Likelihood Ratio Tests for Multiply Imputed Datasets:
Introducing milrtest

Rose Anne Medeiros
rosem@ats.ucla.edu

Statistical Consulting Group
Academic Technology Services
University of California, Los Angeles

2008 Fall North American Stata Users Group meeting
Analyzing multiply imputed (MI) datasets typically involves estimating the desired model on each of the m imputed datasets.

The final coefficient estimates are based on the mean of the parameter estimates across the m imputed datasets.

The final estimates of the standard errors incorporate both the standard errors from the individual analyses, and the variance of the standard errors across the m imputed datasets.
Estimates of the s.e. allow for hypothesis tests for individual coefficients, however, testing nested models is somewhat more difficult.

Several variants of the Wald test exist (see Schafer 1997, and Li, Raghunathan & Rubin 1991).

The classic likelihood ratio (LR) test cannot be implemented as is because the final estimates do not come directly from a single model, and hence it is unclear what the proper value of the likelihood is for a given model.

A variant of the LR test is described by Meng and Rubin (1992).
In Stata M.I. datasets can be analyzed using the user-written package `mim` (Carlin, Calati & Royston 2008).

`mim` includes the multiparameter (Wald) test from Li, Raghunathan and Rubin (1991).

The program presented here, `milrtest`, adds to the available tests by implementing the LR test of Meng and Rubin (1992).
A likelihood ratio test compares a full model \((h_1)\) with a restricted model where some parameters are constrained to some value\((h_0)\), often zero. The log likelihoods for the two models are compared to assess fit.

The likelihood ratio test statistic:

\[d' = 2(\ell\ell_1 - \ell\ell_0) \]

Coefficient estimates based on the \(m\) MI datasets (Little & Rubin 2002):

\[\bar{\theta} = \frac{1}{m} \sum_{i=1}^{m} \hat{\theta}_i \]
For each of the m imputed datasets:
- Run the h_1 model.
- Run the h_0 model.
- Calculate d' (LR test).

2. From the m repetitions of the h_0 model, calculate $\bar{\theta}_0$.
3. From the m repetitions of the h_1 model, calculate $\bar{\theta}_1$.
4. For each of the m imputed datasets:
 - Calculate the likelihood for h_1 with the parameters constrained to $\bar{\theta}_1$.
 - Calculate the likelihood for h_0 with the parameters constrained to $\bar{\theta}_0$.
 - Calculate the likelihood ratio test d_L, using the above likelihoods.

5. Calculate the mean of d', \bar{d}'_m (i.e. the LR test statistics from the unconstrained models).

6. Calculate the mean of d_L, \bar{d}_L (i.e. the LR test statistic from the constrained models).

7. Calculate the test statistic and degrees of freedom.
The Test Statistic

\[D_L = \frac{\bar{d}_L}{k(1 + r_L)} \]

where:

\[k = df_1 - df_0 \]

and

\[r_L = \frac{(m + 1)}{k(m - 1)}(\bar{d}_M' - \bar{d}_L) \]
combine D_L and r_L:

$$D_L = \frac{\bar{d}_L}{k + \frac{m+1}{m-1}(\bar{d}_M' - \bar{d}_L)}$$
Degrees of freedom

\[D_L \sim F(k, w(r_L)), \text{ where:} \]

\[w(r_L) = \begin{cases}
4 + (\nu - 4)\{1 + (1 - 2\nu^{-1})r_L^{-1}\}^2 & \nu > 4 \\
\frac{1}{2}\nu(1 + \frac{1}{k})(1 + r_L^{-1})^2 & \text{otherwise.}
\end{cases} \]

where:

\[\nu = k(m - 1) \]

and

\[r_L = \frac{m + 1}{k(m - 1)}(\bar{d}_M' - \bar{d}_L) \]
Syntax

`milrtest test_varlist`

- `test_varlist` should contain the variables to be restricted in the null model.
- Must be run after a `mim` regression command. The model run should be the alternative (i.e. unrestricted) model.
- Currently only available after `regress`, `logit`, and `ologit`.
- `milrtest` inherits sample restrictions from `mim`.
- $m \geq 4$ required.
An Example

- Uses a subset of data from a study of college students’ romantic relationships (n=2386).
- The percent of missing values on each variable ranges from less than 1% to 9%, with most variables missing around 8% to 9% of values.
- The variables engaged, married, and cohabiting are dummy variables for relationship status, dating is the reference group.

The models:

h_1: reg distress rc01 rc02 age engaged married cohabiting

h_0: reg distress rc01 rc02 age
mim: reg distress rc01 rc02 age engaged married cohabiting

Multiple-imputation estimates (regress)
Linear regression

------------+---
 distress | Coef. Std. Err. t P>|t| [95% Conf. Int.] MI.df
------------+---
 rc01 | -1.38278 .139585 -9.91 0.000 -1.65679 -1.10878 781.4
 rc02 | -1.16774 .13375 -8.73 0.000 -1.43086 -0.904618 326.0
 age | .065342 .019917 3.28 0.001 .026014 .104669 163.4
 engaged | -.470156 .29352 -1.60 0.111 -.81571 .110085 141.8
 married | -.142893 .337372 -0.42 0.673 -.811571 .525784 108.8
 cohabiting | .656153 .536409 1.22 0.222 -.396464 1.70877 1000.0
 _cons | 21.2969 .569379 37.40 0.000 20.1755 22.4184 247.2
------------+---
milrtest engaged married cohabiting

Test statistic: $F(3, 415.116) = 1.557$
Prob > F = 0.1993

quietly: mim: reg distress rc01 rc02 age engaged married cohabiting
mim: testparm engaged married cohabiting

(1) engaged = 0
(2) married = 0
(3) cohabiting = 0

$F(3, 431.9) = 1.56$
Prob > F = 0.1990
A cautionary tale

Using the naive approach and averaging the likelihood ratio tests across the \(m \) imputed datasets:

\[
\chi^2 = 5.5718, \ df = 3
\]

\(p \leq 0.1344 \)

Which is far lower than the \(p \leq 0.2 \) obtained from both the Wald and the LR tests.
The version of the Wald test implemented in \texttt{mim} is known to be unstable at low values of m. So the question is, how does the LR test implemented here compare?

Using the same data:

- MI datasets were created with $4 \leq m \leq 20$.
- The alternative (versus null) model above was tested using the LR and Wald tests with each of the 17 datasets.
LR tests for MI datasets
Using data from the study described above:

- Started with a subset of those cases with complete data on the necessary variables ($n=2150$).
- Compared the null and alternative models above using the standard LR and Wald tests.
- Created a single dataset with data missing completely at random. Percent missing for each variable ranged from less than 1% to about 30%, with a mean of about 15% missing.
- Imputed the missing values 100 times with $m = 5$ and $m = 10$.
- Compared the null and alternative models from above using the `milrtest` and `mim: testparm`, saving the results.
P-values from 100 repetitions of $m = 5$

Red and blue lines are for the complete data Wald and LR tests respectively.
P-values from 100 repetitions of $m = 5$, $m = 10$, and $m = 20$.

Red and blue lines are for the complete data Wald and LR tests respectively.
P-values from 100 repetitions of $m = 5$, $m = 10$, and $m = 20$.

Red and blue lines are for the complete data Wald and LR tests respectively.
<table>
<thead>
<tr>
<th>scalar</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r(d_m)$</td>
<td>Mean of likelihood ratio chi-squares for h1 vs h0 in unconstrained models</td>
</tr>
<tr>
<td>$r(d_L)$</td>
<td>Mean of likelihood ratio chi-squares for h1 vs h0 in constrained models</td>
</tr>
<tr>
<td>$r(p)$</td>
<td>p value of final statistic</td>
</tr>
<tr>
<td>$r(df_d)$</td>
<td>denominator degrees of freedom</td>
</tr>
<tr>
<td>$r(df_n)$</td>
<td>numerator degrees of freedom</td>
</tr>
<tr>
<td>$r(test_stat)$</td>
<td>F statistic</td>
</tr>
<tr>
<td>$r(m)$</td>
<td>number of imputed datasets used in estimation</td>
</tr>
<tr>
<td>$r(h0_c_m)$</td>
<td>LL of constrained model under h0</td>
</tr>
<tr>
<td>$r(h1_c_m)$</td>
<td>LL of constrained model under h1</td>
</tr>
<tr>
<td>$r(h0_uc_m)$</td>
<td>LL of unconstrained model under h0</td>
</tr>
<tr>
<td>$r(h1_uc_m)$</td>
<td>LL of unconstrained model under h1</td>
</tr>
</tbody>
</table>
macros:

\texttt{r(cmd)} \hspace{1cm} \text{Name of the estimation command}
\texttt{r(h0_model)} \hspace{1cm} \text{Model under the null hypothesis}
\texttt{r(h1_model)} \hspace{1cm} \text{Model under the alternative hypothesis}

matrices:

\texttt{r(h0_coefs)} \hspace{1cm} \text{Coefficient estimates for null model}
\texttt{r(h1_coefs)} \hspace{1cm} \text{Coefficient estimates for alternative model}
The likelihoods for the constrained models are calculated using Mata.

Currently these Mata functions are embedded in the appropriate .ado file.
milrtest can be downloaded from the ATS website, http://www.ats.ucla.edu/stat/stata/ado/analysis/milrtest.pkg

