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Abstract
A derivation of the ICAPM in a very general framework and previous
theoretical work, argue for the relative risk aversion (RRA) coefficient to be
both time-varying and countercyclical. The variables that represent proxies for
the cyclical component of RRA are the market dividend yield, default spread,
smoothed earnings yield and industrial production growth, all being highly
correlated with the business cycle. In addition, the value spread - a proxy for the
relative valuation of value stocks versus growth stocks - is included as a
determinant of risk aversion. The results show that risk aversion is
countercyclical, and the ICAPM with time-varying RRA performs better than
the Bad beta good beta model (BBGB) from Campbell and Vuolteenaho (2004).
The results from an augmented scaled ICAPM show that the market return has a
negative effect on risk aversion, thus risk aversion seems to be affected by both
business conditions and financial wealth. The estimates of the average RRA
coefficient seem reasonable and plausible, and the model is able to capture a
significant decline in risk-aversion in the 90’s, in line with the mounting
evidence from academics and practioneers. When compared against alternative
factor models - CAPM, Fama-French 3 factor and Fama-French 4 factor models
- the scaled ICAPM performs much better than the CAPM, and compares
reasonably well against the Fama-French models. A crucial result relies on the
fact that the scaled ICAPM models do a good job in pricing both the "extreme"
small-growth portfolio and all the book-to-market quintiles, which is mainly due
to the presence of the factor related with time-varying risk-aversion. Overall, the
results of this paper offer a fundamental explanation - time-varying risk aversion
- for the value premium. Preliminary results suggest that the ad-doc HML and
UMD factors, at least partially, measure the same types of risks as the ICAPM
with time-varying risk aversion.
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I. Introduction

According to the Merton (1973) ICAPM, state variables that predict market returns, should

act as risk factors that price the cross-section of ex-post average returns. Despite this

prediction - and the existence of a vast literature showing that the market equity premium is

time-varying and predictable at several horizons by a set of state variables linked to short term

interest rates, bond yields and financial ratios - there has been not many attempts to test the

ICAPM, even in the presence of the CAPM failure to explain the cross section of average

returns. Among the papers that implemented empirically testable versions of the original

ICAPM, are Campbell (1993, 1996), and more recently Chen (2003), Brennan et al (2004) and

Campbell and Vuolteenaho (2004). Common to these papers is the assumption that the

coefficient of relative risk aversion associated with the original utility function, is constant

through time. Nevertheless as demonstrated in Cochrane (2001) and the next section, a

derivation of the ICAPM in a very general framework produces a time varying relative risk

aversion coefficient. In fact, evidence from Campbell and Cochrane (1999) show that the

relative risk aversion parameter - as well as the local curvature of the utility function - should

vary with the business cycle, being countercyclical. This is not just an analytical fact arising

from the models, since it is economically sensible to assume that risk aversion is negatively

correlated with the business cycle: In recessions or times of sustained declining prices (bear

stock market), the investors’ risk tolerance should be low, and the converse should happen in

economic expansions, or bull market. Hence, time-varying risk aversion can be interpreted as

a recession risk factor that causes marginal utility and required returns to be high in

recessions and low in economic expansions.

An augmented version of the Bad beta, good beta ICAPM (BBGB) from Campbell and

Vuolteenaho (2004) (CV), is specified and estimated by incorporating time-varying relative risk

aversion (RRA), using a number of state variables related with the business cycle and
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financial wealth. The results show that, in general, all the ICAPM models with time-varying

RRA perform better than the corresponding BBGB models which assume constant RRA. The

estimates of the average RRA coefficient seem reasonable and plausible - in most cases

under 20 - which go along with previous evidence that argue for low values of RRA. In

general, the coefficient estimates in the RRA equation, have the expected sign, and in many

cases are statistically significant, thus confirming that there is a negative correlation between

business conditions and risk aversion. When compared against alternative factor models -

CAPM, Fama-French 3 factor and Fama-French 4 factor models - the several versions of the

augmented ICAPM perform reasonably well. In addition, the time-varying ICAPM models do a

good job in pricing both the "extreme" small-growth portfolio and the book-to-market quintiles.

The good fit of the ICAPM with time-varying RRA to both value and growth portfolios, is

mainly due to the time-variation in RRA factors, thus presenting a fundamental explanation for

the value premium.

II. Theoretical background

A. A "general" ICAPM model

The ICAPM can be derived in a very general setting with unspecified preferences. Here I

adopt the structure used in Cochrane (2001) - chapter 9 - where the value function associated

with the investor’s optimization problem in a continuous-time setting is given by VWt, zt, whith

Wt denoting total wealth and zt representing a vector of state variables which forecasts future

expected returns or changes in the investment opportunity set. In this context, the

continuous-time stochastic discount factor (SDF)1 is given by

t  e−tVWWt, zt 1

where  is a subjective time-discount rate, and VW denotes the marginal utility of wealth. By

applying Ito’s lemma to equation (1) we have
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dt
t

 −t  WtVWWWt,zt
VWWt,zt

dWt
Wt

 VWzWt,zt
VWWt,zt

dzt 2

where the second derivative terms have been ignored since they will cancel out in the

pricing equation. In this framework, the relative risk aversion (RRA thereafter) coefficient is

given by

t ≡ − WtVWWWt,zt
VWWt,zt

3

which can be rewritten as

t ≡ − CtuccCt,zt
ucCt,zt

4

since at the optimum the envelope theorem ensures that the marginal utility of wealth and

the marginal utility of consumption are the same, uc.   VW. , i.e., the incremental value of

a dollar consumed or a dollar invested are coincident.

Substituting (2) in the pricing model

Et
dpt

i

pt
i  

Dt
i

pt
i dt − rt

fdt  −Et dt
t

dpt
i

pt
i  5

we have

Et
dpt

i

pt
i  

Dt
i

pt
i dt − rt

fdt  tEt dWt
Wt

dpt
i

pt
i  −

ztVWzWt,zt
VWWt,zt

Et dzt
zt

dpt
i

pt
i  6

where the left hand side represents the expected return of asset i (price appreciation plus

the dividend yield) in excess of the risk-free rate. Since there is no difference between second

moments and covariances in continuous time, this equation can be restated as

Et
dpt

i

pt
i  

Dt
i

pt
i dt − rt

fdt  tcovt dWt
Wt

, dpt
i

pt
i  −

ztVWzWt,zt
VWWt,zt

covt dzt
zt , dpt

i

pt
i  7

which can be approximated to discrete time as

EtRt1
i  − Rt

f ≈ tcovtRt1
i , ΔWt1

Wt
  ztcovtRt1

i , Δzt1
zt  8
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with zt ≡ − ztVWzWt,zt
VWWt,zt

being the risk price associated with the state variables zt,

ΔWt1 ≡ Wt1 − Wt and Δzt1 ≡ zt1 − zt. The growth in total wealth, ΔWt1
Wt

, can be approximated

by the market return, and by the same reasoning the change in the factors that predict returns

Δzt1
zt , can have as proxy the returns on the corresponding factor-mimicking portfolios. Equation

(7) can be alternatively derived exactly in a discrete-time framework assuming joint-normality

for Rt1
i , Wt1 and zt1, and then applying Stein’s lemma, a procedure which is pursued in the

Appendix A.

B. Time-varying risk aversion

From equation (3) it is clear that the RRA coefficient is time-varying: it is related with current

wealth (realized market returns), the marginal utility of wealth (consumption), and the second

derivative which measures the local curvature of the value (utility) function. These two

quantities are functions of time-varying variables, Wt, zt, and hence should be time-varying.

The fact that  t is related with the marginal utility of consumption uc.  might suggest that

risk factors which are a proxy for the marginal utility growth, ucCt1,zt1
ucCt,zt

≈ a  b ′ft1, are potential

candidates for explaining time-varying RRA. In addition,  t should be related with the

curvature of the utility function,

t ≡ − WtVWW.
VW.

 − ∂ lnVW.
∂ lnWt

 − ∂ lnuc.
∂ lnCt

∂ lnCt
∂ lnWt

  t
∂ lnCt
∂ lnWt

9

where  t ≡ − Ctucc.
uc.

denotes the local curvature of the utility function and ∂ lnCt
∂ lnWt

represents

the elasticity of consumption with respect to wealth. Equation (9) states that RRA moves with

 t, since the elasticity term is always positive. Variables that proxy for ucc.  should be related

with the business cycle or overall stance of the stock market: In periods of economic

recessions or declining stock returns ("bear" market) investors should be more sensitive to

additional negative shocks in returns - and hence negative shocks in wealth and consumption

- i.e., the change in marginal utility measured by  t, is higher in those periods. The converse is
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true for periods of economic expansion or rising stock prices ("bull" market), where investors

are not so sensitive to adverse shocks. Hence  t should be related with "recession risk" state

variables that cause RRA to be countercyclical: high in recessions ("bear markets") and low in

expansions ("bull markets").

Campbell and Cochrane (1999) present a model in which  t  /St, where  is the power

utility function coefficient and St  Ct−Xt
Ct

, denoted as the "surplus consumption ratio" which

measures how higher is current consumption relative to past consumption, designed by habit

Xt. In this model the "recession state" variable is St: In recessions, consumption decreases

relative to past consumption (S is low), and therefore  t and RRA are both high. During

expansions, we have the converse effect, in which consumption is high relative to the habit (S

is high) and this leads to a low RRA. Additionally, in this model consumption moves more than

proportionally with wealth, meaning that ∂ lnCt
∂ lnWt

 1, and this causes the RRA coefficient to be

always higher than  t. Nevertheless, in what concerns the goal of this paper, the relevant

feature of Campbell and Cochrane (1999) paper is that RRA - as well as the curvature of the

utility function - are both countercyclical, and therefore should be explained by state variables

which are negatively correlated with the business cycle or overall stance of the stock market.

Therefore  t will be related with state variables known in time t, and which are correlated

with the business cycle, zt. In the following analysis, let’s assume that zt is a scalar in order to

simplify the algebra, but the analysis could be extended in a straightforward way for the case

of zt being a vector of state variables explaining the dynamics of  t. Thus the specification for

 t is given by

t  0  1zt 10

In the following pricing equations the RRA coefficient in the current period pricing equation

t  1 is denoted by  t, since it is linearly related with state variables known in last period

(time t), as specified by equation (10). In fact it seems reasonable to assume that the
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investor’s attitude toward risk should change as a reaction to last available information - last

period information set - and not on unknown information of the current period. The fact that 

depends on lagged variables also enables to condition down the model by taking the law of

iterated expectations, and therefore obtain an unconditional version of the asset pricing model

which can be empirically testable.

C. ICAPM with time-varying risk aversion

Campbell (1993) uses an Epstein and Zin (1989, 1991) utility function and a decomposition

for innovations on consumption growth based on the investor’s intertemporal budget

constraint, combined with joint conditional log-normality and homoskedasticity of asset returns

and consumption growth, to derive a version of the ICAPM represented in unconditional form

as,

Eri,t1 − rf,t1 
i

2

2  0im  0 − 1ih 11

where ri,t1 and rf,t1 denote the log return on stock i and log risk-free rate respectively, 0 is

the RRA coefficient, i
2

2 is a Jensen’s Inequality adjustment arising from the log-normal model,

and

 im ≡ ECovtri,t1, rm,t1  ECovtri,t1, rm,t1 − Etrm,t1  Covri,t1, rm,t1 − Etrm,t1 and

 ih ≡ Covri,t1, rt1
h  represent the unconditional covariances of stock i’s return with the current

market return and news about future market returns, respectively. News about future market

returns is given by

rt1
h ≡ Et1 − Et∑j1


jrm,t1j 12

In a recent paper, Campbell and Vuolteenaho (2004) - CV thereafter - using the same

framework as Campbell (1993,1996), rely on the decomposition of current unexpected market

returns into revisions in future expected returns (discount-rate news) and the residual which
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they interpret as cash-flow news,

rm,t1 − Etrm,t1  Et1 − Et∑j0


jΔdt1j − Et1 − Et∑j1


jrm,t1j

≡ rt1
CF − rt1

h 13

with rt1
CF ≡ Et1 − Et∑j0


jΔdt1j  rm,t1 − Etrm,t1  rt1

h representing "news" about future

cash-flows. They come up with a version of the ICAPM based also on only two factors: the

covariance (beta) with discount-rate news (good beta) and the covariance with cash-flow

news (bad beta),

Eri,t1 − rf,t1 
i

2

2  0iCF − ih 14

where  ih is defined as before, and  iCF ≡ Covri,t1, rt1
CF is the covariance of asset i’s return

with cash-flow news. In (14) the difference to CV is that  ih appear with a minus sign in the

pricing equation, since in their paper they define the covariance (beta) with respect to the

negative (favorable change) of discount-rate news. The covariance risk with cash-flow news

receives a risk price of 0 whereas the covariance risk with discount-rate news has a risk price

of -1, thus, with 0  1, the covariance with upward revisions in future cash-flows have a

higher risk price than downward revisions in future market returns. I denote equation (14) as

the bad beta good beta ICAPM (BBGB).

Whereas in CV model, the RRA coefficient is assumed to be constant, one can extend it to

be time-varying, making it related with state variables known in period t, and related with the

business cycle, as suggested in the previous sub-section. To accomplish that, I use a

"generalized" version of the Epstein and Zin utility function which accounts for time-varying

RRA,

Ut  1 − Ct

1−t
t  EtUt1

1−t
1
t 

t
1−t 15

where  t ≡
1− t

1− 1


, with  being the elasticity of intertemporal substitution, which is assumed
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to be constant through time.

The objective function (15) has an associated pricing equation in simple returns given by

1  Et Ct1
Ct
−

1
 t 1

Rm,t1
1−tRi,t1 16

which is the same as the Euler equation with constant RRA - with  t in place of  due to the

time variation in  t - since  t belongs to time t information set, and therefore can be put inside

the expectation. Thus the stochastic discount factor (SDF) of this asset pricing model is equal

to

Mt1  t Ct1
Ct
−

t
  1

Rm,t1
1−t 17

with a corresponding log SDF,

mt1  t ln − t
 Δct1 − 1 − trm,t1 18

summing and subtracting both t
 EtΔct1 and 1 −  tEtrm,t1 yields,

mt1  t ln − t
 EtΔct1 − 1 − tEtrm,t1 − t

 Δct1 − EtΔct1
−1 − trm,t1 − Etrm,t1

 Etmt1 − t
 ct1 − Etct1 − 1 − trm,t1 − Etrm,t1

 −Etrm,t1 − t
 ct1 − Etct1 − 1 − trm,t1 − Etrm,t1 19

where the second equality makes use of the fact that Δct1 − EtΔct1  ct1 − Etct1, and

the last equality takes into account the conditional expected log SDF Etmt1  −Etrm,t1

derived in Appendix B.3. Substituting ct1 − Etct1 by its expression derived in Appendix B.2,

it follows

mt1  −Etrm,t1 − t
 rm,t1 − Etrm,t1  1 − rt1

h  − 1 − trm,t1 − Etrm,t1
 −Etrm,t1 − trm,t1 − Etrm,t1  1 − trt1

h 20

where the last equality follows from substituting the expression for  t. If we employ the

decomposition of current unexpected market returns in equation (13), we have,

mt1  −Etrm,t1 − trt1
CF  rt1

h 21

Finally, substituting  t by its expression in equation (10), yields

mt1  −Etrm,t1 − 0rt1
CF − 1ztrt1

CF  rt1
h 22.
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Making ft1 ≡ rt1
CF , ztrt1

CF , rt1
h  and b ≡ b1,b2,b3  −0,−1, 1, and using Theorem 1 in

appendix B.1., one has,

Eri,t1 − rf,t1 
i

2

2  0i,CF  1i,CFz − i,h 23

where  i,CFz ≡ Covri,t1, rt1
CFzt. Equation (23) will be the benchmark model in this paper, and

by imposing 1  0, one obtains the BBGB model (14) as a special case of the ICAPM with

time-varying risk aversion. The innovation in (23) with respect to the BBGB model, is the

1 i,CFz term, resulting from the new factor, ztrt1
CF , which represents the product of cash-flow

news and the risk aversion scaled variable zt, and has a price of risk given by 1, which is the

time-varying component of risk aversion. Thus, this new factor is a measured of time-varying

risk aversion, or a recession risk factor as argued in last sub-section.

The model in covariances (23), can be represented in expected return-beta form, as also

shown in Theorem 1, appendix B.1,

Eri,t1 − rf,t1  0.5i
2   ′i  CFi,CF  CFzi,CFz  hi,h 24

where  ≡ CF,CFz,h ′  −Varft1b denote the vector of factor risk prices, and

 i ≡ Varft1
−1Covri,t1, ft1 represents the 3x1 vector of multiple-regression betas for asset

i. The ’s represent the risk prices of beta risk for each of the factors. As shown in appendix

B.4., for the case of a single determinant of  t, the risk price vector is given by,

CF,CFz,h ′ 

0CF
2  1CF,CFz − CF,h

0CF,CFz  1CFz
2 − CFz,h

0CF,h  1CFz,h − h
2

25

where CF
2 ≡ Varrt1

CF, h
2 ≡ Varrt1

h , CFz
2 ≡ Varrt1

CFzt, CF,CFz ≡ Covrt1
CF , rt1

CFzt,

CF,h ≡ Covrt1
CF , rt1

h  and CFz,h ≡ Covrt1
CFzt, rt1

h . The risk prices depend on the SDF

coefficients 0 and 1 - as in the case of risk prices of covariances - but also on the variances

and covariances between the risk prices, since we are working with multiple-regression betas.

Given  ≡ − fb,  f ≡ Varft1, standard errors for the factor risk price estimates can be
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calculated as,

Var   fVarb f 26

since  f   f
′, and given

Varb 
Varb∗ 02X1

01X2 0
27

with b∗ ≡ −0,−1 representing the SDF parameters to be estimated in the cross-section.

III. Asset pricing tests

A. Data

The test assets used in the asset pricing tests are the Fama-French 25 portfolios sorted on

size and book-to-market (SBV25), and 38 industry sorted portfolios (IND38), all obtained from

Prof. Kenneth French’s website. Due to missing observations, the returns associated with five

industries - Garbage, Government, Steam, Water and Other - are excluded from the sample,

leading to a total of 33 industry portfolios. The 1 month Treasury bill rate used to calculate

excess returns, is also obtained from Prof. French’s website. Return data on the

value-weighted market index is from CRSP, while monthly data on prices and earnings

associated with the Standard & Poor’s (S&P) Composite Index is obtained from Professor

Robert Shiller’s website. Macroeconomic and interest rate data, including the Federal funds

rate (FFR), 10 year and 1 year Treasury bond yields, Moody’s seasoned AAA and BAA

corporate bond yields, and the 3 month treasury bill rate (TB3M), are all obtained from the

FRED II database, available from the St. Louis FED’s website.

B. Estimating the "shifts in the investment opportunity set": a VAR approach

Following Campbell (1991) and CV, I rely on a first-order VAR in order to estimate rt1
h and

rt1
CF , the discount rate news (or shifts in the investment opportunity set) and cash-flow news
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components of unexpected market returns, respectively. The VAR2 equation assumed to

govern the behavior of a state vector X t, which includes the market return, and other variables

known in time t which help to forecast changes in expected market returns, is given by

Xt1  AXt  t1 28

In this framework the news components are estimated in the following way,

rt1
h ≡ Et1 − Et∑j1


jrm,t1j  e1 ′AI − A−1t1  ′t1 29

rt1
CF ≡ Et1 − Et∑j0


jΔdt1j  rm,t1 − Etrm,t1  rt1

h

 e1 ′  e1 ′AI − A−1t1  e1  ′t1 30

Here  is a discount coefficient linked to the average log consumption to wealth ratio 

≡ 1 − expc̄ − w̄, or average dividend yield, e1 is an indicator vector that take a value of one in

the cell corresponding to the position of the market return in the VAR, A is the VAR coefficient

matrix, and  ′ ≡ e1 ′AI − A−1 is the function that relates the VAR shocks with revisions in

expected future market returns.

Hence, I estimate a first-order VAR with Xt ≡ FFPREMt,TERMt,EYt, rmt ′, which represents

a parsimonious representation for the variables that forecast market returns. In order to be

consistent, with previous work (CV), I assume   0.95 1
12 . FFPREM represents the spread

between the Federal Funds rate and the 3 month Treasury bill rate, and thus it is a measure

of both monetary policy and short-term interest rates. Its inclusion in the VAR is justified by

previous evidence that both monetary policy (Patelis (1997), Goto and Valkanov (2002)) and

short-term interest rates (Ang and Bekaert (2003)) do forecast future expected market returns,

at least for short term forecasting horizons. TERM refers to the term structure spread -

measured here as the difference between the 10 year and 1 year Treasury bond yields -

which represents a proxy for the yield curve slope, and has been widely used in the

predictability of returns literature, since Fama and French (1989) have found that TERM

tracks the business cycle. EY denotes the earnings yield (calculated as the log of the earnings

to price ratio associated with the S&P Composite index), used instead of the dividend yield, in
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light of recent evidence that the forecasting power of the dividend yield has decreased since

the 90’s, which might be related to a possible structural break in the firms’ dividend policy,

causing more firms to paying less dividends (Fama and French (2001)). The fourth variable

used in the VAR is the log excess market return, which uses the value-weighted market index

return from CRSP. CV use in their VAR specification an additional variable, the value spread,

which they define as the difference between the log book-to-market ratios of small value and

small growth stocks. I performed both Fama-French long-horizon regressions and first-order

VAR estimation by including the value spread, and it revealed not significant at forecasting

returns for the sample in analysis. Therefore I have opted to leave it outside the VAR vector.

The sample used in estimating the VAR is 1954.07-2003.09.

Descriptive statistics for the VAR state variables are presented in table I, panel A. From the

first-order autocorrelation coefficients, we can conclude that both TERM and especially EY

are very persistent, while the VAR state variables are not highly correlated.

The VAR estimates corresponding to the market return equation on the VAR are presented

at table II, panel A. FFPREM predicts negative market excess returns 1 month ahead,

consistent with previous evidence (Patelis (1997)), and both TERM and EY predict positive

market returns, also consistent with previous evidence, with all three regressors being

statistically significant. EY is highly significant (1% level) which is remarkable, given previous

evidence that the forecasting power of financial ratios is greater for long-horizon returns

(beyond 1 year). In addition, the small degree of 1 month momentum in market returns, as

captured by the estimate of rm,t, is not statistically significant. The adjusted R2 of 0.03 is in line

with the values for monthly predictive regressions in other papers.

The results for the estimated "news" components are presented in Table II, Panel B, which

is similar to Table 3 in CV. The discount-rate news variance represents 0.72% of the
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unexpected market return variance, compared to a weight of 0.28% for the cash-flow news

component. This result goes in line with previous evidence (Campbell (1991), CV) that

discount-rate news is the main determinant of unexpected market return’s volatility.

Additionally, rt1
h and rt1

CF are almost uncorrelated, as shown by the respective correlation

coefficient (-0.003), a result also obtained in CV. Thus, this VAR specification seems to model

the two news components as different and almost independent forces that drive unexpected

market returns.

By analyzing the correlations of shocks in the individual VAR state variables with both rt1
h

and rt1
CF , we can verify that the innovations on FFPREM are weakly negatively correlated with

cash-flow news and almost uncorrelated with discount-rate news, suggesting that a

unexpected rise in the FED Funds rate is associated with a minor negative impact on

cash-flow news, i.e., negative revisions on future cash-flows or earnings. The magnitude of

this correlation is nevertheless small, given that monetary policy has a short-term effect on

stock prices (Patelis (1997), Maio (2005)). Shocks in TERM are almost uncorrelated with both

news components, whereas Innovations on EY are strongly positively correlated with rt1
h ,

confirming that EY forecasts positive returns, in part due to the mean reversion in stock

prices. Innovations in market returns are strongly negatively correlated with discount-rate

news, reflecting the existence of long-term reversion in prices, and weakly positively

correlated with rt1
CF suggesting that, at least partially, the rise in current prices is linked to

future growth in cash-flows (earnings). The correlations between shocks in both EY and

market return and the news components are in line with those obtained in CV.

C. Econometric framework

A natural econometric framework to estimate and test the asset pricing models presented in

the previous section, is GMM, where the N sample moments correspond to the pricing errors
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for each of the N test assets at hand,

gTb∗ ≡ 1
T ∑t1

T
ri,t1 − rf,t1 

i
2

2 − 0i,CF − 1i,CFz  i,h  0,
i  1, . . . ,N 31

where the covariances and variances were previously estimated. In the ICAPM with

time-varying RRA there are two parameters to estimate, 0 and 1, so there will be N − 2

overidentifying conditions, whereas the BBGB model will have N − 1 overidentifying conditions

in the associated GMM system. The standard errors for the parameter estimates and

moments are presented in Appendix C, and the test that the pricing errors are jointly zero,

with ̂ ≡ gTb̂
∗
, is given by

̂ ′var̂−1̂~2N − K 32

Following Cochrane (1996), and given the fact that var̂ is singular in most of the cases, I

perform a eigenvalue decomposition of the moments’ variance-covariance matrix,

var̂ QQ′, where Q is a matrix containing the eigenvectors of var̂ on its columns, and 

is a diagonal matrix of eigenvalues, and then I invert only the non-zero eigenvalues of .

D. Time variation in the risk-aversion coefficient

In order to have a first impression of time variation in the RRA coefficient, the BBGB model

is estimated with rolling samples. Thus a 5-year rolling sample window is used to produce

estimates of covariances between the asset returns with the factors, which are then used in

the GMM estimation of the RRA parameter, according to the pricing equation (14), therefore

producing a time-series of RRA estimates. The values for RRA obtained from tests with both

SBV25 and IND38, are presented in Figure 1. The graph shows, for both sets of test assets,

that while there is no apparent time trend in RRA, there is important variation through time in

the estimates: the RRA coefficient achieves values as high as 120 and on the other extreme,

it assumes negative values (although not statistically significant). The main range is between

0 and 50, which represents a broad interval. The figure also gives some evidence in favor of a
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sharp decline in risk aversion, in late 90’s. Although these estimates should be interpreted

with caution, given the small sample size employed in each estimation, it represents

nevertheless preliminary evidence that the RRA parameter is time-varying.

E. Cyclical risk-aversion: estimating the risk premia

Some of the variables that qualify to explain the time-variation in RRA should be correlated

with business conditions, in order to make RRA countercyclical as argued above. I have opted

for a specification for  t where it is explained contemporaneously by the market dividend yield

(DY), smoothed earnings yield (EY*), default spread (DEF), industrial production growth (IPG)

and the value spread (VS) .

E.1. The BBGB model

As a benchmark that enables comparison with the time-varying RRA ICAPM models, I

estimate the BBGB model for three classes of test assets - the 25 size and book-to-market

portfolios (SBV25), the 38 industry sorted portfolios (IND38), and the combination of SBV25

with IND38 (SBV25IND38). Along with the first stage GMM estimates, I present the second

stage GMM estimates, where the weighting matrix is S−1 with S being the spectral density

matrix. The results for BBGB are presented in Table III, Panel A, in lines 1, 3 and 5. The

first-stage GMM estimates of 0 are statistically significant at the 5% level, for the 3 classes of

test assets, with the estimates for SBV25 being higher than the corresponding estimates for

IND38 (10.771 versus 8.683). In the case with the combined portfolios, one gets an

intermediate estimate for the RRA coefficient (9.607). The statistical significance of 0

confirms that the cash-flow news factor rt1
CF is a valid determinant of the SDF. The estimated

risk price associated with the cash-flow news factor, CF, is much higher than the symmetric of

the discount-rate news risk price, H, in line with the results of CV, and as predicted by the

BBGB pricing equation, where the risk price of covariance with cash-flow news (the RRA
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coefficient) is higher than the symmetric of risk price for covariance with discount-rate news

(1), if 0 is greater than 1. Notice that CV define the beta(covariance) with the negative of

discount-rate news (good news), thus their estimate for H and CF are both positive. The

estimates for CF are significant at the 5% level, whereas H is significant at the 1% level. For

the 3 classes of portfolios, the model is not rejected by the asymptotic 2 test that the pricing

errors are jointly equal to zero. The results from the efficient GMM estimation, show that the

estimates for both 0 and CF, are lower than the corresponding estimates in the first stage

GMM.

E.2. Dividend yield and default spread

The Default spread (DEF), which represents the difference between BAA and AAA

corporate bond yields, and DY - dividend yield on the value-weighted market index - are both

employed by Fama and French (1989) to forecast market returns at several horizons, being

interpreted as variables related with the longer-term components of business conditions. Here

we’re not concerned about the predictive power of DEF and DY over market returns. In fact,

results from long-horizon regressions suggest that the forecasting ability of these two

variables in recent samples has either erased (DEF) or declined substantially (DY), which in

this latter case can be attributable to a potential shift in the dividend payout policy of firms, as

suggested above. In response to that, these two variables were not included in the VAR

vector - used to measure the changes in the investment opportunity set - in this paper, as well

as in CV. What concern us here, is that both DEF and DY are negatively correlated with the

business cycle, and therefore are candidates to explain the cyclical component of RRA. By

using a business cycle dummy (CYCLE) - which takes the value 1 in an economic expansion

as defined by the NBER, and takes value 0 in recessions - and performing monthly regression

of either DEF and DY on CYCLE, one gets the following results (OLS t-statistics in
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parenthesis),

DYt  0.039 − 0.008CYCLEt Adj.R2  0.087
37.978 −7.572

DEFt  0.013 − 0.004CYCLEt Adj.R2  0.100
29.215 −8.133 33

These results confirm that both DEF and DY are countercyclical. Hence our specification for

RRA is given by  t  0  1zt, with zt  DYt,DEFt, and we expect 1 to be positive for both DY

and DEF, i.e., worsening business conditions lead to rising risk aversion.

The risk-price estimates associated with the model having RRA scaled by DY are

presented in Table III, Panel A, lines 2, 4 and 6. The first stage estimates for 1 are positive in

all 3 classes of portfolios, being highly significant in the case of SBV25 (1% level) although not

significant for the industry portfolios. In the case of the combined portfolios, 1 is significant at

the 10% level. The estimates for 0 are negative, and there is statistical significance only in

the case of SBV25. This is a signal that the point estimates for RRA in the BBGB model,

hidden the dependence of RRA from other variables. If we calculate the average time-varying

RRA coefficient as

Et  0  1EDYt 34

there is an increase on the average RRA values relative to the constant RRA coefficient, 0

in the BBGB model, for SBV25 (15.746 versus 10.771), while for IND38 there is no significant

change. Thus by incorporating time-variation in RRA related with DY, one has an increase in

risk aversion for the case of SBV25, and no significant impact in RRA in the case of the

industry portfolios. In terms of the factor risk prices, CF is higher than the symmetric of the

discount-rate news risk price −H, similarly to BBGB, with all 3 risk prices being statistically

significant at the 5% level, for all 3 sets of portfolios. Comparing the scaled ICAPM with

BBGB, CF increases slightly (becoming significant at the 1% level) while H decreases in

magnitude, in the case of SBV25, while for IND38, both CF and H register a decline in

magnitude. As expected, it seems, that by incorporating the additional risk factor, CFDY -
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which prices the time variation in RRA - some of the pricing ability of the two other factors is

lost and transferred to the new factor. The estimates for CFDY are positive and significant for

the 3 classes of portfolios, although its magnitudes are much lower than the corresponding

values for CF. The second stage GMM estimates for the risk aversion parameters, have lower

magnitude when compared to the first stage estimates, although the statistical significance is

not altered. In addition, this causes the magnitude of both CF and CFDY to also decline

relative to the first stage estimates. In both first and second stage estimates, the ICAPM

scaled by DY is not rejected by test (32).

The results for the ICAPM scaled with DEF are presented in Table III, Panel B. For SBV25,

1 is negative, and marginally significant at 10%, thus it seems that RRA decreases with DEF,

as opposed to the expected relation. For the IND38, 1 has the expected sign, but it is

nevertheless not significant. Combining the 2 sets of portfolios, 1 is negative but highly

insignificant (t-statistic of -0.762). The sign of 1 contributes to CF being smaller than −H and

CFDEF to be negative for SBV25, while it is positive and significant for IND38. The statistical

significance of the risk aversion parameters and risk prices increases in the second stage

GMM, and in addition the average RRA declines, relative to the first stage estimates.

Compared to the ICAPM scaled by DY, the first stage average RRA is lower for SBV25

(10.502 versus 15.746), being similar for IND38. In sum, in opposition with the model scaled

with DY, DEF is not very satisfactory in explaining time-varying risk-aversion.

E.3. Smoothed earnings yield

The earnings yield like the dividend yield, should be a countercyclical state variable which

can be used to explain time-varying risk aversion. Instead of the earnings yield, which was

used in the VAR, I use a smoothed log earnings yield, which uses a 10 year moving-average

of S&P 500 earnings (EY*). EY* is countercyclical as illustrated in the following regression,
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EYt
∗  −2.555 − 0.322CYCLEt Adj.R2  0.072

−58.242 −6.815 35

Hence, similarly to the model scaled with DY, we expect 1 to be positive. The results

presented in Table III, Panel C, indicate that both 0 and 1 are positive for the three classes

of portfolios, being highly significant for SBV25 (1% level), although not significant for IND38,

as it was the case in the DY model. For SBV25IND38, 0 and 1 are significant at the 5%

and 10%, respectively. The average RRA estimates are similar to the corresponding

estimates in the DY model. In terms of factor risk prices, CF is higher than −H in the 3 sets of

portfolios, whereas, the factor related with time-varying RRA, CFEY∗ , is significant for both

IND38 and SBV25IND38, although not significant for SBV25. Similar to the DY ICAPM, the

second stage GMM produces lower magnitude estimates for the RRA coefficients and beta

risk prices, and the average RRA estimates are similar to the second stage corresponding

values for the DY model. Thus, as expected, the ICAPM models scaled with DY and EY* are

very approximate.

E.4. Industrial production growth

So far, the state variables used to explain time-varying RRA are directly linked to asset

prices, whether they are financial ratios (DY and EY*) or interest rates spreads (DEF). As

noticed above, although all those 3 variables are related with business conditions, they have

been used for some time in the predictability of returns literature, as predictors of expected

market returns. Thus their role as determinants of  t might be to some extent, mixed with their

role as forecasters of future market returns. To overcome this issue, and as a robustness

check, I use the industrial production monthly growth as an alternative determinant of  t, a

variable which is not directly linked to asset prices, being in addition highly procyclical, as the

following regression confirms,

IPGt  −0.008  0.012CYCLEt Adj.R2  0.213
−8.644 12.670 36
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The IPG measure used in equation (10) is the cyclical component of IPG calculated as

IPGt
∗  0.012CYCLEt. Being positively correlated with the business cycle, we expect 1 to be

negative, i.e., a rise in IPG, corresponding to increasing business conditions, leads to

declining risk aversion. The results for the model scaled by IPG are presented in Table III,

Panel D. The SDF parameter estimates, show that 1 has the expected sign, being negative

for the 3 sets of portfolios, and in addition it is highly significant for SBV25 (1% level), and not

significant for the industry portfolios, which in this latter case, goes along the results of the

previous scaled models. On the other hand, 0 is positive and significant for SBV25.

Unfortunately, CFIPG has very small values and it is not significant for the 3 classes of

portfolios. Comparing with the previous scaled models, the average RRA is much lower in the

case of SBV25 (2.550 versus 15.746 for DY) while for IND38 the difference in magnitudes is

not as significant (7.631 versus 8.973 for DY). In fact, contrary to the other ICAPM scaled

models, the average RRA associated with IND38 is higher than the corresponding from

SBV25. The second stage average RRA is higher than the first stage estimates (4.224 for

SBV25 and 5.899 for IND38), but still lower when compared with the other scaled models.

E.5. Value spread

CV use the value spread (VS) defined above, in their VAR specification as a state variable

that predicts expected market returns. A rise in VS signals an increase in the valuations/prices

of growth stocks relative to value stocks, which might be a result of a funds flow from value to

growth. As we’ll see in section V, growth stocks have higher magnitudes in both discount-rate

and cash-flow betas, relative to value stocks, hence, growth stocks are riskier than value

stocks during the sample in analysis. Thus a rise in VS is associated with a decrease in risk

aversion.

The results for the model scaled by VS are presented in Table III, Panel E. As expected 1
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is negative for all 3 sets of test assets, being significant for SBV25 (1% level) and

SBV25IND38 (5%). 0 is positive and has similar statistical significance relative to 1. The

factor related with time-varying RRA CFVS, is positive and marginally significant (10%) for

IND38, being negative and non-significant for SBV25. For SBV25IND38, CFVS is positive but

not significant. By incorporating RRA scaled by VS, it causes CFVS to have higher magnitudes

than the cash-flow news factor, although its higher standard errors make it less significant

than CF. Since CFVS is negative for SBV25, we have that CF is lower than −H, whereas for

both IND38 and SBV25IND38, the relation CF  −H holds. The average RRA estimates are

slightly lower when compared with the models scaled with DY and EY, for SBV25, whereas

for IND38, it achieves similar values relative to those values. Overall, these results confirm

that a rise in the value spread, and hence a higher demand for growth stocks, in disfavor of

value stocks, is linked with a decline in risk aversion.

E.6. Market return

From equation (3) above,  t is related with wealth or equivalently, market returns. In

Appendix B.5, it is shown that under certain conditions,  t is negatively correlated with wealth

or market returns. Nevertheless, it seems reasonable to assume that declining prices/negative

returns, for some period, originates an increase in risk aversion, leading investors to be more

reluctant to invest in stocks. Thus, time-varying risk aversion can be determined of two types

of forces. On one hand, we have cyclical risk-aversion, which includes the state variables

used so far, which is related with the business-cycle fluctuations that causes changes in

non-financial wealth (labor income), leading the investors to require higher expected returns to

invest in stocks. The other component of risk-aversion, which can be related with the first one,

is related to direct losses in market returns and financial wealth, i.e. overall market conditions.

By choosing DY as the variable that explains the cyclical risk-aversion, the specification for

RRA is given by  t  0  1DYt  2rmt, where rmt is the log excess market return. In the
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preceding equation, 2 is expected to be negative, i.e., rising market returns lead to lower risk

aversion.

The results for the model scaled by the market return are presented in Table IV. In panel A,

I present the results for the specification with only market return explaining time-varying RRA.

1 is positive for SBV25, and negative for IND38, being significant in both cases. For

SBV25IND38, 1 is negative, although not significant. The average RRA for SBV25 is much

higher than in the previous models (37.422), while for IND38 is slightly negative, due to the

strong negative effect of rmt on  t. The positive correlation between rmt and  t for SBV25 might

be a consequence of a small degree of short-term momentum in market returns, as indicated

by the VAR estimated in Table II above.

If we include DY in the specification of  t, as specified above, the RRA coefficients have the

desired signal. 1 is positive whereas 2 is negative, for all 3 classes of portfolios. In terms of

statistical significance, 1 is strongly significant for SBV25 and marginally for SBV25IND38,

while, 2 is significant only for IND38. Hence, the dominant determinant of risk aversion is DY

(business conditions) in the case of SBV25, while for IND38 the dominant force is the market

return (financial wealth). CFDY is positive and significant for SBV25 and SBV25IND38,

whereas CFRM is negative and significant for IND38. Comparing with the ICAPM scaled with

DY, the average RRA is slightly lower for SBV25, but the biggest decline is for IND38 with a

value lower than 1, being even negative in the second stage GMM. This a consequence of  t

being negatively determined by the market return hat in the case of IND38. Overall, these

results suggest evidence in favor of 2 types of forces influencing time-varying risk aversion,

recession risk factors, related with the business cycle, and shocks in financial wealth.

F. Individual pricing errors
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F.1. Size-book to market portfolios

Both BBGB and scaled ICAPM models were not rejected using the test of joint nullity of the

pricing errors (32). As emphasized before (Cochrane (1996, 2001), Hodrick and Zhang

(2001)), inference using this test can be misleading due to the singularity of var̂, and the

inherent problems in inverting it. As a consequence I have opted for a generalized inverse as

described above. Nevertheless, it could be that the low test values, are not so much the result

of individual low pricing errors - what we want - but rather the economic uninteresting result of

low values for var̂−1. To address this issue, we have to pursue an analysis of the individual

pricing errors. Figure 2 presents pictures of the pricing errors for SBV25, from BBGB and the

ICAPM scaled by DY, DEF, EY*, IPG, VS and DYRM. We can see that, with the exception of

DEF, all the scaled ICAPM models compare favorably with BBGB. In particular the ICAPM

scaled with DY, EY*, VS and DYRM, have lower magnitude pricing errors than BBGB, for

most portfolios. The BBGB individual errors have a robust pattern across size quintiles: within

each size quintile, the growth portfolio has large negative pricing errors and the value portfolio

has large positive errors. This has been referred as the value premium, and has been

originally documented for the CAPM (Fama and French (1992, 1993)). This pattern is strongly

attenuated, and in some cases non-existent for the 4 scaled ICAPM models mentioned above.

We can confirm these results in Table V, with the scaled ICAPM having much lower pricing

errors than BBGB, across the book-to-market quintiles, with the sole exception of the DEF

model. Regarding the size quintiles, with the exception of the smallest size quaitile, the scaled

models perform favorably against BBGB, in terms of average pricing errors. Although many of

the pricing errors are individually significant, as indicated by the respective t-statistics

presented in panel C, the magnitudes and economic significance are small. For example, in

the case of DYRM model, the largest errors across book-to-market (size) quintiles are

0.141% (0.263%), corresponding to annualized errors of 1.693% (3.153%), while for the VS
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model, the same quantities are 0.095% (0.137%) and 1.135% (1.648%), on a monthly and

annual basis, respectively.

F.2. Industry portfolios

The pricing errors and respective t-statistics, for the industry portfolios, are presented in

table VI. The magnitudes are in general low, and only 3 industries, FOOD, METAL and

SMOKE have significant pricing errors. Contrary to the case of SBV25 portfolios, the errors

magnitudes between BBGB and the scaled models is not very different, although most of the

scaled models have slightly lower pricing errors.

G. Robustness checks

G.1. Standard errors with estimation error

The standard errors associated with the GMM system (31), don’t take into account the fact

that the covariances are generated regressors and thus estimated with error. Instead, they are

assumed to be fixed parameters estimated outside the system. In order to take into account

the estimation error associated with the covariances, in the spirit of Shanken (1992), I conduct

a generalized GMM system, where the first set of moments, for N test assets and K factors, is

given by

g1Tb∗ ≡ 1
T ∑t1

T
ri,t1 − Eri,t1ft1 − Eft1 − i,f  0,
i  1, . . . ,N 37

which identifies the covariances between the log individual excess returns and the factors,

 if ≡ Covri,t1, ft1, and corresponds to NK orthogonality conditions, thus this set of moments

is exactly identified. System (37) corresponds in this framework to the time-series regressions

of the time series/cross sectional regression framework, which estimate the betas, and that

will be conducted in the next section. The second set of moments correspond to the N pricing
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errors (31), hence the number of overidentifying conditions is N − K, as previously.

The results, presented in Table VII, show that, the GMM coefficient estimates of 0, 1 and

2 are equal to the estimates produced from the system (31), as we would expect. In terms of

statistical significance, the parameter that measures time-varying RRA 1, is highly significant

(1% level) for the models scaled with DY, DEF, EY*, IPG and VS, for all portfolios. In

particular for the case of IND38, 1 is now significant at the 1% level. For the DYRM model,

1 is strongly significant for both SBV25 and SBV25IND38, whereas 2 is marginally

significant for IND38. Overall, the results indicate that taking into account the covariances

estimation error, it strengths the significance of the time-varying component of RRA in the

pricing equation.

G.2. The Hansen-Jagannathan distance

As a robustness check, I estimate and evaluate the models above, using the Hansen and

Jagannathan (1997) (HJ-distance), which was employed by Hodrick and Zhang (2001), to

evaluate a set of alternative asset pricing models. The HJ-distance is defined as,

  gTb∗ ′WHJgTb∗
1
2 38

with WHJ  Er tr t
′−1 being the inverse of the second moment of log excess returns for the

test assets in analysis, and gTb∗ is the vector of average pricing errors defined above.  is

interpreted as the minimal distance between a SDF proxy and the set of true pricing Kernels.

The parameters from our model b∗, can be estimated within a GMM system like system (31)

defined above, with the moments weighting matrix given by WHJ,

b̂∗  arg min2  arg mingTb∗ ′WHJgTb∗ 39

This approach has the advantage of allowing the comparison across different models

(similarly to the First stage GMM), since WHJ is model invariant, which is not the case for S−1.

The standard errors formulas for the parameter estimates and moments are given in the
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appendix. Hodrick and Zhang (2001) have found that even if a 3-factor model is true, the

HJ-distance test has size greater than the theoretical size, for the case of SBV25 portfolios.

Since, in addition, Er tr t
′−1 is near singular for SBV25, I report results only for the industry

portfolios, which are presented in Table VIII. The estimates for the risk aversion parameters

and average RRA have lower magnitudes, when compared to the first stage and second

stage estimates given above. The models are not rejected by the asymptotic test that the

pricing errors are jointly zero, and in addition, the test   0, is not rejected for all models.

Nevertheless, these results should be interpreted with caution, given the near-singularity of

Er tr t
′−1 also in the case of industry portfolios.

IV. Time-series cross-sectional regressions

As an additional robustness check, and as an alternative technique to GMM, I use the

time-series/cross-sectional regressions approach (TSCS), presented in Cochrane (2001),

chapter 12. In this approach, on a first step, individual time-series regressions are performed

to obtain estimates of the factor loadings for each test asset, and in a second step, the

average individual returns are regressed on the individual factor betas within a cross-sectional

regression, in order to estimate the common factor risk premiums.

This approach enables to obtain direct estimates of betas and the risk prices of betas,

allowing us to assess its economic plausibility. In addition, this method allows the comparison

with other ICAPM models estimated by this approach (CV, Brennan et al (2004)), and

alternative factor models, which are often estimated in terms of beta risk, rather than

covariance risk.

As in CV, I use simple excess returns, Ri,t1 − Rf,t1 instead of log returns on the left hand

side of the expected return-beta equations - with the assumption of a second-order Taylor

assumption, the two quantities are the same - in order to facilitate the comparison with other
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multifactor models, followed in the next section.

Since our model, is a theoretically derived asset pricing model, the cross-sectional

regression will estimate the risk prices of covariances, b, rather than the beta’s risk prices. In

vector form, the pricing errors can be represented by,

ERt − Rf,t1N  −fb 40

and the betas’ risk prices are recovered by  ≡ − fb.

The results are reported in Table IX. In order to save space, I report results only for BBGB

(Panel A), and ICAPM scaled by DY (Panel B), and VS (Panel C). For each model, I estimate

both OLS and GLS cross-sectional regression estimates of risk premia, with two types of

standard errors associated. The second row of t-statistics associated with factor risk prices,

and the second column of pricing errors tests, use standard errors calculated with the

Shanken (1992) adjustment in order to take into account the estimation error in betas. I will

denote these standard errors as Shanken or type II standard errors. The first row of t-statistics

and first column of pricing errors tests, are based on "robust" standard errors, calculated

within a GMM system that relaxes the assumptions implicit in the Shanken correction of i.i.d.

errors (from the time-series regressions) and factors, and independence between the

time-series residuals and the factors. These standard errors are derived in the appendix, and

will be denoted thereafter by robust or type I standard errors.

In all three models, the risk-aversion parameters and beta risk prices estimates from OLS,

are very similar to those arising from first stage GMM in Table III, as we would expect, since

the two methods are equivalent. On the other hand, the GLS estimates have higher

magnitude compared to the second stage GMM estimates in Table III. Since the GLS

cross-sectional regression is not equivalent to the second stage GMM, we should expect the

difference in results. In general, the 2 tests have higher values, when the type II standard
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errors are used instead of type I standard errors, and in some cases, the model is rejected if

we use the Shanken standard errors.

Thus these results suggest that the restrictive and implausible assumptions - of i.i.d. and

conditionally homoskedastic time series residuals - do play an important role in the statistical

inference about the pricing errors, in the ICAPM scaled models, especially for SBV25 and

SBV25IND38 portfolios.

V. Discussion

A. Risk aversion estimates

The average RRA estimates, E t associated with the scaled ICAPM models, and

presented in table III above, seem reasonable: For SBV25 we have average RRA below 16

for all the models, whereas for IND38, most of the estimates are around 8. The second stage

estimates are even lower. Since these are averages, it is important to have an idea of the

behavior of the time-series of  t, and its associated dispersion. In figure 3, I present estimates

of  t  0  1zt, for zt  DYt,EYt
∗,VSt, and the augmented model  t  0  1DYt  2rmt, for

SBV25IND38. The parameter estimates are the first stage estimates obtained in tables III

and IV. When  t is negative, I truncate it at zero, since negative  t makes no economic sense.

It is remarkable that the time-series of RRA estimates from the 4 models, have a similar

pattern, and there is no apparent time trend, although there is lots of dispersion in  t. The

estimates from the VS model are the most volatile ones. Until the 90’s most of the estimates

are in a range 5-20, whereas, in the 90’s there is a sharp decline in risk aversion, in line with

existent evidence.

B. Pricing the market return

Most of the equity premium puzzle literature, has focused on the (in)consistency between
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plausible risk-aversion parameter estimates and the ability to price consumption or the market

return. For this reason, I evaluate whether the ICAPM with time-varying risk aversion can

accurately price the market excess return, rm,t1 − rf,t1.

If we apply the pricing equation (23) to rm,t1 − rf,t1, as shown in Appendix B.6., it follows,

Erm,t1 − rf,t1  0CF
2 − CF,h  1CF,CFz − h,CFz  0.5h

2 − CF
2  41

and the associated pricing error is given by,

̂m  1
T ∑t1

T
rm,t1 − rf,t1 − 0CF

2 − CF,h − 1CF,CFz − h,CFz

−0.5h
2 − CF

2  42

Estimates of ̂m are given in Table X, where the RRA parameter estimates are from tables

III and IV. The average pricing errors associated with the scaled models have low

magnitudes: For SBV25, DY has an annualized error of -1.82%, whereas for IND38, the

largest absolute error is for IPG model (-0.473%). In addition, within each of the 3 classes of

portfolios, the scaled models have lower magnitude errors compared with the BBGB model.

Hence, the time-varying RRA ICAPM also outperforms the static ICAPM, in pricing the market

return, in addition to the size/book-to-market and industry portfolios. Overall, these results

suggest that the risk-aversion estimates from the scaled ICAPM are consistent with the

market return.

C. Comparison with other asset pricing models

Given the good performance of the ICAPM with time-varying RRA in last two sections, and

given its theoretical derivation, it is important to compare it with other models, namely the

traditional CAPM, and the Fama-French model, which has less theoretical background, being

nevertheless a empirically successful factor model.

Figure 4 plots the average pricing errors associated with SBV25 portfolios, for the ICAPM

scaled with DY, VS and DYRM, against 3 alternative factor models: the CAPM, the Fama
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and French 3 factor model (FF3F) and the Fama and French 4 factor model (FF4F), which

incorporates a momentum related factor (UMD). The specification for FF4F is

ERi,t1 − Rf,t1  Mi,M  SMBi,SMB  HMLi,HML  UMDi,UMD 43

where M, SMB, HML and UMD denote the risk premia related with the market, size,

book-to-market and momentum factors, respectively, and where the factors SMB, HML and

UMD have been orthogonalized relative to the market factor, before conducting the

time-series regressions to estimate the factor loadings. The FF3F model is obtained by

making UMD  0, whereas the CAPM is derived by imposing SMB  HML  UMD  0.

Figure 4 shows that the 3 scaled ICAPM models have lower pricing errors than the CAPM,

and approximate pricing errors relative to both FF3F and FF4F models. On the other hand,

the BBGB model has approximate pricing errors relative to CAPM. These results are

confirmed in Table XI. In Panel C, containing the average pricing errors for book-to-market

quintiles, we can observe that the 3 scaled ICAPM models have lower average errors than the

CAPM, across all quintiles. Relative to FF3F and FF4F, the scaled ICAPM have slightly higher

average errors, but this difference is not economically significant. On the other hand the

BBGB has similar average errors compared to the CAPM, across all quintiles. Regarding the

size quintiles, the scaled ICAPM have approximate average errors relative to the already low

pricing errors associated with the CAPM. The only exception is for the lowest quintile (S1),

where some of the scaled models - DY and DYRM - have higher average errors than the

CAPM, although they are not economically large. These results show that the BBGB model

can not price the value premium, remaining an anomaly, as it was the case for the CAPM.

Overall, these results confirm that the various versions of the scaled ICAPM perform very

well compared with the alternative factor models, and on the other hand, the static ICAPM

does not improve the CAPM in pricing both growth and value stocks.
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D. The Value Premium

One of the biggest difficulties of the existing pricing models is in being able to price the

extreme small-growth portfolio (11) within the class of SBV25 portfolios. In fact, the CAPM,

FF3F and the BBGB ICAPM from CV fail to price this portfolio accurately. For example, CV

obtained an annualized pricing error of -8.8%, in one of the samples used in the paper. The

results displayed in table XI (panel A, first line), indicate that the pricing error for portfolio 11 is

economically non significant, when estimated from the ICAPM scaled models - the biggest

annualized error is -1.335% for DY, a value difficult to sustain after transactions costs.

Furthermore, the SBV11 pricing error is lower in the ICAPM scaled models, compared with

both BBGB and the alternative factor models CAPM, FF3F and FF4F. It seems paradoxical

that the scaled ICAPM performs so well in pricing the book-to-market quintiles, and in special,

the risky small-growth portfolio, given the previous evidence from CV, that their static ICAPM,

does not price SBV11 properly. The difference in results should arise from time-variation in

risk aversion. In addition, the pricing ability of the ICAPM is sustained across all the

book-to-market quintiles: the model fits equally well to both growth and value stocks. What

drives the ability of the ICAPM to price equally well both growth and value stocks? Which of

the fundamental components referred earlier - cash-flow news, discount rate news or

time-varying RRA - contributes the most to the low pricing errors in book-to-market quintiles?

To address these questions, we need to measure the individual contribution, of each of the

factors, rt1
CF , rt1

CFzt, and rt1
h , in explaining the average returns across book-to-market quintiles.

Tables XII, XIII and XIV present factor loading estimates associated with the SBV25

portfolios, for BBGB and the ICAPM scaled with DY and VS, respectively. In panels B and C

of each table, are presented the average factor loadings associated with book-to-market and

size quintiles, respectively. In table XII, the betas associated with rt1
CF and rt1

h are respectively

positive and negative, as expected. From panel B, growth stocks (BV1) have higher
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magnitudes betas for both cash-flow and discount-rate news factors, relative to value stocks

(BV5). Furthermore, the decline in the betas magnitude is monotonic as we move from low to

high book-to-market quintiles. Hence, these results seem to suggest that growth stocks are

riskier than value stocks. The ICAPM scaled with DY has the same pattern regarding the

cash-flow and discount-rate news betas, with growth stocks exhibiting higher magnitudes in

both types of betas, relative to value stocks. On the other hand, the sensitivity to the factor

related with time-varying RRA, rt1
CFDYt differs both in magnitude and sign for growth and value

stocks, with BV1 having a beta of -9.998 versus 9.360 for BV5. In addition, the betas

associated with rt1
CFDYt rise in a monotonic way, being highly negative for BV1, around zero

and slightly positive for intermediate quintiles (BV2 and BV3), and highly positive for BV5. In

the case of the ICAPM scaled by VS, value stocks (BV5) have much higher cash-flow betas

than growth stocks (BV1), whereas, the factor related with time-varying RRA, rt1
CFVSt has

factor loadings which differ in sign between growth and value stocks, similarly to the DY

model, with BV1 having a beta of 0.216 versus -0.844 for BV5. In addition, the betas decrease

monotonically as book-to-market increases.

Do these factor loading estimates make economic sense? Growth stocks have higher

duration risk than value stocks, i.e. their prices are more sensible to upward revisions in future

expected returns or future cash-flow growth. In periods characterized by economic boom,

rapid growth in earnings and cash-flows, financial stability and lower and stable interest rates,

growth stocks benefit the most, since they enable to profit from the benign side of higher

duration risk, and higher "elasticity" to the business cycle. These are also periods of lower risk

aversion, and hence investors require a lower premium to invest in growth stocks, relative to

value stocks. In periods of economic downturn, low or negative cash-flow growth, financial

instability, increasing and volatile interest rates and in addition higher risk aversion, we have

the "negative" side of higher duration risk and higher "elasticity" to the business cycle:
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investors require a higher return to invest in growth stocks relative to the safer, lower duration

risk and lower elasticity (utilities are a good example here) value stocks. Thus a decline in risk

aversion (measured here by either a decrease in rt1
CFDYt or a increase in rt1

CFVSt) leads to rise

in prices of growth stocks, producing lower expected returns. We should expect the rise in

value stocks prices to be less pronounced than for growth stocks, but actually we see a

decrease in value stocks prices in response to a decrease in risk aversion, thus explaining the

signs of the betas associated with time-varying RRA risk factors: A decline in rt1
CFDYt is

equivalent to a decrease in risk aversion, thus growth stocks have negative betas while value

stocks have positive betas. Similarly, a rise in rt1
CFVSt, represents lower risk aversion, leading

to positive (negative) betas for growth (value) stocks. Hence, these results suggest that the

changes in RRA lead to a investment flow between growth and value stocks, explaining the

overall pricing ability of the model concerning these two categories of stocks. To address this

issue in more detail, we need to analyze the risk premium (beta times risk price) for each of

the 3 factors, and its relative contribution at explaining the average returns for each

book-to-market quintile. In Table XV, we have the factor risk premium associated with

book-to-market quintiles, for BBGB and the scaled ICAPM with DY and VS. For comparison, I

present the average pricing errors associated with the CAPM, and the average returns and

average pricing error, for each quintile. In respect to the BBGB model, the risk-premium

associated with rt1
CF , contributes the most to average returns for all the quintiles, especially for

BV1, where rt1
CF has a premium of 0.713 versus 0.175 for rt1

h . It turns out that the model has

book-to-market pricing errors similar to those arising from the CAPM, as noticed above, and

therefore the model is not able to explain the value premium. In the case of the ICAPM scaled

by DY, the risk premium is still higher for rt1
CF relative to rt1

h , whereas rt1
CFDYt has a negative

(positive) risk premium for growth (value) stocks (-0.458 for BV1 versus 0.429 for BV5). In

addition the rt1
CFDYt risk premium rises monotonically with book-to-market, similarly with the

betas, and rt1
CFDYt is the main responsible for the low pricing errors across all quintiles, i.e.,
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small negative pricing errors for growth stocks and small positive errors for value stocks. In

the ICAPM scaled by VS, the risk premium associated with rt1
CF is lower relative to rt1

h , in

opposition with the former two models (0.058 versus 0.522 for BV1, and 0.139 versus 0.405

for BV5.) The factor rt1
CFVSt has a negative risk price for growth stocks and positive for value

stocks (-0.085 for BV1 versus 0.332 for BV5), and similarly to the DY model, it is the

responsible for the low pricing errors in both low and high book-to-market quintiles. These

results show that in both scaled ICAPM models, it is the factor related with time-varying risk

aversion, that drives the low pricing errors in all book-to-market quintiles, a feature that is not

present in the BBGB model.

Given that the post-war period is characterized mainly by economic expansions and

financial stability, and hence low risk aversion, this explains the low (high) premia required by

investors to invest in growth (value) stocks. It is important to emphasize that it is low risk

aversion, rather than high risk aversion, that explains the high excess return required to invest

in value stocks: in periods of low risk aversion, growth stocks tend to outperform value stocks,

and hence investors require low prices - and hence higher expected returns - to invest in

those stocks, instead of investing in the more "attractive" growth stocks.

E. Comparison to Campbell and Vuolteenaho (2004)

CV have found that their BBGB had some success in pricing the SBV25 plus 20 risk-sorted

portfolios, but they pointed out that the pricing ability depends crucially on the inclusion of VS

on the VAR state vector. Given that the BBGB in this paper has not improved significantly the

pricing ability of the CAPM, I estimated the BBGB, by including VS in the state vector,

Xt ≡ FFPREMt,TERMt,VSt,EYt, rmt ′, and the results are reported in table XVI. Compared to

the former BBGB, the difference in magnitude for discount-rate betas between BV1 and BV5

is now greater. On the other hand, regarding the cash-flow betas, the difference between

35



growth and value stocks is much smaller (1.130 for BV1 versus 1.022 for BV5). Thus, we

have almost flat cash-flow betas across the book-to-market quintiles, more in accordance with

CV, which have found higher cash-flow betas for value stocks relative to growth stocks.

Regarding the model’s performance, we have lower pricing errors compared with the former

BBGB, but still higher when compared to the scaled ICAPM, for all quintiles, and in special,

growth stocks have large negative pricing errors. These results seem to suggest that by

incorporating VS in the calculation of the cash-flow and discount -rate news components, we

are able to capture some part of time-varying risk-aversion. Nevertheless, it is the theoretical

derived factor rt1
CFzt that properly captures time-varying risk aversion, and improve the pricing

ability for book-to-market quintiles, thus explaining the value premium. Overall, these results

suggest that the value premium probably is not an anomaly, rather being rationalized by

fundamental factors related to the business cycle and time-varying risk aversion.

F. Comparison to Fama and French (1993)

In the last sub-section, we concluded that the ICAPM with time-varying risk aversion can

take into account the value premium anomaly. The Fama and French (1993) 3 factor model

earned great acceptance, by being able to price the value premium. The model which can be

rationalized in an APT context, uses the HML factor in order to explain the CAPM negative

(positive) pricing errors for growth (value) stocks. Since the scaled ICAPM is derived in a

theoretical context, it is important to compare the 2 models, and more speciphically to infer if

the less theoretical based HML factor is still significant in explaining the cross-section of

returns, in the presence of the time-varying RRA factors. This has the advantage of offering a

fundamental coherent story for the value premium, instead of the ad-hoc HML portfolio,

justified by absence of arbitrage opportunities (APT). Hence, I estimate the scaled ICAPM by

adding the HML factor, and test whether it has explanatory power over the cross-section of
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returns, using the specification,

Eri,t1 − rf,t1 
i

2

2  0i,CF  1i,CFz − i,h  HMLi,HML 44

with  i,HML ≡ Covri,t1,HMLt.

The results are displayed in Table XVII, including the DY ICAPM (Panel A) and VS ICAPM

(Panel B). HML is not significant, both in terms of covariance (HML) or beta risk price (HML).

The only exception is for SBV25 in the DY ICAPM, where both HML and HML are marginally

significant (1% level). These preliminary results indicate that to some degree, both the

recession risk factor from the scaled ICAPM and the HML factor measure the same risks,

which are related to time-varying risk aversion.

H. Momentum revisited

It is possible that the recession risk factor accounts for some of the momentum observed in

stock prices. In fact there are potential valid economic arguments for the momentum to be

related with macroeconomic risk factors: The observed positive autocorrelation in some macro

variables, the progressive response of the stock market to news in macro variables, and most

important, it is possible that some part of the momentum observed in prices or realized

returns, might be a consequence of cyclical variation in RRA: After a period of declining stock

prices, investors’ risk tolerance should decrease, originating further declines in stock prices -

and hence in realized returns - which represents momentum. In this way, risk aversion which

is related with previous realized returns, should amplify the observed positive autocorrelation

in stock prices, producing therefore a explanation for momentum. Hence, a possible test to be

made is to analyze whether the momentum factor, UMD is still significant after accounting for

time-varying risk aversion in the ICAPM model. In order to do that, I specify the following

model,

Eri,t1 − rf,t1 
i

2

2  0i,CF  1i,CFz − i,h  UMDi,UMD 45
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with  i,UMD ≡ Covri,t1,UMDt.

The results are displayed in Table XVIII, again, for the DY ICAPM (Panel A) and VS ICAPM

(Panel B). In the model scaled by DY, UMD is significant both in terms of covariance (UMD) or

beta risk price (UMD) for SBV25 (1%) and SBV25IND38 (5%), whereas it is not significant for

the industry portfolios. In the ICAPM scaled by VS, UMD is not significant, both in terms of

covariance and beta risk, for all 3 classes of portfolios. While these results are not entirely

conclusive, they do suggest that some part of the momentum observed in stock returns, might

be explained by time-varying risk aversion in the context of a fundamentally derived ICAPM.

Nevertheless, this explanation for momentum should be analyzed in more detail, and it is

beyond the scope of this paper.

VI. Conclusion

Using a derivation of the ICAPM in a very general framework - with general unspecified

preferences - the RRA coefficient can be made time-varying. In addition, there are reasons to

consider the RRA - or local curvature of the utility function - both time-varying and

countercyclical (Campbell and Cochrane (1999)). By extending the RRA coefficient to be

time-varying, it can be decomposed in two components: The constant coefficient which can be

interpreted as the long term RRA, and a time-varying component, that is negatively correlated

with the business cycle, and thus is interpreted as the cyclical component of risk aversion.

The variables that represent proxies for the cyclical component of RRA are the market

dividend yield, default spread, smoothed earnings yield and industrial production growth, all

being highly correlated with the business cycle. In addition, the value spread - a proxy for the

relative valuation of value stocks versus growth stocks - is included as a determinant of risk

aversion. I specify and estimate an extended version of the bad beta-good beta model

(BBGB) from Campbell and Vuolteenaho (2004), by incorporating time-varying RRA, and the
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results show that risk aversion is countercyclical. In addition, the ICAPM with time-varying

RRA perform better than the BBGB model, when tested on portfolios sorted on both size and

book-to-market and also industry portfolios. The results from an augmented scaled ICAPM

show that the market return has a negative effect on risk aversion, thus risk aversion seems to

be affected by both business conditions and financial wealth. The estimates of the average

RRA coefficient seem reasonable and plausible - in most cases under 16 - which is line with

previous micro evidence that argue for low values of RRA. The model is able to capture a

significant decline in risk-aversion in the 90’s, in line with the mounting evidence from

academics and practioneers.

When compared against alternative factor models - CAPM, Fama-French 3 factor and

Fama-French 4 factor models - the scaled ICAPM performs much better than the CAPM, and

compares reasonably well against the Fama-French models. A crucial result relies on the fact

that the ICAPM models do a good job in pricing both the "extreme" small-growth portfolio and

all the book-to-market quintiles. The very good fit of the ICAPM with time-varying RRA to both

value and growth portfolios, is mainly due to the presence of the factor related with

time-varying risk-aversion, which is not present in the static ICAPM. This suggests that the

value premium probably is not an anomaly, rather being rationalized by fundamental factors

related to the business cycle and time-varying risk aversion. Preliminary results suggest that

the ad-doc HML and UMD factors, at least partially, measure the same types of risks as the

ICAPM with time-varying risk aversion.

Given these results some interesting extensions and robustness checks for the current

paper are in place for future research. First, the assumption of homoskedasticity can be

relaxed, and it should be interesting to investigate whether time-varying risk aversion is still

important after accounting for time-varying covariances or betas. Second, one should

investigate, with more detail, whether business conditions and changes in risk aversion are
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associated with an investment flow between growth and value stocks, as suggested by the

results. A third possible extension for this model is to analyze in more detail, whether the

ICAPM with time-varying risk aversion can explain momentum.
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Notes

1 This is not the marginal rate of substitution (MRS), as in discrete time, but rather the level

of marginal utility, since the MRS is not well behaved in continuous-time.

2 Any P order VAR, with P  1, can be restated as a first order VAR, if the state vector is

expanded by including lagged state variables, with A denoting the VAR companion matrix.

3 In alternative we can assume joint log-normality for the SDF and asset return.
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Appendices

A. Derivation of a general ICAPM specification in discrete time

Let VWt1, zt1 denote the value function of the investor’s optimization problem, with the

SDF given by

mt1   VWWt1,zt1
VWWt,zt

≡ gWt1, zt1 A. 1

where  is a subjective time discount factor and Vi.  denotes the partial derivative of the

value function with respect to argument i. By applying Stein’s lemma, the conditional

covariance between stock i’s return and the SDF is given by,

CovtRi,t1,gWt1, zt1
 Et

∂gWt1,zt1
∂Wt1

CovtRi,t1,Wt1  Et
∂gWt1,zt1
∂zt1

CovtRi,t1, zt1

 WtEtVWWWt1,zt1
VWWt,zt

CovtRi,t1, Wt1
Wt

  ztEtVWzWt1,zt1
VWWt,zt

CovtRi,t1, zt1
zt  A. 2

Using (A.2) in the general pricing equation in discrete time, we have,

EtRi,t1 − Rf,t1  −
CovtRi,t1,mt1

Etmt1

 VWWt,zt
EtVWWt1,zt1

− WtEtVWWWt1,zt1
VWWt,zt

CovtRi,t1, Wt1
Wt

 −
ztEtVWzWt1,zt1

VWWt,zt
CovtRi,t1, zt1

zt 

 t
VWWt,zt

EtVWWt1,zt1
CovtRi,t1, Wt1

Wt
 − ztEtVWzWt1,zt1

VWWt,zt
CovtRi,t1, zt1

zt 

 tCovtRi,t1, Wt1
Wt

  ztCovtRi,t1, zt1
zt  A. 3

Where I have made use of the fact that EtVWWt1, zt1  VWWt, zt and

zt ≡ − ztEtVWzWt1,zt1
VWWt,zt

. Equation (A.3) is the discrete-time analogous to equation (8).

B. ICAPM with time-varying risk aversion

B.1. Theorem 1

Given the asset pricing model

1  EtMt1Ri,t1 B. 1

and with the assumption that the log SDF, mt1 ≡ lnMt1, is a linear function of K risk
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factors ft1,

mt1  a  b′ft1 B. 2

the unconditional model in discount factor form for log returns, ri,t1 ≡ lnRi,t1, can be

represented as,

Eri,t1 − rf,t1  0.5i
2  −b′Covri,t1, ft1 B. 3

which corresponds to the following expected return-beta representation

Eri,t1 − rf,t1  0.5i
2   ′i B. 4

where  ≡ −Varft1b and  i ≡ Varft1
−1Covri,t1, ft1.

Proof:

Taking logs of B. 1, one gets the pricing equation in the log form,

0  lnEtexpmt1  ri,t1 B. 5

Since the log is a non-linear function, one can use a second-order Taylor expansion to the

right hand side of B. 5, leading to the following approximationa1

0  Etmt1  ri,t1  0.5Vartmt1  ri,t1 B. 6

By expanding B. 6 and rearranging, one obtains,

Etri,t1  0.5Vartri,t1  −Etmt1 − 0.5Vartmt1 − Covtmt1, ri,t1 B. 7

Applying the pricing equation B. 7 to the risk-free rate, rf,t1, and noting that

Vartrf,t1  Covtmt1, rf,t1  0, since rf,t1 is known in period t, one has,

rf,t1  −Etmt1 − 0.5Vartmt1 B. 8

Subtracting B. 8 from B. 7, we obtain,

Etri,t1 − rf,t1  0.5Vartri,t1  −Covtmt1, ri,t1 B. 9

Given the assumption that the log SDF is linear in the risk factors, mt1  a  b′ft1, and

substituting in B. 9, we have the following conditional pricing equation for excess returns,

Etri,t1 − rf,t1  0.5Vartri,t1  −b′Covtri,t1, ft1 B. 10
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By applying the law of iterated expectations to equation B. 10, one has the unconditional

pricing model

Eri,t1 − rf,t1  0.5i
2  −b′Covri,t1, ft1 ∑k1

K
−bki,k B. 11

where  i
2 ≡ Varri,t1,  i,k ≡ Covri,t1, fk,t1,k  1, . . . ,K and fk,t1 denotes the kth factor.

The equation in the expected return-covariance form B. 11 can be translated in an

equivalent expected return-beta model, in the following way,

Eri,t1 − rf,t1  0.5i
2  −b′Covri,t1, ft1

 −b′Varft1Varft1
−1Covri,t1, ft1   ′i B. 12

where  ≡ −Varft1b denote the vector of factor risk prices, and

 i ≡ Varft1
−1Covri,t1, ft1 is a vector containing the K betas for asset i.

Equation B. 12 can be restated in a vector form, for the vector of N excess returns r t1,

Ert1 − rf,t11N  0.5diagVarrt1   B. 13

where  ≡ Covr t1, ft1Varft1
−1 is a NxK factor beta matrix with row i containing the

factor loadings for asset i, and 1N is a N-dimension vector of ones.

Theorem 1 represents a straightforward generalization of the theorem in section 6.3 of

Cochrane (2001), for the case in which the SDF is nonlinear, but the log SDF is a linear

function of the factors.

B.2. Substituting out consumption as in Campbell (1993) model

Using an extension of the Epstein and Zin utility function which accounts for time-varying

risk aversion,

Ut  1 − Ct

1−t
t  EtUt1

1−t
1
t 

t
1−t B. 14

where  t ≡
1− t

1− 1


,  is the elasticity of intertemporal substitution, and  t is the time-varying
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RRA coefficient. The corresponding SDF is given by

Mt1  t Ct1
Ct
−

t
  1

Rm,t1
1−t B. 15

and the corresponding log SDF is equal to

mt1  t ln − t
 EtΔct1 − 1 − tEtrm,t1

− t
 Δct1 − EtΔct1 − 1 − trm,t1 − Etrm,t1 B. 16

Applying the conditional log pricing equation B. 7 to the market return, rm,t1, leads to

Etrm,t1  0.5Vartrm,t1  −Etmt1 − 0.5Vartmt1 − Covtmt1, rm,t1 B. 17

substituting the expressions for Etmt1, Vartmt1 and Covtmt1, rm,t1, and using the fact

that Covtmt1, rm,t1  Covtmt1, rm,t1 − Etrm,t1 and Vartrm,t1  Vartrm,t1 − Etrm,t1, we

have

Etrm,t1  0.5mt
2  −t ln  t

 EtΔct1  1 − tEtrm,t1
−0.5 t

 2ct
2  1 − t2mt

2  2 t
 1 − tc,mt  t

 c,mt  1 − tmt
2 B. 18

where ct
2 ≡ VartΔct1 − EtΔct1, mt

2 ≡ Vartrm,t1 − Etrm,t1 and

c,mt ≡ CovtΔct1 − EtΔct1, rm,t1 − Etrm,t1

Solving for EtΔct1, and imposing joint conditional homoskedasticity for log consumption

growth and log market returns, it follows,

EtΔct1   ln  0.5t 1
 ct

2  mt
2 − 2c,mt  Etrm,t1

  ln  0.5t 1
 c

2  m
2 − 2c,m  Etrm,t1 B. 19

where c
2 ≡ VarΔct1 − EtΔct1, m

2 ≡ Varrm,t1 − Etrm,t1 and

c,m ≡ CovΔct1 − EtΔct1, rm,t1 − Etrm,t1.

As stated in Campbell (1993),  t is infinite when  is near one, and hence, the expression in

covariances in B. 19 must be zero, in order to have finite expected consumption growth. If we

make the assumption that  ≈ 1, then it follows that

EtΔct1  m  Etrm,t1 B. 20

with m ≡  ln.
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Giving a relation similar to equation B. 20, Campbell (1993) shows that innovations in log

consumption and log market returns are related by the following expression,

ct1 − Etct1  rm,t1 − Etrm,t1  1 − Et1 − Et∑j1


jrm,t1j B. 21

B.3. Conditional expected SDF in Campbell (1993) model

The log SDF in equation B. 16 has a conditional first moment given by

Etmt1  t ln − t
 EtΔct1 − 1 − tEtrm,t1 B. 22

given the fact that EtΔct1 − EtΔct1  Etrm,t1 − Etrm,t1  0.

Replacing EtΔct1 by its expression in B. 20 and solving, leads to

Etmt1  −Etrm,t1 B. 23

thus, the conditional expected SDF is equal to minus the conditional market return, in this

framework.

B.4. Factor risk prices in the expected return-beta representation

Given

 ≡ − fb,  f ≡ Varft1 B. 24

from Theorem 1, with ft1 ≡ rt1
CF , ztrt1

CF , rt1
h , it follows that the variance-covariance matrix of

the factors is given by

 f ≡
CF

2 CF,CFz CF,h

CFz
2 CFz,h

h
2

B. 25

where CF
2 ≡ Varrt1

CF, h
2 ≡ Varrt1

h , CFz
2 ≡ Varrt1

CFzt, CF,CFz ≡ Covrt1
CF , rt1

CFzt,

CF,h ≡ Covrt1
CF , rt1

h  and CFz,h ≡ Covrt1
CFzt, rt1

h .

Substituting (B.25) in (B.24) leads to
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CF,CFz,h ′ 

0CF
2  1CF,CFz − CF,h

0CF,CFz  1CFz
2 − CFz,h

0CF,h  1CFz,h − h
2

B. 26

If there are two state variables in the RRA equation,  t  0  1z1t  1z2t, the factor vector

is given by ft1 ≡ rt1
CF , z1trt1

CF , z2trt1
CF , rt1

h , b ≡ −0,−1,−2, 1, and

 f ≡

CF
2 CF,CFz1 CF,CFz2 CF,h

CFz1
2 CFz1,CFz2 CFz1,h

CFz2
2 CFz2,h

h
2

B. 27

leading to

CF,CFz1,CFz2,h ′ 

0CF
2  1CF,CFz1  2CF,CFz2 − CF,h

0CF,CFz1  1CFz1
2  2CFz1,CFz2 − CFz1,h

0CF,CFz2  1CFz1,CFz2  2CFz2
2 − CFz2,h

0CF,h  1CFz1,h  2CFz2,h − h
2

B. 28

Since we are dealing with multi-regression betas, the vector of betas risk prices , depends

not only on the SDF parameters, but also on the factors variances and covariances.

B.5. Risk aversion and market returns

Given the expression for risk aversion in equation (3),  t ≡ − WtVWWWt,zt
VWWt,zt

, and differentiating

with respect to wealth, Wt, it follows,

∂t

∂Wt
 − WtVWWW.VW.−VWW.2VWW.VW.

VW.2 B. 29

In order to have ∂ t

∂Wt
 0, the following condition must hold,

Wt  − VWW.VW.
VWWW.VW.−VWW.2 B. 30

With VW.   0,VWW.   0,VWWW.   0, if VWWW. VW.  − VWW. 2  0 holds, this is a

sufficient condition for (B.30), since wealth is strictly positive.
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B.6. Pricing the market return

Applying the pricing equation (23) to the market return, rm,t1, we have

Erm,t1 − rf,t1 
m

2

2  0m,CF  1m,CFz − m,h B. 31

By expanding the variance and covariances, in the following way,

m,CF ≡ covrm,t1, rt1
CF  Ecovtrm,t1, rt1

CF  Ecovtrm,t1 − Etrm,t1, rt1
CF

 Ecovtrt1
CF − rt1

h , rt1
CF  EVartrt1

CF − Covtrt1
h , rt1

CF  CF
2 − CF,h B. 32

m,CFz ≡ covrm,t1, rt1
CFzt  Ecovtrt1

CF − rt1
h , rt1

CFzt

 ECovtrt1
CF , rt1

CFzt − Covtrt1
h , rt1

CFzt  CF,CFz − h,CFz B. 33

m,h ≡ covrm,t1, rt1
h   Ecovtrt1

CF − rt1
h , rt1

h 

 ECovtrt1
h , rt1

CF − Vartrt1
h   CF,h − h

2 B. 34

m
2  Varrm,t1  EVartrm,t1  EVartrm,t1 − Etrm,t1

 EVartrt1
CF − rt1

h   CF
2  h

2 − 2CF,h B. 35

and substituting (B.32), (B.33), (B.34) and (B.35) in (B.31), we obtain the unconditional

pricing equation for rm,t1,

Erm,t1 − rf,t1  0CF
2 − CF,h  1CF,CFz − h,CFz  0.5h

2 − CF
2  B. 36

C. Econometric framework

C.1. GMM standard errors formulas for parameter estimates and moments

The parameter estimates b̂∗ associated with GMM system (31), have variance formulas for

first stage, second stage and HJ-distance given respectively by,

Varb̂∗  1
T d

′INd−1d′INŜINdd′INd−1 C. 1
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Varb̂∗  1
T d

′Ŝ−1d−1 C. 2
Varb̂∗  1

T d
′WHJd−1d′WHJŜWHJdd′WHJd−1 C. 3

where IN is a N order Identity matrix, d ≡ ∂gTb∗
∂b∗′

represents the matrix of moments’

sensitivities to the parameters, WHJ  Er tr t
′−1 is the weighting matrix for the HJ-distance

estimator, and Ŝ is a estimator for the spectral density matrix S, derived under the

Newey-West procedure with 5 lags. The variance-covariance matrix for the moments is given

by,

Var̂ 1
T IN−dd′INd−1d′INŜIN−INdd′INd−1d′ C. 4

Var̂ 1
T IN−dd′Ŝ

−1d−1d′Ŝ−1ŜIN−Ŝ
−1dd

′
Ŝ−1d−1d′ C. 5

Var̂ 1
T IN−dd′WHJd−1d′WHJŜIN−WHJdd′WHJd−1d′ C. 6

for first-stage, second-stage and HJ-distance, respectively.

The distribution of the HJ-distance,  is derived according to Appendix A in Hodrick and

Zhang (2001).

C.2. GMM robust standard errors in the cross-sectional regressions

The GMM system equivalent to the time series-cross sectional regressions has a set of

moments given by,

gTΘ  1
T

∑
t1

T
rt − rf,t1N−a∗−ft

∑
t1

T
rt − rf,t1N−a∗−ft ft

∑
t1

T
Rt − Rf,t1N  fb



0

0

0

C. 7

where R tNx1 is a vector of simple returns, r tNx1 is a vector of log returns, 1NNx1 is a

vector of ones, a∗Nx1 is a vector of constants for the time series regressions, NxK is a

matrix of factor loadings for the N test assets, ftKx1 is a vector of common factors used to

price assets, bKx1 is a vector of parameters in the SDF equation, and  denotes the

Kronecker product, and . The first two sets of moments identify the factor loadings (including

the constant), and thus are equivalent to the time-series regressions, being exactly identified:
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N  NK orthogonality conditions and N  NK parameters to estimate. The third set of moments

corresponds to the cross-sectional regression and identifies the SDF parameters (prices of

covariance risks), b. System (C.7) is different from the system presented in Cochrane (2001),

chapter 12, in two aspects. First, it generalizes Cochrane (2001), for the case of K risk factors

affecting the cross-section of returns. Secondly, the risk-prices associated with betas are not

freely estimated in the cross-section, being constrained by  ≡ − fb, since we are working

with a theoretical derived asset pricing model that constraints , and in addition only some of

the parameters in the SDF equation, b, have to be estimated in the cross-section, which I will

denote by b∗. The number of covariance risk prices to be estimated (dimension of b∗) is equal

to K∗. Hence, the third set of moments have N moment conditions and K∗ parameters to

estimate, leading to N − K∗ overidentifying restrictions, which also correspond to the number

of overidentifying conditions of the entire system.

The cross-sectional regression can be restated in the following way, with both f and b

being partitioned,

ERt − Rf,t1N  −fb  −f∗f∗∗
b∗

b∗∗
C. 8

b∗∗ represents the parameters in b, which are constrained by the asset pricing model, and

hence are not estimated in the cross-section. In the case of the benchmark ICAPM model with

ft ≡ rt
CF, zt−1rt

CF, rt
h and b ≡ −0,−1, 1, we have b∗ ≡ −0,−1 and b∗∗ ≡ 1. Similarly, f

∗

represents the submatrix of f that contains the variances of the factors which parameters are

estimated in the cross-sectional regression. In our example, f
∗ ≡ CF,CFz,f

∗∗ ≡ h, where

 i denotes the column vector in f that contains  i
2. By applying the product rule for

partitioned matrices, we have,

ERt − Rf,t1N  −f∗b∗  f∗∗b∗∗  −f∗b∗ − f∗∗b∗∗ C. 9

This formula will be useful in calculating the sensitivity of gTΘ to b∗, below.
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The vector of parameters to estimate in this GMM system is given by

Θ′   a∗′ ∗ b∗′  C. 10

where ∗ ≡ vec ′ ′, vec is the VEC operator that enables to stack the factor loadings for

each of the N assets into a column vector. The matrix that chooses which moment conditions

are set to zero in the first-order condition agTΘ̂  0, is given by

a 
IN IK1 0NK1xN

0K∗xNK1 ∗′
C. 11

where Im denotes an identity matrix of order m. In the case of a OLS cross-sectional

regression, we have ∗  f
∗, whereas for GLS cross-sectional regression, ∗  −1f

∗, with

 ≡ E t t
′ representing the variance-covariance matrix associated with the pricing errors.

The sensitivity of the moment conditions to the parameters in this case is equal to

d ≡ ∂gTΘ

∂Θ′
 −

IN IN 1
T ∑t1

T
ft
′ 0NxK∗

IN 1
T ∑t1

T
ft IN 1

T ∑t1

T
ftft

′ 0NKxK∗

0NxN −INb′f f∗

C. 12

The variance-covariance matrix of the moments, S, has the following form

S ∑
j−


E

rt − rf,t1N−a∗−ft
rt − rf,t1N−a∗−ft ft
Rt − Rf,t1N  fb

rt−j − rf,t−j1N−a∗−ft−j
rt−j − rf,t−j1N−a∗−ft−j ft−j

Rt−j − Rf,t−j1N  fb

′

∑
j−


E

t

t ft
ft−Eft  t

t−j

t−j ft−j
ft−j−Eft  t−j

′

C. 13

where  t ≡ r t − rf,t1N−a∗−ft, and on the last equality one makes use of

Rt − Rf,t1N  fb  Rt −Rf,t1N −   Rt −Rf,t1N −ERt −Rf,t1N
 rt −rf,t1N −Ert −rf,t1N  rt − rf,t1N−a∗−Eft  ft−Eft  t C. 14
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S is estimated by the Newey-West procedure with 5 lags.

By using the general GMM formula for the variance-covariance matrix of the estimators,

VarΘ̂  1
T ad

−1aŜa ′ad−1′ C. 15

and the last K∗ elements of the main diagonal give the variances of estimated covariance

risk premia, used to calculate the respective t-statistics. In addition if we use the formula for

the variance-covariance matrix of the GMM moments

VargTΘ̂  1
T INK2−dad−1aŜINK2−dad

−1a ′ C. 16

we obtain the variance of the cross-sectional pricing errors ̂ from the last N elements of

the diagonal, which will be used to conduct an asset-pricing test,

̂ ′var̂−1̂~2N − K∗ C. 17

C.3. Shanken (1992) standard errors

Shanken (1992) standard errors - which introduce a correction for the fact that the factor

loadings are generated regressors in the cross sectional regression - can be derived as a

special case of the above GMM "robust" standard errors derived above. If we assume that  t

is jointly i.i.d.,  t and ft are independent, and finally that ft has no serial correlation, then the

spectral density matrix S specializes to,

S  E
t

t ft
ft − Eft  t

t

t ft
ft − Eft  t

′



 Eft′ 

Eft Eftft′ Eft
 Eft′  f

′

C. 18

By replacing (C.18) in formulas (C.16) and (C.17), we obtain Shanken corrected variances

for estimated covariance risk premia and pricing errors.

56



Table I 
 
Descriptive statistics for VAR state variables and determinants of time-
varying risk aversion 
This table reports descriptive statistics for the state variables used to predict market returns in the 
VAR (panel A) and the scaling variables used to explain time-varying risk aversion (panel B). The 
VAR state variables are the log earnings yield (EY), FED funds premium (FFPREM), term 
structure spread (TERM), and the log market return (rm). The scaling variables are the market 
dividend yield (DY), default spread (DEF), smoothed log earnings yield (EY*), cyclical industrial 
production growth (IPG) and the value spread (VS). The original sample is 1954:07- 2003:09. ρ 
designates the first order autocorrelation. For details on the variables construction refer to section 
III. 
 
Panel A (VAR state variables)

Correlations
Mean Stdev. FFPREM TERM EY rm ρ

FFPREM 0.005 0.008 1.000 -0.440 0.433 -0.127 0.878
TERM 0.008 0.010 1.000 -0.357 0.131 0.967
EY -2.780 0.376 1.000 0.002 0.997
rm 0.004 0.044 1.000 0.073

Panel B (Risk-aversion determinants)
Correlations

Mean Stdev. DY DEF EY* IPG VS ρ
DY 0.032 0.010 1.000 0.429 0.916 -0.298 -0.605 0.989
DEF 0.010 0.004 1.000 0.639 -0.318 -0.082 0.972
EY* -2.832 0.415 1.000 -0.271 -0.548 0.997
IPG 0.010 0.004 1.000 -0.010 0.888
VS 1.563 0.159 1.000 0.939  



Table II 
 
Estimating cash-flow and discount rate news: A VAR approach 
Panel A presents the estimated coefficients (first column) and associated Newey-West t-statistics 
(second column) for the market excess return equation (rm) in a first-order VAR. The VAR 
contains the FED funds premium (FFPREM), the term structure spread (TERM), log earnings 
yield (EY), and the value-weighted market log excess return (rm). The original sample is 1954:08- 
2003:09. Underlined (bold) t-statistics denote significance at the 5% (1%) level. Adj. R2 is the 
adjusted R2. 
Panel B shows the variance decomposition associated with cash-flow (rCF) and discount rate 
news (rh) implied by the VAR model, of panel A. The upper-right section shows the correlation 
between rh and rCF, with the standard error below the correlation coefficient. The upper-left 
section reports the variance decomposition of market excess returns, in terms of both news 
components. The lower-left section shows the correlations between shocks in each of the 
variables used in the VAR, with both rh and rCF. The lower-right section shows the functions 
(e1’ρA(I-ρA)-1, e1’+e1’ρA(I-ρA)-1) that map the VAR variables shocks into rh and rCF. The standard 
errors are computed from 5,000 bootstrapping simulations of the model, under the null of no 
predictability of excess returns.  
 
Panel A

Adj. R2

FFPREM -0.820 -2.490 0.031
TERM 0.349 1.974
EY 0.018 3.065
rm 0.044 1.047

Panel B

Variance decomposition Correlations
Var(rh

t+1) 0.721 rh
t+1 rCF

t+1

Var(rCF
t+1) 0.276 rh

t+1 1.000 -0.003
-2Cov(rCF

t+1,rh
t+1) 0.002 0.556

Sum 1.000 rCF
t+1 1.000

Shock correlations rh
t+1 S.E. rCF

t+1 S.E. Funtions rh
t+1 S.E. rCF

t+1 S.E.
FFPREM -0.142 0.369 -0.312 0.131 FFPREM -1.748 1.986 -1.748 1.986
TERM -0.187 0.651 -0.012 0.303 TERM -0.017 5.750 -0.017 5.750
EY 0.954 0.656 0.191 0.194 EY 0.824 0.737 0.824 0.737
rm -0.851 0.597 0.528 0.112 rm -0.305 0.331 0.695 0.331  



Table III 
 
ICAPM with cyclical risk-aversion: Estimating covariance and beta factor 
risk-premia 
This table reports the estimated covariance and beta factor risk prices for the ICAPM with time-
varying risk aversion, as described in section III of the paper. Panel A presents the results for 
both the static ICAPM (BBGB) and the ICAPM scaled by dividend yield (DY). The ICAPM scaled 
by the default spread (DEF), smoothed earnings yield (EY*), cyclical industrial production growth 
(IPG) and value spread (VS), are presented in Panels B, C, D and E, respectively. For each 
model, there are 3 sets of test assets - the 25 size/book-to-market portfolios, 38 industry 
portfolios, and their combination. Each panel reports both the first stage and second stage GMM 
estimates. λCF and λH denote the beta risk prices estimates for the cash-flow and discount-rate 
news factors, respectively, while λCFDY, λCFDEF, λCFEY*, λCFIPG and λCFVS refer to the scaled factor 
related with time-varying risk aversion. γ0 and γ1 denote the estimates of the covariance risk 
prices, which also correspond to the risk aversion coefficients. For each model the estimated risk 
prices are reported in line 1, while in line 2 are reported the associated t-statistics. E(γt) is the 
average value of RRA. Test values (first row) and respective p-values (second row) for the 
asymptotic pricing error test are presented for each GMM estimation. The sample is 1954:08-
2003:09. Italic, underlined and bold numbers denote statistical significance at the 10%, 5% and 
1% levels respectively. The beta risk prices (λ) are multiplied by 100. For further details, refer to 
section III of the paper.  
 
Panel A (BBGB + Dividend yield)

First stage GMM Second stage GMM
Row λCF λCFDY λH γ0 γ1 E(γt) α'Σ-1α λCF λCFDY λH γ0 γ1 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
1 0.552 -0.136 10.771 10.771 23.266 0.299 -0.135 5.823 5.823 23.668

2.517 -139.519 2.516 0.504 1.874 -190.463 1.872 0.481
2 0.583 0.045 -0.093 -96.650 3562.644 15.746 28.114 0.312 0.024 -0.113 -50.025 1850.827 8.366 18.532

2.652 4.517 -8.355 -3.444 3.862 0.211 1.954 3.553 -16.838 -2.966 3.340 0.728

38 Industry portfolios
3 0.445 -0.136 8.683 8.683 25.940 0.319 -0.135 6.224 6.224 25.298

2.140 -146.638 2.139 0.766 2.206 -209.895 2.204 0.794
4 0.426 0.017 -0.129 -8.143 542.519 8.973 25.578 0.337 0.013 -0.131 -4.920 378.655 7.026 23.557

2.097 2.132 -21.772 -0.550 1.081 0.741 2.252 2.285 -33.940 -0.512 1.155 0.828

25 Size/book-to-market portfolios + 38 Industry portfolios
5 0.493 -0.136 9.604 9.604 60.973 0.324 -0.135 6.312 6.312 66.218

2.325 -144.219 2.323 0.335 2.460 -230.930 2.459 0.189
6 0.478 0.022 -0.125 -18.410 914.441 10.439 63.418 0.313 0.014 -0.128 -12.852 625.110 6.870 65.631

2.273 2.670 -20.944 -1.231 1.824 0.231 2.325 2.858 -40.612 -1.632 2.339 0.178   
 
Panel B (Default spread)

First stage GMM Second stage GMM
Row λCF λCFDEF λH γ0 γ1 E(γt) α'Σ-1α λCF λCFDEF λH γ0 γ1 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
1 0.173 -0.006 -0.385 73.316 -6543.156 10.502 23.782 0.005 -0.008 -0.390 71.510 -6681.787 7.365 19.528

0.826 -0.988 -2.549 1.815 -1.654 0.416 0.029 -2.512 -5.616 3.832 -3.675 0.670

38 Industry portfolios
2 0.490 0.006 -0.097 -1.345 1018.752 8.435 25.664 0.362 0.005 -0.096 -3.964 1030.799 5.932 25.241

2.323 2.004 -1.648 -0.083 0.661 0.737 2.363 2.001 -2.075 -0.322 0.850 0.757

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.429 0.003 -0.185 22.088 -1284.595 9.756 63.564 0.270 0.001 -0.180 17.717 -1164.471 6.538 66.054

2.154 0.974 -2.867 1.212 -0.762 0.227 2.012 0.714 -5.206 1.872 -1.288 0.168  



 
Panel C (Smoothed earnings yield)
 
First stage GMM Second stage GMM
Row λCF λCFEY* λH γ0 γ1 E(γt) α'Σ-1α λCF λCFEY* λH γ0 γ1 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
1 0.657 -0.754 -0.004 248.936 82.746 14.628 33.946 0.347 -0.521 -0.080 105.625 34.646 7.521 23.140

2.978 -1.119 -0.098 3.681 3.523 0.066 2.154 -1.107 -3.778 2.773 2.632 0.453

38 Industry portfolios
2 0.436 -1.039 -0.111 51.935 15.221 8.834 25.087 0.356 -0.843 -0.115 43.867 12.939 7.228 24.084

2.120 -1.851 -5.502 1.378 1.196 0.764 2.369 -2.046 -8.713 1.781 1.562 0.807

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.497 -1.117 -0.100 73.491 22.356 10.187 60.963 0.325 -0.726 -0.111 49.118 14.992 6.666 65.886

2.341 -1.894 -4.986 1.977 1.773 0.302 2.409 -1.948 -10.820 2.544 2.316 0.172   
 
Panel D (Industrial production growth)
 
First stage GMM Second stage GMM
Row λCF λCFIPG λH γ0 γ1 E(γt) α'Σ-1α λCF λCFIPG λH γ0 γ1 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
1 0.835 -0.008 0.204 123.658 -11838.436 2.550 32.421 0.354 0.000 -0.069 27.915 -2315.824 4.224 24.778

3.473 -1.586 1.687 3.070 -2.816 0.092 2.078 0.069 -1.141 1.366 -1.106 0.362

38 Industry portfolios
2 0.462 0.003 -0.102 19.796 -1189.156 7.631 26.201 0.324 0.002 -0.125 9.497 -351.785 5.899 25.347

2.145 0.910 -1.646 0.934 -0.553 0.712 2.136 1.414 -3.621 0.782 -0.292 0.752

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.530 0.002 -0.077 28.842 -2040.375 7.969 60.218 0.305 0.003 -0.130 7.602 -182.327 5.737 65.199

2.413 0.741 -1.300 1.411 -0.985 0.326 2.222 1.635 -4.336 0.718 -0.174 0.187   
 
Panel E (Value spread)
 
First stage GMM Second stage GMM
Row λCF λCFVS λH γ0 γ1 E(γt) α'Σ-1α λCF λCFVS λH γ0 γ1 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
1 0.064 -0.384 -0.404 407.498 -252.024 13.592 26.199 0.040 -0.224 -0.294 241.169 -149.128 8.086 7.480

0.307 -1.057 -7.426 4.994 -4.952 0.292 0.256 -0.831 -8.565 4.691 -4.648 0.999

38 Industry portfolios
2 0.360 0.511 -0.174 64.799 -35.841 8.781 25.114 0.309 0.429 -0.172 62.086 -34.785 7.718 24.120

1.932 1.677 -4.654 1.149 -1.030 0.763 2.124 1.841 -6.840 1.624 -1.484 0.806

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.332 0.392 -0.214 125.196 -73.652 10.079 62.726 0.217 0.234 -0.198 99.725 -59.248 7.121 64.757

1.722 1.248 -5.695 2.203 -2.102 0.250 1.662 1.112 -10.085 3.346 -3.240 0.198  



 
Table IV 
 
ICAPM with time-varying risk-aversion: Adding the market return  
This table reports the estimated covariance and beta risk prices for the ICAPM scaled by the 
market return (Panel A), and the ICAPM scaled by the dividend yield plus the market return 
(Panel B), as described in section III of the paper. For each model, there are 3 sets of test assets 
- the 25 size/book-to-market portfolios, 38 industry portfolios, and their combination. Each panel 
reports both the first stage and second stage GMM estimates. λCF and λH denote the beta risk 
prices estimates for the cash-flow and discount-rate news factors, respectively, while λCFDY and 
λCFRM refer to the scaled factor related with time-varying risk aversion. γ0, γ1 and γ2 denote the 
estimates of the covariance risk prices, which also correspond to the risk aversion coefficients. 
For each model the estimated risk prices are reported in line 1, while in line 2 are reported the 
associated t-statistics. E(γt) is the average value of RRA. Test values (first row) and respective p-
values (second row) for the asymptotic pricing error test are presented for each GMM estimation. 
The sample is 1954:08-2003:09. Italic, underlined and bold numbers denote statistical 
significance at the 10%, 5% and 1% levels respectively. The beta risk prices (λ) are multiplied by 
100. For further details, refer to section III of the paper.  
 
Panel A (Market excess return)

First stage GMM Second stage GMM
Row λCF λCFRM λH γ0 γ1 E(γt) α'Σ-1α λCF λCFRM λH γ0 γ1 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
1 1.113 0.190 0.374 30.653 1559.854 37.422 24.867 0.505 0.069 0.052 13.132 571.726 15.613 43.985

4.017 3.530 2.632 4.254 3.591 0.357 2.802 2.880 0.819 3.155 2.956 0.005

38 Industry portfolios
2 0.257 -0.071 -0.316 1.859 -550.725 -0.531 23.661 0.186 -0.057 -0.278 1.120 -437.549 -0.778 23.026

1.293 -2.589 -4.402 0.447 -2.519 0.824 1.264 -3.845 -7.216 0.364 -3.714 0.848

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.429 -0.026 -0.196 7.304 -183.295 6.508 61.296 0.264 -0.028 -0.203 3.957 -205.719 3.064 66.144

2.099 -1.181 -3.433 1.771 -1.055 0.292 1.998 -2.782 -7.767 1.489 -2.586 0.166  
 



Panel B (Dividend yield + market excess return)

First stage GMM
Row λCF λCFDY λCFRM λH γ0 γ1 γ2 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
1 0.534 0.045 -0.012 -0.137 -102.679 3738.070 -137.680 13.592 26.501

2.163 4.469 -0.388 -1.809 -3.341 3.784 -0.574 0.231

38 Industry portfolios
2 0.273 0.010 -0.060 -0.291 -4.332 344.883 -482.151 0.737 23.772

1.330 1.257 -2.545 -4.650 -0.292 0.685 -2.587 0.782

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.462 0.021 -0.004 -0.140 -18.545 911.098 -46.968 9.633 63.210

2.222 2.573 -0.193 -2.417 -1.245 1.813 -0.273 0.209

Second stage GMM
Row λCF λCFDY λCFRM λH γ0 γ1 γ2 E(γt) α'Σ-1α

25 Size/book-to-market portfolios
4 0.221 0.023 -0.029 -0.193 -59.784 2128.068 -254.696 4.283 19.134

1.310 3.397 -1.499 -3.905 -3.336 3.663 -1.642 0.637

38 Industry portfolios
5 0.196 0.007 -0.052 -0.270 -1.648 203.237 -415.358 -0.243 22.897

1.268 1.155 -3.397 -6.662 -0.171 0.614 -3.447 0.819

25 Size/book-to-market portfolios + 38 Industry portfolios
6 0.283 0.013 -0.013 -0.165 -13.014 617.750 -113.277 5.109 65.805

2.089 2.615 -1.306 -6.170 -1.652 2.311 -1.411 0.151  
 



Table V 
 
Average pricing errors: 25 size/book-to-market portfolios 
This table reports the average pricing errors (stated in percentage points) across the book-to-
market (Panel A) and size (Panel B) quintiles associated with the 25 size/book-to-market 
portfolios. The models are the static ICAPM (BBGB), and the ICAPM scaled by the market 
dividend yield (DY), default spread (DEF), smoothed log earnings yield (EY*), cyclical industrial 
production growth (IPG), value spread (VS), and market return plus dividend yield (DY+RM). 
Panel C reports t-statistics for the individual pricing errors. SBVij denotes the portfolio with ith size 
and jth book-to-market quintiles. S1 and BV1 denote the lowest size and book-to-market quintiles, 
respectively. The sample is 1954:08-2003:09. Underlined and bold numbers denote statistical 
significance at the 5% and 1% levels respectively. For further details, refer to section III of the 
paper. 
 
 



Panel A (Book-to-market quantiles)
BBGB DY DEF EY* IPG VS DY+RM

BV1 -0.430 -0.136 -0.410 -0.175 -0.269 -0.042 -0.137
BV2 -0.064 -0.046 -0.050 -0.056 -0.046 -0.060 -0.043
BV3 0.142 0.053 0.131 0.062 0.113 -0.001 0.046
BV4 0.292 0.140 0.264 0.181 0.204 0.095 0.141
BV5 0.303 0.059 0.315 0.085 0.156 0.060 0.063

Panel B (Size quantiles)
S1 0.127 0.262 0.012 0.271 0.177 0.137 0.263
S2 0.072 0.052 0.031 0.056 0.082 -0.052 0.049
S3 0.071 -0.003 0.052 0.010 0.083 -0.103 0.001
S4 0.025 -0.069 0.079 -0.073 -0.025 0.028 -0.066
S5 -0.052 -0.171 0.076 -0.167 -0.159 0.042 -0.176

Panel C (t-statistics)
BBGB DY DEF EY* IPG VS DY+RM

SBV11 -3.618 -1.208 -4.651 -2.002 -3.579 -0.692 -1.204
SBV12 0.126 3.006 -2.040 3.209 1.412 1.404 3.644
SBV13 1.985 2.428 1.715 2.491 2.632 0.917 2.372
SBV14 4.646 4.285 5.349 4.757 4.781 2.860 4.066
SBV15 4.334 3.601 4.904 3.856 4.145 2.876 3.443
SBV21 -4.551 -4.113 -4.815 -4.539 -4.915 -3.420 -4.141
SBV22 -0.843 -0.690 -1.134 -0.844 -0.269 -1.534 -0.572
SBV23 3.444 1.943 3.425 1.910 2.448 -0.473 1.666
SBV24 4.181 3.758 3.423 3.996 4.044 1.728 3.422
SBV25 3.946 2.281 3.546 2.849 3.942 0.930 2.283
SBV31 -3.503 -2.285 -3.373 -2.584 -2.989 -2.119 -2.343
SBV32 0.172 1.046 -0.504 0.758 1.826 -1.204 1.032
SBV33 1.576 -0.897 1.317 -0.368 -0.062 -2.637 -0.889
SBV34 3.792 2.810 2.842 3.350 3.733 0.428 2.904
SBV35 3.116 -0.248 3.168 0.228 2.802 -2.417 -0.052
SBV41 -2.558 0.680 -2.428 0.356 -0.122 3.781 0.733
SBV42 -1.972 -3.970 -0.776 -4.094 -3.168 -3.251 -4.087
SBV43 1.889 0.352 1.811 0.351 2.005 -0.193 -0.009
SBV44 2.932 1.161 3.638 1.463 1.430 2.302 1.395
SBV45 1.880 -2.485 2.751 -2.337 -1.544 -0.162 -2.614
SBV51 -1.633 -1.352 -0.541 -1.335 -0.897 0.609 -1.586
SBV52 -1.305 -2.173 0.594 -2.426 -2.197 -0.250 -2.353
SBV53 0.240 -0.834 1.466 -0.728 -0.211 0.752 -0.859
SBV54 0.451 -2.934 1.755 -2.548 -1.952 -0.533 -2.834
SBV55 0.197 -0.963 1.212 -1.068 -2.731 1.009 -1.016  



Table VI 
 
Average pricing errors: 38 industry portfolios 
This table reports the individual average pricing errors associated with the 38 industry portfolios. 
The models are the static ICAPM (BBGB), and the ICAPM scaled by the market dividend yield 
(DY), default spread (DEF), smoothed log earnings yield (EY*), cyclical industrial production 
growth (IPG), value spread (VS), and market return plus dividend yield (DY+RM). For each model 
the first column presents the average pricing errors (stated in percentage points), and the second 
column presents the respective t-statistics. The sample is 1954:08-2003:09. Underlined and bold 
numbers denote statistical significance at the 5% and 1% levels respectively. For further details, 
refer to section III of the paper. 
 

BBGB DY DEF EY* IPG VS DY+RM
AGRIC -0.141 -0.630 -0.144 -0.645 -0.042 -0.306 -0.128 -0.568 -0.165 -0.748 -0.175 -0.790 -0.222 -1.034
APPRL -0.178 -0.971 -0.197 -1.104 -0.153 -0.852 -0.186 -1.026 -0.183 -1.002 -0.224 -1.364 -0.261 -1.494
CARS -0.013 -0.098 -0.012 -0.090 -0.032 -0.247 -0.020 -0.153 -0.014 -0.108 -0.003 -0.024 0.072 0.580
CHAIR 0.023 0.168 0.027 0.198 0.038 0.276 0.028 0.206 0.009 0.062 -0.027 -0.225 -0.060 -0.438
CHEMS 0.102 0.927 0.058 0.471 0.090 0.840 0.063 0.529 0.117 1.115 0.068 0.568 0.000 0.000
CNSTR -0.216 -1.262 -0.273 -1.716 -0.249 -1.403 -0.289 -1.823 -0.228 -1.374 -0.249 -1.520 -0.237 -1.480
ELCTR -0.190 -1.077 -0.057 -0.493 -0.183 -1.032 -0.042 -0.366 -0.145 -0.951 -0.040 -0.402 -0.049 -0.425
FOOD 0.341 2.661 0.306 2.413 0.351 2.693 0.307 2.446 0.358 2.829 0.267 2.092 0.257 2.158
GLASS -0.207 -1.316 -0.117 -0.897 -0.197 -1.253 -0.097 -0.753 -0.197 -1.301 -0.119 -0.902 0.006 0.046
INSTR 0.073 0.511 0.070 0.489 0.050 0.355 0.068 0.472 0.109 0.847 0.096 0.703 0.070 0.484
LETHR 0.215 1.092 0.258 1.253 0.237 1.204 0.244 1.205 0.216 1.095 0.175 0.941 0.253 1.232
MACHN -0.105 -0.634 -0.021 -0.168 -0.107 -0.652 -0.008 -0.061 -0.087 -0.566 0.000 0.001 -0.057 -0.441
MANUF 0.065 0.358 0.022 0.124 0.065 0.360 0.002 0.013 0.085 0.469 -0.002 -0.009 0.092 0.510
METAL -0.375 -2.299 -0.362 -2.201 -0.380 -2.348 -0.357 -2.169 -0.351 -1.989 -0.348 -2.145 -0.190 -1.342
MINES -0.040 -0.191 -0.139 -0.782 -0.044 -0.213 -0.143 -0.791 -0.064 -0.337 -0.124 -0.632 -0.050 -0.298
MONEY 0.055 0.518 0.057 0.537 0.071 0.651 0.060 0.565 0.049 0.460 0.060 0.561 -0.014 -0.143
MTLPR 0.014 0.148 -0.024 -0.268 0.007 0.071 -0.030 -0.335 0.020 0.216 -0.048 -0.526 -0.025 -0.279
OIL -0.108 -0.476 -0.129 -0.584 -0.090 -0.399 -0.127 -0.570 -0.139 -0.674 -0.107 -0.475 -0.116 -0.526
PAPER -0.002 -0.014 -0.053 -0.458 -0.021 -0.206 -0.052 -0.458 -0.013 -0.107 -0.040 -0.343 -0.138 -1.101
PHONE -0.081 -0.391 0.063 0.409 -0.072 -0.345 0.069 0.446 -0.086 -0.410 0.064 0.436 -0.006 -0.043
PRINT 0.184 1.447 0.179 1.411 0.183 1.438 0.179 1.405 0.190 1.509 0.161 1.265 0.219 1.675
PTRLM 0.278 1.722 0.202 1.298 0.275 1.706 0.196 1.240 0.258 1.730 0.250 1.544 0.090 0.556
RTAIL 0.131 1.022 0.132 1.029 0.109 0.861 0.118 0.905 0.141 1.154 0.116 0.902 0.171 1.304
RUBBR -0.081 -0.572 -0.110 -0.773 -0.102 -0.736 -0.112 -0.792 -0.062 -0.448 -0.128 -0.913 0.049 0.381
SMOKE 0.661 2.754 0.616 2.692 0.640 2.675 0.599 2.654 0.681 2.797 0.629 2.729 0.551 2.515
SRVC -0.050 -0.368 0.058 0.523 -0.032 -0.246 0.063 0.575 -0.014 -0.113 0.051 0.440 -0.058 -0.584
STONE 0.311 1.112 0.196 0.827 0.321 1.161 0.198 0.811 0.187 1.360 0.218 0.850 0.133 0.574
TRANS -0.129 -1.098 -0.192 -1.614 -0.146 -1.249 -0.197 -1.661 -0.167 -1.378 -0.163 -1.409 -0.177 -1.506
TV 0.250 1.400 0.311 1.920 0.252 1.413 0.318 1.965 0.253 1.431 0.335 2.109 0.343 2.116
TXTLS 0.040 0.220 0.027 0.153 0.059 0.331 0.033 0.185 0.052 0.283 -0.046 -0.315 0.000 -0.001
UTILS 0.149 1.138 0.115 0.867 0.154 1.175 0.112 0.854 0.122 0.888 0.144 1.105 0.160 1.168
WHLSL 0.078 0.879 0.049 0.541 0.064 0.716 0.043 0.484 0.071 0.785 0.062 0.708 -0.028 -0.320
WOOD -0.003 -0.018 -0.103 -0.618 -0.046 -0.280 -0.125 -0.753 -0.027 -0.151 -0.090 -0.539 -0.103 -0.618



 
Table VII 
 
ICAPM with cyclical risk-aversion: Incorporating estimation error in 
covariances 
This table reports the estimated covariance and beta factor risk prices for the ICAPM with time-
varying risk aversion, by using the augmented GMM system which takes into account the 
estimation error in covariances, as described in section III of the paper. Panel A presents the 
results for both the static ICAPM (BBGB) and the ICAPM scaled by dividend yield. The ICAPM 
scaled by the default spread, smoothed earnings yield, cyclical industrial production growth, value 
spread, and market return plus dividend yield, are presented in Panels B, C, D, E and F, 
respectively. For each model, there are 3 sets of test assets - the 25 size/book-to-market 
portfolios (SBV25), 38 industry portfolios (IND38), and their combination (SBV25+IND38). The 
estimates correspond to a first-stage GMM estimation. λCF and λH denote the beta risk prices 
estimates for the cash-flow and discount-rate news factors, respectively, while λCFDY, λCFDEF, 
λCFEY*, λCFIPG ,λCFVS and λCFRM refer to the scaled factor related with time-varying risk aversion. γ0, 
γ1 and γ2 denote the estimates of the covariance risk prices, which also correspond to the risk 
aversion coefficients. For each model the estimated risk prices are reported in line 1, while in line 
2 are reported the associated t-statistics. The sample is 1954:08-2003:09. Italic, underlined and 
bold numbers denote statistical significance at the 10%, 5% and 1% levels respectively. The beta 
risk prices (λ) are multiplied by 100. For further details, refer to section III of the paper.  
 



Panel A (BBGB + Dividend yield) Panel D (Industrial production growth)
Row λCF λCFDY λH γ0 γ1 Row λCF λCFIPG λH γ0 γ1

SBV25 SBV25
1 0.552 -0.136 10.771 1 0.835 -0.008 0.204 123.658 -11838.436

2.525 -139.944 2.524 1.473 -1.504 2.466 3.925 -4.093
2 0.583 0.045 -0.093 -96.650 3562.644

1.370 2.897 -8.015 -3.276 3.687 IND38
2 0.462 0.003 -0.102 19.796 -1189.156

IND38 1.836 1.202 -12.796 3.208 -4.186
3 0.445 -0.136 8.683

2.105 -144.242 2.104 SBV25 + IND38
4 0.426 0.017 -0.129 -8.143 542.519 3 0.530 0.002 -0.077 28.842 -2040.375

1.748 2.210 -78.763 -1.559 4.130 1.961 0.927 -7.527 3.970 -5.508

SBV25 + IND38 Panel E (Value spread)
5 0.493 -0.136 9.604 Row λCF λCFVS λH γ0 γ1

2.344 -145.421 2.343
6 0.478 0.022 -0.125 -18.410 914.441 SBV25

1.844 2.553 -68.531 -3.413 5.621 1 0.064 -0.384 -0.404 407.498 -252.024
0.131 -0.461 -4.794 3.237 -3.189

Panel B (Default spread)
Row λCF λCFDEF λH γ0 γ1 IND38

2 0.360 0.511 -0.174 64.799 -35.841
SBV25 1.421 1.249 -17.074 4.036 -3.805
1 0.173 -0.006 -0.385 73.316 -6543.156

0.521 -1.527 -6.423 4.110 -4.178 SBV25 + IND38
3 0.332 0.392 -0.214 125.196 -73.652

IND38 1.197 0.887 -14.098 5.186 -5.307
2 0.490 0.006 -0.097 -1.345 1018.752

1.993 2.360 -10.771 -0.286 4.205 Panel F (Dividend yield + Market return)
Row λCF λCFDY λCFRM λH γ0 γ1 γ2

SBV25 + IND38
3 0.429 0.003 -0.185 22.088 -1284.595 SBV25

1.648 1.097 -18.925 3.458 -5.262 1 0.534 0.045 -0.012 -0.137 -102.679 3738.070 -137.680
1.282 2.779 -0.148 -0.665 -3.487 3.746 -0.221

Panel C (10 year earnings yield)
Row λCF λCFEY* λH γ0 γ1 IND38

2 0.273 0.010 -0.060 -0.291 -4.332 344.883 -482.151
SBV25 0.828 0.881 -1.863 -3.360 -0.411 0.926 -1.908
1 0.657 -0.754 -0.004 248.936 82.746

1.542 -0.613 -0.096 3.602 3.479 SBV25 + IND38
3 0.462 0.021 -0.004 -0.140 -18.545 911.098 -46.968

IND38 1.843 2.565 -0.165 -2.079 -3.486 5.611 -0.231
2 0.436 -1.039 -0.111 51.935 15.221

1.770 -1.476 -16.524 4.036 3.670

SBV25 + IND38
3 0.497 -1.117 -0.100 73.491 22.356

1.897 -1.503 -14.722 5.348 5.254  



 
Table VIII 
 
ICAPM with cyclical risk-aversion: Hansen-Jagannathan distance 
This table reports the estimated covariance and beta factor risk prices for the ICAPM with time-
varying risk aversion, by using the HJ-distance approach, as described in section III of the paper. 
Panel A presents the results for both the static ICAPM (BBGB) and the ICAPM scaled by dividend 
yield. The ICAPM scaled by the default spread, smoothed earnings yield, cyclical industrial 
production growth, value spread, and market return plus dividend yield, are presented in Panels 
B, C, D, E and F, respectively. In this table, the test assets are the 38 industry portfolios. λCF and 
λH denote the beta risk prices estimates for the cash-flow and discount-rate news factors, 
respectively, while λCFDY, λCFDEF, λCFEY*, λCFIPG ,λCFVS and λCFRM refer to the scaled factor related 
with time-varying risk aversion. γ0, γ1 and γ2 denote the estimates of the covariance risk prices, 
which also correspond to the risk aversion coefficients. For each model the estimated risk prices 
are reported in line 1, while in line 2 are reported the associated t-statistics. Test values (first row) 
and respective p-values (second row) for the asymptotic pricing error test are presented for each 
GMM estimation. HJ denotes the value of the test that the HJ-distance is zero, with the respective 
p-value given below. The sample is 1954:08-2003:09. Italic, underlined and bold numbers denote 
statistical significance at the 10%, 5% and 1% levels respectively. The beta risk prices (λ) are 
multiplied by 100. For further details, refer to section III of the paper. 
 



Panel A (BBGB + Dividend yield)

λCF λCFDY λH γ0 γ1 E(γt) α'Σ-1α HJ
0.198 -0.135 3.860 3.860 25.852 0.256
1.245 -190.130 1.243 0.770 0.263
0.247 0.011 -0.130 -8.291 432.435 5.352 24.985 0.251
1.531 1.764 -29.924 -0.763 1.184 0.768 0.270

Panel B (Default spread)

λCF λCFDEF λH γ0 γ1 E(γt) α'Σ-1α HJ
0.227 0.003 -0.108 -2.921 687.429 3.679 25.677 0.255
1.361 1.185 -2.194 -0.220 0.530 0.737 0.248

Panel C (10 year earnings yield)

λCF λCFEY* λH γ0 γ1 E(γt) α'Σ-1α HJ
0.261 -0.577 -0.115 40.550 12.429 5.354 24.651 0.248
1.605 -1.279 -7.908 1.503 1.360 0.783 0.286

Panel D (Industrial production growth)

λCF λCFIPG λH γ0 γ1 E(γt) α'Σ-1α HJ
0.212 0.001 -0.119 8.954 -531.296 3.519 25.993 0.256
1.275 0.650 -3.139 0.668 -0.400 0.722 0.244

Panel E (Value spread)

λCF λCFVS λH γ0 γ1 E(γt) α'Σ-1α HJ
0.230 0.296 -0.176 65.895 -38.096 6.352 25.243 0.247
1.458 1.156 -6.043 1.500 -1.408 0.757 0.288

Panel F (Dividend yield + Market return)

λCF λCFDY λCFRM λH γ0 γ1 γ2 E(γt) α'Σ-1α HJ
0.165 0.007 -0.035 -0.223 -7.090 355.568 -279.016 0.765 23.214 0.238
0.990 1.152 -2.030 -4.932 -0.651 0.967 -2.073 0.806 0.328  

  



Table IX 
 
ICAPM with cyclical risk-aversion: Estimating covariance and beta factor 
risk-premia by time-series/cross-sectional regressions 
This table reports the estimated covariance and beta factor risk prices for the ICAPM with time-
varying risk aversion, using the time-series/cross-sectional regressions approach, as described in 
section IV of the paper. Panel A presents the results for the static ICAPM (BBGB), whereas the 
ICAPM scaled by dividend yield and value spread, are presented in Panels B and C, respectively. 
For each model, there are 3 sets of test assets - the 25 size/book-to-market portfolios, 38 industry 
portfolios, and their combination. Each panel reports estimates associated with both OLS and 
GLS cross-sectional regressions. λCF and λH denote the beta risk prices estimates for the cash-
flow and discount-rate news factors, respectively, while λCFDY and λCFVS refer to the scaled factor 
related with time-varying risk aversion. γ0 and γ1 denote the estimates of the covariance risk 
prices, which also correspond to the risk aversion coefficients. For each model the estimated risk 
prices are reported in line 1, while in lines 2 and 3 are reported the associated t-statistics, 
calculated with type I and type II standard errors, respectively. E(γt) is the average value of RRA. 
Test values (first row) and respective p-values (second row) for the asymptotic pricing error test, 
under type I and type II standard errors, are presented for each cross-sectional regression. The 
sample is 1954:08-2003:09. Italic, underlined and bold numbers denote statistical significance at 
the 10%, 5% and 1% levels respectively. The beta risk prices (λ) are multiplied by 100. For further 
details, refer to section IV of the paper.  
 
Panel A (BBGB)

OLS GLS
Row λCF λH γ0 E(γt) α'Σ-1α I α'Σ-1α II λCF λH γ0 E(γt) α'Σ-1α I α'Σ-1α II

25 Size/book-to-market portfolios
1 0.555 -0.136 10.826 10.826 35.781 39.726 0.401 -0.136 7.816 7.816 36.917 58.206

2.458 -135.581 2.457 0.058 0.023 2.180 -165.684 2.179 0.045 0.000
2.723 -150.172 2.722 2.226 -169.142 2.224

38 Industry portfolios
2 0.447 -0.136 8.716 8.716 24.837 31.389 0.428 -0.136 8.341 8.341 25.056 32.442

2.125 -145.006 2.123 0.813 0.497 2.369 -168.858 2.368 0.804 0.445
2.280 -155.644 2.279 2.425 -172.847 2.424

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.000 0.000 9.646 9.646 61.742 109.674 0.406 -0.136 7.919 7.919 61.383 113.131

2.291 -141.527 2.290 0.310 0.000 2.304 -172.814 2.302 0.322 0.000
2.499 -154.355 2.498 2.319 -173.941 2.317  

 



Panel B (Dividend yield)

OLS GLS
Row λCF λCFDY λH γ0 γ1 E(γt) α'Σ-1α I α'Σ-1α II λCF λCFDY λH γ0 γ1 E(γt) α'Σ-1α I α'Σ-1α II

25 Size/book-to-market portfolios
1 0.586 0.046 -0.093 -97.869 3604.919 15.860 30.989 37.199 0.416 0.020 -0.123 -22.643 1014.025 9.348 40.622 41.205

2.250 2.911 -4.800 -2.029 2.243 0.123 0.031 2.256 2.720 -16.892 -1.229 1.680 0.013 0.011
2.659 3.958 -6.513 -2.738 3.063 2.289 2.797 -19.891 -1.456 1.956

38 Industry portfolios
2 0.427 0.017 -0.129 -8.303 548.747 9.009 24.319 31.188 0.442 0.018 -0.129 -8.964 579.659 9.323 24.321 30.167

2.086 2.103 -22.254 -0.577 1.109 0.797 0.457 2.430 2.607 -30.574 -0.854 1.606 0.797 0.509
2.234 2.305 -25.698 -0.665 1.279 2.474 2.707 -32.628 -0.907 1.720

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.480 0.022 -0.125 -18.700 925.291 10.492 60.051 107.133 0.416 0.015 -0.131 -2.398 346.302 8.527 60.167 107.592

2.231 2.618 -21.087 -1.264 1.851 0.331 0.000 2.342 2.409 -34.608 -0.249 1.084 0.327 0.000
2.436 2.864 -23.583 -1.415 2.065 2.347 2.404 -37.437 -0.270 1.158  

 
Panel C (Value spread)

OLS GLS
Row λCF λCFVS λH γ0 γ1 E(γt) α'Σ-1α I α'Σ-1α II λCF λCFVS λH γ0 γ1 E(γt) α'Σ-1α I α'Σ-1α II

25 Size/book-to-market portfolios
1 0.062 -0.393 -0.407 411.826 -254.739 13.677 22.025 27.970 0.303 0.303 -0.237 158.889 -94.911 10.546 26.001 55.818

0.229 -0.744 -4.140 2.808 -2.764 0.519 0.217 1.667 0.979 -5.448 2.435 -2.336 0.301 0.000
0.286 -1.006 -6.279 4.246 -4.198 1.702 1.041 -7.466 3.320 -3.208

38 Industry portfolios
2 0.361 0.512 -0.174 65.274 -36.123 8.815 24.367 30.500 0.377 0.513 -0.188 85.910 -48.732 9.743 25.018 29.468

1.941 1.684 -4.430 1.099 -0.987 0.795 0.492 2.187 1.850 -5.784 1.747 -1.614 0.767 0.545
2.062 1.824 -5.682 1.404 -1.268 2.208 1.887 -7.275 2.187 -2.035

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.333 0.392 -0.215 126.359 -74.366 10.126 55.871 101.108 0.365 0.493 -0.188 86.383 -49.171 9.531 57.809 99.519

1.695 1.218 -5.104 1.987 -1.895 0.480 0.000 2.119 1.767 -6.787 2.059 -1.906 0.408 0.000
1.844 1.353 -6.760 2.620 -2.515 2.133 1.815 -8.507 2.555 -2.400  

 



Table X 
 
Average pricing errors: Market return 
This table reports the average pricing errors associated with the market return, as described in 
section V of the paper. The models are the static ICAPM (BBGB), and the ICAPM scaled by the 
market dividend yield (DY), default spread (DEF), smoothed log earnings yield (EY*), cyclical 
industrial production growth (IPG), value spread (VS), and market return plus dividend yield 
(DY+RM). For each model the first row presents the average pricing error (stated in percentage 
points), and the second row presents the annualized error. The sample is 1954:08-2003:09. For 
further details, refer to section V of the paper. 
 

BBGB DY EY* IPG VS DY + RM

25 Size/book-to-market portfolios
αm -0.164 -0.152 -0.137 -0.106 0.056 -0.147
αm*12 -1.972 -1.821 -1.642 -1.277 0.670 -1.761

38 Industry portfolios
αm -0.057 -0.031 -0.023 -0.039 -0.010 -0.039
αm*12 -0.683 -0.370 -0.277 -0.473 -0.119 -0.468

SBV25 + IND38
αm -0.104 -0.078 -0.073 -0.083 -0.022 -0.078
αm*12 -1.251 -0.939 -0.878 -0.997 -0.263 -0.932  
 
 



Table XI 
 
Average pricing errors for 25 size/book-to-market portfolios: Comparison 
with alternative factor models 
This table reports the average individual pricing errors (stated in percentage points) associated 
with the 25 size/book-to-market portfolios (Panel A). The ICAPM models are the static ICAPM 
(BBGB), and the ICAPM scaled by the market dividend yield (DY), value spread (VS), and market 
return plus dividend yield (DY+RM). The alternative factor models are the CAPM, Fama-French 3 
factor model (FF3) and Fama-French 4 factor model (FF4). Panels B and C, present the average 
pricing errors across size and book-to-market quintiles, respectively. ij denotes the portfolio with 
ith size and jth book-to-market quintiles. S1 and BV1 denote the lowest size and book-to-market 
quintiles, respectively. The sample is 1954:08-2003:09. For further details, refer to section V of 
the paper. 
  



Panel A (25 Size/book-to-market portfolios)
BBGB DY VS DY+RM CAPM FF3 FF4

11 -0.626 -0.111 -0.091 -0.108 -0.610 -0.356 -0.190
12 0.014 0.292 0.154 0.311 -0.008 0.038 -0.109
13 0.204 0.246 0.088 0.246 0.134 0.039 -0.080
14 0.496 0.448 0.253 0.445 0.431 0.251 0.122
15 0.553 0.435 0.282 0.433 0.476 0.175 0.187
21 -0.580 -0.274 -0.278 -0.282 -0.552 -0.178 -0.088
22 -0.054 -0.043 -0.097 -0.036 -0.070 -0.032 0.058
23 0.236 0.128 -0.028 0.117 0.194 0.093 0.051
24 0.351 0.272 0.084 0.265 0.292 0.081 -0.001
25 0.409 0.179 0.057 0.180 0.354 0.041 -0.060
31 -0.428 -0.177 -0.161 -0.181 -0.410 0.020 0.096
32 0.009 0.063 -0.071 0.062 -0.012 0.028 0.033
33 0.104 -0.044 -0.134 -0.045 0.084 -0.041 0.011
34 0.330 0.163 0.021 0.169 0.279 0.048 0.033
35 0.341 -0.018 -0.169 -0.003 0.301 -0.029 0.094
41 -0.315 0.063 0.253 0.075 -0.286 0.156 0.028
42 -0.153 -0.311 -0.261 -0.317 -0.155 -0.094 0.017
43 0.144 0.020 -0.013 0.000 0.129 0.039 0.093
44 0.250 0.067 0.173 0.082 0.214 0.028 0.069
45 0.204 -0.185 -0.014 -0.172 0.183 -0.121 -0.038
51 -0.223 -0.181 0.068 -0.196 -0.212 0.225 0.150
52 -0.141 -0.229 -0.026 -0.237 -0.131 0.015 -0.039
53 0.027 -0.085 0.082 -0.087 0.036 0.071 -0.088
54 0.053 -0.248 -0.058 -0.247 0.043 -0.130 -0.098
55 0.028 -0.114 0.144 -0.120 0.044 -0.239 -0.213

Panel B (Size quantiles)
BBGB DY VS DY+RM CAPM FF3 FF4

S1 0.128 0.262 0.137 0.265 0.085 0.029 -0.014
S2 0.072 0.052 -0.052 0.049 0.044 0.001 -0.008
S3 0.071 -0.003 -0.103 0.000 0.048 0.005 0.053
S4 0.026 -0.069 0.028 -0.066 0.017 0.002 0.034
S5 -0.052 -0.171 0.042 -0.177 -0.044 -0.012 -0.058
Panel C (Book-to-market quantiles)

BBGB DY VS DY+RM CAPM FF3 FF4
BV1 -0.434 -0.136 -0.042 -0.138 -0.414 -0.027 -0.001
BV2 -0.065 -0.046 -0.060 -0.044 -0.075 -0.009 -0.008
BV3 0.143 0.053 -0.001 0.046 0.115 0.040 -0.003
BV4 0.296 0.140 0.095 0.143 0.252 0.056 0.025
BV5 0.307 0.059 0.060 0.064 0.272 -0.035 -0.006  
 
 



Table XII 
 
SBV25 factor loading estimates: BBGB  
This table reports in panel A the factor loadings estimates associated with the BBGB model, for 
the 25 size/book-to-market portfolios (SBV25). rCF and rh denote the cash-flow and discount-rate 
news factors, respectively. For each portfolio, the first row shows the estimated coefficients, and 
the second row presents the associated Newey-West t-statistics, calculated with 5 lags. SBVij 
denotes the portfolio with ith size and jth book-to-market quintiles. Average betas across the 
book-to-market and size quintiles are reported in Panels B and C, respectively. S1 and BV1 
denote the lowest size and book-to-market quintiles, respectively. The sample is 1954:08-
2003:09. Underlined and bold numbers denote statistical significance at the 5% and 1% levels, 
respectively. For further details, refer to section V of the paper. 
 



Panel A (SBV25) Panel B (Book-to-market quantiles)
Const. rCF

t+1 rh
t+1 Adj. R2 Const. rCF

t+1 rh
t+1

SBV11 0.000 1.397 -1.408 0.569 BV1 0.002 1.284 -1.282
0.136 12.399 -21.300 BV2 0.005 1.041 -1.101

SBV12 0.006 1.139 -1.223 0.580 BV3 0.006 0.892 -0.991
2.782 11.789 -22.630 BV4 0.007 0.815 -0.943

SBV13 0.007 0.885 -1.089 0.596 BV5 0.008 0.890 -1.001
3.598 10.705 -21.950

SBV14 0.009 0.828 -1.015 0.598 Panel C (Size quantiles)
5.386 9.969 -20.323 Const. rCF

t+1 rh
t+1

SBV15 0.010 0.835 -1.045 0.565 S1 0.006 1.017 -1.156
5.020 9.838 -19.444 S2 0.006 1.030 -1.140

SBV21 0.002 1.413 -1.405 0.703 S3 0.006 0.986 -1.078
0.785 17.250 -28.878 S4 0.006 0.994 -1.047

SBV22 0.005 1.086 -1.167 0.704 S5 0.005 0.896 -0.897
3.325 14.650 -25.277

SBV23 0.007 0.904 -1.042 0.699
4.916 12.522 -23.655

SBV24 0.008 0.830 -1.000 0.676
5.243 11.380 -23.822

SBV25 0.009 0.915 -1.084 0.644
5.203 11.082 -20.571

SBV31 0.003 1.331 -1.335 0.752
1.787 19.631 -30.993

SBV32 0.006 1.008 -1.101 0.772
4.174 16.229 -29.736

SBV33 0.006 0.905 -0.985 0.741
4.588 13.307 -25.823

SBV34 0.008 0.805 -0.947 0.698
5.498 11.609 -24.001

SBV35 0.008 0.880 -1.021 0.655
5.063 10.792 -19.445

SBV41 0.004 1.259 -1.232 0.831
3.112 23.498 -36.405

SBV42 0.004 1.021 -1.064 0.824
3.624 15.786 -31.262

SBV43 0.007 0.916 -0.989 0.783
5.737 13.999 -29.535

SBV44 0.007 0.833 -0.942 0.739
5.914 14.784 -26.305

SBV45 0.007 0.938 -1.010 0.653
4.656 12.450 -20.318

SBV51 0.004 1.022 -1.029 0.863
4.041 27.800 -35.798

SBV52 0.004 0.949 -0.950 0.839
4.459 22.822 -38.306

SBV53 0.005 0.850 -0.848 0.752
5.096 16.659 -28.943

SBV54 0.005 0.779 -0.814 0.666
4.208 12.560 -23.923

SBV55 0.005 0.882 -0.845 0.579
3.535 10.192 -19.057  



Table XIII 
 
SBV25 factor loading estimates: ICAPM scaled by dividend yield 
This table reports in Panel A the factor loadings estimates associated with the DY ICAPM model, 
for the 25 size/book-to-market portfolios (SBV25). rCF and rh denote the cash-flow and discount-
rate news factors, respectively, whereas DYrCF represents the factor related with time-varying risk 
aversion. For each portfolio, the first row shows the estimated coefficients, and the second row 
presents the associated Newey-West t-statistics, calculated with 5 lags. SBVij denotes the 
portfolio with ith size and jth book-to-market quintiles. Average betas across the book-to-market 
and size quintiles are reported in Panels B and C, respectively. S1 and BV1 denote the lowest 
size and book-to-market quintiles, respectively. The sample is 1954:08-2003:09. Underlined and 
bold numbers denote statistical significance at the 5% and 1% levels, respectively. For further 
details, refer to section V of the paper. 
 



Panel A (25 Size/book-to-market portfolios) Panel B (Book-to-market quantiles)
Const. rCF

t+1 rCF
t+1DYt rh

t+1 Adj. R2 Const. rCF
t+1 rCF

t+1DYt rh
t+1

SBV11 0.000 1.931 -17.601 -1.406 0.572 BV1 0.003 1.588 -9.998 -1.281
0.193 6.124 -1.918 -21.177 BV2 0.005 1.044 -0.102 -1.101

SBV12 0.006 1.423 -9.367 -1.222 0.581 BV3 0.006 0.779 3.741 -0.991
2.828 4.903 -1.080 -22.408 BV4 0.007 0.632 6.047 -0.944

SBV13 0.007 0.911 -0.876 -1.089 0.596 BV5 0.008 0.606 9.360 -1.002
3.605 3.613 -0.111 -21.913

SBV14 0.009 0.760 2.218 -1.015 0.597 Panel C (Size quantiles)
5.395 3.012 0.300 -20.320 Const. rCF

t+1 rCF
t+1DYt rh

t+1
SBV15 0.010 0.691 4.736 -1.045 0.565 S1 0.006 1.143 -4.178 -1.156

5.004 2.860 0.652 -19.537 S2 0.006 0.989 1.337 -1.140
SBV21 0.002 1.721 -10.160 -1.404 0.704 S3 0.006 0.887 3.244 -1.078

0.830 8.116 -1.516 -28.515 S4 0.006 0.875 3.927 -1.048
SBV22 0.005 1.078 0.260 -1.167 0.703 S5 0.005 0.753 4.719 -0.897

3.333 4.728 0.038 -25.263
SBV23 0.007 0.769 4.442 -1.043 0.699

4.922 3.501 0.654 -23.666
SBV24 0.008 0.729 3.325 -1.000 0.675

5.249 2.912 0.461 -23.977
SBV25 0.009 0.647 8.816 -1.085 0.646

5.181 2.520 1.098 -20.815
SBV31 0.003 1.580 -8.238 -1.335 0.753

1.832 7.408 -1.389 -30.757
SBV32 0.006 1.048 -1.306 -1.100 0.771

4.189 5.260 -0.223 -29.685
SBV33 0.006 0.728 5.856 -0.986 0.741

4.594 2.983 0.824 -25.699
SBV34 0.008 0.609 6.481 -0.948 0.699

5.509 2.463 0.916 -24.219
SBV35 0.008 0.472 13.429 -1.022 0.659

5.026 1.906 1.786 -20.051
SBV41 0.004 1.653 -12.992 -1.231 0.835

3.217 9.876 -2.856 -35.329
SBV42 0.004 0.831 6.267 -1.065 0.825

3.638 3.803 1.054 -31.129
SBV43 0.007 0.767 4.921 -0.990 0.784

5.762 3.221 0.711 -29.502
SBV44 0.007 0.621 7.006 -0.942 0.741

5.900 3.189 1.248 -26.650
SBV45 0.007 0.500 14.430 -1.011 0.658

4.627 2.014 1.996 -20.702
SBV51 0.004 1.052 -0.998 -1.028 0.862

4.039 10.621 -0.308 -35.634
SBV52 0.004 0.839 3.636 -0.950 0.839

4.430 5.779 0.903 -37.895
SBV53 0.005 0.718 4.365 -0.848 0.752

5.087 4.009 0.897 -28.618
SBV54 0.005 0.439 11.203 -0.815 0.671

4.193 1.948 1.776 -23.933
SBV55 0.005 0.718 5.389 -0.845 0.579

3.534 2.194 0.576 -18.911  



Table XIV 
 
SBV25 factor loading estimates: ICAPM scaled by value spread 
This table reports in Panel A the factor loadings estimates associated with the VS ICAPM model, 
for the 25 size/book-to-market portfolios (SBV25). rCF and rh denote the cash-flow and discount-
rate news factors, respectively, whereas VSrCF represents the factor related with time-varying risk 
aversion. For each portfolio, the first row shows the estimated coefficients, and the second row 
presents the associated Newey-West t-statistics, calculated with 5 lags. SBVij denotes the 
portfolio with ith size and jth book-to-market quintiles. Average betas across the book-to-market 
and size quintiles are reported in Panels B and C, respectively. S1 and BV1 denote the lowest 
size and book-to-market quintiles, respectively. The sample is 1954:08-2003:09. Underlined and 
bold numbers denote statistical significance at the 5% and 1% levels, respectively. For further 
details, refer to section V of the paper. 
 



Panel A (25 Size/book-to-market portfolios) Panel B (Book-to-market quantiles)
Const. rCF

t+1 rCF
t+1VSt rh

t+1 Adj. R2 Const. rCF
t+1 rCF

t+1VSt rh
t+1

SBV11 0.000 0.657 0.459 -1.411 0.569 BV1 0.003 0.937 0.216 -1.283
0.176 0.560 0.625 -21.366 BV2 0.005 1.736 -0.431 -1.097

SBV12 0.006 1.431 -0.182 -1.222 0.580 BV3 0.006 1.931 -0.644 -0.986
2.723 1.429 -0.289 -23.059 BV4 0.007 1.955 -0.707 -0.938

SBV13 0.006 1.729 -0.523 -1.085 0.597 BV5 0.008 2.250 -0.844 -0.994
3.508 2.336 -1.153 -22.194

SBV14 0.009 2.056 -0.762 -1.009 0.601 Panel C (Size quantiles)
5.274 2.986 -1.776 -20.525 Const. rCF

t+1 rCF
t+1VSt rh

t+1
SBV15 0.009 2.138 -0.809 -1.039 0.568 S1 0.006 1.602 -0.363 -1.153

4.952 2.978 -1.807 -19.708 S2 0.006 2.099 -0.663 -1.134
SBV21 0.001 1.474 -0.038 -1.405 0.702 S3 0.006 2.203 -0.755 -1.072

0.773 1.821 -0.077 -29.285 S4 0.006 1.664 -0.416 -1.044
SBV22 0.005 1.958 -0.540 -1.163 0.705 S5 0.005 1.241 -0.214 -0.895

3.249 3.426 -1.556 -25.700
SBV23 0.007 2.312 -0.873 -1.035 0.704

4.831 4.329 -2.678 -23.981
SBV24 0.008 2.160 -0.825 -0.993 0.680

5.174 3.809 -2.292 -24.085
SBV25 0.009 2.590 -1.039 -1.076 0.650

5.144 3.961 -2.530 -21.042
SBV31 0.003 1.428 -0.061 -1.335 0.752

1.767 2.384 -0.162 -31.031
SBV32 0.006 1.932 -0.573 -1.096 0.774

4.079 4.614 -2.277 -30.232
SBV33 0.006 2.288 -0.858 -0.978 0.746

4.536 4.450 -2.610 -25.644
SBV34 0.008 2.286 -0.918 -0.940 0.705

5.448 4.622 -2.886 -24.024
SBV35 0.008 3.080 -1.365 -1.010 0.667

4.969 5.366 -3.775 -20.303
SBV41 0.004 0.326 0.579 -1.237 0.833

3.182 0.592 1.630 -35.640
SBV42 0.004 2.095 -0.666 -1.059 0.827

3.562 4.558 -2.293 -31.556
SBV43 0.007 2.037 -0.696 -0.984 0.787

5.696 4.296 -2.285 -29.240
SBV44 0.007 1.589 -0.469 -0.938 0.741

5.858 4.079 -1.851 -25.886
SBV45 0.007 2.274 -0.829 -1.003 0.657

4.611 3.307 -1.859 -19.973
SBV51 0.004 0.800 0.138 -1.030 0.863

4.051 2.807 0.782 -36.146
SBV52 0.004 1.263 -0.195 -0.948 0.839

4.375 2.726 -0.647 -38.027
SBV53 0.005 1.289 -0.272 -0.846 0.752

4.996 2.487 -0.812 -28.736
SBV54 0.005 1.682 -0.561 -0.809 0.669

4.115 2.456 -1.259 -23.338
SBV55 0.005 1.168 -0.178 -0.843 0.578

3.500 1.165 -0.271 -18.775  
 



  
 
Table XV 
 
Factor risk premia for book-to-market quintiles 
This table reports the risk premium (beta times risk price) for each factor, across the book-to-
market quintiles. The models are the BBGB (Panel A), dividend yield ICAPM (Panel B), and the 
ICAPM scaled by the value spread (Panel C). CAPM denotes the average pricing errors 
associated with the CAPM model, E(rm) denotes the average excess return for the book-to-
market quintiles, and α represents the average pricing models associated with the ICAPM model. 
λCF and λH denote the risk premium estimates for the cash-flow and discount-rate news factors, 
respectively, while λCFDY and λCFVS refer to the risk premium associated with the scaled factors. All 
the values are presented in percentage points. BV1 denote the lowest book-to-market quintile. 
The sample is 1954:08-2003:09. For further details, refer to section V of the paper. 
 
Panel A (BBGB)

CAPM E(rmt) λCF λH α
BV1 -0.414 0.453 0.713 0.175 -0.434
BV2 -0.075 0.663 0.578 0.150 -0.065
BV3 0.115 0.773 0.495 0.135 0.143
BV4 0.252 0.877 0.452 0.129 0.296
BV5 0.272 0.937 0.494 0.136 0.307

Panel B (Dividend yield)
CAPM E(rmt) λCF λCFDY λH α

BV1 -0.414 0.453 0.930 -0.458 0.119 -0.137
BV2 -0.075 0.663 0.612 -0.005 0.102 -0.046
BV3 0.115 0.773 0.456 0.172 0.092 0.053
BV4 0.252 0.877 0.370 0.277 0.088 0.142
BV5 0.272 0.937 0.355 0.429 0.093 0.060

Panel C (Value spread)
CAPM E(rmt) λCF λCFVS λH α

BV1 -0.414 0.453 0.058 -0.085 0.522 -0.042
BV2 -0.075 0.663 0.107 0.170 0.447 -0.061
BV3 0.115 0.773 0.120 0.254 0.401 -0.001
BV4 0.252 0.877 0.121 0.278 0.382 0.096
BV5 0.272 0.937 0.139 0.332 0.405 0.061  



 Table XVI 
 
Factor risk premia for book-to-market quintiles: Campbell and Vuolteenaho 
(2004) BBGB 
This table reports the average betas (Panel A) and risk premium (beta times risk price) for each 
factor, across the book-to-market quintiles, for the BBGB model from Campbell and Vuolteenaho 
(2004). rCF and rh denote the cash-flow and discount-rate news factors, respectively. CAPM 
denotes the average pricing errors associated with the CAPM model, E(rm) denotes the average 
excess return for the book-to-market quintiles, and α represents the average pricing models 
associated with the ICAPM model. λCF and λH denote the risk premium estimates for the cash-
flow and discount-rate news factors, respectively. All the values are presented in percentage 
points. BV1 denote the lowest book-to-market quintile. The sample is 1954:08-2003:09. For 
further details, refer to section V of the paper. 
 
Panel A (Average betas)

Const. rCF
t+1 rh

t+1
BV1 0.002 1.138 -1.340
BV2 0.005 1.022 -1.107
BV3 0.007 0.941 -0.969
BV4 0.008 0.918 -0.899
BV5 0.008 1.022 -0.944

Panel B (Average risk premium)
CAPM E(rmt) λCF λH α

BV1 -0.414 0.453 0.703 0.128 -0.377
BV2 -0.075 0.663 0.631 0.105 -0.074
BV3 0.115 0.773 0.581 0.092 0.099
BV4 0.252 0.877 0.567 0.086 0.224
BV5 0.272 0.937 0.631 0.090 0.216  
 
 
 



Table XVII 
 
ICAPM with cyclical risk-aversion: Incorporating the HML factor 
This table reports the estimated covariance and beta factor risk prices for the scaled ICAPM, 
augmented by the HML factor. The models are the ICAPM scaled by the dividend yield (Panel A) 
and the ICAPM scaled by the value spread (Panel B). For each model, there are 3 sets of test 
assets - the 25 size/book-to-market portfolios, 38 industry portfolios, and their combination. The 
estimates are obtained from first-stage GMM. λCF and λH denote the beta risk prices estimates for 
the cash-flow and discount-rate news factors, respectively, while λCFDY and λCFVS refer to the 
scaled factor related with time-varying risk aversion. γ0 and γ1 denote the estimates of the risk 
aversion coefficients. λHML and γHML represent the beta and covariance risk prices associated with 
the HML factor, respectively. For each model the estimated risk prices are reported in line 1, 
while in line 2 are reported the associated t-statistics. The sample is 1954:08-2003:09. Italic, 
underlined and bold numbers denote statistical significance at the 10%, 5% and 1% levels 
respectively. The beta risk prices (λ) are multiplied by 100. For further details, refer to section V of 
the paper.  
 
Panel A (Dividend yield)
 
Row λCF λCFDY λHML λH γ0 γ1 γHML

25 Size/book-to-market portfolios
1 0.588 0.045 0.236 -0.090 -95.015 3512.164 0.643

2.902 4.191 0.396 -2.199 -3.096 3.420 0.082

38 Industry portfolios
2 0.458 0.018 0.394 -0.103 -4.556 447.177 4.827

2.380 2.214 0.624 -2.236 -0.323 0.910 0.602

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.571 0.022 1.020 -0.057 -4.314 516.509 12.725

2.911 2.739 1.890 -1.452 -0.315 1.073 1.855

Panel B (Value Spread)
 
Row λCF λCFVS λHML λH γ0 γ1 γHML

25 Size/book-to-market portfolios
1 0.064 -0.385 0.331 -0.404 407.614 -252.100 -0.020

0.342 -1.081 0.381 -3.231 3.855 -3.799 -0.002

38 Industry portfolios
2 0.404 0.585 0.444 -0.138 56.769 -30.274 5.261

2.336 2.073 0.650 -1.975 0.982 -0.848 0.601

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.442 0.589 0.884 -0.136 99.137 -56.056 10.400

2.604 2.141 1.455 -1.969 1.653 -1.517 1.321  
 



Table XVIII 
 
ICAPM with cyclical risk-aversion: Incorporating the UMD factor 
This table reports the estimated covariance and beta factor risk prices for the scaled ICAPM, 
augmented by the UMD factor. The models are the ICAPM scaled by the dividend yield (Panel A) 
and the ICAPM scaled by the value spread (Panel B). For each model, there are 3 sets of test 
assets - the 25 size/book-to-market portfolios, 38 industry portfolios, and their combination. The 
estimates are obtained from first-stage GMM. λCF and λH denote the beta risk prices estimates for 
the cash-flow and discount-rate news factors, respectively, while λCFDY and λCFVS refer to the 
scaled factor related with time-varying risk aversion. γ0 and γ1 denote the estimates of the risk 
aversion coefficients. λUMD and γUMD represent the beta and covariance risk prices associated with 
the UMD factor, respectively. For each model the estimated risk prices are reported in line 1, 
while in line 2 are reported the associated t-statistics. The sample is 1954:08-2003:09. Italic, 
underlined and bold numbers denote statistical significance at the 10%, 5% and 1% levels 
respectively. The beta risk prices (λ) are multiplied by 100. For further details, refer to section V of 
the paper.  
 
Panel A (Dividend yield)
 
Row λCF λCFDY λUMD λH γ0 γ1 γUMD

25 Size/book-to-market portfolios
1 0.427 0.035 -3.420 -0.033 -77.562 2848.660 -23.122

2.215 3.821 -2.881 -1.431 -2.639 2.985 -2.859

38 Industry portfolios
2 0.410 0.015 -0.777 -0.117 0.198 260.823 -5.337

2.054 1.934 -1.141 -8.590 0.013 0.538 -1.151

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.432 0.017 -1.382 -0.102 -6.307 492.260 -9.436

2.152 2.365 -2.035 -7.343 -0.420 1.028 -2.040

Panel B (Value Spread)
 
Row λCF λCFVS λUMD λH γ0 γ1 γUMD

25 Size/book-to-market portfolios
1 0.066 -0.365 -0.494 -0.387 392.482 -242.657 -2.570

0.311 -0.921 -0.404 -4.920 4.180 -4.098 -0.305

38 Industry portfolios
2 0.389 0.598 -0.780 -0.134 28.612 -12.981 -5.330

2.091 1.966 -1.280 -2.945 0.479 -0.352 -1.275

25 Size/book-to-market portfolios + 38 Industry portfolios
3 0.351 0.466 -0.895 -0.171 87.006 -49.655 -5.984

1.797 1.439 -1.615 -4.077 1.525 -1.403 -1.576  
 



Figure 1 
 
Time variation in the relative risk aversion coefficient  
This figure plots estimates of the relative risk aversion coefficient (RRA) associated with the 
BBGB model, estimated for a 60-months rolling sample. The test assets are the 25 size/book-to-
market portfolios (SBV25) and the 38 industry portfolios (IND38). The estimates are obtained 
from first-stage GMM. The whole sample is 1959:07-2003:09. For further details, refer to section 
III of the paper.  
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Figure 2 
 
Average pricing errors: 25 size/book-to-market portfolios 
This figure presents the average pricing errors (stated in percentage points) across the book-to-
market quintiles associated with the 25 size/book-to-market portfolios. The models are the static 
ICAPM (BBGB), and the ICAPM scaled by the market dividend yield (DY), default spread (DEF), 
smoothed log earnings yield (EY*), cyclical industrial production growth (IPG), value spread (VS), 
and market return plus dividend yield (DY+RM). Panel C reports t-statistics for the individual 
pricing errors. ij denotes the portfolio with ith size and jth book-to-market quintiles. The sample is 
1954:08-2003:09. For further details, refer to section III of the paper. 
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Figure 3 
 
Estimating time-varying risk aversion 
This figure plots time-series of the risk-aversion estimates from the ICAPM with time varying risk 
aversion. The models are the ICAPM scaled by the market dividend yield (DY), smoothed log 
earnings yield (EY*), value spread (VS), and market return plus dividend yield (DY+RM). 
The test assets are the combination of the 25 size/book-to-market portfolios and the 38 industry 
portfolios. The estimates are obtained from first-stage GMM. The sample is 1954:08-2003:09. For 
further details, refer to section V of the paper. 
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Figure 4 
 
Average pricing errors: Comparison with alternative factor models 
This figure presents the average pricing errors (stated in percentage points) across the book-to-
market quintiles associated with the 25 size/book-to-market portfolios. The ICAPM models are the 
static ICAPM (BBGB), and the ICAPM scaled by the market dividend yield (DY), value spread 
(VS), and market return plus dividend yield (DY+RM). The alternative factor models are the 
CAPM, Fama-French 3 factor model (FF3) and Fama-French 4 factor model (FF4). The sample is 
1954:08-2003:09. For further details, refer to section V of the paper. 
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