Tricks of the Trade: Getting the most out of xtmixed

Roberto G. Gutierrez

Director of Statistics StataCorp LP

2008 Fall North American Stata Users Group Meeting

Outline

- xtmixed in a nutshell
- Example 1: Standard random coefficients
- Example 2: Grouped covariance structures
- Example 3: Heteroskedastic residual errors
- Example 4: Smoothing via penalized splines
- Concluding remarks

- xtmixed fits linear mixed models, a generalization of standard linear regression for grouped data
- In standard linear regression

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \epsilon_{ij}$$

the β 's are considered fixed population parameters that you estimate, along with σ^2_ϵ

- In a mixed model, you allow one or more of the β 's to vary from group to group
- ullet When this occurs, the original eta is the mean over all groups, and you estimate the between-group variance

- ullet The "mixed" moniker is a throwback to the experimental design days; the (group mean) eta's are fixed effects and their group-to-group deviations are treated as random effects
- fixed + random = mixed
- Three factors can make mixed models more difficult in practice than they are in principle:
 - 1. Correlations between group-varying β 's
 - 2. Multiple levels of nested groups
 - 3. Group-specific β 's are not estimated, although they can be predicted (BLUPs)

Example

- Goldstein (1986) analyzed data on weight gain of Asian children in a British community (Rabe-Hesketh and Skrondal 2008, section 5.10)
- We analyze a subset of their data, namely 68 children weighed between one and five times inclusive
- The graph of growth curves will suggest the following model features:
 - overall quadratic growth
 - child-specific random intercepts
 - (perhaps) child-specific linear trends
 - child-specific quadratic components would perhaps be a bit much

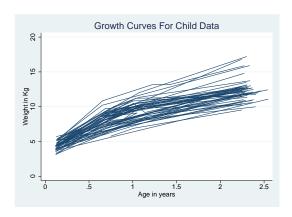
>

>

Example 1: Standard Random Coefficients Graphing growth curves

```
. use http://www.stata.com/icpsr/mixed/child, clear
(Weight data on Asian children)
. sort id age
  graph twoway (line weight age, connect(ascending)), ///
                xtitle(Age in years) ytitle(Weight in Kg) ///
```

title(Growth Curves For Child Data)



 Graphical features suggest the following model for the jth weighing of the ith child

$$\begin{aligned} \text{weight}_{ij} &= (\beta_0 + u_{i0}) + (\beta_1 + u_{1i}) \text{age}_{ij} + \beta_2 \text{age}_{ij}^2 + \epsilon_{ij} \\ &= \underbrace{\beta_0 + \beta_1 \text{age}_{ij} + \beta_2 \text{age}_{ij}^2}_{\text{fixed}} + \underbrace{u_{i0} + u_{i1} \text{age}_{ij} + \epsilon_{ij}}_{\text{random}} \end{aligned}$$

- This is a standard random-coefficients model, the bread and butter of xtmixed
- It is good practice to use cov(unstructured) and not assume the two random-effects terms are independent, the default
- You can always do an LR test to ensure that the added covariance term is significant

Example 1: Standard Random Coefficients Random-coefficients model with xtmixed

- $. gen age2 = age^2$
- . xtmixed weight age age2 || id: age, cov(unstructured) variance

Mixed-effects REML regression

Group variable: id

Number of obs = 198

Number of groups = 68

Obs per group: min = 1

avg = 2.9

 $\max = 5$

Log restricted-likelihood = -262.4327

Wald chi2(2) = 1940.65 Prob > chi2 = 0.0000

weight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	7.703451	.2408987	31.98	0.000	7.231298	8.175604
age2	-1.66009	.0890272	-18.65	0.000	-1.834581	-1.4856
_cons	3.494664	.1384934	25.23	0.000	3.223222	3.766106

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
id: Unstructured var(age) var(_cons) cov(age,_cons)	.2617525 .4172866 .085354	.0912799 .1686882 .0904636	.1321462 .1889453 0919514	.5184738 .9215797 .2626593
var(Residual)	.3341601	.058922	.2365176	.4721128

LR test vs. linear regression: chi2(3) = 114.39 Prob > chi2 = 0.0000

- The previous model grouped boys and girls together
- Question 1: Is there a systematic difference in the overall/population mean quadratic curve between boys and girls?
- Stated differently, is

$$\beta_0 + \beta_1 age_{ij} + \beta_2 age_{ij}^2$$

in our model instead supposed to be

$$\begin{split} \beta_0^b \mathsf{boy}_{ij} + \beta_0^g \mathsf{girl}_{ij} + \beta_1^b (\mathsf{age}_{ij} \times \mathsf{boy}_{ij}) + \beta_1^g (\mathsf{age}_{ij} \times \mathsf{girl}_{ij}) + \\ \beta_2^b (\mathsf{age}_{ij}^2 \times \mathsf{boy}_{ij}) + \beta_2^g (\mathsf{age}_{ij}^2 \times \mathsf{girl}_{ij}) \end{split}$$

or some submodel thereof?

- Question 2: Do boys and girls demonstrate different variability about their respective average curves?
- That is, should

$$u_{i0} + u_{i1}$$
age_{ij}

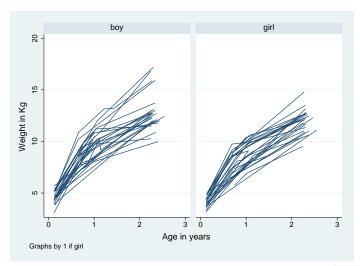
instead be

$$u^b_{i0} \mathtt{boy}_{ij} + u^b_{i1} \left(\mathtt{age}_{ij} \times \mathtt{boy}_{ij} \right) + u^g_{i0} \mathtt{girl}_{ij} + u^g_{i1} \left(\mathtt{age}_{ij} \times \mathtt{girl}_{ij} \right)$$

• We can examine both questions graphically

Example 2: Grouped covariance structures

Gender-specific growth curves



Expanding the model

- Our graph indicates a gender difference in overall mean growth, both in magnitude and in growth rate
- We also see that girls' curves are bunched closer together
- Both observations favor our "new" model, the one with six fixed-effects terms and four random-effects terms

- Following our previous advice we would want a 4 × 4 unstructured covariance matrix for the random effects.
 However, we don't have the data to fit that model. Why don't we?
- What we need instead is for the covariance matrix of the random effects to be block diagonal, i.e.

$$\mathsf{Var} \left[\begin{array}{c} u^b_{i0} \\ u^b_{i1} \\ u^g_{i0} \\ u^g_{i1} \end{array} \right] = \left[\begin{array}{cc} \mathbf{\Sigma}_b & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_g \end{array} \right]$$

where both Σ_b and Σ_g are 2×2 and unstructured

• You can achieve this effect by "repeating level specifications"

 What the previous means is that for the random part of the model

$$u^b_{i0} \texttt{boy}_{ij} + u^b_{i1} \left(\texttt{age}_{ij} \times \texttt{boy}_{ij} \right) + u^{\mathsf{g}}_{i0} \texttt{girl}_{ij} + u^{\mathsf{g}}_{i1} \left(\texttt{age}_{ij} \times \texttt{girl}_{ij} \right)$$

where I might normally specify

```
. xtmixed ... || id: boy ageXboy girl ageXgirl, nocons cov(un)
```

instead I want

```
. xtmixed \dots || id: boy ageXboy, nocons cov(un) || id: girl ageXgirl, nocons cov(un)
```

- I also recommend using ML instead of the default REML estimation. ML permits LR tests for models where the fixed-effects structures differ
- For example, say you wanted to test against a model with no gender interactions, fixed or random

Example 2: Grouped covariance structures Our new model with xtmixed

```
. gen boy = !girl
```

- . gen boyXage = boy*age
- . gen girlXage = girl*age
- . gen boyXage2 = boy*age2
- . gen girlXage2 = girl*age2
- . xtmixed weight boy girl boyXage girlXage boyXage2 girlXage2, nocons $\ensuremath{/\!/}$
- > || id: boy boyXage, nocons cov(un) //
- > || id: girl girl mge, nocons cov(un) mle var

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1 avg = 2.9 max = 5

7104.72

0.0000

weight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
boy	3.671827	.1806533	20.33	0.000	3.317753	4.025901
girl	3.355414	.1982909	16.92	0.000	2.966771	3.744057
boyXage	8.032414	.3359884	23.91	0.000	7.373889	8.690939
girlXage	7.28479	.3252048	22.40	0.000	6.647401	7.92218
boyXage2	-1.742549	.1220431	-14.28	0.000	-1.981749	-1.503349
girlXage2	-1.542569	.1222218	-12.62	0.000	-1.782119	-1.303018

⁻⁻more--

Our new model with xtmixed

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
id: Unstructured				
var(boy)	.2927532	.1908321	.0815912	1.050413
var(boyXage)	.4390608	.1727608	.2030465	.94941
cov(boy,boyXage)	.0315566	.1331358	2293847	.2924978
id: Unstructured				
var(girl)	.4819156	.2213764	.1958649	1.185729
var(girlXage)	.0432564	.0608497	.0027457	.6814819
cov(girl,girlXage)	.0611095	.0866856	1087912	.2310101
var(Residual)	.3185072	.0548725	. 2272344	.4464413
LR test vs. linear regression:	chi2(6) = 113.73	Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

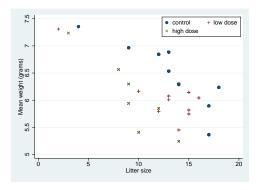
- It turns out the greater spread in the boys' curves is due to larger variability in the linear component, not the intercept
- Neither covariance appears to be significant. You can drop both by simply reverting to xtmixed's default independent covariance structure
- The identity structure could be used to further restrict the model (equality constraints)
- Using repeated level specifications, each separated by ||, for achieving subgroup-specific error structures is equivalent to using the GROUP option of some PROCedure for fitting MIXED models employed by Some Alternative Software

• What about heteroskedasticity in the residual errors?

Example

- Dempster et al. (1984) analyze data from a reproductive study on rats to assess the effect of an experimental compound on pup weights (Rabe-Hesketh and Skrondal 2008, exercise 3.5)
- 27 litters were recorded over three treatment groups: control, low dose, and high dose
- Weight is related to dosage level and litter size, which are "litter-level" covariates
- Weight is also related to sex, a pup-level covariate

Example 3: Heteroskedastic residual errors



Our initial model is

$$\begin{split} \text{weight}_{ij} &= \beta_0 + \beta_1 \text{dose}_{1ij} + \beta_2 \text{dose}_{2ij} + \beta_3 \text{size}_{ij} + \beta_4 \text{female}_{ij} + \\ & u_i + \epsilon_{ij} \end{split}$$

for i = 1, ..., 27 litters and $j = 1, ..., n_i$ pups within litter

- This is a standard random-intercept model, fit by xtmixed or, even, xtreg
- Residual plots vs. the linear predictor are always a good idea.
 In our case, we produce these plots by variable female because we are curious about heteroskedasticity

Example 3: Heteroskedastic residual errors Random-intercept model with xtmixed

weight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_Idose_1	4416666	.1513553	-2.92	0.004	7383176	1450157
_Idose_2	8706054	.1830525	-4.76	0.000	-1.229382	511829
size	1299602	.0190485	-6.82	0.000	1672946	0926259
female	3626441	.0477374	-7.60	0.000	4562077	2690805
_cons	8.324096	.2770569	30.04	0.000	7.781074	8.867118

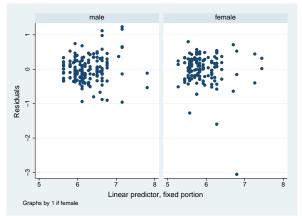
Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
litter: Identity sd(_cons)	.3140074	.0532536	. 2252069	. 4378225
sd(Residual)	.4045051	.0166929	.3730758	.4385822

LR test vs. linear regression: chibar2(01) = 90.73 Prob >= chibar2 = 0.0000

Getting the most out of xtmixed

Example 3: Heteroskedastic residual errors Residual plots by female

- . predict xbeta
 (option xb assumed)
- . predict ${\tt r,\ residuals}$
- . twoway (scatter r xbeta, by(female))



• In our previous model, we want ϵ_{ii} replaced by

$$\epsilon_{ij} = \epsilon_{ij}^{\textit{m}} (1 - \mathtt{female}_{ij}) + \epsilon_{ij}^{\textit{f}} \mathtt{female}_{ij}$$

 The bad news is that xtmixed will always produce a single, overall residual term. The good news is we can express the above instead as

$$\epsilon_{ij} = \epsilon^{\it m}_{ij} + (\epsilon^{\it f}_{ij} - \epsilon^{\it m}_{ij})$$
female_{ij}

and we can estimate the additional variability due to female

 This alternate form allows us to fit this model in xtmixed, provided we create a pseudo two-level model, with the lowest-level "groups" being the observations (pups) themselves, nested within litters

Getting the most out of xtmixed

Example 3: Heteroskedastic residual errors Heteroskedastic residuals with xtmixed

. $gen pup = _n$

. xi: xtmixed weight i.dose size female || litter: || pup: female, nocons var Mixed-effects REML regression Number of obs = 321

Group Variable	No. of Groups	Observa Minimum	ations per Average	Group Maximum	
litter pup	27 321	2 1	11.9 1.0	18 1	
Log restricted-l	ikelihood =	-196.90368		ld chi2(4) ob > chi2	= =
weight.	Coef.	Std. Err.	z P>	lzl [95%	Conf. In

weight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_Idose_1 _Idose_2 size female _cons	4500473	.15523	-2.90	0.004	7542925	1458021
	8780883	.18757	-4.68	0.000	-1.245719	5104578
	1307603	.0196311	-6.66	0.000	1692365	092284
	3634425	.04821	-7.54	0.000	4579324	2689526
	8.339868	.2845412	29.31	0.000	7.782177	8.897558

⁻⁻more--

107.22

Random-effe	cts Parameters	Estimate	Std. Err.	[95% Conf. Interval]				
litter: Ident:	•							
	var(_cons)	.1046383	.035361	.053956 .2029279				
pup: Identity								
	<pre>var(female)</pre>	.0558646	.02933	.0199636 .1563272				
	var(Residual)	.1370851	.0161837	.108768 .1727743				
LR test vs. 1	LR test vs. linear regression: chi2(2) = 94.55 Prob > chi2 = 0.0000							
Note: LR test	is conservative	and provided	only for refe	erence.				
	le: exp(2 * [lns le: exp(2 * [lns			2_1_1]_cons))				
	exp(2 * [lnsig							
female:	exp(2 * [lnsig	_e]_cons) + e	$\exp(2 * [lns2_1]$	1_1]_cons)				
weight	Coef. S	td. Err.	z P> z	[95% Conf. Interval]				
male			3.47 0.000	.1053657 .1688044				
female	.1929497	.023584 8	3.18 0.000	.1467259 .2391734				

- Fitting heteroskedastic-error models using this procedure will sometimes result in non-convergent models
- The reason is that implicit in the above is the assumption that $\sigma_{f\epsilon}^2>\sigma_{m\epsilon}^2$
- If not true, the variance component representing added variability will tend towards zero and form a ridge in the likelihood surface
- The solution? Simply model the added variability as due to male rather than as due to female

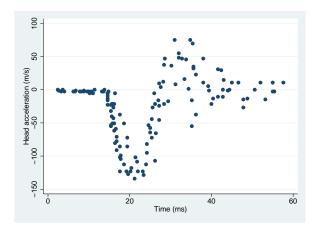
• Finally, you can also use xtmixed for spline smoothing:

Example

- Silverman (1985) analyzed 133 measurements taken from a simulated motorcycle crash
- Head acceleration (y) was measured over time (x)
- Because of the changing nature of the curve over time and the heteroskedasticity of errors, these data are a staple of the smoothing literature

Example 4: Smoothing via penalized splines Scatterplot

- . use http://www.stata.com/icpsr/mixed/motor, clear
- . graph twoway (scatter accel time)



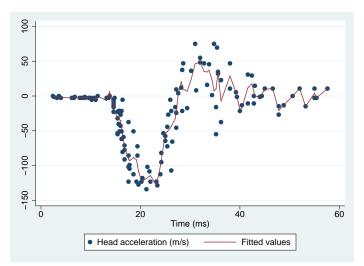
A linear-spline smoothing model has the form

$$y_i = \beta_0 + \beta_1 x_i + \sum_{j=1}^{M} \gamma_j |x_i - \kappa_j|_+ + \epsilon_i$$

for M knot points κ_i , usually chosen to form a grid

- Think of linear smoothing splines as just a series of interlocking line segments, the slopes of which need to be estimated
- The above suggests plain linear regression, with the appropriately-generated regressors, of course. Call this the "fixed-effects" approach

Example 4: Smoothing via penalized splines
Spline coefficients as fixed effects



- As you may have noticed, the problem with the fixed-effects approach is that it tends to interpolate the data
- One solution is to use penalized splines, which adds a roughness penalty to the likelihood from the linear-regression approach
- Ruppert et al. (2003), among others, show that this is equivalent to treating the slopes as random rather than fixed, and estimating them as BLUPs of a mixed model
- As such, a "random-effects" approach yields a much nicer-looking smooth, and we can get xtmixed to do all the heavy lifting

Penalized-spline coefficients as random effects

. xtmixed accel time || _all: time_*, noconstant cov(identity)
 (output omitted)

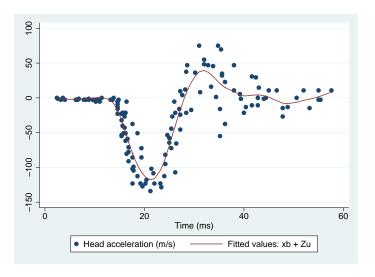
accel	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
time_cons	4672689	13.33173	-0.04	0.972	-26.59698	25.66244
	0152613	34.32348	-0.00	1.000	-67.28805	67.25753

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
_all: Identity sd(time_1time_56)(1)	7.01774	1.479116	4.642918	10.60727
sd(Residual)	22.53256	1.462753	19.84051	25.58988

LR test vs. linear regression: chibar2(01) = 151.17 Prob >= chibar2 = 0.0000
(1) time_1 time_2 time_3 time_4 time_6 time_7 time_8 time_9 time_10 time_11
 time_12 time_13 time_14 time_15 time_16 time_17 time_18 time_19 time_20
 time_21 time_22 time_23 time_24 time_25 time_26 time_27 time_28 time_29
 time_30 time_31 time_32 time_34 time_35 time_36 time_37 time_38
 time_39 time_40 time_41 time_42 time_43 time_44 time_45 time_47 time_48
 time_49 time_50 time_52 time_53 time_55 time_56

Getting the most out of xtmixed

- Example 4: Smoothing via penalized splines
 - Penalized-spline coefficients as random effects
 - . predict accel_random, fitted
 - . graph twoway (scatter accel time) (line accel_random time)



Concluding remarks

- xtmixed is versatile
- You can repeat level specifications to achieve structured covariance matrices
- When combined with xtmixed available structures, covariance matrices can be constrained even further
- You can model homoskedastic residual errors by creating a level variable that defines the observations
- BLUPs are a useful smoothing tool. Their shrinkage properties keep them from overfitting the data

- Dempster, A. P., M. R. Selwyn, C. M. Patel and A. J. Roth. 1984. Statistical and computational aspects of mixed model analysis. *Journal of the Royal Statistical Society, Series C* 33: 203–214.
- Goldstein, H. 1986. Efficient statistical modelling of longitudinal data. *Human Biology* **13**: 129–142.
- Laird, N. M. and J. H. Ware. 1982. Random-effects models for longitudinal data. *Biometrics* 38: 963–974.
- Rabe-Hesketh, S. and A. Skronal. 2008. Multilevel and Longitudinal Modeling Using Stata, Second Edition. College Station, TX: Stata Press.
- Ruppert, D., M. P. Wand and R. J. Carroll. 2003. *Semiparametric Regression*. Cambridge: Cambridge University Press.
- Silverman, B. W. 1985. Some aspects of the spline smoothing approach to nonparametric curve fitting. *Journal of the Royal Statistical Society, Series B* **47**: 1–52.

