(1 + ±)2. It is interesting to observe that player 3's

equilibrium payo®s are bounded from below by ±2=(1 + ±)2, but bounded from above by

±

1 + ±

"
1¡ ±

(1 + ±)2

#
=
±(1 + ±)2¡ ±2
(1 + ±)3

! 3

8
as ± ! 1:

The ine±ciency of equilibrium outcomes is \persistent" in the sense that the ine±ciency

does not disappear as ± goes to one. This can be seen from conditions (11) and (12) since

only ±T is restricted by these two conditions. We can use 1¡ ±T to measure the ine±ciency.

As ± approaches to one, T can be chosen to be su±ciently large as long as ±T satis¯es (11)

and (12).

From the case of three players, we learned that the set of equilibrium payo®s can be quite

irregular and multiple equilibrium outcomes emerge even the subgame after the ¯rst session

has a unique equilibrium outcome. In analyzing the general case, we will concentrate on

equilibrium shares to the proposing player in the ¯rst session.

4 The General Analysis

In this section, we consider the general case with n-players. From the last section, we know

the set of equilibrium outcomes could be very complicated. Therefore, we will concentrate

our analysis on the equilibrium shares to the proposing player in the ¯rst session. Note that

the continuation game after the ¯rst session is the game with (n ¡ 1) players. The general
case is analyzed by mathematical induction. First, we establish the existence of a perfect

equilibrium in the general n-player case.

Proposition 6 For any ± 2 (0; 1), the model with n players has an e±cient perfect equilib-

rium where the proposing player always makes an acceptable demand in any period in any
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session. The equilibrium payo® vector is (®n; ±®n; ¢ ¢ ¢ ; ±n¡1®n) where

®n =
1

1 + ± + ±2 + ¢ ¢ ¢+ ±n¡1 :

Denotemn andMn to be the in¯mum and supremum of equilibrium shares to the propos-

ing player in the ¯rst session. Proposition 6 implies that both mn and Mn are well de¯ned

and mn · ®n · Mn. Rubinstein (1982) implies that m2 = M2 = 1=(1 + ±), and our

Proposition 4 asserts that

(m3;M3) =

(
(®3; ®3) if ± < ®2;
(®22; ®2) if ± ¸ ®2:

Now we derive the dynamics that determine the values of mn and Mn. First consider

mn, the in¯mum of the proposing player's equilibrium payo®s during the ¯rst session in

the case of n players. Note that if the responding player rejects the standing proposal,

his highest possible payo® will be ±Mn, resulting from a one period delay and the best

possible payo® available in the following period. If the proposing player demands x such

that mn¡1(1 ¡ x) ¸ ±Mn then the responding player will certainly accept since his worst

possible payo® from accepting x is not less than his best possible payo® from rejecting x.

On the other hand, if the proposing player o®ers y ¸ ±Mn then the responding player will

also accept. Then the lowest possible payo® to the proposing player cannot be less than

mn¡1(1 ¡ y) from the remaining sessions. Therefore, mn cannot be less than the highest

possible payo® to the proposing player from either the highest acceptable o®er or the lowest

acceptable demand. That is,

mn = max

(
x subject to mn¡1(1 ¡x) ¸ ±Mn

mn¡1(1¡ y) subject to y ¸ ±Mn

= max

(
1¡ ±

mn¡1
Mn; mn¡1(1 ¡ ±Mn)

)
(13)

By a similar argument, Mn should satisfy the following condition:

Mn = max

(
1¡ ±

Mn¡1
mn; Mn¡1(1 ¡ ±mn)

)
(14)

We summarize these results in the following proposition:
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Proposition 7 For all n ¸ 3, mn and Mn satisfy conditions (13) and (14).

It is not di±cult to show that both mn and Mn determined by (13) and (14) can be

supported as equilibrium shares of the proposing player for the corresponding discount fac-

tor ±. A more interesting question is then what value of ± will actually support multiple

equilibrium outcomes, i.e., mn < Mn. The analysis of the case with three players suggests

that there are multiple equilibrium outcomes as long as ± is not too \small." In the following

proposition, we are able to establish this result formally in the general case.

Proposition 8 For n ¸ 3, the model has a unique equilibrium outcome if and only if ± <

®n¡1. The unique equilibrium is the e±cient equilibrium stated in Proposition 6.

Proposition 8 implies that as the number of players increases, the set of discount fac-

tors that supports multiple equilibrium outcomes, hence ine±cient outcomes, increases as

well. Generally speaking, as n increases, it is more likely that the model will have multiple

equilibrium outcomes. Our next proposition, which is even more striking and seems counter

intuitive, is that when the model has multiple equilibrium outcomes, the set of the proposing

player's equilibrium shares is widened as the number of players increases. In other words,

Proposition 9 For n ¸ 3 and ± 2 [®n; 1), we have mn+1 < mn < Mn <Mn+1.

When there are multiple equilibrium outcomes, player 1's best equilibrium share increases

and his worst equilibrium share decreases with respect to the number of players. This

polarized e®ect is due to the fact that in player 1's best equilibrium, player 1 will obtain the

best equilibrium during or after the ¯rst session from either accepting an o®er or making

an acceptable demand, while player 2 will always obtain the worst equilibrium during or

after the ¯rst session from either making an acceptable o®er or accepting a demand. In

order to support Mn to be player 1's equilibrium share, player 1 should always make the

highest acceptable demand and player 2 should always make the highest acceptable o®er

during the ¯rst session, after which player 2 will receive the worst equilibrium outcome
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in the continuation game. If the model with (n ¡ 1) players continues to have multiple

equilibrium outcomes, then player 3 will always make the highest acceptable demand and

player 2 will continue to make the highest acceptable o®er in the second session, from which

player 3's payo® is ±Mn¡1(1¡Mn). Otherwise, players 2 and 3 will make acceptable demands

on the remainder of the pie, from which player 2's and 3's payo®s are ®n¡1(1 ¡ Mn) and

±®n¡1(1¡Mn), respectively. This means that when player 1 obtains the highest equilibrium

payo®, payo®s to all the other players are uniquely determined. For example, when ± < ®k,

Proposition 8 asserts that the model with no more than (k + 1) players will have a unique

equilibrium outcome. This means that when there are n players, each of the last k sessions

has a unique equilibrium outcome, and each of the ¯st (n ¡ k ¡ 1) sessions has multiple

equilibrium outcomes. When player 1 receives Mn, player 2 will have to make acceptable

o®ers in each of the ¯rst (n¡ k¡ 1) session and will make the acceptable demand in session

(n¡k), while the ¯rst other (n¡k¡2) players (except player 2) will always make the highest

acceptable demands in the ¯rst (n¡k¡1) sessions. Likewise, in the equilibrium where player
1 receives mn, player 1 will always make acceptable o®ers during the ¯rst (n¡k¡1) sessions

and will make the acceptable demand in session (n¡ k), while the other players in the ¯rst

(n ¡ k ¡ 1) sessions will always make acceptable demands. Proposition 10 provides the

dynamics for Mn and mn when ± is not too small. Proposition 10 asserts that, for example,

in the equilibrium where player 1 receives the highest payo® Mn, player 1 should always

make the highest acceptable demand and player 2 should always make the lowest acceptable

o®er during the ¯rst session. The continuation equilibrium after the ¯rst session depends on

how the ¯rst session ends. After player 2 accepts player 1's demand, player 2 will receive the

highest share Mn¡1 on the remaining pie. After player 1 accepts player 2's o®er, however,

player 2 will receive the lowest share mn¡1 on the remaining pie.

Proposition 10 Under (5), 8 n ¸ 3, we have

mn =
mn¡1(1¡ ±)

1¡ ±2mn¡1=Mn¡1
; and Mn =

1 ¡ ±mn¡1=Mn¡1
1¡ ±2mn¡1=Mn¡1

: (15)
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Propositions 8 and 9 characterize two key properties of the set of proposing player's

equilibrium shares. It is important to emphasize that as the number of players increases, not

only the set of discount factors that supports multiple equilibrium outcomes but also the set

of the proposing player's equilibrium shares will be widened when there are multiple perfect

equilibrium outcomes.

5 Concluding Remarks

We studied a non-cooperative multilateral bargaining model where the negotiation is con-

ducted by a sequence of bilateral bargaining sessions. Bargaining protocol is determined by

the players' equilibrium strategies. In contrast to the model where the bargaining protocol

is exogenously given, the model studied here, in which the proposing player chooses between

making an o®er and a demand, has multiple equilibrium outcomes in general. The model

always has a perfect equilibrium where the proposing player always makes an acceptable

demand in every period. In the case in which the bargaining protocol is exogenous where

the proposing player always makes an acceptable demand, the corresponding equilibrium

outcome converges to the Nash (1950) bargaining solution as players become su±ciently

patient even under a more general setup. We have shown that as the number of players

increases, not only the set of discount factors that support multiple equilibrium outcomes,

but also the set of proposing player's equilibrium shares increases. The threshold of discount

factor that supports multiple equilibria is ®n¡1 where there are n players. When n > 3 and

the model has multiple equilibrium outcomes, the ¯rst proposing player's best equilibrium

share could be much higher than ®2 (the case when the other player always bargains with

the rest of the players), but his worst equilibrium share could be much lower then ®n¡12 (the

case when the ¯rst proposing player always bargains with the rest of the players). In order

to demonstrate this result, consider the case of n = 4. Solving (13) and (14), the set of the

¯rst proposing player's equilibrium shares is
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½ 1

1 + ± + ±2 + ±3

¾
when ± 2 (0; ®3)

[m4; M4] =

"
1

(1 + ±)(1 + ± + ±2)
;

1

1 + ±

#
when ± 2 [®3; ®2)

"
1 ¡ ±

(1 + ±)(1 + ± ¡ ±2) ;
1

1 + ± ¡ ±2
#

when ± 2 [®2; 1)

When ± < ®3, the model has a unique perfect equilibrium where player 1's share is equal

to ®4. When ± ¸ ®3, the model has multiple perfect equilibrium outcomes. It is interesting

to observe that as ± goes to one, player 1's highest equilibrium share M4 converges to 1,

and player 1's lowest equilibrium share m4 converges to zero. These properties can be easily

demonstrated in Figure 3 where bothM4 and m4 are depicted with respect to ±.

±

m4;M4

1

1

0.6180.544

1
1+±+±2+±3

1
1+±¡±2

1
1+±

1¡±
(1+±)(1+±¡±2)

1
(1+±)(1+±¡±2)

0

Figure 3. Player 1's equilibrium shares when n = 4.

Comparing Figures 2 and 3, in the region of discount factor where there are multiple equilib-

rium outcomes, the set of player 1's equilibrium shares becomes larger by adding one more

player in the bargaining. In the case of n = 4, ®3 = ± yields ± = 0:544.

Our studies suggest that the most robust perfect equilibrium in this type of multi-agent

bilateral bargaining model is the symmetric and stationary equilibrium where the proposing

players always make acceptable demands, not only to the discount factor, but also with
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respect to many other aspects of the model speci¯cations, such as players' utility functions,

disagreement payo®s and discount factors. Because of the possibility of delay in reaching an

agreement, the assumption that the player who e®ectively exits the bargaining will consume

the share immediately signi¯cantly simpli¯es the general analysis. Otherwise, one needs to

trace how the whole game concludes in order to determine the equilibrium conditions in the

early sessions. Nevertheless, the general characteristics of our prediction will not change and

delay will occur in the early bargaining sessions as long as the discount factor is not too low.

Appendix

Proof of Proposition 1: As we argued, the continuation equilibrium in the second session is

unique so we will concentrate on the players' strategies during the ¯rst session. By symmetry,

we will simply examine strategies of the proposing player and the responding player in every

period.

First consider the responding player's strategies. If the responding player rejects the

standing proposal (either an o®er or a demand), he will be the proposing player in the next

period with an acceptable demand of x = 1=(1+ ±+ ±2). Therefore, if the responding player

rejects the standing proposal, he can secure himself a payo® of ±x. This implies that the

responding player will not accept any proposal that gives himself less than ±x.

Given the responding player's strategies, the proposing player has three alternatives;

making an acceptable o®er ±x, making an acceptable demand, or making an unacceptable

demand or o®er. From the last alternative, the proposing player will receive a payo® of ±2x.

From making an acceptable o®er ±x, the proposing player's payo® is

1

1 + ±
[1¡ ±x] = 1 + ±2

1 + ±
x: (16)

On the other hand, the proposing player will have a payo® x0 by making the acceptable

demand x0. The condition for demand x0 to be acceptable is that the responding player's
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payo® from accepting demand x0 is not less than ±x:

1 ¡ x0
1 + ±

¸ ±x ) x0 · 1¡ (1 + ±)±x = x: (17)

(17) implies that x is the best acceptable demand for the proposing player. Comparing the

proposing player's payo®s from the three alternatives, x, (16) and ±2x, it is easy to conclude

that the proposing player will make the acceptable demand x during the ¯rst session, which

leaves 1 ¡ x for players 2 and 3. Then in the second session, players 2 and 3 split 1 ¡ x

according to Rubinstein's shares, which give ±x and ±2x. Note that the equilibrium outcome

is e±cient. Q.E.D.

Proof of Proposition 2: Note that player 1's payo® from rejecting any standing proposal

is ±=(1+±) and player 2's payo® from rejecting any standing proposal is ±=(1+±)2. Therefore

both players' responding strategies are subgame perfect.

Now consider player 1's proposing strategies in the ¯rst session. If player 1 does not make

any acceptable proposal, his payo® will be ±2=(1+ ±) since player 2 will o®er ±=(1+±) in the

following period. If player 1 makes a demand x1 2 [0; 1], player 2 will accept demand x1 if
1¡ x1
1 + ±

¸ ±

(1 + ±)2
) x1 · 1

1 + ±
;

which means that player 1's demand 1=(1 + ±) is acceptable, so making any unacceptable

proposal is dominated by demanding 1=(1 + ±). If player 1 makes an acceptable o®er y1 ¸

±=(1 + ±)2, player 1's payo® will be

1 ¡ y1
1 + ±

· (1 + ±)2 ¡ ±
(1 + ±)3

=
1

1 + ±
¢ 1 + ± + ±

2

(1 + ±)2
<

1

1 + ±
:

Therefore, for player 1 during the ¯rst session, making any acceptable o®er is strictly domi-

nated by making the acceptable demand 1=(1 + ±).

Next we examine player 2's proposing strategies during the ¯rst session. If player 2

does not make any acceptable proposal, his payo® will be ±2=(1 + ±)2. If player 2 makes an

acceptable o®er y2 = ±=(1 + ±), player 2's payo® will be

1 ¡ y2
1 + ±

=
1

(1 + ±)2
; (18)
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which implies that making any unacceptable proposal is dominated by making the acceptable

o®er. If player 2 makes an acceptable demand x2 such that

1¡ x2
1 + ±

¸ ±

1 + ±
) x2 · 1¡ ±; (19)

then player 2 could not demand more than 1¡ ±. Under condition (5), we have that (19) is
no more than (18) since

(1¡ ±) · 1

(1 + ±)2
, 1 + ± ¡ ±2 ¡ ±3 · 1 , (5):

Therefore, during the ¯rst session, player 2 should always make the acceptable o®er rather

than making any acceptable demand.

In this equilibrium, player 1 demands 1=(1+±) and player 2 accepts, which leaves ±=(1+±)

to players 2 and 3 to share according to Rubinstein's solution. So player 2's share is ±=(1+±)2

and player 3's share is ±2=(1 + ±)2. This equilibrium outcome is e±cient since there is no

delay involved. Q.E.D.

Proof of Proposition 4: Recall (7) and (8), there are four cases to consider. Since two of

the four cases are symmetric, we only have to deal with three cases.

Case 1: Assume that 1¡±(1+±)M3 · (1¡±M3)=(1+±) and 1¡±(1+±)m3 · (1¡±m3)=(1+±).

This is the situation where both players prefer to make acceptable o®ers. Consequently (7)

and (8) become

m3 =
1¡ ±M3

1 + ±
; M3 =

1¡ ±m3
1 + ±

) m3 =M3 =
1

1 + 2±
:

However, for m3 = M3 = 1=(1 + 2±) and for all ± 2 (0; 1), we have

1¡ ±(1 + ±)M3 =
1 + ± ¡ ±2
1 + 2±

>
1

1 + 2±
=
1¡ ±M3

1 + ±
;

which contradicts the inequalities that de¯ne Case 1. Therefore, Case 1 is impossible.

Case 2: Assume that 1¡±(1+±)M3 ¸ (1¡±M3)=(1+±) and 1¡±(1+±)m3 ¸ (1¡±m3)=(1+±).

This is the situation where both players prefer to make acceptable demands. Then (7) and
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(8) become

m3 = 1 ¡ ±(1 + ±)M3; M3 = 1¡ ±(1 + ±)m3 ) m3 =M3 =
1

1 + ± + ±2
:

It is straightforward to verify that the two inequality conditions hold for m3 = M3 =

1=(1 + ± + ±2) and for all ± 2 (0; 1). This means Case 2 is possible.

Case 3: Assume that 1¡±(1+±)M3 · (1¡±M3)=(1+±) and 1¡±(1+±)m3 ¸ (1¡±m3)=(1+±).

This is the situation where the player who receives M3 prefers to make acceptable demands

and the player who receives m3 prefers to make acceptable o®ers. Then (7) and (8) become

m3 =
1¡ ±M3

1 + ±
; M3 = 1 ¡ ±(1 + ±)m3 ) m3 =

1

(1 + ±)2
; M3 =

1

1 + ±
:

With these values of m3 and M3, the second inequality in Case 3 holds for all ± 2 (0; 1) as

1¡ ±(1 + ±)m3 =
1

1 + ±
>
1 + 2±

(1 + ±)3
=
1¡ ±m3

1 + ±
:

The ¯rst inequality in Case 3 holds if and only if (5) holds,

1 ¡ ±(1 + ±)M3 = 1 ¡ ± ¸ 1

(1 + ±)2
=
1¡ ±M3

1 + ±
, ± ¸ 1

1 + ±
:

Case 4: Assume that 1¡±(1+±)M3 ¸ (1¡±M3)=(1+±) and 1¡±(1+±)m3 · (1¡±m3)=(1+±).

As in Case 3, one would ¯nd that m3 = 1=(1 + ±) and M3 = 1=(1 + ±)2 when ± ¸ 1=(1 + ±).

However, M3 < m3 is contradictory. Therefore, Case 4 is also impossible.

Summarizing Cases 2 and 3, m3 and M3 are given by (9) and (10). Q.E.D.

Proof of Proposition 5: Under (5), Propositions 2 and 3 hold. Consider the following

strategy pro¯le where players 1 and 2 disagree in the ¯rst (T ¡ 1) periods of the ¯rst

session and, depending which player proposes in period T , either player j agrees to player i's

demand x or player i agrees to player j's o®er x. Note that if T = 1 then i = 1 and j = 2 by

construction. During the ¯rst (T¡1) periods, the proposing player either o®ers 0 or demands
1, and the responding player will reject. If player 1 ever deviates from the outcome described

above, the continuation equilibrium will be the equilibrium from Proposition 3, and if player

2 deviates then the continuation equilibrium will be the equilibrium from Proposition 2.
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It is obvious that player i's payo® is vi and player j 's payo® is vj in the strategy pro¯le

described above. The strategies after any deviation of either player 1 or 2 are subgame

perfect due to either Proposition 2 or 3. It remains to be shown that neither player 1 nor

player 2 has any incentive to deviate during the ¯rst (T ¡ 1) periods of disagreement. Based

on the strategy pro¯le, the proposing player will have at least 1=(1+ ±)2 and the responding

player will have at least ±=(1 + ±)2 due to (11) and (12)during the ¯rst (T ¡ 1) periods of

disagreement. On the other hand, the proposing player will obtain at most 1=(1+±)2 and the

responding player will obtain at most ±=(1 + ±)2 from deviation. Therefore, neither player

1 nor 2 has any incentive to deviate in the ¯rst session with T periods, which concludes the

proof of Proposition 5. Q.E.D.

Proof of Proposition 6: The proof is inductive. Proposition 1 is the special case of n = 3.

Suppose that Proposition 6 holds with n players. Now we prove Proposition 6 for (n + 1).

During the ¯rst session of bargaining between players 1 and 2, assume that the player who

bargains with the remaining (n¡ 1) players will receive ®n of the remaining share after the
¯rst session. Consider a symmetric and stationary strategy pro l̄e between players 1 and 2

where the proposing player always makes the highest acceptable demand x. The responding

player's payo® from accepting x should not less be than ± ¢ x. That is,

®n(1¡ x) = ±x ) x =
®n

± + ®n
= ®n+1:

If the proposing player decides to make the lowest acceptable o®er y, then y = ±x = ±®n+1,

which leaves the proposing player a payo® of

®n(1 ¡ ±®n+1) = ®n+1 ¢ 1 + ±
2 + ±3 + ¢ ¢ ¢+ ±n

1 + ± + ±2 + ¢ ¢ ¢+ ±n¡1 ;

which is less than the acceptable demand ®n+1. Therefore, the proposing player will always

make the acceptable demand ®n+1. Q.E.D.

Proof of Proposition 8: The proof is inductive. Proposition 8 reduces to Proposition

2 when n = 3. Suppose that Proposition 8 holds for n. In what follows, we establish

Proposition 8 for (n +1).
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When ± < ®n¡1 < ®n¡2, the supposition implies that the model with (n¡ 1) players has

a unique equilibrium outcome and mn¡1 = Mn¡1 = ®n¡1 by Proposition 6. From conditions

(13) and (14), as in the proof of Proposition 4, the only case with multiple equilibrium

outcomes occurs when

1¡ ±

®n¡1
Mn · ®n¡1(1¡ ±Mn); and 1¡ ±

®n¡1
mn ¸ ®n¡1(1¡ ±mn) (20)

Then conditions (13) and (14) become

mn = ®n¡1(1 ¡ ±Mn); and Mn = 1 ¡ ±

®n¡1
mn;

) mn =
®n¡1
1 + ±

; and Mn =
1

1 + ±
: (21)

The ¯rst inequality condition of (20), together with solutions obtained from (21), yields

1 ¡ ±

1 + ±
¢ 1

®n¡1
· ®n¡1
1 + ±

, (1¡ ®n¡1)(± ¡ ®n¡1) ¸ 0;

which is false as when ± 2 (0; ®n¡1). Therefore, Proposition 6 predicts the unique equilibrium

outcome in the case of n players when ± < ®n¡1. By induction, the ¯rst part of Proposition

8 holds for all ¯nite n ¸ 3.

The second part of Proposition 8 asserts multiple equilibrium outcomes when ± ¸ ®n¡1.

Note that Proposition 6 implies that ®n¡1 can always be supported as the ¯rst player's

equilibrium share in the model with (n ¡ 1) players. In the ¯rst part of this proof, we

derived (21) and showed that the ¯rst inequality of (20) holds when ± ¸ ®n¡1. It remains

to be shown that the second inequality of (20) holds when ± ¸ ®n¡1. With (21), the second

inequality of (20) reduces to

1

1 + ±
¸ ®n¡1

Ã
1¡ ±®n¡1

1 + ±

!
, ®n¡1(1 + ± ¡ ±®n¡1) · 1;

which is trivial. Therefore, there are multiple equilibrium outcomes when ± ¸ ®n¡1. Q.E.D.

Proof of Proposition 9: For ± 2 [®n; ®n¡1), Proposition 8 and (21) assert that

Mn+1 = ®2 > ®n = Mn; and mn+1 =
®n
1 + ±

< ®n =mn;
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which establishes Proposition 9 for ± 2 [®n; ®n¡1).

For ± 2 [®n¡1; 1), we will prove the proposition by induction. From Proposition 4, we

have the following inequalities:

m3 = ®
2
2 < m2 = ®2 = M2 =M3: (22)

Now suppose we have the following inequalities:

mn < mn¡1 · Mn¡1 · Mn: (23)

Note that the two weak inequalities in (23) are needed to accommodate (22) for the case of

n = 3. Also mn <Mn so the model with n players has multiple equilibrium outcomes. In the

remainder of this proof, we will prove (23) for (n+1) where the last inequality holds strictly

as stated in Proposition 9. By (23), we can support both Mn and mn as the proposing

player's equilibrium shares in the case of n players in the same way as in the case of (n¡ 1)

players since both mn¡1 and Mn¡1 can be supported as the proposing player's equilibrium

shares in the model with n players. This implies that mn+1 · mn < Mn · Mn+1. Since

mn <mn¡1 and Mn · Mn+1, we have

1¡ ±

mn
¢Mn+1 < 1¡ ±

mn¡1
¢Mn; mn(1¡ ±Mn+1) < mn¡1(1 ¡ ±Mn):

Therefore, (13) implies that mn+1 <mn. Next, since mn+1 <mn and Mn¡1 · Mn, we have

1¡ ±

Mn¡1
¢mn < 1¡ ±

Mn

¢mn+1; Mn¡1(1¡ ±mn) < Mn(1 ¡ ±mn+1):

Hence (14) implies that Mn < Mn+1. Therefore (23) holds for (n+1) with all strict inequal-

ities. Q.E.D.

Proof of Proposition 10: Proposition 6 implies that mn · ®n for all n ¸ 2 and ± 2 (0; 1).

Propositions 4 and 9, on the other hand, imply that Mn ¸ ®2 for n ¸ 3 and ± ¸ ®2 by (5).

First notice that

1¡ ±

mn¡1
Mn · mn¡1(1¡ ±Mn) , ±Mn ¸ mn¡1

1 +mn¡1
; (24)
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which is trivial under Mn ¸ ®2 and ± ¸ ®2 ¸ ®n¡1 ¸ mn¡1 due to the fact that

±Mn ¸ ±®2 =
±

1 + ±
¸ mn¡1
1 +mn¡1

:

Next, notice that

1¡ ±

Mn¡1
mn ¸ Mn¡1(1¡ ±mn) , ±mn · Mn¡1

1 +Mn¡1
; (25)

which is also trivial under Mn ¸ ®2 and mn · ®n · ®3 due to the fact that

±mn · ±®3 =
±

1 + ± + ±2
· 1

2 + ±
· Mn¡1
1 +Mn¡1

:

With (24) and (25), conditions (13) and (14) can be simpli¯ed as

mn = mn¡1(1 ¡ ±Mn); and Mn = 1 ¡ ±

Mn¡1
mn;

which yield the dynamics of mn and Mn by (15) in the proposition. Q.E.D.
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