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Abstract

The paper describes the challenges that uncertainty over the true value of key
macroeconomic variables poses for the policymaker - or, indeed, other data-users -
and the way in which she may form and update her view of the evolution of economic
time-series in light of a range of indicators and models. Speci�cally, it casts the data
uncertainty challenge in state space form and describes a two-step estimator for the
resulting signal extraction problem. Real-time data are �rst used to estimate the
statistical properties of any measurement errors embedded in published estimates
of macroeconomic variables; and these properties are then imposed in maximum
likelihood estimation of the full state space model. The paper also considers how
the data-user�s signal extraction solution might be related to any constraints that
the statistical agency faces in treating uncertain data.

�This paper represents the views and analysis of the authors and should not be thought to
represent those of the Bank of England, Monetary Policy Committee, or any other organisation
to which the authors are a¢ liated. We have bene�ted from helpful comments from Andrew
Blake, Spencer Dale, Jana Eklund, Lavan Mahadeva and Tony Yates.
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1 Introduction

Most data used in macroeconomic analysis are estimates of the �true� outcome. One

symptom of the resulting data uncertainties is the propensity of statistical agencies to

revise their estimates in light of new information (bigger samples) or methodological

advances (better proxies). In practice, these revisions have often appeared large relative

to the variation observed in the published data. So in the UK for example, between 1993

and 2003 the mean absolute revision to quarterly real GDP growth was 0.2pp over the �rst

three years from the initial release; relative to average GDP growth of 0.6%. This issue

is by no means unique to the UK: see Mitchell (2004) for a review of work establishing

the scale of historical revisions and Öller and Hansson (2002) for a representative cross-

country comparison.

Uncertainty about the true value of economic series now and in the past adds to

the challenge of forming a forward-looking assessment of economic prospects and hence

complicates policy formulation1. More speci�cally, naïve use of economic data, abstracting

from data uncertainties, can worsen policymaking and forecast performance in two ways.

First, the policymaker - or, indeed, any data-user - may misunderstand the nature of the

relationship between economic variables. Parameter estimates may change as data are

revised and so too might model selection. Second, data-users may be ill-informed about

the recent and current values of those economic variables. Model outputs may change

as input data are revised. One symptom of naïve use of uncertain data is that revisions

sometimes lead to material swings in economic assessment. Another is that, as data are

revised, policy actions di¤er substantially from the recommendations that might follow

from the revised data. Kozicki (2004) describes this phenomenon as �policy regret�.

There is a sizeable literature seeking to estimate the extent of past policy regret. In a

representative paper, Nelson and Nikolov (2003) estimate that in the UK during the late

1980s, an ex-post Taylor rule would have advocated a nominal interest rate 500bp higher

than a real-time Taylor rule.

The data-user need not, however, treat uncertain data in such a naïve way. And,

indeed, there is some evidence that data-users have allowed for data uncertainties in

1This uncertainty stems from di¢ culties in estimating the true value of economic series at all, rather
than from the timeliness of those estimates. Lags in estimating the recent evolution of economic variables
also pose challenges to data-users. The options available in dealing with these lags are explored in a
growing literature on "nowcasting", of which Evans (2005) is a proponent. The model developed in this
paper is better described as "backcasting".
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interpreting macroeconomic data. For example, in reviewing revisions to the UK�s

National Accounts, Statistics Commission (2004) concluded that "the main users of the

statistics knew that revisions should be expected, understood the reasons for them, and

were able to make some allowance for them when taking important decisions."

One strategy that the data-user might adopt in the face of uncertain estimates of

the past evolution of macroeconomic variables is to consider robustness to such data

uncertainty as an additional criterion in choosing between competing models or policy

rules - for a more detailed discussion, see Kozicki (2004) op cit. A number of papers test

the performance of competing rules and estimators in a real-time setting. For example,

Orphanides (2003) �nds that, given the revisions experience in the US, nominal income

growth targets may outperform output-gap based policy rules. And Harrison, Kapetanios,

and Yates (2004) suggest that where measurement uncertainties are greatest in estimates

of the recent past, models in which recent experience is downweighted may have a superior

forecasting performance to models in which all observations are weighted equally.

A second, complementary strategy is to process uncertain data more e¤ectively

by reviewing an array of competing indicators and/ or by assigning some weight to

expectations of how data would evolve; rather than taking the latest estimate at face

value. In other words, to treat interpretation of uncertain data as a signal extraction

problem. Lomax (2004) describes the UK Monetary Policy Committee�s approach to

uncertainty in data and highlights both the use of an array of quantitative and qualitative

indicators and the careful attention paid to the quality of competing indicators. And the

August 2003 In�ation Report noted that "The MPC takes account of the likelihood that

GDP data will be revised when deciding how much weight to put on the latest data".

This paper explores the signal extraction problem, seeking to formalise the current

practice of many macroeconomic commentators. Speci�cally, we set up a state space

representation of the measurement errors surrounding published estimates and any

alternative indictors, and use the model to estimate the �true�value around which the

measures are taken. Real-time data describing historical experience of revisions are used

to estimate the properties of any measurement errors attaching to published estimates.

The paper has 5 further sections. The next section brie�y describes the existing

literature in the area. Section 3 represents the signal extraction problem in state space,

with the objective of capturing many of the features of the antecedent literature. Section

4 describes the use of historical revisions experience to calibrate some parameters of
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the state space model, while Section 5 explores the implications for signal extraction of

di¤ering assumptions - or prior views - about the source of uncertainty in the data and

about the actions of the statistical agency in extracting its own signal. The �nal section

provides a practical illustration.

2 An Overview of the Literature

This paper focuses on the signal extraction problem faced by the data-user in interpreting

uncertain data - assigning some weight to face value data, some to alternative indicators,

and some to her expectations of how the data would evolve (i.e. the output of some

transition law). In doing so, it follows a long-standing literature, of which Howrey (1978)

was an early proponent. The common strand of the literature is to estimate �true�data

using some form of state space model. A variety of estimators have been applied to the

problem. The authors also di¤er in the features of measurement errors exploited in the

signal extraction solution, as summarised in Table 1 for a selection of papers. The simplest

possible setting would be to assume that: measurements were unbiased; measurement

errors iid; data of di¤ering maturities equally uncertain; and that both earlier releases

and alternative indicators were subsumed in the latest published estimates. Then, the

solution of the signal extraction problem is simply a matter of estimating the signal-noise

ratio across the latest data release. All the papers cited enrich the model in some ways.

Table 1: Features of the Signal Extraction Solution Covered by Di¤ering Estimators

Bias in
estimates

Serial
correlation in
measurement
errors

Correlation
between
measurement
errors and
economic
shocks

Persistence of
measurement
errors in
mature data

Differing
vintages of
data as
competing
measures

Differing
indicators
as
competing
measures

Howrey (1978) ü ü û û û û
Sargent (1989) ü ü ü ü û û
Patterson (1994) ü ü û ü û û
Garratt et al (2005) ü û û ü ü û
Ashley et al (2005) ü û û û û ü
This paper ü ü ü ü û ü

� Bias in estimates. All of the authors cited correct for any systematic biases apparent
in previous preliminary estimates. Such biases appear to have been endemic in

National Accounts data in the UK and elsewhere, as documented, for example, in

Akritidis (2003), and Garratt and Vahey (2004).

4



� Serial correlation in measurement errors. Many authors allow for serial correlation
in the revisions process, which also appears to have been a common feature of

macroeconomic data (see, for example, Howrey (1984)). There is less common

ground in the treatment of the other identifying assumptions set out in the Table.

� Correlation between measurement errors and economic shocks. Most authors con-
sider measurement errors to be uncorrelated with economic shocks (the disturbance

term in the state equation). The exception is Sargent (1989) whose model permits

the statistical agency to �lter data prior to publication.

� Persistence of measurement errors in mature data. Howrey (1978) and Ashley,

Driver, Hayes, and Je¤ery (2005) restrict attention to revisions occurring in the

�rst few quarters after the preliminary release. Ashley, Driver, Hayes, and Je¤ery

(2005) justify this on the grounds that in the UK, National Accounts data are

fully balanced by the second Blue Book after the initial release (i.e. after around

two years). Patterson (1994) and Garratt, Lee, Mise, and Shields (2005) consider

revisions to more mature data, on the grounds of historical revisions experience.

� Role of di¤ering vintages of data as competing indicators. Most authors assume that
the latest estimate of economic activity at any particular point in time subsumes

all previous estimates. In other words, that there is no need to consider di¤ering

vintages of data as competing measures. The exception is Garratt, Lee, Mise, and

Shields (2005).

� Role of measures other than those published by the statistical agency. Most

authors consider only the statistical agency�s estimates as candidate measures.

Ashley, Driver, Hayes, and Je¤ery (2005) suggest augmenting those estimates with

alternative indicators available to the data-user. That would be consistent with the

wide array of indicators monitored by policymakers (see Lomax (2004)) and is the

approach pursued in this paper.

5



3 A General State Space Model of Uncertain Data

In this section, we present a relatively general state space representation of the signal

extraction problem; designed to capture many of the features explored in the antecedent

literature. However, although the objective is to retain �exibility, even at this stage we

make a number of identifying assumptions whose violation might cause the performance

of the estimation algorithm to deteriorate. In Section 5, we explore the use of prior views

of the source of data uncertainties and the actions of the statistical agency, to motivate

further restrictions on the model.

3.1 The model for the true data

Let the m dimensional vector of variables of interest that are subject to data uncertainty

at time t be denoted by yt, t = 1; : : : ; T . The vector yt contains the true value of the

economic concepts of interest, but is not observed.

We assume that the model for the true data yt is given by

A(L) (yt � �) = �t (1)

where A(L) = 1�A1L� : : :�AqL
q is a lag polynomial whose roots are outside the unit

circle; � is a vector of constants; and E(�t�0t) = ��. We further assume that A1; : : : ;Aq

are diagonal, so that the true value of each variable of interest is related only to its

own historical values. This representation has a number of limiting features in practical

application:

� Because we assume stationarity of yt, the model is more likely to be applicable to
di¤erenced or detrended macroeconomic data than to their levels.

� Because we assume A1; : : : ;Aq are diagonal, we do not consider transition laws that

exploit prior views of any behavioural relationship between the variables of interest.

This treatment is common across the antecedent literature.

� We assume linearity for yt. Although this may be a restrictive assumption, it is
unclear to what extent we can relax it as assuming one particular form of nonlinearity

is likely to be restrictive as well.
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3.2 The statistical agency�s proprietary information

Let ysjt+nt denote a noisy estimate of yt obtained by the statistical agency at time t+ n;

n = 1; : : : T � t, but not observable by other economic agents. As discussed in Section 5.1,
the statistical agency�s measure might be obtained through statistical returns covering a

sample of activity, or through indirect measurement (use of proxies). The model for ysjt+nt

is given by

y
sjt+n
t = yt + c

sjn + v
sjt+n
t (2)

The constant term csjn is included to permit consideration of biases in the statistical

agency�s data-set. The n superscript allows for observations of di¤erent maturities to be

di¤erently biased. We assume that measurement errors vsjt+nt are distributed normally

with �nite variance. Consistent with this assumption, the properties of the error term

v
sjt+n
t depend on the measurement technology applied by the statistical agency in two

ways:

� Whether the statistical agency receives more information as data become more
mature. Were the statistical agency to receive additional information subsequent

to its initial estimate ysjt+n+1t would be based on a larger sample than ysjt+nt and

the variance of measurement errors might decline as maturity increases; in line with

the intuition described in Kapetanios and Yates (2004).

Similarly, in the latest data release - published at time T>t - the statistical agency�s

observation of the value of the variable that prevailed at time t (ysjTt ) will be based

on a smaller sample than its observation of period t-1 (ysjTt�1). Importantly, this

recognises that any data release will include observations of di¤ering maturities;

ranging from preliminary estimates of the most recent past through more mature

observations of data points that were �rst observed some years previously. In the

interests of generality, we therefore assume that vsjt+nt has heteroscedasticity with

respect to n, so that E
�
v
sjt+n
t

�
v
sjt+n
t

�0�
= �n

v . Homoscedastic errors, such as

might arise were the statistical agency to receive no further information after its

initial estimate, nest within this representation with �i
v = �

j
v for all maturities i, j.

� Whether the statistical agency observes yt directly or not. Were the statistical

agency�s measure to cover a randomly drawn and representative sample of economic

activity, vsjt+nt would be distributed independently of previous measurement errors.

But other measurement technologies might generate serially correlated errors. So,
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in the interests of generality, we allow that vsjt+nt is serially correlated, so that

E

�
v
sjt+i
t

�
v
sjt+j
t

�0�
= �ijv for any measurement errors of maturities i and j. Non-

serially correlated errors nest within this general representation, with �ij
v = 0.

3.3 The statistical agency�s published estimate

The statistical agency publishes an estimate of yt, at time t+ n, denoted by ~y
sjt+n
t . This

estimate is, of course, observed by the other economic agents. The distinction between

the measures observed by the statistical agency and the estimates that it publishes is

introduced to permit consideration of the way in which the statistical agency�s actions in

the face of data uncertainty a¤ect the data-user�s signal extraction solution (see Section

5).

The model for these published data is

~y
sjt+n
t = yt + ~c

sjn + ~v
sjt+n
t (3)

where the properties of the error term ~v
sjt+n
t depend on the error term v

sjt+n
t and on the

modelling choices of the statistical agency; and where the properties of ~csjn depend on the

extent of bias in the statistical agency�s observation
�
csjn
�
and on the statistical agency�s

modelling choices [i.e. whether any biases are adjusted for].

We make a number of modelling assumptions regarding the form of serial correlation,

heteroscedasticity and bias in the published estimates:

� Serial correlation. Consistent with the treatment of vsjt+nt , we allow that ~vsjt+nt is

serially correlated. Speci�cally, we model serial correlation in the errors attaching

to the data in any data release published at t+n; as

B (L) ~v
sjt+n
t = ~"

sjt+n
t (4)

where B(L) = 1�B1L� : : :�BpLp is a lag polynomial whose roots are outside the
unit circle and E

�
~"
sjt+n
t (~"

sjt+n
t )0

�
= �t+n

~" as we are allowing for heteroscedasticity in

measurement errors. This representation picks up serial correlation between errors

attaching to the various observations within each data release. Equation (4) imposes

some structure on ~vsjt+nt because we assume a �nite AR model whose parameters do
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not depend on maturity. We further assume that B1; : : : ;Bp are diagonal so that

measurement errors in the statistical agency�s published estimates of each variable

are related only to historical measurement errors in published estimates of that

variable rather than to measurement errors in estimates of other variables.

� Heteroscedasticity. Consistent with the treatment of vsjt+nt , we allow that ~vsjt+nt and

therefore ~"sjt+nt has heteroscedasticity with respect to n, so thatE
�
~"
sjt+n
t (~"sjt+nt )0

�
=

�n
~" and �

n
~" depends on n. Speci�cally, we model (�

2
~"sjn= �

2
1~"sjn

; : : : ;�2
m~"sjn

) where

�2
i~"sjn

= E
�
~"
sjt+n
it

�2
and ~"sjt+nt = (~"sjt+ni1 ; : : : ;~"

sjt+n
im )0. Then the model for �2

~"sjn
is

given by

�2
~"sjn

= �2
~"sj1
~!sh(n) (5)

where ~!sh(n) denotes some vector of monotonically declining functions of n such

that ~!sh(1) = (1; : : : ; 1)
0; and �2

~"sj1
is the variance of measurement errors at maturity

n = 1. This representation imposes some structure on the variance of measurement

errors because we assume that that variance declines monotonically as the statistical

agency�s observations become more mature. Monotonicity in measurement error

variances is consistent with models of the accretion of information by the statistical

agency, such as that developed in Kapetanios and Yates (2004) op cit. We further

assume that the matrix ~!sh is diagonal so that the variance of measurement errors for

each variable of interest at maturity n is related only to the variance of measurement

errors attaching to earlier maturities of that variable.

� Bias. Consistent with the treatment of csjn, we allow that bias in published estimates
may vary with maturity. Speci�cally, we model ~csjn as

~csjn = ~csj1~!sb(n) (6)

where ~!sb(n) denotes some vector of monotonically declining functions of n such

that ~!sb(1) = (1; : : : ; 1)
0; and ~csj1 is the bias in published data of maturity n = 1.

This representation imposes some structure on the bias in measurement, because we

assume that the bias tends monotonically towards zero as the statistical agency�s

observations become more mature. In contrast with monotonicity in the variance of

measurement errors, this treatment is not motivated by any view of the statistical

agency�s practices. We are not aware of any convincing explanation of the potential

sources of bias in initial estimates. In common with the rest of the model, we assume

that the matrix ~!sb is diagonal so that bias in published estimates of each variable

of interest is considered independent of bias to other variables of interest.
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As mentioned above, the distinction between the measures observed by the statistical

agency and the estimates that it publishes is introduced to permit consideration of the

statistical agency�s actions in the face of data uncertainty - in other words for the

possibility that the statistical agency recognises its own signal extraction problem. A

spectrum of possible behaviours can be envisaged for the statistical agency (see Sargent

(1989)). At one extreme, the agency might be thought of as simply a reporting agency

which compiles the information it collects via statistical returns. At the other, the agency

might apply its own economic models to enhance signal extraction and might draw on a

variety of alternative indicators to complement the statistical returns. In between those

poles, Mankiw and Shapiro (1986) argue that when statistical sta¤ "meet to evaluate and

adjust the estimates before they are released" they are implicitly applying some sort of

�ltering model.

Any �ltering activities by the statistical agency have the potential to a¤ect the data-

user�s signal extraction solution. For illustrative purposes, Annex B works through the

impact of �ltering by the statistical agency in a highly simpli�ed version of the general

model described here. In that example, the statistical agency�s �ltering model is the

same as the data-user�s and hence fully resolves the signal extraction problem - the

data-user�s estimate of the truth is identical to the published data. More generally,

where the statistical agency applies any sort of �ltering model we might expect some

correlation between measurement errors in published estimates and economic shocks (�t).

The intuition is that, in �ltering their proprietary information, statistical sta¤attach some

weight to their own transition law so that shocks to that transition law will be re�ected

in the published data. If the statistical agency�s �lters are set up well, this correlation

will be negative and the published estimate will appear closer to the state space solution

than would be the case with no correlation.

Absent any view of the way in which the statistical agency applies �ltering models, we

do not impose any structure on the correlation. So, for any variable of interest, we write

E(~"
sjt+n
t �0t) = �s~"����~"sjt+n (7)

In line with the treatment in the rest of the model, we assume that any covariance matrix

across variables is diagonal so that measurement errors attaching to published estimates of

one variable are independent of shocks to the transition law driving other variables. Given

this assumption, there is no need to generalise equation (7) to a multivariate setting.
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3.4 Alternative indicators

In addition to the statistical agency�s estimate, the data-user can observe a range of

alternative indicators of the variable of interest that were not exploited by the statistical

agency; such as private sector business surveys. We denote the set of these indicators

by yit, t = 1; : : : ; T . Unlike published estimates, the alternative indicators are not direct

measures of the underlying variables. And, indeed, in practical application many of the

alternative indicators available to us are not measured in the same units as the variable

of interest - for example unlike macroeconomic variables, private sector business surveys

typically report the proportion of respondents answering in a particular category. The

alternative indicators are therefore assumed to be only linearly related to the true data

rather than being direct measures of them

yit = c
i + Ziyt + v

i
t (8)

The error term vit is assumed to be i.i.d. with variance �i. This, of course, is more

restrictive than the model for ~vsjt+nt . In particular, the model does not exploit:

� Any heteroscedasticity or serial correlation in measurement errors associated with
the indicators;

� Any correlation between transition shocks and the measurement errors surrounding
the alternative indicators;

� Any correlation between the measurement errors attaching to the alternative

indicators and those attaching to the published estimates. This is a restrictive

assumption, as it requires that the statistical agency not consider the alternative

indicators when solving its own signal extraction problem. Section 5.1 gives a

qualitative discussion of the reasons why a statistical agency might not make use of

available alternative indicators.
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To summarise the model, we give its complete state space form for the latest available

release; where the two equations describe measurement and transition. The model treats

the latest vintage of data published by the statistical agency and the latest vintage of any

alternative indicators as competing measures of the variable of interest.

�
~y
sjT
t

yit

�
=

�
~csjn

ci

�
+

�
I : : : 0 I : : : 0
Zi : : : 0 0 : : : 0

�
0BBBBBB@

yt
: : :

yt�q+1
~v
sjT
t

: : :

~v
sjT
t�p+1

1CCCCCCA+
�
0
vit

�
(9)

0BBBBBB@

yt
: : :

yt�q+1
~v
sjT
t

: : :

~v
sjT
t�p+1

1CCCCCCA =

0BBBBBBBBBBB@

A1 : : : : : : Aq 0 : : : : : : 0
I 0 : : : 0 0 : : : : : : 0
...

. . . . . .
...

...
. . . . . .

...
0 : : : I 0 0 : : : : : : 0
0 : : : : : : 0 B1 : : : : : : Bp
0 : : : : : : 0 I 0 : : : 0
...

. . . . . .
...

...
. . . . . .

...
0 : : : : : : 0 0 : : : I 0

1CCCCCCCCCCCA

0BBBBBB@

yt�1
: : :
yt�q
~v
sjT
t�1
: : :

~v
sjT
t�p

1CCCCCCA+
0BBBBBB@

�t
: : :
0

~"
sjT
t

: : :
0

1CCCCCCA (10)

The state space problem represented by equations (9) and (10) is a simple linear

model. Extensive previous work (see, for example, Harvey (1989) and Durbin and

Koopman (2001)) has shown that the Kalman �lter and smoother algorithms prove a

robust estimator for this class of models. Details about the Kalman �lter may be found

in the above references. The form of the �lter is also given in Appendix A.

In principle, all the parameters of the model could be estimated via maximum

likelihood using the Kalman �lter - so long as the functions ~!sb and ~!
s
h, the lag orders

q and p, and the dimensions of the vector of alternative indicators yit are set su¢ ciently

parsimoniously to be soluble over the sample of data available. But in doing so, we

exploit only the properties of the latest release of published data and hence ignore any

information about the properties of measurement errors embedded in previous releases. In

other words, the estimator may not make the most e¢ cient use of the evidence available

to us. One symptom of the ine¢ ciency of using only the latest release is the authors�

previous experience of severe numerical problems in the maximisation of the log likelihood

in models of this type.
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In the face of this estimation challenge, one possibility would be to model previous

data releases within the state space setting; with some cross-variable restrictions on the

properties of the measurement errors. However, setting up the model in this way would

require estimation of the variance-covariance matrix across the measurement errors under

di¤ering releases. In the absence of any model describing the data release process, the

number of parameters to estimate would increase materially and the estimation burden

could well prove intractable.

One model would be to assume that the latest vintage subsumes all earlier estimates -

in other words that the statistical agency processes data e¢ ciently. But in that case, there

is no e¢ ciency gain from modelling earlier vintages alongside the latest vintage. Instead,

the approach taken in this paper is to estimate the model in two steps - trading o¤ the

ine¢ ciency of two-step estimation against the increase in the sample of measurement

errors. In the �rst step, the properties of measurement errors in the statistical agency�s

published estimates - that is the parameters driving equations (4) through (6) - are

estimated across a real-time data set. In the second step, the remaining parameters are

estimated via maximum likelihood using the Kalman �lter as outlined in Appendix A2. In

other words, patterns in the historical revisions dataset are assumed to be representative

of the statistical properties of the measurement errors surrounding the latest data release,

but the data-user does not assign any weight to previous data releases in forming a view

of yt. The next Section describes the use of real-time data to estimate properties of

measurement errors in published data.

4 Using real-time data to estimate the properties of
measurement errors

As described above, in the application of the Kalman �lter, we impose parameters for

equations (4) through (6) drawn from analysis of historical revisions experience - in

2This estimation strategy leaves the potential correlation between measurement and economic shocks
(�s~"�) estimated via maximum likelihood within the Kalman Filter. Because the covariance between
measurement and economic shocks will be time-varying, there may be computational issues in maximum
likelihood estimation. Where computational issues arise, an alternative is to exploit the properties of the
real-time data - in other words exploiting the correlation observed between revisions and mature published
estimates. Another alternative, to be pursued in further work, is to consider whether properties of real-
time data can be used to inform Kalman estimation through selection of starting values or bounding
ranges for numerical solution.

13



other words, exploiting the vintage (or real-time) data set. In drawing on historical

revisions experience in this way, we assume that the properties of measurement errors

are fully re�ected in statistical properties of historical revisions to the statistical agency�s

published estimates. This mapping need not hold in practice, as the statistical agency

may consider factors other than measurement uncertainty in reaching any policy decision

over whether to make revisions to published back data in light of new evidence received or

methodological advances made. For some macroeconomic aggregates - such as the UK�s

CPI - the statistical agency�s policy is not to revise.

Using real-time data to estimate the properties of measurement errors requires us to

�rst manipulate the real time dataset to derive a matrix of revisions to published data of

di¤ering maturities and then to estimate the parameters describing the measurement

errors in the statistical agency�s latest published release over those vectors. As a

preliminary, recall that we have assumed ~!sh(n), B1; : : : ;Bp, and ~!
s
b(n) to be diagonal.

As a result, the functions can be calibrated for individual variables rather than for the

system of all variables of interest. In the remainder of this section, we therefore consider

calibration for a single variable and discard vector notation.

4.1 Manipulation of the real time data-set

The real time database for each variable of interest is an upper-triangular data matrix

with two axes: publication (or vintage) dates along the horizontal axis and reference dates

down the vertical axis. Each column represents a new vintage of data published by the

statistical agency, and each vintage includes observations of di¤ering maturities. By way

of illustration, Table 2 shows an extract of the real-time database for distribution output

used in the illustrative example developed in Section 6; and Table 3 describes the maturity

of the various observations.

Table 2: Quarterly Growth of Distibution Output - extract from the real-time database

2003 Q1 2003 Q2 2003 Q3 … . 2005 Q3 2005 Q4 2006 Q1
2002 Q4 0.6 0.3 0.9 … 1.3 1.3 1.3
2003 Q1 0.1 ­0.5 … 0.0 0.0 0.0
2003 Q2 0.8 … 1.3 1.3 1.3

… … … … …

2005 Q3 0.2 0.1
2005 Q4 1.1

Vintage date
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ce
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e
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Table 3: Stylised Real-Time Database - Maturity of Observations

2003 Q1 2003 Q2 2003 Q3 … . 2005 Q3 2005 Q4 2006 Q1
2002 Q4 1 2 3 … 11 12 13
2003 Q1 1 2 … 10 11 12
2003 Q2 1 … 9 10 11

… … … … …

2005 Q3 1 2
2005 Q4 1

Vintage date
R

ef
er

en
ce

 d
at

e

De�ne the revisions to published estimates of an individual variable of interest ~yst
between maturities n and j as

w
sjj;n
t = ~y

sjt+j
t � ~ysjt+nt (11)

For calibration purposes, we take revisions over the J quarters subsequent to each data-

point to be representative of the uncertainty surrounding that estimate. So for example,

with J = 24, we evaluate uncertainties surrounding data of maturity 1 by considering

revisions between the 1st and 25th release; and we evaluate uncertainties surrounding

data of maturity 12 by considering revisions between the 12th and 37th release. If the

real-time dataset contains W vintages of data, and we are interested in the properties of

N maturities, we can construct an N by (W �J) matrix of revisions (WsjJ) over which to

estimate the parameters of equations (4) through (6). N and J are both choice variables

and should be selected to maximise the e¢ ciency of estimation of the parameters driving

equations (4) through (6) - there is a trade-o¤ between setting J su¢ ciently large to pick

up all measurement uncertainties and retaining su¢ cient observations for the estimated

mean, variance and serial correlation of revisions to be representative. In the illustrative

example in Section 6, we arbitrarily set N = J = 16:

The ntth element ofWsjJ is the revision to the published estimate of the value taken

by ~ysat time t between the vintage published at time t + n and the "mature" estimate

published at time t + n + J . Each column of the matrix therefore contains observations

of revisions to data within a single data release. And each row describes revisions to data

of a speci�c maturity n. In describing the properties of measurement errors, our interest

is in tracing out any relationship between data uncertainties attaching to observations

within a data release, as described below.
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4.2 Calibrating heteroscedasticity and serial correlation in mea-
surement errors

The variance-covariance matrix of historical revisions may be used to jointly estimate both

the heteroscedasticity in measurement errors and their serial correlation. As a �rst step,

we impose an arbitrary functional form for ~!sh(n) - the function describing the decline in

measurement error variance as maturity increases:

~!sh(n) = (1 + �)
n�1 (12)

Then the variance covariance matrix can be modelled as a function of B1; : : : ; Bp;

�
2sj1
~" and �, as outlined below. Once speci�ed, the parameters are estimated through

application of (restricted) GMM.

Modelling the variance covariance matrix is trivial for errors that are �rst-order serially

correlated:

V~v =
�2
~"sj1
1��2

2666664
1 (1 + �)� (1 + �)2�2 � � � (1 + �)J�1�J�1

(1 + �)� (1 + �) (1 + �)2� � � � (1 + �)J�1�J�2

(1 + �)2�2 (1 + �)2� (1 + �)2 � � � (1 + �)J�1�J�3

...
...

...
. . .

...
(1 + �)J�1�J�1 (1 + �)J�1�J�2 (1 + �)J�1�J�3 � � � (1 + �)J�1

3777775

Higher orders of p require some further manipulation. Following the model of serial

correlation in measurement errors described in Section 3, the model is

~v
sjT
t = �1~v

sjT
t�1 + �2~v

sjT
t�2 + : : :+ �p~v

sjT
t�p + ~"t; t = 1; : : : ; T

where we allow for heteroscedasticity in ~"t, i.e. E(~"~"
0) = � = diag(�21; : : : ; �

2
T ) where

~" = (~"1; : : : ; ~"T )
0:We want to derive the variance covariance matrix of ~v = (~vsjT1 ; : : : ; ~v

sjT
T )0.

We proceed as follows:

� Let the model be written in companion form as

~vt = B~vt�1 + ~"t

where ~vt = (~v
sjT
t ; ~v

sjT
t�1; : : : ; ~v

sjT
t�k)

0;~"t=(~"t; 0; : : : ; 0)
0 andB =

0BB@
�1 �2 : : : �p
1 : : : : : : 0
: : : : : : : : : : : :
0 : : : 1 0

1CCA.
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� Stacking observations gives

v̂ = xB0 + ~"

where v̂ = (~vT; : : : ; ~vp+1)
0;x = (~vT�1; : : : ; ~vp)

0 and ~" = (~"T; : : : ;~"p+1)
0.

� Then, using the identity vec(ABC) = (C0 
A) vec(B), we have

vec(v̂) = (B
 IT�p) vec (x)+ vec(~")

and

var(vec(v̂)) = (B
 IT�p) var(vec(x))(B0 
 IT�p) + var(vec(~")) (13)

where var is the variance operator. Let ~� = vec(vec(~")).

� Assume that V � var (vec(v̂))= var(vec(x)). Note that the variance we are looking
for is the top LH corner T �T submatrix of V. Then, it follows from Equation (13)
that

vec(V) = ((B
 IT�p)
 (B
 IT�p)) vec(V) + vec(~�)

or

vec(V) =
�
I((T�p)p)2 � ((B
 IT�p)
 (B
 IT�p))

��1
vec(~�) (14)

The above gives an expression of the variance covariance matrix of ~v, denotedV~v, in

terms of of the parameters B1; : : : ; Bp; �2~"sj1 and �. Let a suitably truncated version

of V~v be denoted byV�
~v where the truncation allows only the �rst k autocovariances

of ~vsjT1 to enter V�
~v .

The matrix V�
~v describes the variance-covariance matrix of revisions as a function of

the parameters of interest. A sample estimate of the variance-covariance matrix V̂�
~v can

also be calculated trivially from the matrix of historical revisions WsjJ . Then GMM

estimation of B1; : : : ; Bp; �
2sj1
~" and � amounts to minimising�

vec (V�
~v)� vec

�
V̂�
~v

��0 �
vec (V�

~v)� vec
�
V̂�
~v

��
(15)

with respect to B1; : : : ; Bp; �2~"sj1 and �.
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4.3 Calibrating bias in measurement errors

We can use the sample of historical revisions in matrix WsjJ to calibrate csj1~v and ~!
s
b(n).

The sample means of revisions to estimates of each maturity n = 1 to N are simply

the average of observations in each row ofWsjJ . Denote the average revision to data of

maturity n by mean(wsjJ;n).

The data-user could use these mean revisions directly in modelling the bias attaching

to estimates of di¤ering maturities. That is, setting ~csjn = mean(wsjJ;n). The pitfalls of

this approach are that: �rst, the small-sample properties of the real-time dataset may not

match the data-user�s prior view of the functional form of ~!sb(n) if she has one; and second,

that the estimator is not particularly e¢ cient; requiring N parameters. The alternative,

pursued in production of the illustrative example in Section 6, is to specify a functional

form for ~!sb(n). As outlined above, the desirable features we seek to enforce are �rst, that

bias tends to zero as maturity tends to in�nity - so that the statistical agency eventually

arrives at an unbiased estimate of yt - and second, that the decline is monotonic.

In, practical application, we impose the following arbitrary functional form, consistent

with these features:

mean(wsjJ;n) = ~csj1(1 + �)n�1 +  n (16)

where �1 � � � 0 and  n denotes a disturbance term. The parameters ~csj1 and � are then
estimated over the vector of average revisions using (restricted) non-linear least squares.

5 Prior views about the nature of data uncertainty

The state space representation articulated in Section 3 is quite general in its treatment of

the measurement errors associated with published estimates of economic variables. This

generality enables us to exploit many of the patterns in historical revisions that may

be apparent in real-time datasets. However, the data-user may not view this historical

experience as representative. She may, for example, have a prior view that any serial

correlation apparent in the real-time data is an accidental property of the small sample of

vintage data available. The contention developed in this Section is that such priors might

be informed by consideration of the sources of uncertainty in the data and of the actions

taken by the statistical agency in the face of those uncertainties.
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5.1 Sources of data uncertainty

There are two main sources of uncertainty in economic data; with di¤ering implications

for the set-up of any signal extraction problem. First, data uncertainties may arise

where estimates are based on samples rather than complete information. Assuming

sampling methodologies to be robust, it would be reasonable to expect measurement

errors in published data not to be serially correlated. Alternatively, uncertainties may

arise because the underlying economic concept is not directly observable - as is the

case, for example, when seeking to measure value added in �nancial services. In this

case, the statistical agency may make use of indirect measures, or proxies; modelling

the relationship between observable concepts and the variable of interest, as described

in Cook (2004). Depending on the methodologies chosen to construct indirect measures,

it is possible that measurement errors will prove serially correlated - in other words the

proxy cannot necessarily be considered as a noisy indicator of the variable of interest.

Were sample size to increase as data becomes more mature, we would expect the

variance of measurement errors to fall as the statistical agency�s proprietary information

set grows. For example, as outlined above, Kapetanios and Yates (2004) develop one

model in which the variance of measurement errors declines as data become more mature

and the statistical agency receives more information. Both direct and indirect measures

are typically constructed from samples of statistical returns.

The discussion suggests two routes through which consideration of the sources of data

uncertainty might be used to motivate simplifying assumptions on the general model. The

two priors can be treated independently.

� If use of indirect measures is seen to be negligible then the data-user may choose to
ignore serial correlation and set B1; : : : ;Bp = 0 from Equation (4).

� If the statistical agency�s proprietary information set is not seen to grow as data
become more mature then measurement errors will be homoscedastic with respect

to maturity - for example, by setting � = 0 in equation (12).
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5.2 The statistical agency�s actions in the face of data uncer-
tainty

One natural challenge is to ask why there might be a signal extraction problem for the

data-user to address once the statistical agency has processed its proprietary information.

In other words, to ask why the statistical agency does not solve its own signal extraction

problem and publish results on that basis - identifying the constraints under which the

statistical agency operates. Cook (2004) outlines a number of practical constraints on

statistical measurement. Our contention is that as a provider of data, the statistical

agency has to balance the potential for statistical inference to improve on face value

treatment of data against the impact of any modelling approximations made on the

transparency, coherence and credibility of the National Statistics as a whole. In contrast,

as users of data, economists are free to make approximations and apply statistical

inference. The threshold for economic analysis is simply whether the results have a better-

than-evens chance of improving on what went before.

In practice in the UK, the ONS follow a detailed rulebook, conforming to international

standards, when collecting and compiling data. That rule book may constrain the

statistical sta¤ in two main ways:

� Available information set. The foundations of any National Statistics are a

range of statistical returns that record the experience of individuals and �rms. The

statistical agency may feel constrained in looking beyond these statistical returns

and hence ignore some available indicators. The ONS prefer not to make use of

private sector surveys, such as the CBI�s survey of manufacturing trends, where it

has direct measures available in the form of its own statistical returns (see Mai and

Richardson (2004)). And, more generally, statistical agencies might not wish to

consider behavioural economic relationships as measures.

� Use of models. If the statistical agency wishes to preserve a transparent mapping
from individual statistical returns to aggregate estimates then it may be constrained

in its use of economic models to manipulate those estimates. In other words, the

statistical agency may feel constrained in attaching any weight to prior views of

how data will evolve. In practice, once statistical returns are available, the ONS do

not make extensive use of �top level�adjustments based on econometric models (see

Clements and Hendry (2003)).
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The discussion suggests two routes through which consideration of the statistical

agency�s actions in the face of data uncertainty might be used to motivate simplifying

assumptions. In contrast with the discussion of sources of data uncertainty, the

implications of the two priors are not independent. There are four scenarios:

a). The statistical agency uses all available information (so that there are no additional

indicators and yit is empty) and uses sophisticated models to assign some weight to

its expectation of how yt would evolve (so that ~y
sjt+n
t 6= y

sjt+n
t ). If the statistical

agency is able to use the same modelling technology and indicators as the data-user

then the data-user cannot "add value" through her own �ltering of the published

data or through separate consideration of any alternative indicators - as illustrated

in Annex B. If the statistical agency�s model is seen to di¤er from the full state

space model - for example, if the agency�s modelling is better approximated by

application of some qualitative guidelines or rules of thumb - then the data-user can

add value. Ideally, she would take account of any modelling already applied by the

statistical agency. In practice, however, the statistical agency�s model is not known

and we adopt the full model in Section 3 leaving yit empty.

b). The statistical agency is constrained in its use of alternative indicators (yit is not

empty), but uses sophisticated models to assign some weight to its expectation of how

yt would evolve (so that ~y
sjt+n
t 6= ysjt+nt ). The data-user cannot take the published

estimates at face value without discarding a part of her information set. And,

because the alternative indicators will a¤ect her expectation of the dynamics of yt
(i.e. her estimate of the parameters A1; : : : ;Aq), she must solve the full state space

problem. One corollary of this prior is that we should expect measurement errors

to the statistical agency�s published estimate to be correlated with economic shocks

so that it is not appropriate to set �s~"� = 0.

c). The statistical agency uses all available information (so that there are no additional

indicators and yit is empty) but is constrained in its use of models (so that

~y
sjt+n
t = y

sjt+n
t ). The data-user cannot take published data at face value without

discarding her modelling technology and hence should solve the signal extraction

problem with yit left empty
3. Because the statistical agency is not seen to be pre-

�ltering, measurement shocks will not correlate with economic shocks and �s~"� = 0.
3It is here that our simplifying assumption that measurement errors attaching to alternative indicators

are uncorrelated with those attaching to the statistical agency�s estimates becomes restrictive. Were this
assumption to be relaxed, the policymaker would bene�t from consideration of alternative indicators
(which she can observe) as part of the signal extraction solution.
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d). The statistical agency is constrained in its use of alternative indicators (yit is not

empty) and is constrained in its use of models (so that ~ysjt+nt = y
sjt+n
t ). This is the

general representation as articulated in Section 3. Because the statistical agency is

not seen to be pre-�ltering, measurement shocks will not correlate with economic

shocks and �s~"� = 0.

6 An illustrative example

As an illustrative example, we apply the model to quarterly growth of distribution output

- estimating the state space model for a single variable of interest. The real-time data-set

used is an extension of the Bank of England�s real-time database for GDP(E) described

in Castle and Ellis (2002). It includes 52 vintages of distribution output, with reference

dates running from 1989 Q1 to 2006 Q1. We consider the CBI�s distributive trade survey

as an indicator - speci�cally, the proportion of all respondents reporting good sales for

the time of year. This is an arbitrary choice made to explore the functioning of the model

rather than following from any assessment of competing indicators. We do not provide

such an assessment as part of this example.

6.1 Characterising the revisions history

Table 4 sets out some summary statistics describing the experience of revisions to

published data of di¤ering maturities - evaluating revisions over a 16 quarter window

as discussed in Section 4.1.

The summary statistics suggest that revisions have been upwards more often than

downwards and that, on average, upward revisions have had a larger magnitude than have

downward revisions. As a result the mean revision is upward. There is no �rm evidence

that the mean revision declines as maturity increases. The null that mean revisions are

zero can be rejected at the 90% level for 13 out of 16 maturities.
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Table 4: Quarterly Growth of Distibution Output - Revisions Model Parameters

Maturity
1 4 8 12 16

Mean 0.06 0.18 0.22 0.24 0.15
P­value1 (0.30) (0.09) (0.02) (0.02) (0.02)
Proportion of revisions >0 58% 53% 61% 72% 64%
Mean upward revision 0.51 0.80 0.63 0.51 0.39
Mean downward revision ­0.57 ­0.51 ­0.43 ­0.47 ­0.27
Mean absolute revision 0.54 0.66 0.55 0.50 0.35
Standard deviation of revisions 0.70 0.81 0.62 0.67 0.42
Variance 0.49 0.65 0.39 0.45 0.18
P­value2 N/A (0.80) (0.24) (0.40) (0.00)
Median 0.10 0.18 0.28 0.13 0.13
Skew ­0.24 0.06 ­0.19 0.62 ­0.14
Kurtosis 4.04 2.69 2.05 4.53 2.67
Memo – characteristics of the latest estimate of distribution output
Mean growth 0.85
Standard deviation of growth 0.70
1 Probability that mean revision is zero at each maturity
2 Probability that revisions variance at each maturity is smaller than revisions variance at first release

The mean absolute revision is 0.54pp for estimates with a maturity of 1 quarter. That

compares with average growth of 0.85pp in distribution output. For immature data there

is little evidence of heteroscedasticity, but the variance of revisions does decline quite

markedly once data have reached a maturity of 14 quarters - the null that the variance

of revisions is equal to that at maturity 1 is rejected at the 90% level for all maturities

beyond 14 quarters.

6.2 Calibrating heteroscedasticity, serial correlation and bias

As outlined in Section 3, the model is estimated in two stages: �rst estimating the

properties of the measurement errors - that is equations (4) though (6) - across real-

time data and second applying those properties in estimation of the state space model via

the Kalman Filter. And, because we do encounter numerical di¢ culties in estimation of

�s~"� within the Kalman Filter, we also calibrate that correlation using the real-time data.

Table 5 reports the parameters driving bias, heteroscedasticity and serial correlation.

Because the selection of J and N - the maturities over which to calibrate and the window

over which to calculate revisions - is arbitrary, we report results for J=N=12 and J=N=20

alongside the estimates used in the remainder of this Section.
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The model of bias is very simple and maps easily from the summary statistics quoted

in Table 4. Because the mean revision is similar across most maturities, the bias decay

parameter (�) is very close to zero. The variance decay parameter (�) is more negative

giving the variance of measurement errors a half life of 14 quarters. Note that calibration

of this parameter is sensitive to the choice of N - the range of maturities over which

to calibrate the model parameters. This is not surprising given that Table 4 shows the

variance of revisions not to decline much before maturity 14. The summary statistics do

not give an indication of the serial correlation in measurement errors. As discussed in

Section 4.2, the models for serial correlation and heteroscedasticity are estimated jointly.

There is some negative serial correlation across revisions, with parameter values not

particularly sensitive to the choice of J and N.

Table 5: Quarterly Growth of Distibution Output - Revisions Model Parameters

J=N=12 J=N=16 J=N=20
1

~
s
vc ­0.1428 ­0.1782 ­0.1940

λ 0.0000 0.0000 0.0000
2

1svε
σ 0.4339 0.6015 0.6663

δ ­0.0158 ­0.0474 ­0.0841
β1 ­0.2240 ­0.2182 ­0.2410
β2 ­0.0680 ­0.1034 ­0.0776
β3 0.0478 ­0.0674 ­0.0713
β4 0.0686 0.1070 0.2532

6.3 Estimating the state space model

Once equations (4) though (7) have been calibrated, the remaining model parameters are

estimated via maximum likelihood using the Kalman Filter. Examination of the various

residuals of the Kalman Filter gives some indication of the degree to which modelling

assumptions are violated in the data-set. Both the prediction errors for the published

ONS data and the smoothed estimates of the errors on the transition equations pass

standard tests for stationarity, homoscedasticity and absence of serial correlation at the

5% level. There is some evidence of non-normality in the smoothed residuals on our

transition equation - largely driven by outliers at the beginning of the esimation window.

The errors surrounding predictions for the indicator variable are less well-behaved. In

particular, there is evidence of signi�cant serial correlation in these residuals.
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Figure 1 reports the estimates of quarterly growth of distribution output. Following

the convention of the GDP and in�ation fancharts plotted in the Bank of England�s

In�ation Report each band contains 10% of the distribution of possible outcomes. In this

application, because we assume normality, the outer (90%) band is equivalent to a +/-

1.6 standard error bound.

Figure 1: Quarterly Growth of Distibution Output: Full Model
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The statistical agency�s published estimate is below the centre-point of the fanchart

across much of the sample - unsurprisingly given the estimate of bias in published

estimates. The centre-point of the fanchart tracks the published estimates quite closely

once those estimates are mature. This is a corollary of the heteroscedasticity in

measurement error variance. Over the most recent past, the centre-point di¤ers more

materially: re�ecting both the higher measurement error variance attaching to earlier

releases and the di¤erence between the large apparent changes in the published estimates

and the stability of the transition law.

6.4 Prior views about the nature of data uncertainty

In Section 5, we introduce the possibility that the data-user will have some prior view of

the nature of data uncertainties. Suppose that the data-user is con�dent that any bias and

serial correlation apparent in the real-time dataset is not representative. This prior view

of serial correlation might follow from her view that the statistical agency does not make

material use of indirect measures in forming its estimate of the variable of interest. For
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illustrative purposes, we examine the impact of this prior on the backcast for distribution

output. We do not present any evidence for or against this prior.

� Because the equations describing serial correlation and heteroscedasticity are

estimated jointly, setting B1; : : : ;Bp = 0 a¤ects the estimates of �2~"sj1 and �. The

half-life of measurement uncertainties surrounding the published estimates appears

slightly shorter at 13 quarters compared with 14 when serial correlation is included.

� The Kalman Filter prediction errors for the published o¢ cial data still pass standard
diagnostic tests for serial correlation at the 5% level. In other words, serial

correlation does not appear to be a particularly signi�cant feature of the dataset.

� Imposing this prior may a¤ect both the point-estimate and the estimated standard
errors surrounding it. Figure 2 shows the estimates of year-on-year growth of

distribution output consistent with the quarterly model setting B1; : : : ;Bp = 0.

The centre-point of the distribution is a¤ected by the assumption that the published

estimates are not biased. And the standard errors surrounding the year-on-year

growth rates are some 14% wider than was the case in the model with negative serial

correlation.

Figure 2: Year on Year Growth of Distibution Output: No bias, no serial correlation
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7 Conclusions

We have represented the policymaker�s - and, indeed any data-user�s - data uncertainty

problem as a signal extraction problem in which she seeks to establish the appropriate

weight to attach to the latest published estimates, alternative indicators and her prior

expectation of the how the data would evolve. The model developed is relatively

general and permits us to consider both a relatively rich representation of the potential

measurement errors in the statistical agency�s published estimates and to consider

alternative indicators alongside those published estimates. Expressing the model in the

general form used in Section 3 provides a base on which to consider the implications of

di¤ering prior views about the nature of the uncertainties facing the statistical agency

and its actions in dealing with them.

The model and its solution are founded on a number of assumptions. In particular,

the model is linear and stationary; measurement errors are assumed to be normally

distributed; and the driving matrices are diagonal so that we can neither exploit

any behavioural relationship between the variables of interest nor any correlation in

measurement errors across variables. One obvious extension would be to recast the state

space problem to ensure that accounting identities are satis�ed - either following Doran

(1992) in adding the accounting identities to the vector of measurements taken on each

variable or following Weale (1985) in allocating any accounting identity �residual�arising

from estimation of the Kalman system across elements, to minimise some loss function.
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A Kalman Filter Algorithm

The model developed in Section 3 is summarised in state space form as equations (9) and

(10). Linear state space models of this form can be cast in the general representation

given below, following the notation in Harvey (1989).

yt = dt + Ztbt + ut; ut � i:i:d:N(0;�t;u); t = 1; : : : ; T (A.1)

bt = ct +Ttbt�1 +Rt�t; �t � i:i:d:N(0;�t;�) (A.2)

and E(�tu
0
t) = Gt. Below, we abstract from issues arising from the estimation of the

parameters of the model which enter the matrices ct;Zt;�t;u;�t;�;dt;Tt,Gt and Rt and

concentrate on the estimation of the state vector bt conditional on the parameters being

known. Let us denote the estimator of bt conditional on the information set It�1 as b̂tjt�1
and that conditional on the information set up to and including time t as by b̂t. Denote

the covariance matrices of the estimators b̂tjt�1 and b̂t as P̂tjt�1 and P̂t, respectively. The

Kalman �lter is initialised by specifying b0 and P0. Then, estimation of b̂t by the Kalman

�lter comprises sequential application of the following two sets of equations:

b̂tjt�1 = ct +Ttb̂t�1 (A.3)

P̂tjt�1 = TtP̂t�1T
0
t +Rt�t;�R

0
t;

known as the prediction equations, and

b̂t = b̂tjt�1 +
�
P̂tjt�1Z

0
t +RtGt

�
F�1t

�
yt � Z0tb̂tjt�1 � dt

�
(A.4)

P̂t = P̂tjt�1 �
�
P̂tjt�1Z

0
t +RtGt

�
F�1t

�
ZtP̂tjt�1 +G

0
tR

0
t

�
;

known as the updating equations, where

Ft = ZtP̂tjt�1Z
0
t + ZtRtGt +G

0
tR

0
tZ
0
t +�t;u (A.5)

The set of smoother estimates and their respective covariance matrices are denoted by

b̂tjT and PtjT and are given by

b̂tjT = b̂t +P
�
t (b̂t+1jT �Tt+1b̂t) (A.6)

and

PtjT = P̂t +P
�
t (Pt+1jT � P̂t+1jt)P

�0
t

(A.7)

where P�t = P̂tT
0
t+1P̂

�1
t+1jt.

28



The log-likelihood function for the observation equation (A.1), is denoted by L(#)
where # denotes the vector of parameters with respect to which the log likelihood is

maximised, can be written in terms of the prediction errors $t = yt � Z0tb̂tjt�1 as

L(#) = �T
2
log 2� � 1

2

TX
t=1

log jFtj �
1

2

TX
t=1

$
0

tFt$t: (A.8)

This log likelihood function L(#) can be used to estimate the unknown parameters of the
model, #. The matrices Ft and$t are dependent on the matrices ct;Zt;�t;u;�t;�;dt;Tt;

Gt;Rt;b0 and P0.

This representation and solution method is general to all linear state space models. In

the remainder of this Annex, we give further details of its application to the model devel-

oped in Section 3. There, the parameter vector # comprises = (�
0
1;�

0
2; ::;�

0
q;�

2sj10
~" ; �

0
;

�
0

1; : : : ;�
0

p; c
sj10 ;�

0
;�s0~"�;�

20
i ;�

0
;�2

0
� ; c

i;Zi).

The model is multivariate with all the parameter matrices assumed diagonal, so:

� The parameters of the transition law - given by �1;�2; ::;�q - are de�ned by
Ai = diag(�i);

� The variance of the shocks to that law by �� = diag(�2�);

� The heteroscedastic variance of measurement errors in the published data by �T�t~"

- a diagonal matrix whose diagonal elements are a function of �2sj1~" and �.

� Serial correlation in those measurement errors by Bi = diag(�i);

� The covariance between measurement errors of di¤ering maturities and shocks to
the transition equation by �T�t~"� - a diagonal matrix whose diagonal elements are a

function of �s~"�, �
T�t
~" and �2� .

� The variance of measurement errors attaching to indicators by �i = diag(�2i ):

Then we have the following setup.

ct = �

Zt =

�
I : : : 0 I : : : 0
Zi : : : 0 0 : : : 0

�
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�t;u =

�
0 0
0 �i

�

�t;� =

0BBBBBB@
�� 0 : : : �T�t~"� : : : 0
: : : : : : : : : : : : : : : : : :
0 : : : : : : : : : : : : : : :
�s~"� 0 : : : �T�t

~" : : : 0
: : : : : : : : : : : : : : : : : :
0 : : : : : : : : : : : : : 0

1CCCCCCA
dt =

�
~csjn(1+ �)T�t�1]

ci

�

Tt =

0BBBBBBBBBBBB@

A1 : : : : : : Aq 0 : : : : : : 0
I 0 : : : 0 0 : : : : : : 0
...

. . . . . .
...

...
. . . . . .

...
0 : : : I 0 0 : : : : : : 0
0 : : : : : : 0 B1 : : : : : : Bp

0
. . . . . . 0 I 0 : : : 0

...
. . . . . .

...
...

. . . . . .
...

0 : : : : : : 0 0 : : : I 0

1CCCCCCCCCCCCA
Gt = 0

Rt = I

b0 =

�
�
0

�
and

P0 = (I�T0(#))�1�0;�(#)

This is the most general setup possible for the estimation of the state space model of

Section 3. However, as described in the main text, in estimation we set some parameters

to constants having obtained suitable values for them via prior estimation (as we discuss

in Section 4). Then the maximum likelihood estimation problem becomes one where the

log likelihood is maximised with respect to #1 keeping #2 constant where # = (#01; #
0
2)
0

is some suitable partition of #. With the heteroscedasticity, serial correlation and bias

parameters estimated by GMM, the partition is #1 = (�1;�2; ::;�q;�i;�;��;�
s
~"�; c

i;Zi)

and #2 = (�2~"sj1 ; �;�1; : : : ;�p; c
sj1
~v
;�).

Finally, note that when B1 = B2 = : : : = 0 the measurement error has no serial

correlation. Then, the above state space is equivalent to one where the measurement

error enters the measurement rather than the transition equation.
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B A stylised model comparing the implications of
statistical agency as compiler and modeller

In Section 5, we assert that if the statistical agency applies the same modelling strategy

as the data-user to the same dataset then there is no added value to be had. This annex

expands on the intuition, using a much simpli�ed representation of the model articulated

in Section 3. Let there be a single variable of interest yt and assume that the model for

the true data is given by a simple 1st order autoregressive process

yt = ayt�1 + �t where �t � N(0; �2�): (B.1)

Assume that past data values are observed with certainty so that at time t, both the

statistical agency and the data-user know the value of yt�1. The signal extraction problem

is to form a view of yt on the basis of yt�1 and any other information available.

Let yst denote a proprietary and noisy estimate of yt obtained by the statistical

agency. Because we assume that past data values are known with certainty, there is

no need to model heteroscedasticity in measurement errors and the t + n superscript

used in the general model becomes redundant. Similarly, there is no need to model any

serial correlation in measurement errors associated with this proprietary information. We

further assume that the measure is unbiased. Then, the model for the statistical agency�s

noisy measure is given by:

yst = yt + vt where vt � N(0; �2v) and E(�tvt) = 0: (B.2)

The statistical agency publishes an estimate of yt based on yst , denoted by ~y
s
t . In doing

so, the agency may either act as a data compiler (taking yst at face value) or as a data

modeller (assigning some weight to its prior view of yt in line with the properties of the

transition law). The data-user is tasked with forming her own view of yt based on ~yst ,

denoted by ŷpolt No alternative indicators are available.

This annex shows the implications of the two approaches open to the statistical agency

for the data-user�s estimate of true output.

Statistical agency as a �data-compiler�

If the statistical agency acts as a �data-compiler�it is assumed to simply publish its

proprietary information without any adjustment

~yst = yst : (B.3)
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Knowing that the statistical agency is acting in this way, the data-user looks to form

an estimate of yt on the basis of her complete information set. Notably, that information

set includes the time-series forecast derived from the structural model in equation (B.1).

So, with a linear expectations function, the data-user�s estimate of yt will be given by

ŷpolt = 
ayt�1 + �~yst : (B.4)

From �rst principles, the data-user should choose 
 and � to minimise some kind of

loss function - here assumed to be quadratic in the expected error. Given the assumptions

about measurement errors and economic shocks, this loss function will uncover the

maximum likelihood estimate of yt given the available information.

L = E(yt � 
ayt�1 � �~yst )
2 (B.5)

= E(ayt�1 + �t � 
ayt�1 � �(ayt�1 + �t + vt))
2

= E((1� 
 � �)ayt�1 + (1� �)�t � �vt)
2

= (1� 
 � �)2a2y2t�1 + (1� �)2�2� + �2�2v:

Minimising that loss function with respect to 
 and � allows us to uncover the following

�rst-order conditions

@L

@

= �2(1� 
 � �)a2y2t�1 = 0; (B.6)

@L

@�
= �2(1� 
 � �)a2y2t�1 � 2(1� �)�2� + 2��

2
v = 0: (B.7)


� and �� (the optimal weights to attach to the prior and the statistical agency�s

estimate) are then a function of the relative error variances, as given below


� =
�2v

�2� + �2v
=

1=�2�
1=�2� + 1=�

2
v

; (B.8)

�� =
�2�

�2� + �2v
=

1=�2v
1=�2� + 1=�

2
v

: (B.9)

This is the relatively familiar result that indicators should be weighted according to

their inverse standard errors: the smaller the standard error associated with a particular

piece of information, the larger the weight that should be attached to it.
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Statistical agency as a �data-modeller�

If the statistical agency is not constrained in its use of models, it could make use of the

prior view embodied in the transition law itself. In that case, the agency would already

be taking account of the information in the structural model and the published data will

use the optimal weights from the previous section and be given by

~yst =
�2vayt�1
�2� + �2v

+
�2�y

s
t

�2� + �2v
: (B.10)

Exactly as in the previous section, the data-user is then tasked with choosing 
 and

� in her expectations function

ŷpolt = 
ayt�1 + �~yst : (B.11)

Using the same quadratic loss function as before gives

L = E(yt � 
ayt�1 � �~yst )
2 (B.12)

= E

�
ayt�1 + �t � 
ayt�1 � �

�
�2vayt�1
�2� + �2v

+
�2�(ayt�1 + �t + vt)

�2� + �2v

��2
= E

�
(1� 
 � �)ayt�1 +

�
1� �2��

�2� + �2v

�
�t �

�
��2�

�2� + �2v

�
vt

�2
= (1� 
 � �)2a2y2t�1 +

�
1� �2��

�2� + �2v

�2
�2� +

�
��2�

�2� + �2v

�2
�2v:

Again, minimising that loss function with respect to 
 and � allows us to uncover the

�rst-order conditions

@L

@

= �2(1� 
 � �)a2y2t�1; (B.13)

@L

@�
= �2(1� 
 � �)a2y2t�1 �

2�4�

�
1� �2��

�2�+�
2
v

�
�2� + �2v

+
2��4��

2
v

(�2� + �2v)
2
: (B.14)


� and �� (the optimal weights) are now very di¤erent


� = 0; (B.15)

�� = 1: (B.16)

Given that the statistical agency are already taking account of the structural forecast,

it would be a mistake for the data-user to �double-count�that information. Putting any

additional weight on the time-series forecast would, in this case, lead to over-�ltering.
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