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Abstract
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di¤erent degrees of forward lookingness and imply di¤erent behaviour
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1 Introduction

Dynamic pricing and wage-setting models have become central to macroeco-
nomic modelling in the new neoclassical synthesis approach. It has become
apparent that di¤erent models of pricing have di¤erent implications for mat-
ters such as the persistence of output, prices and in�ation to monetary shocks.
In this paper I show that there is a uni�ed approach which can be used to
understand and compare the distribution of durations across �rms (DAF)
implied by models of price and wage-setting, and also data on pricing. We
start from the idea of modelling the class of all steady state distributions of
durations across a given population (in this case, the �rms or unions that set
prices or wages). In steady state there are three equivalent ways of interpret-
ing the distribution of durations: �rst there is the cross-sectional distribution
of ages: how long has the price or wage contract lasted until now? This is
like the population census. Second, we can look at the distribution in terms
of survival probabilities: from the cross-section of ages, what is the proba-
bility of progressing from one age to the next one. Lastly, we can look at
the cross-section of contracts in steady-state across �rms (the DAF) and
ask what is the distribution of completed contract lengths (lifetimes) of this
cross-section. This corresponds to the average contract length across �rms.
The main innovation of the paper is to develop a transparent framework that
allows us to move between these concepts. The �rst two concepts (distribu-
tion of ages and hazard rates) are of course very well understood in statistics,
being basic tools in demography, evolutionary biology and elsewhere. The
third concept, the distribution of completed durations across the population
of �rms is a more novel concept, but it is what we need if we are to answer
questions such as what is the average length of contracts across �rms and to
apply these concepts to understand and compare di¤erent models of pricing.
Each of these three ways of looking at the class of all steady-state dis-

tributions has a natural application to modelling price and wage setting.
In the Generalised Taylor Economy (GTE) introduced in Kara and Dixon
(2005), we model the distribution of completed contract lengths (lifetimes).
There are many sectors, each with sector speci�c contract lengths. Hence any
steady state distribution of contract lifetimes can be modelled as uniform1

GTE. The simple Taylor economy where all contract lengths are the same

1A Uniform GTE is one where in each sector, the cohorts are of equal size and one
cohort moves each period. Thus, if the contract length is T , then cohort size is T�1: A
non-uniform GTE with di¤erent cohort sizes would be inconsistent with a steady state.
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is a special case of the GTE. In the case of the Calvo approach, we have a
reset probability which may be constant (as in the classical Calvo model) or
duration dependent (Wolman 1999). We show that the Calvo model with du-
ration dependent reset probabilities (denoted as the Generalised Calvo model
GC) is coextensive with the set of all steady state distributions: each pos-
sible steady state age distribution has exactly one GC and one GTE which
corresponds to it. Hence, using this framework, we are able to compare
the di¤erent models of pricing for a given distribution of durations across
�rms. This enables us to isolate the precise e¤ect of the pricing model as
opposed to the di¤erence in the distribution of contract lengths. As Dixon
and Kara (2006a) showed, existing comparisons of simple Taylor and simple
Calvo models of pricing have failed to even ensure that the mean contract
lengths are the same, let alone the overall distribution of contract lengths
across �rms (see for example Kiley 2002). The reason for this confusion has
been that researchers have taken the established statistical models from de-
mography, evolutionary biology and the study of unemployment spells which
in this context yield the distribution of lifetimes across the population of
contracts2 rather than �rms. In order to understand pricing you need the
distribution of contract lengths across �rms.
It is widely recongised that there is a variety of pricing or wage-setting

bahviour in most economies. This raise the question of aggregation: if we
seek to represent the economy with a particular model, is the model itself
consistent with this heterogeneity? This paper shows that both the GTE
and GC are closed under aggregation: if we take two economies represented
by a GTE, the resultant economy will also be a GTE. Likewise the GC.
More importantly, we show that this is not the case for either the simple Tay-
lor or Calvo models. If there is heterogeneity in the economy, then it cannot
consistently be represented as a simple Taylor or Calvo process (except pos-
sibly as a dubious approximation). However, another generalisation of the
Calvo idea, the Multiple Calvo economyMC is closed under aggregation. In
the MC economy, there are many sectors, each with a sector speci�c reset
probability.
Given that we have a particular distribution of durations, what di¤erence

does the pricing model make? Following the analysis of Dixon and Kara
(2005), the concept of Forward Lookingness (FL) is employed: how far on
average do agents look forward (what is the weighted mean number of periods

2We could use term "price spell" for a contract.
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price setters look forward when the set their price?). We �nd that in the
GTE model, �rms on average are more myopic than in the GC model for a
give distribution of durations. This leads to observable di¤erences in impulse
response functions in response to monetary shocks.
We also apply this approach to the Bils-Klenow data set (Bils and Klenow

2004). From the sectoral data for the proportion of changes in prices per
month we are able to construct the average length of contracts under the
hypothesis that there is a calvo process in each sector, and also �nd that the
shortest possible mean duration is achieved by the assumption that there is
the simplest GTE consistent with the observed proportion, which consists
of 1 or 2 contract durations that yield the observed proportion of prices
changing. The longest possible mean is proportional to the longest possible
contract length. This paper provides a simple and transparent discrete time
framework for understanding nominal price rigidity in dynamic macromodels,
and also indicates how empirical evidence from price data can be applied in
a consistent and relevant manner.
In section 2 we review the well known facts about the steady state dis-

tribution of ages and hazard rates. We then introduce the new concept of
the distribution of durations across �rms and show how all three concepts
are related by simple formulae which are spreadsheet friendly. In section 3,
we link the concepts to di¤erent models of pricing. In section 4 we analyse
the di¤erent pricing models in terms of forward lookingness and compare
the mean reset prices. In section 5, we implement these ideas using the
Bils-Klenow data set.

2 Steady State Distributions of Durations across
Firms.

We will consider the steady-state demographics of contracts in terms of their
durations. The lifetime of a contract is how long it lasts from its start to its
�nish, a completed duration. The age of a contract at time t is how long
it has been in force since it started. The age is a duration which may or
may not be completed. We will �rst review the well known representation
of steady state durations by the related concepts of the age distribution and
hazard rates (see for example, Kiefer 1988).
There is a continuum agents (we will call them �rms here) f which set
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wages or prices represented by the unit interval f 2 [0; 1] : In steady state we
can take a cross-section at time t and measure the age distribution3 of ages:
�sj is the proportion of �rms which have contracts age j;

�
�sj
	F
j=1

where F
is the oldest age in steady state4. In steady state, the distribution of ages is
monotonic: you cannot have more older people than younger, since to become
old you must �rst be young. Hence the set of all possible steady state age
distributions is given by:

�F�1
M =

�
�s 2 �F�1 : �sj � 0; �sj � �sj+1

	
An alternative way of looking at the steady state distribution of durations

is in terms of the hazard rate. The hazard rate at a particular age is the
proportion of contracts at age i which do not last any longer (contracts which
end at age i, people who die at age i). Hence the hazard rate is de�ned in
terms of the age distribution: given the distribution of ages in steady-state
�s 2 �F�1

M ; the corresponding vector of hazard rates5 ! 2 [0; 1]F�1 is given
by:

!i =
�si � �si+1

�si
; i = 1::: (F � 1) (1)

Whilst it is easy to allow for an in�nite series of reset probabilities less than
one, we will mainly deal with the �nite case where there is a �nal reset
probability of one after F periods, although in later sections we will look at
cases with in�nite F .
Corresponding to the idea of a hazard rate is that of the survival proba-

bility, the probability at birth that the price survives for at least i periods,
with 
1 = 1 and for i > 1


i = �
i�1
�=1(1� !�)

and we de�ne the sum of survival probabilities �
 and its reciprocal �! :

�
 =
PF

i=1
i �! = ��1


3In Demography, this is given the acronym SAD:
4In some theoretical applications such as the Calvo model of pricing, there may be

in�nite lifetimes. The analysis presented is consistent with that, although for all practical
applications a �nite maximum is required.

5Since the maximum length is F; without loss of genersality we set !F = 1. If !i = 1
for some i < F , then i is the maximum duration and subsequent hazard rates become
irrelevant. This leads to trivial non-uniqueness. We therefore de�ne F as the shortest
duration with a reset probability of 1:
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Clearly, we can invert (1): we have F � 1 equations. Hence:

Observation 1 given ! 2 [0; 1]F�1 ; there exists a unique corresponding age
pro�le �s 2 �F�1

M given by:

�si = �!
i i = 1:::F .

Given the �ow of new contracts �!, the proportion surviving to age i
is 
i : �! = ��1
 ensures adding up. From the de�nition of hazard rates
and Observation 1 we can move from an age distribution �s 2 �F�1

M to the
hazard pro�le and vice versa.6

2.1 The Distribution of Completed Durations across
Firms.

Given a steady-state age distribution �s 2 �F�1
M , we can ask what is the

corresponding distribution of completed durations or lifetimes across �rms
� 2 �F�1. Note, we are asking for the distribution across �rms (DAF).
There is a unit interval of �rms: each �rm sets one price. When we measure
the population shares �i, we are measuring across �rms, just as we do when
we take the age distribution. We are seeking to answer the question "what is
the distribution of and average length of a completed across the population
of �rms". Recall, the population of �rms does not vary over time, and
that whilst some �rms change price frequently and some infrequently, each
individual �rm over time has an average contract length, and the average in
the economy is the average over the stock of �rms. It is this that corresponds
to the concept of price-stickiness.
It is important to note that this is a very di¤erent question from the one

we ask when we treat each individual contract as an entity and look at the
distribution of contract lengths over time. From this perspective, we do not
identify which �rm sets the price: the total population is the total number
of contracts in existence over time. To illustrate the di¤erences, consider a
world with two �rms that lasts for two periods. One �rm sets its price in both
periods (single period contracts). The other sets the price for two periods.
Now if we take the �rm based view, we would say that 50% of �rms set

6 This relationship is one of the building blocks of Life Tables (Chiang 1984), which
are put to a variety of uses by demographers, actuaries and biologists.
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1�period contracts, and 50% set two period contracts: the average contract
is 1:5 periods. That is the approach taken in this paper. However, if we
take the contract-based approach, we say that in the two periods there were
3 contracts: two were 1�period contracts, and 1 was 2�periods, so that the
average contract length is 11

3
. Both statements are correct, but both answer

di¤erent questions: the average is taken over a di¤erent population. This
issue does not arise when we look at the age distribution in steady state. In
this case we are taking a cross-section: since each �rm sets only one price,
there average across contracts and �rms is exactly the same.
It is easy to see that taking the average contract length over �rms will

give a longer mean contract length than when you take the average over
contracts. This is known as the issue of length-biased sampling. This
is a familiar problem in unemployment measurement: if you want to �nd
the average duration of unemployment across entrants, then looking at the
average completed duration of the stock of unemployed will overestimate it7.
For understanding pricing, however, we have exactly the opposite bias. Since
we want to measure the average contract length across �rms, if you take the
average across contracts you will get the problem of oversampling of short
contracts: there are simply more of them. Existing studies have focussed
on the issue of average duration across contracts (see for example, Bils and
Klenow 2004, Barhad and Eden 2003) rather than the mean duration of
prices set by �rms (the average across �rms). They have thus tended to
signi�cantly underestimate the degree of price stickiness.
We can seek to show how we can move from the distribution of ages to

the distribution of completed contract lengths across �rms::

Proposition 1 Consider a steady-state age distribution �s 2 �F�1
M . There

exists a unique distribution of lifetimes across �rms � 2 �F�1 which corre-
sponds to �s, where

�1 = �s1 � �s2 (2)

�i = i
�
�si � �si+1

�
::

�F = F�sF
7"picking an individual from the unemployed stock and observing his completed du-

ration is non-randomly sampling the duration of entrants...We have in fact what is often
called length-biased sampling of complete durations in which the probability that a spell
will be sampled is proportional to its length" Lancaster (1992), p.95.
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All proofs are in the appendix. Since there is a 1-1 mapping from age to
lifetimes, we can compute the distribution of lifetimes from ages:

Corollary 1 Given a distribution of steady-state completed lifetimes across
�rms, � 2 �F�1, there exists a unique �s 2 �F�1

M corresponding to �

�sj =
FX
i=j

�i
i

j = 1:::F (3)

The intuition behind Proposition 1 and the Corollary is clear. In a steady
state, each period must look the same in terms of the distribution of ages
This implies that if we look at the i period contracts, a proportion of i�1

must be renewed each period. Thus if we have 10 period contracts, 10%
of these must come up for renewal each period. Otherwise, the proportion
being renewed would not be constant across periods. This implies that the
proportion of contracts coming up for renewal each period (which have age
1) is:

�s1 =
1X
i=1

�i
i

The proportion of contracts aged 2 is the set of contracts that were reset last
period (�s1), less the ones that only last one periods (�1) and so on. The set
of all possible steady state distributions of durations can be characterized
either by the set of all possible age distributions: �s 2 �F�1

M or the set of
all possible lifetime distributions across �rms � 2 �F�1: They are just two
di¤erent ways of looking at the same thing.
Proposition 1 and its corollary show that there is an exhaustive and 1-1

relationship between steady state age distributions and lifetime distributions.
We can go from any age distribution and �nd the corresponding age distrib-
ution and vice versa. Now, since we know that there is also a 1-1 relation
between Hazard rates and age distributions, we can also see that there will
be a 1-1 relationship between completed contract lifetimes and hazard rates.
First, we can ask what distribution of completed contract durations corre-
sponds to a given vector of hazard rates. We can simply take observation 1 to
transform the hazards into the age distribution, and then apply Proposition
1.
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Corollary 2 let ! 2 [0; 1]F�1 : The distribution of lifetimes across �rms
corresponding to ! is:

�i = �!:i:!i:
i: i = 1:::F (4)

The �ow of new contracts is �s1 = �! each period. To survive for exactly
i periods, you have to survive to period i which happens with probability 
i,
and then start a new contract which happens with probability !i. Hence
from a single cohort �!:!i:
i will have contracts that last for exactly i periods.
We then sum over the i cohorts (to include all of the contracts which are in the
various stages moving towards the their �nal period i) to get the expression.
The mean completed contract length �T generated by ! is simple to compute
directly:

�T =

FX
i=1

i:�i = �!
FX
i=1

i2:!i:
i

We can also consider the reverse question: for a given distribution of
completed contract lengths �;what is the corresponding pro�le of hazard
rates? From Corollary 2, note that (4) is a recursive structure relating �i
and !i: �i only depends on the values of !s for s � i.

Corollary 3 8Consider a distribution of contract lengths across �rms given
by � 2 �F�1. The corresponding hazard pro�le that will generate
this distribution in steady state is given by ! 2 [0; 1]F�1 where:

!i =
�i
i

 
FX
j=i

aj
j

!�1

For completeness, we can also ask for a distribution of contracts across
�rms � 2 �F�1 what is the distribution of durations taken across the total
population of contracts �d 2 �F�1 :

�di =
�i
i:�!

(5)

Clearly, the distribution of durations across contracts is the same as the
distribution across �rms resetting prices. The more frequent price setters

8Although this is called a corollary, it has equal status to Proposition 1. We could
have stated this result �rst as a Proposition and the former result would then become a
corollary. The two proofs are independent and self-contained.
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(shorter contracts) have a higher representation relative to longer contracts.
Note that the rhs denominator is the product of the contract length and the
proportion of �rms resetting price. For the values of i < �!�1 , the share of
the duration i is greater across contracts than �rms: for larger i > �!�1 the
share across contracts is less than the share across �rms. Using equation
(5), we can move simply between the distributions across contracts and across
�rms. Note, that if we take the mean length across all contracts �d, from (5)
we get

�d =
FX
i=1

i:�di = �!
�1

That is, the mean contract length taken over all contracts in steady state is
the reciprocal of the proportion of �rms resetting price. This is precisely the
estimate of mean contract length that has been commonly used empirically
and also for calibration purposes in models of price-stickiness. However,
it should be clear that this is the mean of the wrong distribution: it is the
mean across all contracts, not �rms. There is clear length biased sampling:
the shorter contracts are oversampled.
There are now several studies using micro data: in particular the In�a-

tion Persistence Network (IPN) across the Eurozone has been particularly
comprehensive9. These studies have data on individual product prices at
speci�c locations. In Veronese et al (2005), the authors attempt to measure
the average duration of prices for individual products, which is much closer
to our de�nition of the duration across �rms. They �nd that the average
duration across products is much higher than the average inferred from the
reciprocal of the proportion of resetters which is what we would expect.
In the study of unemployment, each spell of unemployment is treated as

an observation and the identity of the person involved is irrelevant. Hence
the focus in the unemployment literature on the duration of unemployment
has been on the �ow of new spells of unemployment and how long they
will last, rather than on the stock of unemployed10. In demography and
evolutionary biology, each duration corresponds to a single individual, hence
since people only live once, the distribution across people is exactly the same

9See Dhyne et al (2005) for a summary of the IPN�s �ndings.
10However, Akerlof and Main (1981) did suggest using the average duration across all

the unemployed as an important indicator (see the ensuing debate Carlson and Horrigan
1983, Akerlof and Main 1983).

10



as the distribution across individual durations11: hence the focus here is
also on cohort studies, exploring the distribution of ages, hazard rates and
lifetimes across people born at the same time. The key di¤erence in this
paper arises because we are interested in the pricing behaviour of �rms:
hence whilst the �ow of new contracts is of interest, the average duration of
contracts across the stock of �rms is what determines price stickiness. What
this section has provided is a transparent framework that enables us to move
between the di¤erent concepts.

2.2 Examples.

In this section we provide �ve examples. In the �rst column we state the
rest probabilities (hazard rates) f!ig in the second, in the second and third
the corresponding distribution of agesf�sig and lifetimes f�ig over �rms, and
in the fourth the distribution

�
�di
	
over contracts. In the bottom row we

compute the proportion of new contracts �!, the average age of contracts �s
and the average lifetime �T across �rms in steady state, and �d the average
contract length across contracts.

Example 1
!1 =

9
10

�s1 =
37
40

�1 =
9
10

�d1 =
36
37

!2 = 0 �s2 =
1
40

�2 = 0 �d2 = 0
!3 = 0 �s3 =

1
40

�3 = 0 �d3 = 0
!4 = 1 �s4 =

1
40

�4 =
1
10

�d4 =
1
37

�! = 37
40

�s = 23
20

�T = 13
10

�d = 40
37

In this example, there are two lengths of contracts: 90% are 1 period
and 10% 4 periods. Note that �d < �s < �T : because of the proliferation
of short contracts, the mean lifetime across contracts is even less than
the average age across �rms (in all the other examples, �d > �s).

Example 2
!1 =

1
4
�s1 =

8
17

�1 =
2
17

�d1 =
1
4

!2 =
1
2
�s2 =

6
17

�2 =
6
17

�d2 =
3
8

!3 = 1 �s3 =
3
17

�3 =
9
17

�d3 =
3
8

�! = 8
17

�s = 29
17

�T = 41
17

�d = 17
8

11Likewise unless individuals are unemployed more than once, the number of spells of
unemployment equals the number of people who experience unemployment.
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This example has a gently rising reset probability, with the shares of
completed contracts across �rms increasing with length of contract, as
do the shares across contracts.

Example 3
!1 =

1
4
�s1 =

32
71

�1 =
8
71

�d1 =
1
4

!2 =
1
2
�s2 =

24
71

�2 =
24
71

�d2 =
3
8

!3 =
3
4
�s3 =

12
71

�3 =
27
71

�d3 =
27
96

!4 = 1 �s4 =
3
71

�4 =
12
71

�d4 =
3
32

�! = 32
71

�s = 128
71

�T = 185
71

�d = 71
32

This is similar to example 2, with a rising hazard over four periods.
The shares across �rms and contracts both peak at period 3 with a
small 4-period share.

Example 4: Simple Taylor 4.

!1 = 0 �s1 =
1
4
�1 = �

d
1 = 0

!2 = 0 �s2 =
1
4
�2 = �

d
2 = 0

!3 = 0 �s3 =
1
4
�3 = �

d
3 = 0

!4 = 1 �s4 =
1
4
�4 = �

d
4 = 1

�! = 1
4

�s = 5
2

�T = �d = 4

A simple lesson can be derived from example 4. When completed
contracts have the same length, the distribution across contracts equals
the distribution across �rms and hence has the same mean.

Example 5: Taylor�s US economy We can now consider an example start-
ing from an empirical distribution of completed contract lengths we
can derive the corresponding GC: Taylor�s US economy represents the
distribution of completed contract lengths (in quarters) in the third
column. We can represent this in terms of the distribution of ages and
duration dependent hazard rates (both to 4 Decimal places), distribu-

12



tion over contracts and the resultant averages.

!1 = 0:2017 �s1 = 0:3470 �1 = 0:07 �d1 = 0:2017
!2 = 0:3430 �s2 = 0:2770 �2 = 0:19 �d2 = 0:2738
!3 = 0:4213 �s3 = 0:1820 �3 = 0:23 �d3 = 0:1825
!4 = 0:4986 �s4 = 0:1052 �4 = 0:21 �d4 = 0:1513
!5 = 0:5682 �s5 = 0:0528 �5 = 0:15 �d5 = 0:0865
!6 = 0:5849 �s6 = 0:0228 �6 = 0:08 �d6 = 0:0384
!7 = 0:6038 �s7 = 0:0095 �7 = 0:04 �d7 = 0:0165
!8 = 1 �s8 = 0:0037 �8 = 0:03 �d8 = 0:0108
�! = 0:3470 �s = 2:365 �T = 3:730 �d = 2:8818

It is interesting to note that here, unlike examples 1-4, we can really
see the di¤erence between the distribution across contracts and across
�rms: for the durations 1 and 2 are really boosted - we see a lot of
shorter contracts. All the other durations are reduced, and in particular
the longer contract lengths are much less common in the distribution
across contracts and across �rms. The resultant mean duration is 77%
of the mean across �rms.

One thing to note is that the average age in these examples is always
much smaller than the average lifetime across �rms.. In example 3, the
average completed duration is almost 50% larger than the average age. If
we want to compare a particular GC with a particular GTE, we should at
least equate the average contract length, if not the exact distribution. Taking
the average age and comparing it to a simple Taylor model with the same
completed contract length would be as mistaken here as it is in the simple
Calvo model.
A second point is to see how we might interpret data based on the propor-

tion of prices that change in each period, �!: If we used Taylor�s US economy
and data and assumed a simple Calvo model with a constant hazard, we
would get an estimate of !̂ = 0:347, so that T̂ = 4:8;when in fact �T = 3:6.
This shows how dangerous it is to use the simple data on the proportion of
�rms changing price in a single period to infer the average lifetime of con-
tracts. Likewise, in examples 1-4, the simple procedure of taking �! to be the
simple Calvo reset probability results in long average lifetimes - in examples
2 and 4, the resultant estimate of average lifetime is longer than the longest
completed duration!
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3 Pricing Models with steady state distribu-
tions of durations across �rms.

Having derived a uni�ed framework for understanding the set of all possible
steady state distributions of durations across �rms, we can now see how this
can be used to understand commonly used models of pricing behaviour.

3.1 The Generalised Taylor Economy GTE

Using the concept of the Generalised Taylor economy GTE developed in
Dixon and Kara (2005a), any steady-state distribution of completed dura-
tions across �rms � 2 �F�1can be represented by the GTE with the sector
shares given by � 2 �F�1 : GTE (�). In each sector i there is an i�period
Taylor contract, with i cohorts of equal size (since we are considering only
uniform GTEs): The sector share is given by �i: Since the cohorts are of
equal size and there as many cohorts as periods, there are �i:i�1 contracts re-
newed each period in sector i. This is exactly as required in a steady-state.
Hence the set of all possible GTEs is equivalent to the set of all possible
steady-state distributions of durations.
It is simple to verify that the age-distribution in a GTE is given by (3).

If we want to know how many contracts are at aged j periods, we look at
sectors with lifetimes at least as large as j, i = j:::F . In each sector i, there
is is a cohort of size �i:i�1 which set its price j periods ago. We simply sum
over all sectors i � j to get (3).

3.2 The Generalised Calvo model (GC): duration de-
pendant reset probabilities.

The Calvo model most naturally relates to the hazard rate approach to view-
ing the steady state distribution of durations. The simple Calvo model has
a constant reset probability ! (the hazard rate) in any period that the �rm
will be able to review and if so desired reset its price. This reset probability
is exogenous and does not depend on how long the current price has been in
place. We can think about a sequence of uninterrupted periods without any
review as the "contract length". If all �rms have the same reset probability
there will emerge a steady state distribution of "ages" of contracts. As is
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well known, the distribution of ages of contracts is the following

�s = ! (1� !)s�1 : s = 1:::1

which has mean

�s =

1X
s=1

�s:s = !
�1

Applying Proposition 1 gives us the result:

Dixon and Kara 2006a With a constant hazard rate !, the steady-state
distribution of completed contract lengths iacross �rms is given by:

�i = !
2i (1� !)i�1 i = 1:::1 (6)

which has mean �T = 2�!
!

Observation Note that for the simple Calvo model, the distribution of ages
is the same as the distribution across contracts: substituting (6) into
(5) yields �si = �

d
i i = 1:::1, so that the mean age of contracts across

�rms equals the mean lifetime across contracts and is the reciprocal of
the reset probability.

As was discussed in Dixon and Kara (2006a), there has been a confusion
in the existing literature between the average age of contracts in the Calvo
model and the average lifetime. The two are indeed equal when we take
the mean over the population of contracts, as noted in the observation12.
However, there is a di¤erence between taking the average over �rms and the
average over contracts. When we want to understand pricing behaviour,
the key concept to understand this is the average contract length over the
population of �rms. Researchers have instead taken the existing results in
the literature that take the average completed duration over contracts. For
example, when comparing a simple Taylor model with 4 periods (i.e. the
average lifetime is 4 periods), it has been thought that the corresponding
reset probability is ! = 0:25: However, this is the mean across contracts

12This is a very special property. In general, the mean contract length across all
contracts can be less than mean age (exapmple 1) or greater (examples 2-5).
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which is not the relevant population. We should instead take the average
lifetime across �rms corresponding to ! = 0:25;which is not 4 periods, but
7 periods. It is not surprising that authors have found the Calvo model
to be more persistent when its average contract length is nearly twice the
comparitor Taylor economy!
We now consider generalising the Calvo model to allow for the reset prob-

ability (hazard) to vary with the age of the contract (duration dependent
hazard rate). This we will denote the Generalised Calvo Model GC. A
GC is de�ned by a sequence of reset probabilities: as in the previous section
this can be represented by any ! 2 [0; 1]F�1 where F is the shortest contract
length with !F = 1. From observation 1, given any possible GC there is a
unique age pro�le �s 2 �F�1

M corresponding to it and a unique distribution of
completed contract lengths from Proposition 1. Again, from observation 3,
if we have a distribution of completed contract lengths, there is a unique GC
which corresponds to it. Thus, the two approaches to modelling pricing: the
GTE and the GC are comprehensive and coextensive, both being consistent
with any steady-state distribution of durations.
Note that an alternative parameterization of the duration dependent haz-

ard rate model is to specify not the hazard rate at each duration, but rather
the probability of the completed contract length at birth (see for example
Guerrieri 2004). The probability at birth fi of a contract lasting exactly i
periods is simply the probability it survives to period i and then resets at
i : fi = 
i!i:

3.3 The Multiple Calvo Model (MC).

We now use the framework to address the issue of aggregation over Calvo
processes. Alvarez et al (2005) argue that an aggregate hazard rate declines
over time and that this can be attributed to the heterogeneity of hazard
rates. We can de�ne a multiple Calvo process MC as MC (!;�) where
! 2 (0; 1)n gives a sector speci�c hazard rate13 �!k for each sector k = 1; :::n
and � 2�n�1 is the vector of shares �k.
Firstly, we can model this as a GTE immediately by choosing the Calvo-

GTE weights for each individual Calvo process and then summing them using
the MC sector weights. Hence �ki is the proportion of i period contracts in

13The notation here should not be confused: the substrcripts k are sectoral: none of the
sectoral calvo reset probabiltities are duration dependent.
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the kth Calvo sector, �i the proportion of i period contracts across the whole
economy.

�i = �!ki (1� �!k)i�1

�i =

nX
k=1

�k�kT

From this distribution of completed durations, we can construct the corre-
sponding GC using corollary 3. The �ow of new contracts is �! and the
aggregate period i hazard is !i which we can either de�ne in terms of the
distribution of lifetimes or the underlying sectoral reset probabilities:

�! =
1X
i=1

�i
i
=

1X
i=1

Pn
k=1 �k�ki
i

=
1X
i=1

nX
k=1

�k�!k (1� �!k)
i�1

!i =
�i
i

 1X
j=0

ai+j
i+ j

!�1
=

Pn
k=1 �k�!k (1� �!k)

i�1P1
j=0

Pn
k=1 �k�!k (1� �!k)

i+j�1

Proposition 2: The aggregate GC model corresponding to MC model has
a declining hazard rate. In the limit as i!1, the hazard rate in the
GC tends to the lowest hazard rate in the MC.

Clearly, the aggregate hazard in the GC corresponding to an MC is
decreasing over time: !i > !i+1. The way to understand this is that sectors
with higher �!k tend to change contract sooner. So, for a given cohort, the
relative share of sectors with higher �!k tends to go down. At any duration i,
the share of type k contracts increases if the reset probability is below average
or decreases if it is above average. The reset probability gradually declines
and asymptotically reaches the lowest reset probability. In the long-run, the
type with the lowest reset probability comes to dominate and the GC tends
to this lowest vale. Clearly, the MC is a subset of possible GCs. It is also
an example of a GC with F =1.

4 The Typology of Contracts and Aggrega-
tion.

In terms of contract structure, we can say that the following relationships
hold:
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� GC = GTE = SS. The set of all possible steady state distributions
of durations is equivalent to the set of all possible GTEs and the set
of all possible GCs.

� C � MC � GC. The set of distributions generated by the Simple
Calvo is a special case of the set generated by MC which is a special
case of GC.

� ST � GTE = GC Simple Taylor is a special case of GTE, and hence
also of GC.

� ST \MC = ?. Simple Taylor contracts are a special case of GC, but
not of MC.

Figure 1: The typology of Contracts

This is depicted in Fig 1. The GC and the GTE are coextensive, being the
set of all possible steady-state distributions (Propositions 1 and corollary 3).
The Simple calvo C (one reset probability) is a strict subset of the Multiple
Calvo processMC which is a strict subset of the GC. The simple Taylor ST
and theMC are disjoint. The ST is a strict subset of the GTE: The size of
the distributions is re�ected by the Figure: ST has elements corresponding
to the set of integers and is represented by a few dots; Calvo is represented
by the unit interval; MC by the unit interval squared.
We can now ask the question: if we aggregate over two contract structures,

what is the type of contract structure that results? This is an important
question: if we believe that the economy is heterogenous, we should not
represent it with a contract type which is not closed under aggregation. We
can think of this in terms of giving each contract structure a strictly positive
proportion of the total set of contracts; for example 50%: We can de�ne the
ST in terms of contract length, under the assumption that each cohort is of
equal size.

ST (k) + ST (j) = GTE ((0:5; 0:5) ; (k; j))

Clearly, if we aggregate over Standard Taylor contracts with di¤erent contract
lengths k > j, we no longer have a Standard Taylor contract but GTE.
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Similarly, if we aggregate over simple Calvo contracts with di¤erent reset
probabilities, we do not get a C contract but a multiple Calvo MC:

C(!1) + C (!2) =MC ((0:5; 0:5) ; (!1; !2))

By de�nition, If we aggregate over MCs, we still have an MC. We can say
that a type of contract structure is closed under the operation of aggrega-
tion if we aggregate two di¤erent contracts of that type and the resultant
contract structure is also of the same type. Clearly, neither the ST or C
are closed under aggregation. However, MC;GC, and GTE are all closed
under aggregation:

Observation MC, GC, and GTE are all closed under aggregation.

Consider the case of GTE. Suppose we have two GTEs with maximum
contract lengths F1 and F2 respectively and w:l.o.g: F1 � F2: We can choose
to represent the number of sectors to be the maximum of the contract lengths
(with �1i = 0 for i > F1. The corresponding vector of sector shares is then
�j 2 �F2�1, j = 1; 2. If we combine the two GTEs, we get another GTE
with the sector shares being the average of the other two.

GTE(�1) +GTE (�2) = GTE

�
1

2
�1 +

1

2
�2

�
Hence GTEs are closed under aggregation. Similarly ,since GCs can be

represented as equivalent GTEs; the closure of GTEs implies the closure
of GC under aggregation.MC are closed, since we can simply combine the
di¤erent !i from eachMC and reweight on a 50-50 basis. We have illustrated
the proof using two distributions with a 50-50 combination. The idea obvi-
ously generalises to a convex combination of any number of MC, GTE and
GCs:
The importance of this result is that if we really do believe that contract

structures are heterogeneous, we should use contract types that are closed
under aggregation. The simple Calvo and Taylor models are only applicable
if there is one type of contract and no heterogeneity in the economy. If we
believe the Calvo model, but that reset probabilities are heterogenous across
price or wage setters, then the MC makes sense. If we believe that the
Calvo model is not a good one, then the GC or GTE is appropriate.
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5 Pricing behaviour compared.

We have developed a general framework for understanding steady-state dis-
tributions of durations across �rms and how they are related in terms of
pricing models. In this section we consider how pricing models di¤er when
we control for the distribution of durations, for example by requiring that
mean contract ages are the same, or even the exact distribution. This is a
useful exercise, because it enables us to isolate the di¤erences in the pricing
behaviour per se, rather than mixing them up with di¤erent distributions as
has been done in much previous work.
Let us recap the comparison between the simple Calvo model and the

equivalent GTE (named the Calvo-GTE) made in Dixon and Kara (2005).
The Calvo-GTE is a model with exactly the same distribution of completed
contract lengths as in the Calvo model. The main di¤erence is that in the
Calvo GTE , when �rms set their prices, they know the exact duration of the
contract, as in the standard Taylor model. In the Calvo setting, the �rms do
knot know how long the contract will last: all �rms have the same probability
distribution over durations and set the same price. In the Calvo-GTE by
contrast, in each sector the �rms know how long the contract will last, so the
rest price in each sector can be di¤erent. Hence in the Calvo-GTE there is
a range of reset prices set (one for each contract duration), whereas in the
Calvo model there is only one reset price (�rms do not know how long their
contract will run when they reset the price). Furthermore, the "forward
lookingness" of the Calvo-GTE is less: on average a greater weight is put on
nearer dates. We will now perform the same comparison between GC and
corresponding GTE.
Let us suppose that there is an optimal price P � (or target variable in

general) in each period starting from t:
�
P �t+s

	1
s=0
. In a GC with ! 2

[0; 1]F�1 ; the proportion of �rms resetting price at time t is �! and they
all set the same reset price XGC

t : Ignoring discounting, the reset wage and
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forward lookingness14 FL are:

XGC
t = �!

F�1X
j=0


jP
�
t+j�1 =

F�1X
j=0

�sjP
�
t+j�1

FLGC = �!

F�1X
s=1

s
s = s�
s
j = �s

hence in the GC as in the simple Calvo model, the weights on the future peri-
ods are simply the same as the age shares �sj : Hence the forward lookingness
is the average age �s:
In the corresponding GTE there are F sectors, with contract lengths

i = 1:::F with corresponding sector shares:

�i = �!:i:!i:
i = i:!i�
s
i

In each sector i, a proportion i�1 reset their prices every period: hence a
total of �! reset their prices, since from Corollary 3

�! =
FX
i=1

�i
i

(7)

The important thing to note about (7) is that the longer contract lengths
are under-represented amongst resetters relative to the population, since they
reset prices less often. Now, if we look at the sector i resetters, the reset
price will be

Xit =
1

i

i�1X
j=0

P �t+j

14Note that Forward Lookingness is not in general equal to the expected duration of the
contract when the price is set (life expectation at birth). They are equal in the simple
Calvo model because it has the special property that life expectancy at birth equals the
average age. For example, in the simple Taylor model, FL = �s, but life expectation at
birth equals the full length of the contract (average completed contract length �T ):
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The average reset price is thus

XGTE
t =

1

�!

FX
i=1

�i
i
Xit =

FX
j=1

bsP
�
t+j�1

bj =
FX
i=j

!i:
i
i

=
FX
i=j

�si
i

FLGTE =

FX
j=1

jbj

It is illuminating to write the GTE weights in terms of the GC weights.
In the GTE, each price setter knows the exact length of the contact: hence
when setting price it ignores what happens after the end of the contract.
In contrast, in the GC the price-setter is uncertain of the contract length
and must always consider the possibility of lasting until the longest duration
F . As we identi�ed in Dixon and Kara (2005), this results in the fact that
comparing the GTE to the GC weights, weight is "passed back" from longer
durations to shorter making the GTE more myopic:

bj =
!j
�!
�sj �

j

j + 1

!j
�!
�sj +

1X
i=j+1

!i
�!

�si
i

(8)

Hence there are three components of bj in (8): the corresponding �sj, the
weight passed back to shorter contracts and thirdly the wight it receives
from longer contracts. To translate from �sj to bj, you need to correct by a
factor of !j=�! for each duration j: in the simple Calvo model this is unity and
the equation reverts to Dixon and Kara (2005). This means that the bjs put
a greater weight on the immediate future and less on the more distant future
than the corresponding GC. We can see this if we look at the cumulative
weights: looking at the sum of weights up to q periods ahead, the sum of bjs
is the sum of Cjs plus the weights passed back from the periods in the future
to each of the bj where j � q.

qX
j=1

bj =

qX
j=1

!j
�!
�j +

qX
k=0

1X
i=k

!i
�!

�i
i+ 1

We can illustrate the di¤erences in forward lookingness using the some of
the examples we considered before in section 3.1. Since the GC weights are
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just the age-shares �si and were given previously as fractions in section 2.2,
we state them here as decimals to 4 decimal places. The bj coe¢ cients are
give as both exact fractions and decimals.

Example 1
�s1 = 0:925 b1 = 0:9521 =

457
480

�s2 = 0:025 b2 = 0:0271 =
13
480

�s3 = 0:025 b3 = 0:0146 =
7
480

�s4 = 0:025 b4 = 0:0063 =
1
160

FLGC = 1:15 FLGTE = 486
480
= 1:075

Example 2.
�s1 = 0:4706 b1 =

9
16
= 0:5625

�s2 = 0:3530 b2 =
5
16
= 0:3125

�s3 = 0:1765 b3 =
2
16
= 0:125

FLGC = 1:706 FLGTE = 25
16
= 1:5625

Example 3
�s1 = 0:4507 b1 =

71
128
= 0:5547

�s2 = 0:3380 b2 =
39
128
= 0:3047

�s3 = 0:1690 b3 =
15
128
= 0:1172

�s4 = 0:0423 b4 =
3
128
= 0:0234

FLGC = 1:803 FLGTE = 1:609

Clearly, in all three examples the GTE corresponding to a GC puts a
much greater weight on the current period and less on the subsequent periods,
resulting in a less forward looking pricing decision. In example 1, the weight
is still greater on the second period, but falls o¤ rapidly.
Lastly, we can consider the case of a MC process. In this case, the

forward lookingness of the MC is simply the average of the Forward look-
ingnesses of the individual Calvo processes weighted by sector shares �k

FLMC =
nX
k=1

�k�!k =
kX
j=1

�k�sk = �s

where �sk is the average age in steady state in the k�sector, and �s the average
age in the population. Since by construction the MC and the equivalent
GC have the same distribution of ages in steady state and hence average age
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in the population, the two di¤erent constructions have the same forward-
lookingness, FLGC = FLMC . Furthermore, we can see that the average
reset price at time t will be equal.
In the MC, there will be di¤erent reset prices, one for each �!k. Hence

the reset price of �rms with hazard �!k is:

XMC
kt =

1X
j=1

�skjP
�
t+j�1

where
�
�skj
	1
j=1

is the steady-state age-distribution for those with hazard �!k.
The average reset price is then

XMC
t =

nX
k=1

�iX
MC
kt =

nX
k=1

1X
j=1

�k�
s
kjP

�
t+j�1

=
1X
j=1

�sjP
�
t+j�1

since
Pn

k=1 �k�
s
kj = �

s
j :

Hence the average reset price in theMC is the same as the equivalent GC
setting. This means that when modelling an economy with heterogeneous
Calvo contracts as in theMC model, it may well be the most parsimonious to
use the GC framework. The degree of forward lookingness and the average
reset price are the same. The only di¤erence is that in MC there are as
many reset prices as hazard rates, whereas in the GC there is only one.reset
price in any one period.

6 Price Data: an application to the Bils-Klenow
Data set.

In this section, we apply our theoretical framework to the Bils-Klenow Data
set (Bils and Klenow 1994). This data is the micro-price data collected
monthly for the US CPI over the period 1995-7. The BK data covers 350
categories of commodities comprising 68.9% of total consumer expenditure.
They focus on the proportion of prices that change in a month in each cate-
gory (sector). They then derive the distribution of durations across contracts
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on the assumption that there is a sector speci�c Calvo reset probability in
continuous time15.
In this section I use the BK data to construct the distribution of contracts

across �rms. Each sector has a sector-speci�c average proportion of �rms
resetting their price per month over the period covered. We can interpret
this as a Calvo reset probability in discrete time. We adopt the discrete
time approach in order to be consistent with the pricing models which are
in discrete time. The �rst approach we adopt is to model this as a Multiple
Calvo process BK�MC. The second is to model the resulting distribution
across all sectors. Within each sector we have the Calvo distribution of
contract lengths as derived in Dixon and Kara (2006a): using the sectoral
weights we can then aggregate across all sectors. This gives us the following
distribution of contract lengths:

Fig 1: the BK Distribution of Contract lengths Across Firms

Note that the mean in our distribution is larger than is reported in BK.
This is because we are looking at the mean duration across �rms rather than
contracts and hence we are more likely to observe longer contracts. With the
aggregate distribution of contract lengths we can model this as either a GTE
or a GC as well as anMC. We therefore have three di¤erent pricing models
of the same distribution of contract lengths derived from the BK dataset.

6.1 Pricing Models Compared.

We will see how the di¤erent models of pricing di¤er in terms of their impulse-
response. We adopt the model of price or wage setting developed in Dixon
and Kara (2005a, 2006): the details are set out in the appendix. We con-
sider two monetary policy shocks: in the �rst case there is a one o¤ perma-
nent shock in the level of the money supply; in the second an autoregressive

15The use of continuous time leads to a lower expected expected duration at birth. If
the proportion resetting price is �!, the expected duration at birth is �1=In(1� �!). This
is less than the discrete time expectation 1=�!. The di¤erence gets proportinatley larger
as �! gets larger. When �! = 0:8 the discrete time estimator is over twice the continuous
time estimator. The analysis in this paper is in discrete time becuase that is how the
pricing models are employed in the literature, and also it provides spreadsheet simplicity
and trnasparency.

25



process. Expressed as log deviations form steady state, money follows the
process

mt = mt�1 + "t

"t = �"t�1 + �t

where �t is a white noise error term. We consider the case of � = 0 and
the autoregressive case, where we set � = 0:5. The other key parameter 

captures the sensitivity to the �exible price to output. The optimal �exible
price at period t in any sector p�t is given by

p�t = pt + 
yt

where (pt; yt) are aggregate price and output (all in log-deviation form). We
allow for two values of 
 = f0:01; 0:2g: a high one and a low one as discussed
in Dixon and Kara (2006b).

Fig 2: Responses to a one-o¤ monetary Shock.

In Figure 2, we depict the responses of output, the reset price, the general
price level and in�ation to a one-o¤ shock with 
 = 0:2. Looking at all the
graphs, it is striking that the three models of pricing have fairly similar
impulse-responses: none of them are far apart. However, in all cases the
MC and the GC are close together and the GTE is farther away, particularly
towards the end. To understand this, we can look at the IR for the average
reset price and the general price level. In the GTE case, the reset price
rises less on impact than the MC or GC. This re�ects the greater myopia:
those cohorts resetting prices look less far ahead on average, so that they do
not raise prices as much as in the MC or GC case. At about 10 months
however, the situation is reversed: the GTE reset price exceeds the MC and
GC case: whilst the latter are slowing down price increases in anticipation
of the approaching steady state, the GTE maintains momentum for longer.
This comparative myopia of the GTE explains why the output response
starts o¤ above both the MC and GC, but ends up after 15 months below
both.

Fig 3: Serial Correlation in Monetary growth � = 0:5

In Figure 3 we consider the autoregressive monetary policy shock and
concentrate on the IR for output and in�ation for both the high and the
low values of 
. We �nd that there is now a more radical di¤erence between
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the GTE and the other two models. If we look at in�ation we see that
there is a hump shape: the peak impact on in�ation appears after the initial
monetary shock: with the high value of 
 it happens at 3 months: with the
low value at around 20 months. Both the MC and the GC are not hump
shaped. This re�ects the �nding in Dixon and Kara 2006b that the Calvo
model does not capture the characteristic "hump shaped" response indicated
by empirical VARS. This feature appears tp be shared by its generalisations
MC and GC.
This simple example of the IR of major variables shows how di¤erent

models of pricing can yield di¤erent patterns of behaviour even though the
distribution of contract lengths are exactly the same. Partly this is due to
di¤erent degrees of forward lookingness. The MC and the GC do di¤er
slightly, but are quite close, which re�ects the fact that they have the same
forward lookingness. It suggests that since the GC is computationally much
simpler (you only have to model one pricing decision for all �rms resetting
price, rather than one for each sector), this model might be preferred to the
MC.

6.2 Alternative Interpretations of the BK Data set.

The previous analysis was based on assuming that the true distribution
within each sector is generated by the sector speci�c discrete time Calvo
distribution. However, this is just one hypothesis about the underlying
distribution of contract lengths generating the proportion of �rms resetting
their price per month. Let us look at the class of GTEs that are consistent
with a particular reset proportion. Again, let us consider the set of GTEs
with maximum contract lengths F; � 2 �F : we can de�ne the subset which
yield a particular reset proportion �! : de�ne the mapping A (�!) : [0; 1]! �F

A (�!) =

(
� 2 �F :

FX
i=1

�i
i
= �!

)

Note that since A (�!) is de�ned by a linear restriction on the sector shares
�. We assume that �! � F�1 in what follows., so that A (�!) is non-empty16.
Hence A (�!) � �F�2 and A (�!) is closed and bounded.

16This is a purely technical assumption. If we assumed a value �! < F�1, then even if all
contracts were at the maximum duration, there would be too many �rms resetting prices.
Since we are dealing with empirically relevant values, �! > F�1 is automatically satis�ed.
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The average length of contracts is �T (�) =
PF

i=1 i:�i: Let us consider
the following problems: what is the lowest (highest) average contract length
consistent with a particular reset proportion �!: Mathematically, we know
that since A (�!) is non-empty, closed and bounded and �T (�) is continuous,
both a maximum and a minimum will exist. Turning to the minimization
problem �rst: we have to choose � 2 �F�1 to solve

min �T (�) s:t: � 2 A (�!) (9)

Proposition 3 Let �� 2 �F�1 solve (9) to give the shortest average con-
tract length �T (�).

(a) No more than two sectors i have values greater than zero

(b) If there are two sectors �i > 0, �j > 0 then will be consecutive
integers (ji� jj = 1).
(b) There is one solution i¤ �!�1 = k 2 Z+. In this case, �k = 1.

We can sum up the proposition by saying that the shortest average con-
tract length consistent with a given proportion of resetters is the simplest
GTE that can represent it. It is either a pure simple Taylor, or an only
slightly less simple GTE with two sectors of consecutive lengths. Note that
whilst Proposition 3 is derived for a GTE, under the equivalence established
by Proposition 1 and corollary 3, it will also hold across all GCs. It is a
distribution which minimises mean contract length, and this distribution can
be seen as either a GTE or a GC.
We can also ask what is the maximum average contract length consistent

with a proportion of resetters:

max �T (�) s:t: � 2 A (�!) � �F�1

Proposition 4 Given the longest contract duration F , the distribution of
contracts that maximises the average length of contract subject to a
given proportion of �rms resetting price �! � F�1 is

�F =
F

F � 1 (1� �!)

�1 =
F

F � 1 �! �
1

F � 1
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with �i = 0 for i = 2:::F � 1: The maximum average contract length
is

�Tmax = F (1� �!) + 1
There will be one contract length with �F = 1 if �! = F�1, and �1 = 1 if
�! = 1. For all intermediate values, �F :�1 > 0.

This proposition implies that as F !1, so does the maximum contract
length. If F = 1 as in the Calvo model, there is no upper bound to the
average contract length.
Let us return to the BK data set in the light of the preceding two propo-

sitions. First, we can ask the what is the shortest average contract length
which is consistent with the BK data set. The BK data set gives us for
each sector k the proportion of �rms changing price: �!k in any month: Fol-
lowing Bils and Klenow themselves, it is natural to interpret this as a MC,
that within each sector there is a Calvo process. This was the assumption
we used to generate Figure 2. In terms of the mean contract length in the
BK �MC, this is calculated as

�TMC =
nX
k=1

�k
2� �!k
�!k

= 4:4

Where durations are in Quarters unless otherwise speci�ed. The minimum
average contract length within each sector is simply �!k; so that the minimum
average contract length in the BK data is17:

�Tmin =
nX
k=1

�k
1

�!k
= 2:7

Clearly, for any data set like this (based on the proportion of �rms changing
price in a period), the shortest average contract length can be achieved using
the Taylor model: using the Multiple Calvo yields an average duration nearly
twice as long, with the linear relation:

�TMC = 2 �Tmin � 1:
17Note that this exceeds the level reported by Bils and Klenow! That is becuase they

interpret the proportion as arising from a continuous time process. We are adopting the
discrete time approach.
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The maximum average contract length is not meaningful. There are some
sectors with very low percentages of price changing: coin operated laundry,
for example has 1.2% of prices changing a month implying a minimum18

mean contract length in that sector of 83 months (over 6 years). However,
the nature of the BK data set says nothing about the distribution within
the sectors, so there is no meaningful upper bound on the average length of
contracts.
Lastly, let us consider what might happen if we aggregate over all sectors

by taking the mean proportion of �rms changing price,

!̂ =
nX
k=1

�k�!k

This gives us an estimate of average duration T̂ :

T̂ =
2

!̂
� 1 = 2:47

Now, clearly, since contract length is a convex function of �!k, by Jensen�s
inequality T̂ � �TMC . If we use the actual BK data, we have !̂ = 0:209 per
month, yielding the reported estimate of 2:47 quarters which is just over one
half of the "true" MC value. This shows that aggregating over sectors in
this way can be extremely misleading and will considerably underestimate
the "true " value even if one believes the Calvo story19. However, the MC
might not be the true model. Even with this degree of disaggregation,
there may well be intra-sectoral variation. Ultimately, what is needed is
the individual price data. Certainly, using data of the proportions changing
price in a period is of limited value and might not even get you into the right
ballpark. That is certainly what the BK data set tells us.

7 Conclusion

In this paper we have developed a consistent and comprehensive framework
for analyzing di¤erent pricing models which generate steady state distribu-
tions of durations which can be used to understand dynamic pricing mod-
els. In particular, the distribution of completed contract lengths across �rms

18Recall, we have the lower bonnd on F since F � (�!k)�1 :
19This is also a �nding emphasised on European data: see Dhyne E. et al (2005, 13).
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(DAF) is a key perspective which is fundamental to understanding and com-
paring di¤erent models. Any steady state distribution of durations can be
looked at in terms of completed durations, which suggests it can be modelled
as a GTE; it can also be thought of in terms of Hazard rates which suggests
the GC approach. Both the GC and the GC are comprehensive: they can
represent all possible steady states. Furthermore, they are closed under ag-
gregation. Unlike the simple Calvo and Taylor models, they are consistent
with heterogeneity in the economy.
Once we have controlled for the distribution of contract durations, we

can compare di¤erent pricing models. The concept Forward Lookingness is
useful in comparing the way di¤erent pricing rules put weights on the future
periods. We �nd that the GC is less myopic than the corresponding GTE,
echoing the �nding of Dixon and Kara (2005a) comparing Calvo and the
Calvo-GTE. We then illustrate this by using a standard macromodel using
the Bils-Klenow data set, which we interpret (following Bils and Klenow) as
an MC process. We see even though the distributions are identical, the
three pricing models are di¤erent. The GC and MC are close to each other
and had the same forward lookingness. The GTE is more myopic and has a
di¤erent impulse-response in relation to a monetary shock. In particular, for
particular parameterization, the GTE can display a hump-shaped in�ation
response, whereas the GC and MC never have a hump.
The analysis also has implications for how we interpret the data on the

proportion of �rms setting a price in a particular period. The minimum
average length consistent with this is given by the simplest GTE. There is
no reasonable upper bound unless we have an upper bound on the maximum
contract length possible. Certainly, there are severe problems of aggregation
which indicate that using such data might lead very inaccurate estimates of
average contract length. The analysis also indicates that existing estimates
of price-stickiness are biased downwards and that in reality prices are stickier
than some have maintained.
Our analysis has looked at one type of wage or price setting behaviour:

the contract consists in the setting of a nominal price or wage that persists
throughout the contract. As we show in Dixon and Kara (2006b), other
types of price and wage setting can be dealt with in this framework. For
example, we can have Fischer contracts, where �rms or unions set a trajectory
of nominal prices over the life of the contract. This is essentially the approach
taken by Mankiw and Reis (2002). There are other possibilities such as
indexation during the contract once the initial level has been �xed. We
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can have any model of pricing so long as it is consistent with a steady state
distribution of durations. The main class of pricing models that do not
give a steady state distribution are of course the state-dependant pricing
models (menu cost models), such as Dotsey, King and Wolman. (1999).
Here the duration or contracts depends on the macroeconomic environment.
However, this paper makes an attempt to improve our understanding of the
steady state, which will in turn provide a �rmer foundation for understanding
non-steady state phenomena.
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9 Appendix.

9.1 Proof of Proposition 1 and Corollaries.

Proof. The proportion of �rms that have a contract that last for exactly
1 period are those that are born (age 1) and do not go on to age 2. The
proportion of �rms that last for exactly i periods in any one cohort (born
at the same time) is given by those who attain the age i but who do not
make it to i+ 1 : this is

�
�si � �si+1

�
per cohort and at any time t there are

i cohorts containing contracts that will last for i periods.
Clearly, since �sj are monotonic, �i � 1, and

FX
i=1

�i =
FX
i=1

i
�
�si � �si+1

�
= (�s1 � �s2) + 2 (�s2 � �s3)� 3 (�s3 � �s4) ::::

=
FX
i=1

�si = 1

Hence � 2 �F�1:
The relationship between the distribution of ages and lifetimes can be

depicted in terms of matrix Algebra: in the case of F = 4:2664
�1
�2
�3
�4

3775 =
2664
1 �1 0 0
0 2 �2 0
0 0 3 �3
0 0 0 4

3775
2664
�s1
�s2
�s3
�s4

3775
Clearly, the 4� 4 matrix is a mapping from �3 ! �3: since the matrix is of
full rank, the mapping from �s to � is 1� 1. Clearly, this holds for any F .
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9.1.1 Proof of Corollary 1:

Proof. To see this, we can rewrite (2):

�1 = �s1 � �s2
�2
2

= (�s2 � �s3)
�i
i

=
�
�si � �si+1

�
�F
F

= �sF

hence summing over all possible durations i = 1:::F gives

FX
i=1

�i
i
=

F�1X
i=1

�
�si � �si+1

�
+ �sF = �

s
1

So that by repeated substitution we get:

�s2 = �s1 � �1 =
FX
i=2

�i
i

�sj =
FX
i=j

�i
i

j = 1:::F

9.1.2 Corollary 3.

Proof. Rearranging the F � 1 equations (4) we have:
�1
�!
= !1;

�2
2�!

= !2 (1� !1) :::
�i
i:�!

= !i
i; :::
�F
F �!

= 
F

By repeated substitution starting from i = 1 we �nd that

!i =
�i
i

 
�! �

i�1X
j=1

�j
j

!�1
(10)


i =
1

�!

"
�! �

i�1X
j=1

�j
j

#
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Since we know that !F = 1, from (10)this means that:

1 =
�F
F

 
�! �

F�1X
i=1

�i
i

!�1
) �! =

FX
i=1

�i
i

Substituting the value of �! into (10) establishes the result.

9.2 Proof of Proposition 2.

Without loss of generality let �!1 < �!2 < :::: < �!K : We then have

�i
i
=

nX
k=1

�k�!
2
k (1� �!k)

T�1 =
nX
k=1

�k
�ki
i

the period i hazard rate is the !i is the average of the hazard rates taken
over the survivors to i. Note that k and j subscripts refer to the sectoral
calvo reset probabilities: !i the aggregate duration dependent reset, which
is a weighted sum of the sectoral reset probabilities, the weights being given
by �ki, the share of sector k survivors in all survivors:

!i =
nX
k=1

�k�!k

�ki =
�k�!k (1� �!k)

i�1Pn
k=1 �k�!k (1� �!k)

i�1 share of k in survivors

I now divide up the proof into three steps.

Lemma 1 The share of survivors of type k at duration i is increasing (de-
creasing) if the hazard rate �!k is less than (greater than) the average
hazard !i
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Proof.

�ki+1 � �ki =
�k�!k (1� �!k)

iPn
j=1 �j �!j (1� �!j)

i �
�k�!k (1� �!k)

i�1Pn
j=1 �j �!j (1� �!j)

i�1

=
�k�!k (1� �!k)

i�1
hPn

j=1 �j �!j (1� �!j)
i�1 (�!j � �!k)

i
�Pn

j=1 �j �!j (1� �!j)
i
��Pn

j=1 �j �!j (1� �!j)
i�1
�

=
�k�!k (1� �!k)

i�1 (!i � �!k)Pn
j=1 �j �!j (1� �!j)

i

= �ki+1
!i � �!k
1� �!k

which establishes Lemma 1.

Lemma 2 The hazard rate decreases with duration !i+1 < !i:

Proof.

!i+1 � !i =

nX
k=1

�!k
�
�ki+1 � �ki

�
=

nX
k=1

�!k�ki+1
!i � �!k
1� �!k

=
nX
k=1

�!k
1� �!k

�ki+1 (!i � �!k) < 0

Since the higher vales of �!k have higher weights, this sum is negative unless
all values of �!k = !, in which case the hazard is constant.

Lemma 3 In the limit as i!1, !i ! min [�!k] = �!k; �1i ! 1:

Problem 2 Proof. By de�nition,

!i � �!k
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The share of type 1�s in the survivors is

�1i =
�1!1 (1� �!k)

i�1Pn
k=1 �k�!k (1� �!k)

i�1

=

"
1 + r2

�
1� �!2
1� �!1

�i�1
:::+ rn

�
1� �!n
1� �!1

�i�1#�1
where rk =

�k�!k
�1�!1

Lim
i!1

��11i = Lim
i!1

"
1 +

nX
k=2

"
rk

�
1� �!k
1� �!1

�i�1##�1
= 1

since �!1 < �!k for k = 2:::n.

Hence Lim
i!1

��1ki = 0 for all k > 1.

9.3 Proof of Proposition 3.

Proof. Firstly we will prove (a) and (b). We do this by contradiction. Let
us suppose that the solution � such that �k > 0 and �j > 0 and k � j � 2
We will then show that there is another feasible GTE �0 with �j > 0 and
�j+1 > 0 which generates a shorter average contract length.
Let us start at the proposed solution �; and in particular the two sectors

k and j, whose sector shares must satisfy the two relations:

�k + �j = � = 1�
FX

i=1;i6=j;k

�i (11)

�k
k
+
�j
j

= � = �! �
FX

i=1;i6=j;k

�i
i

� is the total share of the two sectors: if there are only two sectors then
� = 1; if there are more than two sectors with positive shares then � is equal
1 minus the share of the sectors other than j and k. Likewise, � is the sum of
the contribution of these two sectors to �! less the contribution of any sectors
other than j and k. Note that since k > j,

�

�
> j (12)
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We can rewrite (11) as

�j =
kj

k � j � � (k � j) � (13)

�k = � (1 + k � j)� kj

k � j �

What we show is that we can choose
�
�0j; �j+1

�
which satis�es the two rela-

tions above (and hence is feasible) but yields a lower average contract length.
Speci�cally, We choose �0j+1; �

0
j such that

�0j = j (j + 1) � � � (14)

�0j+1 � �j+1 = 2�� j (j � 1) �

De�ne ��j+1 = �0j+1 � �j+1: What we are doing is redistributing the total
proportion � over durations j and j + 1 so that the aggregate proportion of
�rms resetting the price is the same: �02A (�!) ;since (14) is equivalent to
(13) implies

��j+1 + �
0
j = � (15)

��j+1
k

+
�0j
j

= �

Lastly, we show that �0 has a lower average contract length. Since
we leave the proportions of other durations constant, their contribution to
the average contract length is unchanged. From (13) the contribution of
durations k and j is given by

Tk = kak + j�j

= �
�
k + (k � j)2

�
� kj�

Likewise the contribution with �0 is given by

Tj = (j + 1)��j+1 + j�
0
j

= � (j + 2)� (j + 1) j�

Now we show that

Tk � Tj+1 = �
�
k � (j + 1) + (k � j)2 � 1

�
� � (kj � (j + 1) j)
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Noting strict inequality (12) we have

Tk � Tj+1 > �
�
j
�
k � (j + 1) + (k � j)2 � 1

�
� kj + (j + 1) j

�
> � [j (k � j � 1)] > 0

Hence
�T (�)� �T (�0) = Tk � Tj+1 > 0

the desired contradiction.
Hence, the GTE with the minimum contract length consistent with the

observed �! cannot have strictly positive sector shares which are not consec-
utive integers. There are at most two strictly positive sector shares.
To prove (c) for su¢ ciency, if �!�1 = k 2 Z+, then if �k = 1 2 A (�!) : If

�k < 1 any other element of A (�!) must involve strictly positive �j and �i
with j � i � 2, which contradicts the parts (a) and (b) of the proposition
already established.
For necessity, note that if �!�1 =2 Z+; then no solution with only one

contract length can yield the observed proportion of �rms resetting prices.

9.4 Proof of Proposition 4.

Proof. First, note that if the proportions are given by the equations, then
the rest of the proposition follows. I know show that these equations are
indeed the maximising ones. Assume the contrary, that there is a distrib-
ution � with �i > 0 where 1 < i < F which gives the maximum contract
length. I show that this proposed optimum can be improved upon. Hence
the optimum must involve only durations f1; Fg and the given equations
follow automatically. So, let us take the proposed solution, with �i > 0. Let
us redistribute the weight on sector i between f1; Fg : In order to ensure that
we remain in A (�!) the additional weights must satisfy

��i +
��F
F

=
�i
i

��i +��F = �i

which gives us

��F = �i
F (i� 1)
i (F � 1)

��1 = �i
F � i
i (F � 1)
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The resulting Change in the average contract length is

��T = �i

�
F (i� 1)
i (F � 1) (F � i)�

F � i
i (F � 1) (i� 1)

�
=

�i (i� 1) (F � 1)
i (F � 1) [F � 1] > 0

The desired contradiction. Given that all contracts must be either 1 or F
periods long, the rest of the proposition follows by simple algebra.
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Fig.1. The Typology of contract types.
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Figure 2: The BK Distribution of Contract Lenghts











Figure 4: Serial Correlation in Monetary growth




