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Abstract: 

Emprical studies of hyperinflations reveal that the rational expectations hypothesis fails to hold.  To 
address this issue, we study a model of hyperinflation and learning in an attempt to better understand the 
volatility in movements of expectations, money, and prices.  The findings surprisingly imply that the 
dynamics under neural network learning appear to support the outcome achieved under least squares 
learning reported in the earlier literature.  Relaxing the assumption that inflationary expectations are 
rational, however, is essential since it improves the fit of the model to actual data from episodes of severe 
hyperinflation.  Simulations provide ample evidence that if equilibrium in the model exists, then the 
inflation rate converges to the low inflation rational expectations equilibrium.  This suggests a classical 
result: a permanent increase in the government deficit raises the stationary inflation rate (Marcet and 
Sargent, 1989). 
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1. The Main Questions 

 In the United States and Western Europe, it is generally accepted that new money 

creation (seigniorage) is not typically resorted to as a source of public finance (Plosser 

and King, 1985).  This is in stark contrast with the recent experience in some East 

European and Former Soviet Union (FSU) countries (Miller and Zhang, 1997).  With the 

collapse of the command system and with the deterioration of the balance sheets in state-

owned enterprises, governments were forced to seek new sources of revenue.  Reform 

delays in most countries and slow progress toward privatization in some countries created 

further obstacles to improvement in the fiscal position of governments.  In periods of 

such upheaval, the absence of strong independence of the central bank meant that weak 

governments could easily resort to extensive money creation.  The results have been very 

high and variable rates of inflation, especially in the initial stages of transition.  In some 

instances, hyperinflation has occurred.  Such episodes are the subject of this paper. 

 Hyperinflations are economic anomalies in the sense that variations in nominal 

and monetary variables almost completely outweigh variations in real variables (Cagan, 

1956, p. 25).  Thus, such episodes provide opportunities for testing of long-standing 

hypotheses in monetary theory, especially regarding the linkage between money and 

prices.  They thus also provide natural laboratories for studying inflationary expectations 

and policy regime changes.  The economic theory of hyperinflation was stimulated by the 

observations of the dramatic historical episodes witnessed over the past century.1  There 

is little disagreement that movements in expected inflation account principally for the 

                                                 
1 These include the classic hyperinflations of the interwar period: Austria, Germany, Hungary, Poland, and 
Russia. Other examples involve Hungary and China during and after WWII; some Latin American 
countries in the 1980s, viz., Argentina, Bolivia, Brazil, Peru; Israel in the mid-1980s; and most recently 
Yugoslavia, Russia, Ukraine, Georgia and Bulgaria. 
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changes in demand for money during hyperinflations.  However, the process of 

stabilizing inflation is more controversial.  A traditional view holds that stopping 

inflation necessarily requires that money creation be severely restrained.  The classic 

essay by Cagan (1956) elaborates on this point of view.2  Sargent (1993, p. 45) extends 

these earlier ideas to include the need for a credible fiscal restraint that becomes 

“sufficiently binding to be widely believed.”3  His main message implies that 

hyperinflations end only when accompanied by sudden, credible policy change by the 

government.  When the government is unable to finance the deficit through means other 

than money creation, high seigniorage is exacted and inflation soars.  Notwithstanding 

these contributions, the enduring questions remain: what causes hyperinflations; what 

stops them; are expectations rational during episodes of dramatic increases in money and 

prices, and during regime shifts; can agents in hyperinflationary environments “learn to 

stabilize?” 

We use a standard overlapping generations model with money in which the deficit 

is financed through seigniorage to study some of these questions.  Much like Cagan’s 

findings (1956), the model results in two equilibria with stationary inflation levels (high 

and low).  We next introduce two alternative learning mechanisms to explain better the 

stylized facts of economies during hyperinflation.  This work follows, among others, 

                                                 
2 Also of note is Bresciani-Turroni (1937, p. 355), who calls stabilization a “miraculous event,” observing 
“The stabilisation of the German exchange showed, as did that of the Austrian crown, this characteristic: 
The exchange was stabilized before there existed conditions (above all the equilibrium of the Reich 
Budget) which alone could assure a lasting recovery of the monetary situation.” Keynes’ eloquent A Tract 
on Monetary Reform (1923. p. 40 and 47), which in effect pre-dates actual stabilizations of the time, makes 
a subtler point: “Has the public in the last resort no remedy, no means of protecting itself against these 
ingenious depredations? It has only one remedy—to change its habits in the use of money. The initial 
assumption on which our argument rested was that the community did not change its habits in the use of 
money.  ….. a minimum is reached eventually from which the least favorable circumstance will cause a 
sharp recovery.” 
3 Sargent’s original essay was published in 1982. 
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Sargent and Wallace (1987), Marcet and Sargent (1989) and Marcet and Nicolini (2003).  

It captures two main ideas: the workings of a credible regime shift that is typically 

required to end a hyperinflation, and the study of the dynamics of adjustment under 

learning and allowing for a small departure from rational expectations (to be precisely 

defined below).  We employ the internal consistency (IC) equilibrium requirement in 

Marcet and Nicolini (2003) to compare and numerically contrast our results.  We show 

that, under both least squares and neural network learning, the large size of fiscal shocks 

and higher levels of average seiniorage in early transition economies account for the 

dynamics and explosive patterns of hyperinflation we observe in this period and 

countries. 

 

2. Motivation 

 There is widespread agreement that inflationary expectations play a central role in 

hyperinflations.  What is still little understood is how these expectations are formed.  

Since Cagan’s pioneering work, Sargent and Wallace (1973), Sargent (1977) and Sargent 

and Salemi (1979) have formulated the model under rational expectations to explain 

governments’ reliance on deficit finance through money creation observed in most 

hyperinflations.  This result points to the presence of a feedback from inflation to future 

rates of money creation, i.e., inflation Granger-causes money creation.  In at least several 

of the hyperinflations that Cagan studied, empirical results in Sargent and Wallace (1973, 

p. 418-419) provide evidence that inflation influences subsequent rates of money growth.  

This link is stronger than the weaker effects going in the other direction.  Thus, money 

creation is endogenous, governed by the need to finance fiscal deficits.   
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This happens, Sargent (1977, p. 431) claims, because the system during 

hyperinflation operates under a particular money supply rule which predetermines the 

outcome.  If, however, the monetary regime changes, so will the causality in the money 

creation-inflation process.  Furthermore, Sargent (1977) explains, due to this simultaneity 

bias in Cagan’s estimator, a “paradox” emerges which may easily be resolved: the actual 

rates of inflation in these hyperinflationary episodes far exceeded the rates that would 

yield the maximum sustainable revenue from money creation available to governments.4 

To address this and other regularities exhibited in the data, such as the tendency 

for the real balances to sharply decline while inflation soars, Sargent and Wallace (1981, 

1987) use a Cagan-type, portfolio equation for the demand for real money balances 

together with a government budget constraint relating seigniorage and money creation.  

Under rational expectations (RE), they show that the model exhibits a continuum of 

equilibria converging to two stationary rational expectations ones.  The model implies 

that the economy may end up on “the slippery side of the Laffer Curve.”  These dual 

equilibria, studied also in Bruno and Fisher (1990), Benthal and Eckstein (1990) and Lee 

and Ratti (1993) though under a slightly different (continuous-time) set-up, suggest that 

the same amount of seigniorage (the revenue from money creation) may be extracted at 

either the high “inflation trap” or the lower rate of inflation consistent with RE.  Bruno 

and Fisher (1990, p. 353 and 373) conclude that this may be the direct result of the 

operation rules (regime) the government selects for its monetary and fiscal policy.  How 

and which equilibrium path is to be selected remains an open question.  However, 

Sargent and Wallace (1987) also provide little explanation of the way in which agents 

                                                 
4 Companion empirical work shows this to be the case in several East European hyperinflations.  See also 
Salemi and Sargent (1979). 

 
4



come to acquire RE and knowledge about the economy experiencing hyperinflation 

(Fischer, 1987).  The model with rational expectations cannot account for rapid and 

increasing rates of inflation that end with a sudden “restoration of normality.” 

Laboratory evidence and a survey of expectations (in the case of the Bulgarian 

hyperinflation) also suggest that significant adjustment of expectations occurred only in 

the period immediately preceding policy change (Marimon and Sunder (1993), Carlson 

and Valev (2001)).  Burdekin and Whited (2001, p. 78), however, point to some 

differences in this regard in stabilizing Taiwanese hyperinflation (1945-1953).  The 

reform package of 1949 had little influence on the public’s future expectations of 

inflation, and stabilization occurred only gradually and only in the presence of multiple 

regime shifts. 

Marcet and Sargent (1989c) present a model of learning and hyperinflation, in 

which either the economy converges to the low inflation steady state or no equilibrium 

exists under least squares learning.5  However, the result is classical in the sense that a 

higher deficit is associated with a higher, stable stationary inflation rate.  Under RE, an 

increase in deficits results in a lower stationary inflation rate.  These results appear to be 

not completely satisfactory, and as Bullard (1994) demonstrates, under an alternative 

preference map, least squares learning converges to a periodic equilibrium.  Agents are 

also not allowed to re-specify their perceived law of motion of the system in response to 

any structural breaks, or regime shifts.   

                                                 
5  By least squares learning, in this context, we mean an adaptive learning rule, which is a mapping of past 
inflation observations into future forecasts whereby agents rely on misspecified economic models and 
“run” least squares regressions that converge asymptotically to the actual ones.  See Marcet and Sargent 
(1989a,b).  For earlier insight and analysis, see DeCanio (1979), Bray (1982), and Bray and Savin (1986).  
For convergence, these authors rely on methods different than the ones presented in the above papers 
(Ljung’s ordinary differential equation method).  See also Woodford (1990) for exposition of Ljung’s 
(1977) main theorems.  Margaritis (1987) is the first application of Ljung’s results in economics. 
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Arifovic (1995) and Bullard and Duffy (1998) study the model under genetic 

algorithms, interpreting it as a model of learning and emulation in which heterogeneous 

agents interact and evolve to understand how to forecast the future.  The results in their 

artificial economies indicate that the lower of the two is a stationary equilibrium, while at 

the same time a self-fulfilling hyperinflation may be reached and sustained.  Duffy and 

Bullard (1998) also show non-convergence to any of the equilibria. 

Adaptive learning of expectations addresses a number of issues raised by the 

above inconsistencies in modeling expectations and hyperinflation episodes in particular.  

One set of questions involves the examination of transitional dynamics in equilibrium 

selection, where the experience gained from transition economies is particularly useful to 

motivate its application.  Following some type of structural change or policy regime shift, 

economies necessarily grope for ways to reach RE.  Some RE are learnable while others 

are not, as summarized in Evans and Honkapohja (2001) and Arifovic and Bullard 

(2001). 

This paper uses a model developed by Marcet and Nicolini (2003) to test, via 

simulations, the stability and the empirical validity of the model in a hyperinflationary 

environment.  It also examines the behavior of the model under two alternative learning 

rules and addresses the stylized facts of recent hyperinflation experiences.6  We reflect, in 

general, on the convergence of learning processes based on neural networks for which no 

analytical results are yet available.7  It is of considerable interest to understand whether 

the stability conditions for this particular self-referential model are the same under 

                                                 
6 In the same spirit, though different in approach, Sargent (1999) and Lansing (2001) provide some 
explanation for the “Great Inflation” in the US. 
7 See White, (1989, p. 1003): “…investigations of network learning methods have so far proceeded by 
Monte Carlo simulation; a rigorous and general analysis of network learning has not yet been carried out.” 
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alternative (reasonable) econometric learning rules.  Are these (in)stability conditions the 

same as the frequently encountered “expectational stability” or E-stability conditions?  If 

not, why not, and does this vindicate the model if it can explain stylized facts in 

hyperinflations?  Section 3 discusses the stylized facts.  Section 4 finds motivation in the 

existing literature on learning and hyperinflation and addresses some of its deficiencies.  

Neural networks and learning are the subject of Section 5.  Section 6 describes the model.  

Learning is introduced, motivated and defined in Section 7.  Section 8 studies the model 

under neural network learning.  Simulations and results are presented in Section 9. 

 

3. Hyperinflations: The Stylized Facts and Stabilizations 

Table 1 reports selected hyperinflations over the last century.  It is evident that the 

hyperinflation phenomenon is relatively short in duration and characterized by highly 

unstable and explosive paths of inflation and money growth (Bruno, 1991).  In most 

instances, there was a complete collapse of the currency and the monetary system.  Most 

of those hyperinflations are well documented.  The important common feature that 

emerges is the fiscal difficulties that accompanied each episode.  In some sense, 

hyperinflations have been largely fiscal in origin.  The way these economies regained 

stability was only after a credible and abrupt change in fiscal and monetary regimes.  This 

attests to the importance of inflationary expectations in successful stabilizations.  It is 

only after a drastic revision of the public’s expectations of future government policies 

that inflation is promptly curtailed (Sargent, 1993).  In Germany, inflation was finally 

brought down suddenly after the implementation of a new fiscal regime in November 
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1923.8  Bolivia managed to end its hyperinflation by unifying and stabilizing the 

exchange rate while at the same committing to adjusting the fundamental fiscal 

imbalances in the economy (Sachs, 1987). 

It is well established in the literature that these types of stabilizations work 

successfully through influencing inflationary expectations in such a way that the public 

understands the reform packages carried out by governments (transparency) and 

anticipates that the announced policies will be pursued (credibility).  This is achieved 

through a combination of “orthodox” and “heterodox” policy.  Stabilizations that occur 

through incomes policies are called heterodox, and those that do not orthodox.  Orthodox 

policies aim to reduce the deficit permanently through both monetary and fiscal reforms.  

In addition, those programs that stabilize inflation using the exchange rate as the nominal 

anchor for the economy are exchange–rate based stabilizations.9  In money-based 

stabilizations, the central bank targets the money stock.  Table 2 summarizes some recent 

stabilization experiences.  With the exception of Brazil, the hyperinflations of Table 1 all 

ended with the implementation of some type of an orthodox program.  Thus, in what 

follows, we model this feature explicitly to discuss the end of hyperinflations and the role 

of learning. 

 Figures 1 and 2 exhibit the quarterly, and where available the monthly, inflation 

rate and seigniorage as a percent of GDP for each of the hyperinflations we use to 

                                                 
8  Vegh (1992) describes the experiences of effectively stopping hyperinflations in 1920s Europe and 1980s 
Latin America.  His evidence suggests that the exchange rate served as the nominal anchor, and 
hyperinflations were stopped “almost overnight” without significant loss in output. Webb (1986) also 
asserts that inflationary expectations were driven in an important way during the German hyperinflation by 
fiscal news, i.e., the steady increase and anticipation of budget deficits. 
9  For more on the implications of money-based and exchange rate-based stabilization, see Bofinger (1996). 
He examines the experience of three former Soviet Union countries.  In addition, see also Dornbusch et. al. 
(1990) and Bruno (1991). 
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motivate this study.  For these countries, the data show that seigniorage rises as the 

deficit increases and inflation remains high.10  Notice also that the levels of seigniorage 

that lead to hyperinflation in all cases are similar to those that occur at much lower rates 

of inflation.  In other words, bursts of explosive inflation occurred in periods in which 

seigniorage was low and even declined.  For example, in Ukraine, a five percent 

seigniorage level corresponds to both the highest rate of inflation in the fourth quarter of 

1993 and the lower inflation rate of the first quarter of 1995.  This suggests that a low 

contemporaneous relationship exists between these two variables in hyperinflations.  Not 

reported here, the cross correlograms of these two series reveal a well-defined spike in 

the third and fourth lags and then descrease to zero.11  The cross correlations are positive 

since an increase in seigniorage produces a subsequent rise in inflation.  It also appears 

that seigniorage leads the periods of accelerating inflation. 

 Finally, following Marcet and Nicolini (2003), we may detail the stylized facts of 

hyperinflations in the following way (and as our examination of recent hyperinflations in 

the 1990s reveals): 

1. Hyperinflations occur in countries with high, on average, levels of 

seigniorage. 

2. There exists a low contemporaneous correlation between seigniorage and 

inflation, for a given hyperinflation country. 
                                                 
10 See also Fischer, et. al. (2002).  In addition, we estimate the following non-linear relationship to establish 
this in our case: 2

0 1 2*inf *infseigniorage lation lβ β β ε= + + + .  Controlling for fixed effects for each 
country, we find 1β  to be positive and significant and 2β  negative and significant but of smaller 
magnitude.  This may indicate the presence of a Laffer curve effect. 

11 The estimated cross-correlation coefficient is defined as: 1
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3. A credible regime shift (an exchange rate rule) stops hyperinflations 

successfully. 

These stylized facts appear to be uncontroversial in the literature; see Bruno (1991, 

1993), Dornbusch, Sturzenegger, and Wolf (1990) and Fisher, Sahay, and Vegh (2002). 

 

4. Why Learning Hyperinflations? 

 Hyperinflationary episodes are usually accompanied by a sharp fall in real 

balances and chaotic behavior of money growth and prices.  Cagan (1956) attempted to 

isolate a stable money demand function even in these extreme circumstances.  In periods 

of such short but drastic changes and upheaval, he explained that demand for real 

balances is not a function of income or the real interest rate but rather, more generally, of 

the rate of return on holding money.  The opportunity cost of holding money is the rate of 

inflation, as even anecdotal evidence suggests.  However, what matters is the rate of 

inflation that is expected to prevail in the immediate future and not past values of 

inflation. 

( )
e
tet

t
t

M
F e

P
αππ −= =     (1) 

Cagan also postulated that adjustment occurred as a fraction of the forecast error of the 

previous period.  His adaptive expectations formula is as follows: 

  (2) 1 ( )e e e
t t tπ π β π π+ − = − t

 

 
10



β is the speed of adjustment.  As discussed earlier, there are a number of problems with 

this approach.12  Furthermore, Cagan (1956, p. 77) points out that sudden shifts in 

expectations will not occur if expected future inflation is determined only by past events. 

 These concerns were first addressed in Sargent and Wallace (1973) who 

formulated the model with rational expectations and followed by a series of articles by 

Sargent and others.  The issues that were mainly addressed concern the inertia evident in 

Cagan’s adaptive expectations and the sudden and abrupt stabilization that accompany 

most hyperinflations.  This point was fully developed in Sargent’s “The End of Four Big 

Inflations” (1982).  In addition, it appeared that the estimates of alpha in Equation (1) did 

not accord well with the actual average inflation rates experienced.  Governments inflated 

too fast to maximize revenue through seigniorage.  There is some empirical evidence to 

this effect, especially in recent transition countries’ experience. 

 Sargent and Wallace (1981 and 1987) formulated a model with a Cagan-type 

money demand with rational expectations in which they specified explicitly the 

endogeneity of the money creation process, motivated by the need to finance a given 

level of seigniorage.  They discover (confirm) a duality of rational expectations 

equilibria, with high inflation stationary equilibrium being the stable solution and the 

attractor of a continuum of equilbria.  Given the stylized facts of hyperinflations, this is 

not completely satisfactory.  In some sense, it even implies that the economy may end up 

in high inflation equilibria indefinitely.  In addition, raising the level of seigniorage, 

                                                 
12 Cagan (1956, 72) also notes this deficiency eloquently: “…In the light of the sharp rise in the balances 
when a reform of the currency approaches, any diminution in the rate at which notes were issued would 
likely alter the prevailing expectation of a certain future inflation to one of a less rapid rate, whether the 
reaction index were greater than unity or not. If so, the balances would rise at once if the policies of the 
note-issuing authorities justified more confidence in the future value of the currency. These sudden 
revisions in expectations cannot be accounted for in a model that predicts future prices on the basis of past 
changes in prices and money alone.” 
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reduces inflation.  This, however, is counterintuitive and does not also accord with actual 

observations.  This is illustrated in Figures 3 and 4 of Appendix 3 in the paper. 

 Marcet and Sargent (1989b) analyze least squares learning in the context of this 

model.  They find that the model either converges to the low inflation equilibrium, which 

is Pareto superior, or no equilibrium exists, for high enough seigniorage.  This result is 

classical in the sense that higher deficits financed through seigniorage obtain stable 

stationary inflation rate.  These findings are the basis of the dynamics of the model 

developed by Marcet and Nicolini (2003) and the one we study under two alternative 

learning procedures in the rest of the paper. 

 As described in Marcet and Sargent (1988, 1989a), adaptive learning arises in the 

following manner: agents stipulate a mapping of the equilibrium dynamics of the state 

variable in the model economy; then they estimate an econometric model that fits this 

relationship.  This econometric model describes the agent’s perceived law of motion 

(PLM).  Agents thus use these estimates to evaluate forecasts of future values of state 

variables.  In other words, “agents act like econometricians.”  These forecasts are then 

used in the model to obtain solutions for the actual path of the variables of interest.  This 

is the agent’s actual law of motion (ALM).  This process is updated each period and 

repeated recursively as more data become available.  The main interest in the analysis is 

the conditions under which PLM converges to the ALM and the choice of the updating 

(decision) rule that governs the agents’ behavior.  Evans and Honkapohja (2001) discuss 

the notion of expectational stability (E-stability) that defines the convergence of learning 

dynamics to rational expectations equilibria.  In other words, the conditions for the 

asymptotic stability of the rational expectations equilibrium under least squares learning, 
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for example, are described by the mapping from PLM to ALM.13  In this instance, for the 

model adopted below, Marcet and Nicolini (2003) describe the stability properties of the 

mapping T. 

 Marcet and Nicolini’s (2003) work also suggests that rational expectations and 

adaptive learning may be seen as non-competing approaches.  If rational expectations 

obtain, then those may still be learnable in the long run.  Thus the adaptive learning 

approach to expectations formation allows us to explore the learnability and stability of 

steady state solutions in the seigniorage model (Evans and Hokapohja, 2001 and Lettau 

and Van Zandt, 2002).  Recent contributions are Barucci (2001) and Heinemann (2000).  

Bullard and Butler (1993), discussing policy implications of these types of models, 

declare: “A learning hypothesis is attractive, since it is not clear that perfect foresight is 

even a feasible assumption when equilibrium dynamics become complicated or chaotic, 

because then agents in the model predict perfectly even when observers outside the 

model see only white noise.  These issues remain open.  When deviations from baseline 

assumptions are incorporated, stabilization policy can be both desirable and efficacious.  

This is therefore an important avenue for future research.” (p. 866) 

 

5. Hidden layer neural networks and learning 

 Neural networks are a class of nonlinear models developed by cognitive scientists 

to mimic the architecture of the human brain.  Implicitly, they are designed to ‘learn’ the 

                                                 
13 Assume a mapping ( )Tφ φ→ , from PLM to ALM.  Assume the rational expectations equilibrium (REE) 
is a fixed point of T, i.e., *( )T *φ φ=  under some regularity conditions.  Then a given REE is said to be E-

stable if the differential equation: ( )d T
d
φ φ φ
τ
= −  is locally asymptotically stable at *φ  (see also Evans and 

Honkapohja, 2001, p. 140). 
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model parameters through a complex interaction with their ‘environment’ (patterns of 

weights and connections) in a process that can be viewed as a recursive estimation 

procedure (the method of back-propagation).  In this way, these networks discover an 

unknown functional relationship between inputs and outputs.  They represent an input-

output system in which a mapping of inputs x1, …, xp into outputs y1, …, yn occurs.  For 

our purposes, they express functional forms that are approximating unknown 

relationships among relevant variables.  The single hidden-layer feedforward network has 

the following form: 

0 0

( ; ) ( ( ))
q m

j ji i
j i

y F x a a xδ β λ
= =

= = ∑ ∑    (3) 

We can view Equation (3) as a nonlinear function, in which only one layer of hidden 

units exists; the model is “feedforward” because signals flow in only one direction, more 

complicated networks may have both more hidden units and allow for certain 

“feedbacks” as well.   is the activation function, usually of sigmoid shape; a β  and λ  

are the unknown weights. 

The usefulness of this functional form is its ability to approximate a set of 

mappings from input to output spaces as indicated by Hornik, Stinchcombe and White 

(1989) and White (1989).  The theorem is formally stated in Judd (1998, p. 246).  

However, performance is sensitive to specification and one should be careful in applying 

these models to specific empirical phenomenon involving inputs and outputs.  In this 

sense, NN coefficients are chosen to minimize the distance between the target and the 

output match.  Determination of those coefficients is done through stochastic 

 
14



approximation methods that model a dynamic process of learning and updating (Judd, 

1998). 

The recursive learning procedure that is used in solving the minimization problem 

is called back-propagation, and is implemented through a local gradient descent (see 

Kosko, 1992 and White, 1989 for details).  It is expressed in the following way: 

1 1 1( , )( ( , )) 1,2...t t t t t t tf x y f x for tθ θ η θ θ− − −= + ∇ − ∀ =    (4) 

The back propagation starts with initial random weights θ  and updates occur through (4).  

These values are a function of the β s and λ s in (3).   is the learning rate, and the 

gradient with respect to the weights is .  The weights continue to adjust in response to 

the errors of reaching the target output, yt.  The error, in this sense, is propagated back.  If 

neural network training is done “on-line” as a recursive scheme, it closely resembles 

adaptive learning as discussed above.  It simply represents an alternative statistical 

learning rule.  η  can be either decreasing to accommodate the effects of shocks that die 

out in the approximation or it can be a constant where it is appropriate for learning in 

evolving systems and tracking is necessary for abrupt changes (White, 1990).  In this 

sense, the learning rate controls the influences innovations have on updating the current 

estimate.  We attempt to exploit this feature of the learning algorithm below, where 

vanishing learning rates may fail to recognize a sudden shift in the system and we resort 

to some optimal fixed learning rates to track evolving phenomenon better as in the case 

of hyperinflations.  To our knowledge, this application of the back propagation algorithm 

in neural networks, in which the learning rate “switches” endogenously, appears for the 

first time in the literature.  

η

f∇
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The introduction of neural network learning in the seigniorage model, as 

described below, helps us redress the following issues in hyperinflation episodes:  

1.  Is modeling learning important for understanding stabilizations? Can agents 

learn the rational expectations equilibrium over time, as indicated by Cagan (1991) and 

Bullard and Butler (1993)? 

2.  How does the convergence in neural network vs. least squares learning occur 

and at what values?  Gradient descent learning has been shown to converge under E-

stability correspondence (Evans and Honkapohja (1998) and Barucci and Landi (1997), 

what about the neural network learning variant?  As suggested by Chen and White 

(1998), is it preferable that we use other nonparametric techniques, i.e., PLM be specified 

non-parametrically? 

3.  What do we learn about the behavior of the model and does it indeed match the 

stylized facts of hyperinflations? 

 

6. A Model of Seigniorage and Learning  

6.1. The Economy 

 The underlying economic model is one of inflation with government financing the 

deficit by seigniorage.14  We consider a basic overlapping generations (OLG) economy 

with fiat money, where agents are two-period lived.  Trade and consumption of a single 

perishable good take place in periods t ∈ {0,1,….}.  Every agent of generation t lives 

only over t and t+1 (young and old, respectively) and consumes in these periods c1t and 

                                                 
14 An extensive description of the model can be found in Ljunqvuist and Sargent (2001, Chapter 8), and 
Lettau and Van Zandt (2002), among others. Sargent (1993, p. 90-95) provides a stochastic version of the 
model. 
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c2t.  Each agent has a unique endowment (e1, e2), e1>e2, and the same utility function U(.).  

There is also a storable good, “money”, used in exchange that has no consumption value. 

The initial stock of money is m-1>0, supplied to the initial generation that lives only one 

period with endowment of e0.  In addition, we consider a government that finances the 

deficit through seigniorage only; this implies money does have value.  Let pt be the price 

of the perishable good at period t.  Let πt+1=pt+1/pt be the (gross) inflation rate in period 

t+1.  Young agents trade and form expectations about the price to prevail in the next 

period.  Given the current price and an expected future price, pe
t+1, agents in generation t 

choose consumption and money to: 

1 2
1 2, ,

1 1

2 2

max (.) ln ln

: /

/ .

t t t
t tc c m

t t t
e

t t

U c c

subject to c e m p

c e m p 1t

β

+

= +

≤ −

≤ +

   (5) 

We assume the problem has a unique solution and the constraints are binding in 

equilibrium.15  The solution depends in an obvious way only on the expected inflation.  It 

is well known that the solution to this problem yields a Cagan-type demand (savings 

function) for real balances given by: 

1 2
e

tm 1tγ γ π += −     (6) 

where the γ’s are functions of the discount factor β in the utility function and 

endowments.  Let  1 2 0.γ γ> >

 As mentioned above, money creation is only driven by the need to finance 

seigniorage.  The government augments the initial money stock in each period t in the 

following way (this is its budget constraint): 

                                                 
15  For further derivations of the results that follow, see the Appendices. 
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1 /t t th h dtπ−= +     (7) 

where { } 0t t
d

∞

=
 is an exogenous iid stochastic process and represents seigniorage, ht is the 

money supply.16  Using the equilibrium condition in the money markets and equations (6) 

and (7), we readily obtain an equilibrium map for the economy: 

1( , , ) 0e e
t t tF π π π+ .= 17 

In particular, the equilibrium dynamics of the economy is described by the actual 

inflation as a function of expected inflation this (current) period and expected inflation in 

the following period.  Furthermore, given our particular choice of the utility function in 

(5), we can write: 

1 2
1

1 2 1

( , )
e

e e t
t t t e

t td
γ γ π

π φ π π
γ γ π+

+

−
= =

− −
   (8) 

The rational expectations “dual” equilibria (REE) to this model are well known and thus 

the main results are relegated to Appendix 2.18 

We augment this formulation of the model along the lines of Marcet and Nicolini 

(1998, p. 8), to capture the behavior of governments and economies experiencing 

hyperinflation (see Table 1).  Equation (8) describes the solution in periods of no 

exchange rate rules (or other similar rules that reduce governments’ incentives to collect 

seigniorage through money creation).  In periods of a “fixed exchange rate rule” (ERR), 

the government’s concern about the current levels of inflation prompts it to peg the 

                                                 
t

16 A more straightforward, intuitive way to express (7) is the following: 1t t tm m p d−= + . 
17 Stationary solutions satisfy ( , , ) 0F π π π = .  There are two stationary rational expectations solutions, 
as discussed in the introduction, (πL,πH), low and high inflation states. These are shown in Appendix 2. 
18 Detailed description of the behavior of these solutions when , or very high, and there is no 
uncertainty introduced through assuming random seigniorage dt (or σd

2=0) exists in Sargent and Wallace 
(1981), Marcet and Sargent (1989) and Arifovic (1995). However, Proposition 3 in Marcet and Nicolini 
(2003) verifies the properties of the equilibrium map with these additional extensions. 

Uβ =∞
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foreign exchange rate thorough foreign reserves operation in the market (some of these 

rules are easily instituted through a currency board, for example Argentina (1991) and 

Bulgaria (1997)).  Then the targeted inflation rate is
1 1

,
f

t t
f

t t

p e
p e

θ
− −

=  where et is the 

exchange rate in terms of the foreign currency and pf
t is the foreign price level.  

Assuming purchasing power parity and arbitrage in foreign exchange markets,19 (9) 

obtains: 

1

t
t

t

p
p

π θ
−

= =      (9) 

To implement this policy, the government needs to know only the foreign price level and 

the exchange rate.  The government budget constraint will not hold under the new 

regime; it must be supplanted with the stock of foreign exchange reserves to 

acknowledge the adjustment the government makes to enforce ERR.20  Since we do not 

intend to formally model reserves in this model, we impose a rule on how the government 

acts in times of increasing inflation. In a sense, they enforce the rule whenever inflation 

reaches an upper limit:  

1

Ut
t

t

p
p

π θ
−

= ≤     (10) 

where θU is the maximum “tolerated” inflation rate, after which ERR is imposed. 

Hence, the model can be expressed as: 

                                                 

1) ,−

19 Some evidence of PPP in high inflation transition economies is provided in Christev and Noorbakhsh 
(2000). 
20 This implies as in Marcet and Nicolini (2003): 1 (t t t t t t tH H d p e R R−= + + − where Rt is the level 
of foreign exchange reserves and Ht the nominal level of money stock. 
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1 2 1 2
1

1 2 1 1 2 1

( , ) 0
e e

e e Ut t
t t t e e

t t t t

if
d d

otherwise

γ γ π γ γ π
π φ π π θ

γ γ π γ γ π

θ

+
+ +

− −
= = <

− − − −

=

<

,

(11) 

 

6.2. Adaptive Learning and Lower Bounds to Rationality 

 Assume a self-referential model of the type discussed in Marcet and Sargent 

(1988, 1989a,b) that satisfies:21 

1 1( , , , )e
t t t tx H x x ξ λ− +=    (12) 

where H is determined by (6) and (7) and market equilibrium. xt is inflation and money 

supply, xe
t+1 is agents’ expectations of the future value of xt and ξt is seigniorage.  λ 

contains a vector of parameters relating to the behavior of the public and government 

policy: γ1, γ2, Uandθ θ . 

Agents form expectations in the following way: 

1 ( ( ), )e
t t tx z θ µ+ = x     (13) 

θt(µ) is estimated from past data, and z is the forecast function that depends on the state 

variable xt.  The θ s are governed by a learning rule f, where µ’s explicitly model how 

past data is to be used in estimation of the forecasts: 

1( ) ( ( ), , ).t t tf xθ µ θ µ µ−=     (14) 

                                                 
21 See also Evans and Honkapohja (1995) for additional description and stability results for this type of 
models. 
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Let us assume that for this model, z is 1
e

t tπ θ+ = .  Below, by imposing lower bounds to 

rationality of agents in the model, due to Marcet and Nicolini (2003), we relate and 

restrict the behavior of the above parameters via the learning rule, f. 

Adaptive learning places upper bounds on rationality by assuming agents do not 

know the exact economic model under which they operate and have bounded memory.  

There may be a variety of learning rules that meet these bounds, and as Sims (1980) has 

warned us, our models may simply slip into the “wilderness of irrationality” and not be 

falsifiable.  To avoid this dilemma, Marcet and Nicolini (2003) suggest that we allow for 

small departure (in transition and asymptotically) from rational expectations.  This is 

proposed so that, given an economic model and some empirical observations, we may 

introduce learning rules that satisfy certain lower bounds while at the same time confront 

the model with the observed behavior of the economy.  Much like Marcet and Nicolini 

(2003, p. 13 and 25), the simulations discussed in Section 9 provide evidence that the 

model may generate equilibria quite different from the rational expectations (RE) ones 

and match the data better. 

 Marcet and Nicolini (2003, p. 15-17) propose three lower bounds to rationality 

that we adopt in what follows and study two alternative learning rules.  Let ,Tεπ  be the 

probability that, in a sample of T periods, the perceived prediction errors will be within 

ε>0 of the true conditional error: 

[ ]
2 2

,
1 1 1 1

1 1

1 1(
T T

T e
t t t t t

t t
P x x x x

T T
ε ( ) )π ε+ + + +

= =

⎡ ⎤≡ − < −Ε⎣ ⎦∑ ∑ +    (15) 

where Εt is the true conditional expectation under the learning rule and x’s are defined as 

above.  This definition implies that after T periods the prediction error from the agents in 
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the model is within ε of the true prediction error.  The convergence of this probability 

asymptotically limits the behavior of our learning rules and allows the weights (learning 

steps), with which agents in the model update their forecasts, to be determined 

endogenously in what follows.  The first bound to rationality in Marcet and Nicolini 

(2003) is as follows:22 

Definition 1:  Asymptotic Rationality (AR): the learning rule satisfies asymptotic 

rationality in the model of Section 6.1 if:  , 1 0T as T forεπ ε→ →∞ ∀ .>

This allows agents to make forecasting errors for some time in the future but not do it 

consistently forever. 

Definition 2:  Epsilon-Delta Rationality (EDR): the learning rule satisfies epsilon-delta 

rationality for (ε, T, δ) in the model of Section 6.1 if: , 1 .e Tπ δ≥ −  

Definition 2 requires that agents make optimal or near optimal forecasts within a given 

learning rule.  Denote ( , )θ µ µ′�  to be the forecast given by the learning parameter µ′  

when in fact all agents in the model are using the parameter µ : 

1( , ) ( ( , ), , ) ,t t tf x µθ µ µ θ µ µ µ−′ ′ ′=� �  

where  is the learning rule under study. f

Definition 3: Internal Consistency (IC):  Given the model in Section 6.1, the learning 

rule satisfies internal consistency for (ε, T) if : 

2 2
1 1

1 1

1 1( ( ( ( ), )) ) min ( ( ( ( , ), )) ) ,
T T

t t t t t t
t t

x z x x z x
T T

µ µ µ µ

µ
θ µ θ µ+ +′

= =

′Ε − ≤ Ε −∑ ∑ � µ ε+

                                                

(16) 

 
22 As these authors acknowledge, they are not the first to impose these requirements in the literature on 
stability of RE under adaptive learning. See Kurtz (1994) and also Fudenburg and Levine (1995).  
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where z(.) is defined as the expectations of the agents in the model.  This requirement, in 

fact, helps us select an efficient learning parameter from a set of alternatives that 

identifies an equilibrium in the model given the learning rule used by the agents.  While it 

is not straightforward to show that Epsilon-Delta Rationality satisfies a given learning 

rule, it implies that learning forecasts might in effect be better at detecting a regime 

change and once in place the agents are not willing to change to a different learning 

mechanism within the model.23  We only employ the IC criteria of Eq. (16) to select the 

learning step in the back-propagation algorithm and compare the results to the least 

squares learning as defined below. 

 

7. Learning Equilibria with Least Squares 

Now suppose, we depart from the rational expectations hypothesis used in the 

model above.  Instead, let us assume expectations are given by: 1t
e

tπ θ=+ .  Under certain 

conditions, not all equilibria could be the outcomes of adaptive learning processes 

described in Section 6.2.  The learning rule could change adaptively in a way that the 

parameters are altered in response to forecast errors.  Agents form expectations of 

inflation in the next period as a weighted average of the previous inflation expectations 

and updates on the last prediction error.  One way to express this learning mechanism is: 

    1 1
1 (t t t t
t

θ θ π θ
α− −= + − 1)−

                                                

    (17) 

 
23 See Marcet and Nicoli (2003, p.25-26) for a proof that ERD obtains when least squares learning is used 
by the agents under uncertainty.   
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given initial values θ0.  This is a well-known adaptive expectations formula, a particular 

expression of (13), where the coefficient (“gain” parameter) specifying the revision of the 

forecast error 1( )
tα

 decreases over time at rate t.24  The evolution of the learning step and 

(17) determine the learning mechanism f in (13). 

 The gain sequence is often expressed as: 

 

  (18) 1 1 ,t tα α −= +
 

with initial α1=1.  Thus, when  (commonly used assumption), the forecast rule is 

simply a regression of the mean of past inflations. 

t tα =

 Alternatively, when there is a structural change in the economy, and agents have 

to update their perceived inflation accordingly, the approach that appears more robust is 

to assume that αt is not decreasing infinitely but rather is equal to some fixed value α >1.  

This is called a “constant-gain” algorithm and is studied in Benveniste (et. al., 1990, ch.1 

and 4 part I).  Unlike (18), where new information is given proportionately less weight, 

the constant-gain step allows for abrupt changes in the economy to be followed more 

rapidly, allowing higher weights on the last available information.  The optimal choice 

will depend on the magnitude and frequency of the structural change.25 

 Marcet and Nicolini (2003) propose to combine the two approaches, and have 

least squares updates with a decreasing gain to occur in periods of stability and “tracking” 

                                                 
24 See, for example, Evans and Honkapohja (1995) and Marcet and Sargent (1989a).  Lettau and Van Zandt 
(2002) study the stability of this learning rule for the same model of hyperinflation as in this paper. 
25 As shown in Ljung, Pflug and Walk (1992), there is a trade-off between bias and accuracy when a 
constant-gain algorithm is used but it is clearly preferred to detecting abrupt changes in the structure of the 
economy, evolving over time. These are called algorithms with “tracking.” 
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when sudden and abrupt change or instability is observed.26  In this way, we allow the 

agents in the model to use an endogenous gain sequence in which agents use least squares 

when they do not make large mistakes and switch to fixed values of alpha when 

prediction errors increase above a certain threshold ν , say more than 10%, in cases of 

hyperinflation.  Therefore, the gain sequence in (17) becomes: 

1
1

1

1 1t
t t

t

if

otherwise

πα α
θ

α

−
−

−

= + − <

=

υ

    (19) 

Hence, the model in (11) with least squares learning becomes: 

1 2 1 1 2 1
1

1 2 1 2

( ( ), ( ), ) 0 Ut t
t t t t

t t t t

d if
d d

otherwise

γ γ θ γ γ θ
φ θ α θ α π θ

γ γ θ γ γ θ

θ

− −
−

− −
= = < <

− − − −

=

 (20) 

Provided the learning mechanism in (17) and (19), Equation (20) is highly 

nonlinear and thus we describe its solution via simulations in Section 9 below.  Marcet 

and Nicolini (2003) study the stability properties of the mapping from PLM to ALM 

when seigniorages are stochastic (see Proposition 3 of their paper, p. 30).  This element 

of uncertainty determines the equilibrium path of the model.  They prove that the 

function is increasing and convex and possesses two stationary rational expectations 

equilibria (fixed points of the mapping T): low inflation rate and high inflation rate (see 

also Figures 5 and 6).  They also show convergence to the lower of the two stationary 

equilibria and that, for high enough seigniorage, no equilibrium exists.  Figure 6, in 

addition, illustrates that the stable set (S set) decreases as seigniorage increases.  A 

                                                 
26 This is indeed also suggested in Evans and Honkapohja (1993). 
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succession of high seigniorage shocks increases perceived inflation in the unstable set (U 

set) and the system tends to unravel in an ever-increasing inflation.  When inflation 

becomes intolerable, the government sets up a credible exchange rate rule (ERR) and 

agents switch to tracking as more recent events have become increasingly more 

important.  This sends inflation back into S set.  When the unstable U set is closer to the 

lower stable rational expectations equilibrium, hyperinflations become more likely since 

seigniorage is higher.  We will use this intuition of the model to explain some of the 

stylized facts discussed earlier. 

 

8. Learning Equilibria with Neural Networks 

 We introduce neural network expectations and learning in the model of Section 6.  

Thus, economic agents in this model will continually employ neural networks to learn 

and approximate their perceived (expectations of) inflation to the actual, true conditional 

expectations of the future inflation rate (Salmon, 1995).  This process of trial and error 

(as explained above and represented by the back-propagation algorithm), of adjusting to 

“reality” as new data become available, proceeds until a trade-off margin is reached and 

it is no longer optimal for agents to adjust.  In a sense, further accuracy is no longer 

necessary, given economic conditions (Salmon, 1995, p. 250).  As mentioned, this stems 

from the powerful approximation properties of the hidden layer neural networks (NN). 

(See White 1989, 1992 and Kosko 1992).  The measure of accuracy is the sum of the 

mean of squared prediction errors.  Back-propagation learning (BPL) converges to a set 
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of weights27 (model parameters) that could provide locally (mean-square) optimal 

predictions of future expected inflation. (White (1989) and Kuan and White (1994, p.40 -

56) provide formal treatment). 

In this nonparametric sense, without specifying the structure of expectations 

formation, the back-propagation algorithm and the NN that defines it may indeed have 

the potential of learning the true rational expectations equilibrium of the model (Salmon, 

1995 and Heinemann, 2000).  These studies show that learning, even ‘approximate,’ 

rational expectations equilibria, is not straightforward.  The recursive, iterative nature of 

the algorithm used corresponds closely to adaptive learning mechanisms of Section 6.2, 

and mimics “the solution to forward-looking rational expectations.” (Salmon 1995, p. 

267)  In addition, providing asymptotic convergence results for NN estimates, Kuan and 

White (1994, p.40-41, Theorem II.2.1) show that the solution trajectory of the back-

propagation algorithm does not cycle between two stable equilibria.  In what follows we 

examine whether (and if not, why not) the time varying, nonlinear inflation process 

implies a θ  that converges and compare the results in quantitative sense to the least 

squares learning algorithm.  It is of interest to understand how and under what set of 

initial conditions and parameter values the behavior of the system changes and evolves 

over time.  Again, the goal is to explain some of the stylized facts of hyperinflations and 

contrast the results under different learning rules.  In the process, the small departure, 

defined in the precise sense of Definition 3, away from rational expectations, is under 

scrutiny. 

                                                 
27 These are the model parameters that we estimate through a back-propagation algorithm and represent 
future expected inflation.  That is, they provide an approximation to the function (mapping) relating 
perceived to actual inflation in the model, i.e., the law of motion in the economy. 
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We construct a single hidden layer NN with two inputs: a constant and the current 

inflation rate.  Let NN expectation of future inflation be: 

1 ( , , tan )e
t t tF consπ π δ+ = t     (21) 

Using the model equations (5) and (6), we obtain the current inflation generation process: 

1 2 1 1 1 2 1 1

1 2 1 2

( , ) ( , )
0

( , ) ( , )

,

Ut t t t
t

t t t t t t

F F
if

F d F d

otherwise

γ γ π δ γ γ π δ
π θ

γ γ π δ γ γ π δ

θ

− − − −− −
= <

− − − −

=

<

  (22) 

where θ , Uθ  and  are defined as before.  The network expectation function  

defined in Eq. (23) is obtained in the process described above.  The inputs (inflation this 

period and a bias) are sent to intermediate (hidden) unit, which is activated through the 

sigmoid function, and sent forward to the output level.  The hidden layer (indexed by 

j=1…q) yields an activation function , where G is the sigmoid 

function and i=1…T.  The network output can be expressed as: 

td ( , )g π δ

1(ij i j i ja G aπ λ µ−′ ′= + )

0( , ) ( , ) ,
q

t t ij j
j

g F aπ δ π δ β β
=

= = +∑     (23) 

where   These are the weights, or connection strengths, 

and the parameters to be learned through a recursive back-propagation learning 

algorithm.  The agents are estimating their updates of future expected inflation in a loop 

that allows them to target the previous period iteration’s value as an approximation they 

learn based on current and past inflation rates.  The learning rule in the model is: 

0 1( , ,q q q qδ β β λ λ µ µ′ ′ ′ ′= … … … ) .′

1 1
1 ˆ( ( ,t t t t t
t

F Fδδ δ π π δ
α− −= + ∇ − )) ,     (24) 

with a gain sequence defined as in the least squares learning: tα
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1
1 1 1

( , )

.

t
t t

t t

if
F

otherwise

πα α
π δ

α

−
−= + − ≤

=

ν

    (25) 

The advantages of using this algorithm in the model are twofold.  First, multiple passes 

through the data allow for reaching a global optimum.  In addition, the algorithm 

represents a simple updating estimation procedure to solving complex models of 

unknown functions without much prior knowledge of the particular relationship among 

the variables involved.  If the estimation converges, we expect it to converge to 

approximate rational expectations equilibria, thereby minimizing the mean square 

prediction error (Heinemann, 2000).  However, apart from misspecification, problems 

may arise related to the feedback feature of the algorithm, and may prevent convergence.  

In addition, there is a dearth of analytic results for general nonlinear economic models 

using NN to approximate expectations.  In simulations below, we show the behavior of 

the system regarding convergence to rational expectations solutions. 

 

9. Model Solutions by Simulation: Comparing Different Learning Equilibria 

IC criteria of Eq. (16) in Definition 3 is what we use to define equilibria in the 

model with both learning rules; thus the variables we determine provide sequences of 

current inflation, expected (perceived) inflation and the parameter α .  Hence, these 

sequences should satisfy (20 and 22), (17 and 24) and (19 and 25) for all periods, given 

α α, and  should satisfy (16) for (ε, T) appropriately chosen.  We numerically search for 

those alphas that fulfill IC and are efficient in the sense that they impose restrictions on 
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the behavior of agents.  First, we select 1
α

 over the grid [0,1.1].  The interval is discrete 

with a length of 0.1.  We use the same values for the alternative learning parameter 

within a given learning rule, 1

d

α ′
.  We next compute the left-hand side of Equation (16) 

by Monte Carlo integration.  We draw one thousand realizations of the random 

seigniorage  for t=1…T.  In the model, we find equilibrium inflation rates for each of 

the realizations.  Simultaneously, we find predictions of inflation for each alternative 

value of 

t

1
α ′

.  We then calculate the mean square error for each of these alternative 

forecasts and average them over all realizations. 

These Monte Carlo results are presented in Table 4.  We seek the minimum across 

rows ( 1
α ′

) for each column ( 1
α

).  Those values over the grid that form a mean square 

error (MSE) within ε  = 0.01 of the minimum in each column and lie on the diagonal of 

Table 4 are called the efficient values of the learning parameter α .28  This is what is 

required in Equation (16).  This implies that agents using an efficient value of alpha have 

little incentive to change their learning parameter given the choice of other agents with 

the same learning rule. 

To simulate the model, we need to choose values for the parameters in the money 

demand function (6) and the distribution of dt.  We model the seigniorage as a truncated, 

normally distributed, variable with different means and standard deviation of 0.01.  Since 

some evidence exists to support a Laffer curve in the experiences we study, we note that 

                                                 
28 In this exercise, we closely followed the one done in Marcet and Nicolini (2003).  However, for the 
neural network learning in this paper, we report Monte Carlo MSEs for only one high level of seigniorage 
since it is more computationally intensive.  Numerous other runs were performed with different levels of 
seigniorage but only with 250 draws of the random variable. 
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the money demand function in the OLG model implies a stationary Laffer curve.29  

However, unlike Marcet and Nicolini (2003), who primarily want to explain the 

Argentine experience and used only one set of parameters, we use an interval of inflation 

rates that maximize seigniorage and a measure of maximum revenue from seigniorage to 

construct a number of different parameter values to use in the simulations.  Inflation 

varied between 20 and 60 percent and the revenue from 5 to 40 percent.  Simulations of 

the model with learning through least squares and neural networks were performed with 

eight different sets of parameter values.  Table 3 presents those and gives the stationary 

rational expectations equilibria inflation rates (π*
REE1, π*

REE2) associated with these model 

economies.  

We start with the parameter values used in Marcet and Sargent (1989b).  The 

results are presented in Set 2 of Table 3.  Both least squares and neural network learning 

failed to converge to the lower stationary inflation rate in this instance.  This may be due 

to the difference in initial beliefs (though starting values in each case are given fairly 

close to π*
REE1) or different convergence of the algorithms at values of seigniorage close 

to the maximum sustainable levels under rational expectations.  Parameter Set 4 (used in 

Marcet and Nicolini) points to an interesting result: the relevance of the average level of 

seigniorage for the stability of (hyper) inflationary processes.  While at the lower levels 

of average seigniorage (0.045) the inflation rate tends to stabilize around the lower 

rational expectations equilibrium value, at higher seigniorage levels (0.049) no 

convergence occurs using both learning rules.  Increased average seigniorage leads to 

                                                 
29 See Fisher, et. al. (2002).  Azariadis (1993, p. 397) provides the formula for a stationary Laffer curve one 
may use to compute the range of parameters in the model.  See also Kiguel and Neumeyer (1992) and 
Miller and Zhang (1997).  The latter authors provide the range of parameters they used in their analysis of 
the Ukrainian hyperinflation. 
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higher and unsustainable inflation.  What is surprising, however, is that, under different 

values of the parameters (Sets 1, 3, 5-8), both least squares and neural network learning 

algorithms behave strikingly similarly.  Inflation converges to the lower rational 

expectations equilibrium.  This result suggests that, given certain conditions, the agents in 

our model are able to learn the rational expectations outcome through either of the two 

alternative learning mechanisms. 

Hence, simulations of the seigniorage model with a wide range of parameters 

implies that there may exist a correspondence between the stability (E-stability) 

conditions for the convergence of the NN learning and the least squares learning.  

However, this finding is in contrast to Salmon (1995), who suggests that the domain of 

attraction of equilibria is much higher and wider for neural networks than least squares 

regressions.  Furthermore, Heinemann (2000, p. 2009) claims that neural network 

learning may give rise to expectations that do not minimize the mean square prediction 

error.  Certainly, our results do not indicate that this is the case.  Since in the form used 

here,30 NN learning is similar to a stochastic gradient algorithm, it is worth pointing out 

that Barucci and Landi (1997) prove convergence to REE under conditions that turn out 

to be quite different than the ones generally established for least squares learning.  Their 

results, however, depend crucially on assuming a decreasing learning step tη .  We, on the 

other hand, adopt a modified version of the back propagation learning to account for a 

sudden regime shift that effectively stop hyperinflations.  In this way, by choosing an 

optimal tη  within a given learning rule, we not only provide justification for rational 

expectations equilibria as illustrated, but also show that learning introduces dynamics that 

                                                 
30 Sometimes also referred to as the generalized delta rule.  
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are important and significant in their own right and track evolving expectations better 

than the rational expectation version of the model. 

Figures 7-9 plot the results of simulations for Sets 6 and 8 and a particular, 

efficient value of 1
α

=0.2.  It is clear that the model under learning creates much higher 

rates of inflation (hyperinflation) than the stationary rational expectations version.  It also 

captures the sudden and abrupt stabilizations that occurred in most hyperinflations and 

exemplifies the importance of inflationary expectations in the process.  Since sustained 

increases in inflation appear to be generated by normally distributed (iid) random , 

there is little contemporaneous correlation between inflation and seigniorage.  

Introducing ERR, for example, successfully stabilizes inflation, returning it back to the 

stable S set around the low REE, for a time, but unless levels of seigniorage are reduced 

permanently, the system may be cast back into the unstable U set as a result of a large 

shock and another hyperinflation occurs (see Fig. 9-10).  These figures clearly display 

some the stylized facts analyzed earlier.  Hyperinflations occurred, on average, in high 

seigniorage countries. 

td

 

10. Conclusion 

The findings of this analysis are threefold.  First, in the seigniorage model of 

hyperinflation with learning dynamics, the REE are learnable.  Second, results from 

simulations suggest that, for a certain range of parameters, the behavior of the neural 

network learning with endogenously changing learning step is very similar to the one 

often exhibited by least squares learning.  Third, the stylized facts of hyperinflationary 
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episodes seem to be better explained with the introduction of learning dynamics than 

using only the rational expectations version of the model. 

In addition, one may augment the model presented here and study the situation in 

which we replace the assumption of real government spending with nominal money 

growth rule, thus make government endogenous so that the government budget constraint 

is satisfied.  In this case, introducing the type of learning described here may result in 

different equilibria.  
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Appendix 1: 

TABLE 1. SELECTED HYPERINFLATIONS: KEY FACTS 
 

Country 
 
 
 

Average Monthly 
Inflation Rate 

Peak Monthly 
Inflation Rate 

(Date) 

Number of 
Months with 

Inflation 
>50% 

(>25%) 

Austria 47.1 134 

(8/1922) 

4 

(10) 

Germany 322 32400 

(10/1923) 

11 

(20) 

Poland 81.4 275 

(10/1923) 

9 

(16) 

Russia 57.0 213 

(1/1924) 

10 

(18) 

    

Bolivia 48.1 182 

(2/1985) 

9 

(16) 

Argentina 66 200 

(7/1989) 

3 

(16) 

Brazil 19.7 73 

(1/1990) 

3 

(16) 

    

Ukraine 30.6 90.8 

(12/1993) 

6 

(5) 

Georgia 44.1 211.1 

(9/1994) 

9 

(4) 

Bulgaria 24.5 242.8 

(2/1997) 

1 

(4) 

Sources: Own calculations, Bruno (1990), Cagan (1956) 
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Seigniorage Inflation

Bulgaria: Quarterly Seigniorage vs Inflation

1995 1996 1997 1998
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Seigniorage Inflation

Russia: Monthly Seigniorage vs Inflation

1993 1994 1995
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.040

0.080

0.120

0.160

0.200

0.240

0.280

 

Figure 1: Bulgaria and Russia: Seigniorage and Inflation in the 1990s.  1t t

t

MB MB
GDP

−−  is the 

change in the monetary base as a percentage of GDP (left axis), and log(Pt/Pt-1) is inflation (right 
axis) 
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Seigniorage Inflation

Ukraine: Quarterly Seigniorage vs Inflation
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Figure 2: Ukraine in the 1990s and Austria in the 1920s 

SW (1973) stands for seigniorage series found in Sargent and Wallace (1973, Table 6).  This 

quantity is computed as 1

10.5( )
t t

t t

M M
P P

−

−

−
+

(left axis) and ∆M/P as seigniorage (right axis). 
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TABLE 2. CLASSIFICATION OF STABILIZATION PROGRAMS 

 Orthodox Heterodox 
Money-based Russia (1994/1995) 

Ukraine (1994/1995) 
Latvia (1992) 

Lithuania (1993) 
Peru (1990) 

Bulgaria (1991/1992) 
Romania (1991/1992) 

Slovenia (1992) 
Exchange-Rate Based Argentina (1978) 

Chile (1978) 
Uruguay (1978) 
Argentina (1991) 

Bolivia (1985) 
Bulgaria (1997) 

Argentina (1985) 
Brazil (1986, 1987, 1989) 

Czechoslovakia (1991) 
Estonia (1992) 
Israel (1985) 

Mexico (1987) 
Peru (1985) 

Poland (1990) 
Sources: Own and Bofinger (1996) 
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Appendix 2: 

 First, note that if a stationary rational expectations equilibrium (SREE) exists, 

then ERR is never established.  Assuming 1t 1
e

tπ π+ += , i.e., rational expectations, and 

given 1

2

(0, )tπ γ
∈ γ  to rule out zero or negative real money balances, we can solve 

Equation. (4) to obtain: 

 1
1

2 2 2

11 t
t

t

dγ γπ
γ γ γ+ = + − − 1

π
 (A1-1) 

 

Suppose d is constant, there is no uncertainty, and max 1
2

2 2

(1 2 )d d
γ γγ
γ γ

< = + − 1 , then 

the two SREE solutions are: * 21 1
1/2

2 2 2 2

1 ( 1 ) ( 1 ) 4
2RRE

d dγ γπ
γ γ γ γ

1

2

γ
γ

⎡ ⎤
⎢ ⎥= + − ± + − −⎢ ⎥
⎢ ⎥⎣ ⎦

. 

As discussed in the introduction and shown in both Sargent and Wallace (1981) and 

Marcet and Sargent (1989), the high stationary REE is stable and this implies that raising 

the seigniorage level causes the low REE to increase and high RRE decrease (see Fig. 3 

and 4 below in Appendix 3).  Note that when d=0, there is no inflation at the lower SREE 

and  is bound by *
2RREπ 1

2

γ
γ

.  Marcet and Nicolini (2003) show in addition that these 

SRRE are outside the interval or close to the rational expectation solutions of the model 

when . 0dσ ≠

 

 
43



Appendix 3: 

 

Figure 3: Equilibrium Dynamics of Inflation with steady state rational expectations solutions: 
high 2REEπ  and low 1REEπ . 
 

 

 

 

Figure 4: Equilibrium Dynamics of Inflation with high average seigniorage 
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Figure 5: Equilibrium Dynamics of the model in Section 2 
 

 

 

 

Figure 6: Equilibrium Dynamics of Inflation when seigniorage is high 
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Appendix 4: 

 

 

TABLE 3: SET OF PARAMETERS FOR SIMULATIONS: OLG ECONOMIES WITH VARIABLE 
REAL DEFICIT FINANCED THROUGH SEIGNIORAGE 

Parameters 1 2 3 4 
γ1 5 1 100 0.37 
γ2 2 0.9 50 0.148 
d  0.01 0.0019 0.05 0.045 

π*
REE1 1.0033 1.026 1.001 1.37 

π*
REE2 2.4917 1.0838 1.998 1.829 
πLS 1.003 1.4189* 1.0010 1.3757 
πNN 1.003 1.4042* 1.0010 1.4134 

     
γ1 5 1 100 0.37 
γ2 2 0.9 50 0.148 
d  0.5 0.0024 0.075 0.049 

π*
REE1 1.25 1.0377 1.0015 1.48 

π*
REE2 2.00 1.0707 1.997 1.69 
πLS 1.249 1.3566* 1.0015 1.984* 
πNN 1.250 1.3863* 1.0015 1.855* 

Parameters 5 6 7 8 
γ1 2.81 0.898 3.144 0.71 
γ2 1.67 0.399 1.396 0.28 
d  0.06 0.095 0.01 0.045 

π*
REE1 1.06 1.37 1.0058 1.1289 

π*
REE2 1.59 1.64 2.239 2.246 
πLS 1.0618 1.3652 1.007 1.1321 
πNN 1.0695 1.375 1.0107 1.1292 

     
γ1 2.81 0.898 3.144 0.71 
γ2 1.67 0.399 1.396 0.28 
d  0.145 0.098 0.349 0.097 

π*
REE1 1.25 1.42 1.47 1.51 

π*
REE2 1.34 1.586 1.53 1.679 
πLS 1.2387 1.416 1.4070 1.52 
πNN 1.3874* 1.4224 1.445 1.5090 

Note: * indicates divergence or no equilibrium; bold type shows convergence. 
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TABLE 4: EFFICIENT VALUES OF 
1
α

 IN EQUATION (11): MONTE CARLO MEAN SQUARE 

ERRORS (MSE) - 1γ =0.898 AND 2γ =0.399  

LEAST SQUARES LEARNING: AVERAGE SEIGNIORAGE= 0.098 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 
1.1 0.00 0.01 0.01 0.07 0.05 1.88 20.16 17.26 6.85 4.58 2.29 9.15 
1.0 0.01 0.01 0.01 0.06 0.05 1.73 18.26 15.69 6.30 4.20 2.11 8.24 
0.9 0.01 0.01 0.01 0.06 0.05 1.60 16.68 14.31 5.85 3.89 1.95 7.46 
0.8 0.00 0.01 0.01 0.06 0.05 1.49 15.35 13.11 5.47 3.62 1.81 6.80 
0.7 0.00 0.00 0.01 0.06 0.05 1.40 14.24 12.06 5.14 3.38 1.68 6.21 
0.6 0.00 0.00 0.01 0.06 0.05 1.31 13.30 11.13 4.82 3.15 1.54 5.71 
0.5 0.00 0.00 0.01 0.06 0.04 1.24 12.47 10.31 4.50 2.94 1.41 5.25 
0.4 0.00 0.00 0.01 0.05 0.04 1.17 11.73 9.58 4.17 2.73 1.30 4.84 
0.3 0.00 0.00 0.00 0.05 0.04 1.10 11.04 8.93 3.84 2.54 1.19 4.47 
0.2 0.00 0.00 0.00 0.05 0.04 1.03 10.36 8.35 3.51 2.35 1.10 4.14 
0.1 0.00 0.00 0.01 0.04 0.03 0.94 9.69 7.86 3.20 2.16 1.02 3.85 
0 0.00 0.15 0.33 0.20 0.59 1.40 3.41 4.68 3.64 4.37 2.60 7.51 

Note: Rows represent the alternative values for 
1
α ′

; columns give the possible values for 
1
α

 used in the 

model.  Bold type indicates the range of efficient values of 
1
α

. 

 
 

NEURAL NETWORK (BACK-PROPAGATION) LEARNING: AVERAGE SEIGNIORAGE= 0.098 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 
1.1 0.00 0.01 0.00 0.01 0.14 0.57 1.49 5.03 15.70 6.32 21.83 4.97 
1.0 0.00 0.01 0.00 0.01 0.13 0.51 1.34 4.43 14.09 5.70 19.56 4.29 
0.9 0.00 0.01 0.00 0.01 0.11 0.48 1.21 4.02 12.77 5.21 17.69 3.76 
0.8 0.00 0.00 0.00 0.01 0.10 0.46 1.12 3.66 11.70 4.79 16.15 3.33 
0.7 0.00 0.00 0.00 0.01 0.10 0.43 1.04 3.66 11.68 4.44 14.83 3.28 
0.6 0.00 0.00 0.00 0.01 0.10 0.39 0.98 3.32 11.58 4.34 15.92 2.67 
0.5 0.00 0.00 0.00 0.01 0.09 0.37 0.92 3.25 10.33 4.24 14.08 2.55 
0.4 0.00 0.00 0.00 0.01 0.08 0.35 0.87 2.85 9.19 3.78 12.41 2.43 
0.3 0.00 0.00 0.00 0.01 0.08 0.34 0.82 2.66 8.62 3.44 11.28 2.08 
0.2 0.00 0.00 0.00 0.01 0.07 0.31 0.77 2.47 7.83 3.26 10.67 1.97 
0.1 0.00 0.00 0.00 0.01 0.07 0.28 0.70 2.32 7.36 3.00 10.02 1.82 
0.0 0.01 0.06 0.31 1.10 2.21 1.54 2.02 1.63 6.53 2.48 7.32 4.27 

Note: Rows represent the alternative values for 
1
α ′

; columns give the possible values for 
1
α

 used in the 

model.  Bold type indicates the range of efficient values of 
1
α

. 
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Figure 7: Inflation Rate: 1ln( )t

t

p
p
+ .  OLG economy set 6 of Parameters in Table 1 with average 

seigniorage 0.098 and 1 0.2
α
= – least squares learning 

 
Figure 8: Inflation Rate: 1ln( )t

t

p
p
+ .  OLG economy set 6 of Parameters in Table 1 with average 

seigniorage 0.098 and 1 0.2
α
= – neural network learning 
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Figure 9: Inflation Rate: 1ln( )t

t

p
p
+ .  OLG economy set 8 of Parameters in Table 1 with average 

seigniorage 0.097 and 1 0.2
α
= – least squares learning 

 
 

Figure 10: Inflation Rate: 1ln( )t

t

p
p
+ .  OLG economy set 8 of Parameters in Table 1 with average 

seigniorage 0.097 and 1 0.2
α
= – neural network learning 
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