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Abstract

This paper tries to assess the proximity of the macroeconomic outcomes
which could arise from a monetary policymaking process based upon either
a robust control or a Bayesian (à la Brainard) approach towards parameter
uncertainty. We use a small, structural, backward-looking, aggregate model
of the EMU economies as the basis for this empirical exercise. After deriving
the optimal feedback rules which correspond to the two approaches that we
consider in this study, we assess their relative performances with respect to
the behavior of the output gap and the in�ation rate volatilities and compare
with the no-uncertainty benchmark case. We are particularly interested in
the output-in�ation variability trade-o¤ which is usually associated with the
implementation of the optimal monetary policy rule in the literature and in
the distortions that the presence of parameter uncertainty and its taking into
account via the robust control approach or the Bayesian method may induce
to this trade-o¤.

The results show that the performances of the rules are not too divergent
but they appear to be highly contingent upon the preference parameters in the
model, ie the relative weight that the monetary authorities attach to output
variability (w.r.t. in�ation variability) in the loss function and the robustness
aversion of the policymaker which is associated to the robust control approach.
In particular, non-standard shapes of the output-in�ation variability trade-o¤
obtain in the robust control case what may be due to the way the misspeci-
�cations associated with the worst case scenario feedback into the structural
equations of the model. When the rules are considered within the nominal
model, the volatility outcomes appear to be closer to each other.
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1 Introduction

How shall policymakers account for the degree in uncertainty which surrounds
the practice of monetary policy? How does this behaviour a¤ect the stance
and the performances of the policy which is then implemented, c.p.? Since
one decade at least, a lot of monetary policy studies (either theoretically or
empirically oriented) have addressed those two issues. There is however no
consensus about the answer, what is in fact not surprising. Depending on the
features of the economy, depending on the kind of uncertainty they are faced
with, the monetary authorities may deliver quite di¤erent monetary policy
reactions which will in turn a¤ect the economy in diverse ways. It appears
then that the answer is both contingent upon the representation of the economy
the policymaker adopts and upon the way she chooses to model the degree of
uncertainty which can surround the latter.

Leaving aside the question of the model contingency (and beyond, the con-
tingency upon the monetary policy regime (in�ation targeting,...)), this paper
focuses on the approaches which may be retained in the monetary policymak-
ing process to account for uncertainty. Two strands of the literature have
emerged concerning this issue and may be set apart from each other according
to the statistical underpinnings they give to the uncertainty question.

The Bayesian approach tackles this problem by giving a probabilistic con-
tent to the magnitude of uncertainty. Following Brainard seminal article
(1967), this approach has been magni�ed in the treatment of parameter uncer-
tainty where the policymaker considers a prior (probability) distribution for
the parameters of the model she uses as a way to account for her imperfect
knowledge of the true representation of the economy functioning and designs
the monetary policy rule on the basis of this randomizing exercise1.

To the contrary, and as raised Marcellino and Salmon (2002), �robust de-
cision theory has recently emphasized a deterministic approach to modelling
the unstructured shocks hitting the decision problem of the policymaker�when
uncertainty prevails. (...) �The development of the H1 theory [has allowed
for formalizing] the lack of knowledge regarding the environment facing the
decision maker, enabling robust rules to be used in the face of norm-bounded
deviations from a nominal model�. Accordingly, as in the Bayesian approach,
the nominal model estimated by the policymaker is considered to be an approx-
imate representation to the true structure of the economy. However, the two
approaches di¤er in the way they proceed to account for the distance between
the true and the approximate model. Instead of capturing it in probabilistic
terms, the robust control approach refers to the uncertainty aversion of the
policymaker which delimits a given range for the misspeci�cations which can
be allowed. Given this range, it is assumed that the policymaker wants to act
optimally so as to minimise the loss undergone when the worst case in terms
of the structural parameter settings prevails. Thus, �rather than viewing the
set of possible mis-speci�cations as simply random, the policy maker assumes

1The distribution usually relies upon the statistical outcome of the estimation of the
model (i.e. the empirical variance-covariance matrix of the estimated parameters)
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�nature� is an evil agent who will choose the mis-speci�cation that makes the
policy maker look as bad as possible�(Walsh, 2001).

Given this rather drastic di¤erence in the approach towards uncertainty,
this paper tries to assess the proximity of the macroeconomic outcomes which
could arise from a monetary policymaking process based upon either a ro-
bust control or a Bayesian approach of parameter uncertainty. In particular,
we attempt to single out the factors which may explain the main di¤erences
observed in this respect. We use a small structural model of the Euroland
economy (at the start of EMU) as the basis for this empirical exercise.
This study may be related to di¤erent papers which have tried to bridge the

gaps between the two approaches such as, inter alii, those by Onatski (1999)
and Dupor and Liu (2004). The quest for shaping the comparison between the
robust control and the Bayesian approach within a single framework may be
argued upon two further reasons.
First, to some extent, model uncertainty to which the robust control ap-

proach is generally related, may encompass parameter uncertainty as the for-
mer concept usually includes broader forms of uncertainty than the latter.
However, parameter uncertainty is typically thought in multiplicative terms
while the robust control approach to model uncertainty brings about additive
disturbances. It has been shown however that both approaches may be ad-
dressed within a linear stochastic control framework (see Hansen and Sargent
(2001) or Kendrick (2002) for extensive illustrations). In this respect and as
we mentioned supra, it has to be noted that, while the recognition for para-
metric uncertainty rests upon one speci�c distribution for the parameters (and
thus a speci�c form of the variance-covariance matrix in the related stochastic
optimal control problem), there is no prior made about the distribution of the
(additive) error term when the robust control method is considered. There-
fore, each method implicitly entails a speci�c treatment of uncertainty by the
policymaker which may or may not interfere with her standard preferences
over traditional macroeconomic objectives. This is one element to take into
account when comparing the two approaches towards uncertainty.
Second, there is the di¤erence emphasized in the literature regarding the

stance of monetary policy related to the two aforementioned approaches. In
particular, several studies have assessed the link between multiplicative (para-
meter) uncertainty and the cautious nature of monetary policy actions (espe-
cially in a dynamic setting where we have to distinguish between the amplitude
of the response in itself (compared to the no-uncertainty case) and the pat-
tern of the responses over time which may be smoother than the benchmark
- no uncertainty - case). In the robust control literature, concern for model
uncertainty is imputed into the actual decision-making problem of the agents
by allowing additional cost that arises from making large mistakes due to the
uncertainty in the underlying model. Typically, such robust rules deliver more
aggressive policy responses. It would thus be interesting to confront these
opposite aspects of monetary policy stance.

While not directly addressing the former issues, the paper may allow for
an indirect insight on them when looking at the performances of the aforemen-
tioned rules in the di¤erent modelling frameworks we consider. To this aim,
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we proceed as follows

At the onset, the derivation of three monetary policy rules is contemplated.
We suppose that the rules are fully contingent upon the state variables (optimal
feedback rules) in the model: thus, we do not consider restricted (instrument)
rules like Taylor rules. We �rst derive the optimal (called benchmark) rule
which does not take uncertainty into account ; second, we derive the optimal
(called Brainard) rule which fully acknowledges the existence of parameter un-
certainty and, �nally, the robust rule which performs under the robust control
approach. The �rst two rules are optimal in the sense that they minimise
the expected value of the loss function of the policymaker given a particular
distribution of shocks and, in the case of parametric uncertainty, given a par-
ticular distribution for the (random) parameters. On the contrary, the robust
rule does not exploit the speci�c information regarding parameter�s estimated
variance-covariance matrix. Rather the robust rule is �optimised�with respect
to the worst-case model only, which arises naturally as a result of the solution
to the robust control problem. In this sense, the robust rule is designed with
the speci�c aim to deal with the occurrence of the worst setting of structural
parameters.

After the rules have been derived and compared in terms of their feedback
parameters, we compute the pairs of output gap and in�ation (unconditional)
variances which result from the implementation of the rules within the re-
lated models. We are particularly interested in the pattern of these volatilities
which usually obtains when the preferences of the monetary authorities (over
in�ation and output) vary, i.e. the well-known E¢ cient Policy Frontier (�rst
derived by Taylor in 1979). We try to assess how the trade-o¤which is usually
associated with the implementation of the optimal monetary policy rule in the
no-uncertainty environment may be distorted by the presence of uncertainty
and its taking into account through either the Bayesian or the robust control
approach.

Rest of the paper is organised as follows. We �rst present the model used
as the basis for our simulations (section 2). The way the three monetary policy
rules are derived from this modelling framework is then presented in section 3
while emphasizing how the approaches towards parameter uncertainty frame
this computation. Finally, we analyse in section 4 the pattern of the output
and in�ation unconditional variances which follow from the implementation of
the rules in a given model of the economy (nominal or worst case model).

2 The baseline model: a parsimonious view on �the
monetary transmission mechanism�at the start of
EMU

TO BE COMPLETED
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2.1 A backward-looking model for policy analysis

The design of monetary policy is usually presented as an optimisation prob-
lem solved upon the knowledge of the dynamics of the state variables (which
depend in a way or another on the policy control variable) and the stochas-
tic disturbance process driving the economy. A class of models, which are
widely used for the purpose of policy analysis, is based on a backward-looking
speci�cation of the economy. Often, in these types of models, the model spec-
i�cation is reduced to a dynamic aggregate supply equation, and an aggregate
demand equation as provided by Rudebusch and Svensson (1999). A generic
representation of the model consists of the two following equations:

yt = ay1 � yt�1 + a
y
2 � yt�2 + c

y
1 � [i� �]t�1 + "yt (2.1)

�t = a�1 � yt�1 + a�2 � yt�2 + b�1 � �t�1 + b�2 � �t�2 + "�t (2.2)

The model captures the main problems facing the policy-maker in practice.
Both output and in�ation are subject to unexpected shocks. Monetary policy
that is conducted by controlling the short-term nominal interest rate in�uences
the economy with lags. According to the previous formulation, it takes a period
for policy to a¤ect output, and a period for output to a¤ect in�ation, therefore
it takes for policy two periods to a¤ect in�ation. Thus this structure captures
the stylised fact that the monetary policy a¤ects output more quickly than it
a¤ects in�ation.

This representation departs from recent models including (forward look-
ing) expectations2. While this element could be considered as a drawback for
this study, it has to be noted that our main objective is to compare the two
di¤erent ways of treating uncertainty without intervening choice of expecta-
tions formation in the context of uncertainty3. We leave the assessment of
such concerns for future research and consider the study as a �rst step in this
respect. Considering the case for parameter uncertainty, we will also abstract
from learning and assume that the degree of uncertainty remains constant for
the forecastable future. This is an unrealistic assumption but once one allows
for a changing uncertainty regarding model parameters, one must take a stand
on exactly what information related to the model parameters that the poli-
cymaker does and does not possess, what proves to be a complex and very
diversi�ed task. We prefer in a �rst stage to adopt such a simplifying assump-
tion all the more as our objective is to compare two approaches for uncertainty
in terms of their

2See, for example, McCallum and Nelson (1999), and Rotemberg and Woodford (1999)
in a framework with forward-looking expectations. For an application of robust control
methods to model-uncertainty in this framework, see Leitemo and Söderstrom (2004). While
these models have strong theoretical foundations, they may fail to �t key facts like the inertia
of in�ation that appears in the data. For instance, Fuhrer (1997) found that the backward-
looking version reproduces much closer empirically observed in�ation (inertial) dynamics.
See Galí (2001) for a much quali�ed view

3Kilponen (2004) has studied the expectations formation in the context of forward looking
model and robust control.
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2.2 Union-wide perspective on EMU variables

Inasmuch as our modelling aims at describing (in a reasonable way) the func-
tioning of the EMU economy at its starting point, we opt for the approach
of building a Union-wide model by �rst aggregating the relevant macroeco-
nomic time series across the now EMU member economies, and then estimate
a model for the euro area as a whole. The main alternative would have been to
consider separate, country-speci�c models, and then linking them together in
a multi-country model in order to design common monetary policy rules. This
second approach would have amounted to enable the common central bank
to make an intensive use of the national data in order to achieve its di¤erent
targets while we adopt here a minimalist view on the information management
by the monetary authorities4.

Allowing for the presence of uncertainty in and about the union-wide model
may alleviate the drawbacks of this shortcut however, especially once we take
into account the break introduced by the switch to the monetary union. The
main weakness of both approaches relates indeed to the Lucas critique as it is
very di¢ cult to predict (on the basis of the pre-EMU economic relationships)
how the economies will work under the new EMU-regime. Not only is the mon-
etary regime changing but at the same time many other structural changes are
taking place, which are likely to impact the national transmission mechanisms
(as well as their linkages), and the structure of stochastic disturbances in the
euro area countries5.

As a consequence, and even if the results need to be treated very cautiously
in any case, we may expect that the Lucas critique could have been of more
damage if we have adopted a multi-country setting rather than one Union-
wide aggregate modelling all the more as in the latter case we allow for the
presence of model and/or parameter uncertainty. One possible interpretation
of the analysis we will perform in this respect would be to consider that it all
happens as if the central banker would be aware of potential misspeci�cation
errors in the model she uses, because of the switch to EMU, and tries to
tackle them by allowing for a speci�c treatment of the ensuing uncertainty
regarding either the parameters or the structural relationships of this model.
This is why we furthermore restrict the estimation sample prior to the actual
implementation of EMU.

2.3 Empirical evidence for the pre-Euroland economy

[TO BE COMPLETED]

Our empirical work is based on the quarterly data taken from the EU-

4It seens indeed plausible that the European System of Central Banks as a decentralised
structure makes use of various types of multi-country models in the decision process.

5Furthermore and even if we looked at euro-aggregates, the model postulates that the
aggregate demand relationship is a¤ected by the real interest rate de�ned as the di¤erence
between the short-term interest rate that will be common once the economies will be in
EMU and the average of country speci�c in�ation rates.

11



ROSTAT database. The estimations were performed on the period (1987.03-
1998.04).

After several representations have been estimated and compared, we retain
the following parsimonious, but obviously in many ways incomplete estimated
relationships regarding output and price dynamics for the Euroland economy
(standard errors are into brackets):

yt = 0:905
(0:075)

yt�1 � 0:125
(0:064)

[i� �]t�2 + b"t (2.3)

�t = 0:209
(0:088)

yt�1 � 0:116
(0:09)

yt�2 +0:820
(0:156)

�t�1 � 0:154
(0:152)

�t�2 + but (2.4)

In (2.3)-(2.4) yt represents the output gap variable; �t the quarterly year
to year in�ation rate (taken as a deviation from the trend) and [i� �]t the
(ex-post) real interest rate. b"t stands for the estimated (structural) demand
shock whereas but refers to the (estimated)
It is likely that the speci�c lag structure we obtain for the impact of the

monetary policy instrument on output and in�ation has to be related to the
way we choose to model the aggregate behavior of the euroland economy. It is
indeed widely acknowledged that the euro-aggregated equations will generally
di¤er in the polynomial order (possibly in�nite) from the national ones. In this
respect, if we have assumed that the relationships (2.1) and (2.2) were correctly
speci�ed for the national economies, imposing that the euro-wide aggregate
equations should have the same polynomial order as the national ones, or to
be �nite, would have generally resulted in an incorrect model speci�cation.

By the way, since we are estimating a system of two equations separately,
there might exist some cross-correlation between the error terms of the equa-
tions that can be exploited to obtain more e¢ cient estimators with a system
estimator such as seemingly unrelated regressions (SUR). To check whether
the separate estimation of each of the two equations is e¢ cient relative to sys-
tem estimation, we tested the contemporaneous correlation of the error terms
of the two-equation model. We were not able to reject the null hypothesis of
zero contemporaneous correlation at a 10 percent level

2.4 State-space form representation

For the purpose of further discussion, it is useful to represent the (small) struc-
tural model (2.3)-(2.4) in its reduced form, arising from the restrictions put on
the �rst two equations of a trivariate vector autoregression model containing
the output gap, the in�ation rate and the short-term interest rate as depen-
dent variables6. Let Yt denote the related vector, Yt �

�
yt �t it

�>
. Then

we can write that:
6We borrow the notations and approach from Söderström (1999).
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Yt =

24 Ay1 By1 Cy1
A�1 B�1 C�1
Ai1 Bi1 Ci1

35Yt�1 +
24 Ay2 By2 Cy2
A�2 B�2 C�2
Ai2 Bi2 Ci2

35Yt�2 +
24 "yt"�t
"it

35
The restrictions imposed to obtain the structural model (2.3) (2.4) can be

written as:

Byi = �Cyi for i = 1; 2

C�i = 0 for i = 1; 2

By1 = Cy1 = 0

Ay2 = 0

The �rst two restrictions refer to the way the interest rate enters into the
dynamics of the economy (the impact of the policy instrument on the output
equation goes only through the real interest rate while there is no feedback
from the interest rate to the in�ation rate). The last two restrictions refer to
the lag structure in the IS equation. It is assumed that the real interest rate
impacts on the output gap with a two-period delay while we do not retain
more than one autoregressive lag in the output gap equation.

Accordingly, we adopt the following state-space representation for the
structural model (2.3) (2.4):

Xt = A �Xt�1 +B � it�1 + "t (2.5)

where the state vector and the matrix of parameters are de�ned as follows:

Xt �

0BBBB@
yt
yt�1
�t
�t�1
it�1

1CCCCA A �

266664
Ay1 0 0 �By2 By2
1 0 0 0 0
A�1 A�2 B�1 B�2 0
0 0 1 0 0
0 0 0 0 0

377775. B �
0BBBB@
0
0
0
0
1

1CCCCA is the

column vector describing how the instrument (it) a¤ects the current level of

the state variable and �nally "t�

0BBBB@
"yt
0
"�t
0
0

1CCCCA is the vector of disturbances whose

unconditional variance-covariance matrix is denoted by �".
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3 Optimal monetary policy rules under di¤erent
approaches towards uncertainty

3.1 The standard approach: designing benchmark and
Brainard rules

Following Rudebusch and Svensson (1999), we next derive the optimal (lin-
ear) monetary policy rules on the basis of the previous modelling framework.
The exercise is however implemented in two di¤erent contexts, depending on
whether we assume that some uncertainty surrounds the parameters in (2.5)
or not7. In other terms, we model the design of the optimal rule in the fol-
lowing way: the policymaker is supposed to behave either as if she knew the
true values of the parameters in the model (the no-uncertainty case) or, alter-
natively, as if she could only rest upon the expectations of those true values
which are unknown to her (parameter uncertainty case). As an empirical coun-
terpart of this issue, we assume in the following that the estimated equations
(2.3) and (2.4) provide either the true values for the parameters in (2.5) in the
no-uncertainty case or, alternatively, the expected values of the latter when
parameter uncertainty prevails8.

To make this distinction operational, we assume that, in the no uncertainty
case, A and B contain non-random elements in the state-space representation.
In the parameter uncertainty case, the latter are random such that

eA = A+ �AeB = B + �B

and where �A (resp. �B) refers to a matrix (resp. vector) of disturbances
with speci�c variance-covariance matrices, 
A and 
B respectively9. The
variance-covariance matrices re�ect the degree of uncertainty surrounding the
estimated mean values of A and B for the policymaker. We further assume
that the random parameters are independent both of each other across the
matrices10 and of the economic disturbances contained in "t.

7We de�ne parameter uncertainty in a broad sense as it a priori concerns all the parame-
ters involved in the model (and not only those pertaining to the transmission of monetary
policy per se).

8This does not mean that the sole expected values of the parameters are required to
design the optimal rule in the context of parameter uncertainty. As it will become apparent
in what follows, the knowledge of the multivariate distribution of the parameters (at least
of the �rst two moments) is used to derive the rule.

9In the speci�c case in which we place ourselves, B is a non random vector. We use the
general formula however.
10If B was e¤ectively randon, this assumption would imply that we do not take some

parameters covariance terms (those between the aij and bi) into account when looking
for the optimal rule under parameter uncertainty. This could be restrictive as Brainard
originally demonstrates that covariance between parameters may reverse the cautious nature
of monetary policy responses under parameter uncertainty (see Mercado and Kendrick (1999)
for an extension). In an empirical study devoted to the euro area, Sahuc (2004) �nds however
that the �caution argument� remains valid for the optimal monetary policy rule even if
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Accordingly, we refer to the representation which is used by the policymaker
under the certainty case, as �(A; B) - this corresponds to equation (2.5)

- whereas, under parameter uncertainty, we denote it by �
�eA; eB� : This

corresponds to equation (2.5) in which where eA and eB replace A and B:
Under both cases, the policymaker de�nes its strategy according to the

(scaled) intertemporal loss function de�ned as:

� = (1� �)Et

"
+1X
�=0

��Lt+�

#

and where the period-by-period loss function of the policymaker may be
written as:

Lt � X>
t :Q (�) :Xt (3.1)

with diagonal weighting matrix Q (�) � diag([� 0 (1� �) 0 0]):
� represents the relative weight put by the authorities towards output gap

variability (with respect to in�ation volatility11). Following Rudebusch and
Svensson (1999) we place ourselves in the limiting case where the discount
factor (�) is equal to one. Under this assumption, it can be proved that the
loss function � corresponds, at the limit, to the unconditional mean of the
period-by-period loss function (denoted as E [Lt]), which, in turn, equals the
weighted sum of the unconditional variances of the goal variables (yt and �t).
We may thus write:

E [Lt] = � � var [yt] + (1� �) � var [�t] (3.2)

where E [:] and var [:] design unconditional expectation and variance.

Under both contexts, the problem is written in a form convenient to apply
the standard stochastic linear regulator method (see Rudebusch and Svensson
[1999]). Considering the class of linear feedback rules and minimizing (3.2),

subject to �(A; B) or �
�eA; eB� and the current state of the economy Xt

results in the optimal rule for the instrument, it: Let f (resp. fu) denote the
(1� 5) vector of optimal parameters for the full-contingent rule under certainty
(resp. under uncertainty)12. As each of the two vectors is derived for a given
(�), we make explicit reference of this contingency

covariance between parameters is acknowledged.
Moreover, it must be noted that other factors than those pertaining to the interdependence

between the parameters may play against the cautious nature of monetary policy rules under
uncertainty, in particular the features of the dynamic setting in which monetary policy
impinges on the economy (see, on this speci�c issue, Craine (1979), Mercado and Kendrick
(2000) and Söderström (1999).
11We also assume that the targeted rate of in�ation is zero and that the objective in terms

of output consists in stabilising the output gap around 0.
12See Söderström (1999) for an excellent presentation of the dynamic optimal control

problems associated to the certainty and the parameter uncertainty case.

15



We then have two di¤erent expressions of the optimal linear feedback rule
depending on whether we consider that the latter accounts for parameter un-
certainty or not:

it = f (�) �Xt (3.3)

it = fu (�) �Xt (3.4)

The benchmark rule corresponds to the certainty case where the f vector
ful�lls:

f = �
�
B> �V �B

��1 � �B> �V �A� (3.5)

and where V is determined by the Ricatti equation:

V = Q (�) + (A+B � f)> �V � (A+B � f) (3.6)

The Brainardian rule corresponds to the parameter uncertainty case
where the vector of policy responses fu ful�lls:

fu = �
�
B> �

�
Vu +V

>
u

�
�B + 2�11u � �11B + 2�55u � �55B

��1
�
h
B> �

�
Vu +V

T
u

�
�B + 2�11u �

�
�11B
�T
+ 2�55u � �55B

i
and where Vu satis�es the following equation:

Vu = Q (�) + (A+B � fu)> �Vu � (A+B � fu)
+�55u �

�
�55A + f

>
u �
�
�55B
�> � fu�

+�11u �
�
�11A + 2 � �11AB � fu + f>u �

�
�11B
�> � fu�

�iju is the (i; j)th element of Vu, �
ij
AB is the covariance matrix of the ith row of

A with the jth row of B, �ijA is the covariance matrix of the ith row of A with
the jth row of A and �nally �ij

B the covariance term between the elements
located on the ith and jth rows of B.

3.2 Robust control approach

3.2.1 The robust rule

The rapidly developing literature on robust policy rules considers decision
problems in circumstances where the true model is not exactly known, but
where the applied decisions rules should perform reasonably well even under
the worst-case. In this robustness literature, concern for model uncertainty is
imputed into the actual decision-making problem of the agents, in the sense
that model uncertainty directly distorts the decision maker´s preferences to a
particular direction. This distortion in preferences is e¤ectively achieved by
combining the minimisation problem with the maximisation problem and by
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introducing a Lagrange multilier of the relevant constraint directly into the
loss function of the decision maker.
It is typically assumed that the policymakers have a reference model or

the nominal model that re�ects their best knowledge of the believed laws of
motion of the economy, yet they acknowledge that their information about
the complete dynamics of the economy is limited. The agents hedge against
the uncertainty by making mental constructs of the model sets. In order
to construct a robust decision rules, the decision-maker computes a Markov
Perfect Equilibrium of a particular zero-sum game, where each player chooses
sequentially and/or simultaneously in each period, taking the other player�s
decision rule as given (see Hansen and Sargent 2004).

In our backward looking case, the policymaker attempts to minimise his
distorted loss function, while the nature, the second player, chooses the dis-
tortions to the nominal model�s dynamics. The policymaker thus achieves
robustness with the help of evil nature�s distorted laws of motion.

Following the standard setup in the robust control literature, we assume
that the policymaker considers the model uncertain in the sense that there is
an additive (vector) term w

Xt = A �Xt�1 +B � it�1 + "t + wt (3.7)

which is allowed to feedback in a general but restrained way on the state
variables of the structural representation of the economy. In other words, we
let

wt = gt(Xt�1) (3.8)

The constraint arises from the fact that wt is assumed to be a vector process,
where the size of the model approximation errors is constrained such that

E0

1X
t=0

�t:w>t+1:wt+1 � �0 (3.9)

and where E0 denotes a mathematical expectation conditioned on the initial
values of system variables and where � is the respective discount factor. �0
de�nes a set of models and provides, in a backward looking setting, a constraint
under which the maximising agent can distort the model�s dynamics. The set of
models, that are �possible�around the approximating (or nominal) model are
therefore constraint by �0. Given that the uncertainty surrounding the model
is presented here in an unstructured way, it can be thought of as capturing a
wide range of misspeci�ed dynamics (associated with di¤erent combinations
of the model parameters). As will be seen in due course, wt appears as a
feedback control sequence which maximises the assigned loss function of the
policy maker.

On the basis of this representation (we design (3.7) as �(A; B; w)), the
robust control exercise is implemented as a min max strategy which is de�ned
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as:

min
fitg+10

max
fwtg+11

E0

"
+1X
t=0

�t
�
X>
t :Q (�) :Xt

�#
(3.10)

s:t:
�(A; B; w)

E0
P1

t=0 �
t:w>t+1:w

0
t+1 � �0

Introducing the bound constraint prevailing upon the range of the misspec-
i�cations which are allowed for by the policymaker into the objective function,
the problem may be re-written now as follows:

min
fitg+10

max
fwtg+11

E

"
+1X
t=0

�t
�
X>
t :Q (�) :Xt � �:w>t+1:w0t+1

�#
s:t: �(A; B; w)

� (the Lagrangian multiplier) may be interpreted as the parameter which re-

�ects the robustness (or uncertainty) aversion of the policymaker. The higher
its value, the lesser the policymakers allows for taking uncertainty into ac-
count. The latter bounds the range in the misspeci�cations which are allowed
by the monetary authorities13.

The solution to the problem can be expressed as a joint product of two
rules: the �rst corresponds to the monetary policy rule implemented by the
policymaker for a given set of preferences (�; �) and a given path of Xt. This
rule is optimal with respect to the worst case model. The other rule pertains
to the evolution of the disturbance term re�ecting the misspeci�cations which
are allowed for by the policymaker. As a consequence let fr denote the (5� 1)
vector of optimal parameters for the full-contingent rule performed under the
robust control approach. As this vector is derived for a given pair of preferences
(�; �), we make explicit reference of this contingency. We also consider fw
the vector of the optimal parameters governing the law of motion of w at
equilibrium. We thus have that:

it = fr (�; �) �Xt (3.11)

wt = fw (�; �) �Xt (3.12)

We refer to (3.11) as the robust rule and to (3.12) as the associated model
(worst case) disturbance14.

13It may be shown that when �0 = 0; � goes to in�nity: we are back to the benchmark
(no-uncertainty) case. However, for the min-max problem to have a well-behaved solution,
the robustness aversion parameter has to lie above a speci�ed lower bound which depends,
among other things, on � (see supra). For an assessment of the impact of the changes in �
on the features of the robust rule, see Gonzalez and Rodriguez (2005).
14Regarding the simulations, we use and adapt GAUSS code programs which have been

kindly provided to us by Ulf Söderström for the benchmark and Brainard cases. The GAUSS
codes provided by Söderlind were used to compute the robust rule and implement the detec-
tion probability method. A parallel checking was implemented using procedures in MAT-
LAB.
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3.2.2 Choice of �

� appears to be the free parameter in the robust control approach. Two caveats
have to be noted in considering this parameter.

First, the choice for the range for � cannot be determined in a fully inde-
pendent way from the preferences of the policymaker in terms of output and
in�ation variability (i.e. �). There is a threshold value for � over which, the
maximizing part of the program is known to be well behaved (the threshold
value depends on �).

Second, within the allowed range, it remains to be seen how the value
may be chosen in order to perform the simulations. A �rst solution would be
to posit a su¢ ciently high arbitrary value for this parameter. On the other
hand, empirically relevant values for � may be found through the detection
probability method (DEP in what follows) (see Hansen and Sargent, 2003).
The idea behind this process is the following: the models in the set allowed for
by the policymaker should not be easy to distinguish with the available data.
We may choose the value of � so that the probability to make the wrong choice
with respect to the true generating process of the data should not be high.
In this process, the choice of � still depends on � as this parameter enters

into the determination of the set of models which would be considered as a
worst case for the policymaker (the worst case being evaluated through the loss
function). As a result, we implement the error detection probability method
in a consistent way with respect to the threshold values for the robustness
aversion parameter. For each �, then, we choose to select a range of values for
� which provide an error detection probability between 10% and 20%. Results
are shown on �gure 1.
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3.3 Uncertainty and monetary policy reactions

[TO BE COMPLETED]

The coe¢ cients in the policy rule vector allow to quantify the extent to
which monetary policy reacts to the macroeconomic environment (which is
captured by the state vector). How the presence of uncertainty may impinge
on this feedback can be identi�ed throughout the comparison between the
optimal rule coe¢ cients across the di¤erent settings we have considered (no
uncertainty, Bayesian. Three values of � are considered (0; 0:5; 1) while,
regarding the robust rule, the value of � has been chosen as the mean value for
the interval associated with DEP method (for a given �). Figures are in the
Appendix

We observe that the coe¢ cient values are close to each other across the
kinds of rules considered and whatever the value of �. Very big values are
observed however what could be partly due to the fact that we look at fully
contingent and not restricted rules. Shifts logically occur when the preference
parameter varies from 0 (no concern for in�ation variability in the loss function)
to 1 (in�ation nutter). The Brainard case seems to be consistently associated
with a dampening in the monetary policy reaction compared to the two other
strategies, suggesting an moderate attenuation e¤ect.

4 In�ation-output variability trade-o¤s and the
approach towards uncertainty

Given the dynamic setting usually held in the analysis of monetary policy
actions, and in order to assess the relative performances of di¤erent types of
optimal rules on the economy, it has been usual to look at the long-run behavior
of the volatility in in�ation and output, a so-called �second-order Phillips
curve�as Taylor (1979, p. 1280) de�ned it. It is generally found that a trade-
o¤ between those volatilities prevails when the optimal rule is adopted by the
monetary authorities. When the policymaker�s relative preferences parameter
varies, �a minimum variability e¢ ciency locus between output and in�ation
[appears]. This e¢ ciency locus is the trade-o¤ curve� (1979, p. 1280). We
refer to this concept as the e¢ cient policy frontier (EPF in the following)15.
With respect to Taylor�s original presentation of the latter concept, several
points are worth being emphasized:

� The E¢ cient Policy Frontier is only relevant for optimal rules. In other
terms, for each class of rules there will be only one EPF. In the following
we only look at fully state-contingent rules class

15Another one is generally used in the litterature on the monetary policy performances
accross industrialised countries, namely the sacri�ce ratio (see Mankiw (1994) and Fuhrer
(1994)).
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� The EPF locus and its shape in the output/in�ation variances mapping
are contingent upon the structural parameters of the model (see Fuhrer
and Moore (1994) for a thorough analysis of this point) and on the spec-
i�cation of the rule.

It ensues that the EPF shape and location both depend, among others, on
the degree of uncertainty when the latter is to be taken into account in the
design of the rule (in the case of the robust rule, the degree of uncertainty may
be tackled by �). This explains why this analytical tool can be used both to
rank di¤erent optimal rules in a no uncertainty framework but also to assess
how the recognition of uncertainty may a¤ect the performances of a given class
of rules.

4.1 Computing the in�ation output variability frontiers

To plot the EPF loci, we have to compute the unconditional variance-
covariance matrix of the state vector obtained when the monetary authori-
ties implement the optimal rule while using the speci�c representation of the
economy which this rule refers to.

4.1.1 E¢ cient policy frontiers in the "standard" case

Let us start from the case where uncertainty regarding the model�s parameters
has not been taken into account.
Substituting equation (3.3) into (2.5), we may obtain closed-loop represen-

tation of the economy, now re-written as:

Xt = G �Xt�1 + " (4.1)

and whereG � A+B �f . The unconditional variance-covariance matrix of the
state vector can be directly obtained from (4.1) by applying the unconditional
expectation operator. By denoting �X this matrix, we then �nd that:

�X = G ��X �G> +�" (4.2)

Using the vec operator the last expression may be rewritten as:

vec (�X) = [I�G
G]�1 vec (�") (4.3)

where I an identity matrix of size appropriate dimensions (25� 25).
When the uncertainty is explicitly taken into account, we can apply the

same procedure, but realizing the matrices are now random. Thus, we start
writing the closed loop representation of the economy as

Xt = eG �Xt�1 + " (4.4)

with eG � eA+ eB�fu. The computation of the unconditional variance-covariance
matrix of the state vector (denoted as �u

X) is tedious as now eG is random.
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Assuming that " and � (the matrix of disturbances pertaining to eG) are uncor-
related, we obtain the unconditional expectation on the basis of (4.4), leading
to:

E
�
XtX

>
t

�
= E

h eG �Xt�1X
>
t�1 � eG>

i
+�" (4.5)

Using the vec operator, we then �nd that

vec (�u
X) =

n
I� E

h eG
 eGio�1 vec (�") (4.6)

In order to highlight an obvious di¤erence to the certainty case, let us recall
that we may write eG = G + � where � � B � (fu � f) + �B � fu + �A. Then
equation (4.5) may be written as:

�uX = G ��u
X �G> +�" + E

�
� �Xt�1X

>
t�1 � �>

�
(4.7)

The former has common features with (4.2) except for the last term which
re�ects the random nature of the monetary transmission parameters. The main
di¤erence between the uncertainty case and no-uncertainty cases regarding the
e¢ ciency frontier is re�ected by the matrix � in (4.7).

First, and for a given rule, we have to consider that, in the uncertainty case,
the variance of the relevant state variables depend not only on the variance of
the disturbances but also on the variance of the parameters (this is captured
by the (�B � fu + �A) element in the expression of �). The latter element is
obviously absent in the certainty case.
Second, the variances of the state variables depends, in both contexts, on

the features of the rule and thus on the extent to which the latter takes the
presence of parameter uncertainty into account (the (B � (fu � f)) element in
the de�nition of �).

The EPF can be obtained by making the policymaker�s preference pa-
rameter � vary from 0 to 1 and computing the pairs (�11X (�); �

33
X (�)) and

(�u 11X (�); �u 33X (�)), �ijX (�)
�
resp. �u ijX (�)

�
denoting the element of �X

(resp �uX) on the ith row and jth column. �X (resp. �u
X) depends on �

through f (resp. fu).
We plot the two frontiers we obtain on �gure 2. We observe that the

recognition of uncertainty leads both to a shift in the frontier and to a reduction
in the volatility range for the output gap.
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Efficient Policy Frontiers in the benchmark and Brainardian cases
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[TO BE COMPLETED]

4.1.2 The robust case

In the robust control approach, the relevant representation to consider to plot
the EPF is the worst case model as the policymaker tries to solve for the rule
which minimises the loss function in such a context. By substituting equations

(3.11) and (3.12) into (3.7), the dynamics of the state vector in the worst case
model is given by

Xt = Gr �Xt�1 + " (4.8)

and whereGr � A+B �fr+fv. The unconditional variance-covariance matrix
of the state vector is directly obtained from (4.8) by applying the unconditional
expectation operator. By denoting this matrix with �rX , we then �nd, using
again the vec operator that

vec (�r
X) = [I�Gr 
Gr]

�1 vec (�") (4.9)

with I an identity matrix of appropriate dimension (25� 25).
Additional complication of calculating the EPF in the robust control con-

text is that there is an additional parameter � which, not only distorts the pol-
icymakers preferences to a particular direction but also de�nes the worst-case
model against which the EPF is to be evaluated. Given that this parameter
captures the extent to which the policymaker feels his model is uncertain, the
choice of � becomes of crucial importance.

Accordingly we obtain a particular EPF for any given � (� = �0) by
making � vary from 0 to 1 and, for each value of the latter parameter, by
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computing the pairs (�r 11X (�; �0); �
r 33
X (�; �0))

16.
We plot di¤erent frontiers corresponding to di¤erent values of the robust-

ness aversion coe¢ cient (including those arising from the DEP method). As
we observe, those frontiers appear to deliver non-convexities. We also note
that the higher the value of �; the closer we are to the frontier related to
the no-uncertainty case. Non-convexities thus seem to be associated with the
magnitude in the misspeci�cations which are allowed for by the policymaker.

Inflation ­ output variability trade­offs ­ worst case model:
robust rule with different robustness aversion coefficients
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[TO BE COMPLETED]

4.1.3 Simple Policy frontiers

We may also consider some policy frontiers arising from the combination of a
given monetary policy rule and a given representation with respect to which
this rule is not necessarily optimal. (those frontiers are thus not e¢ cient).

For example, plotting the frontiers with respect to the nominal model for
di¤erent kinds of rulesand allows to assess how the use of a suboptimal policy
rule (as the Brainard and robust rules are with respect to this model) may
bring about excessive variability when the policymaker accounts in the latter
rule for what it perceives as uncertainty. The way this perceived uncertainty
may a¤ect economic variability (through the monetary policy reaction) can
also be measured through the distance between the e¢ cient policy frontier
(which hinges on the combination of the optimal rule and the related model)
and the policy frontier which is computed with respect to the benchmark
representation (nominal model).

16�r ijX (�; �0) denotes the element of �rX (�; �0) on the ith row and jth column. Notice
that �uX depends on � through fr for a given �.
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Inflation ­ output variability frontiers with different robust rules (nominal model)
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5 Conclusion

[TO BE COMPLETED]

6 References
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7 Appendix

optimal rule parameters (lambda =0)

­5

0

5

10

15

20

F_y F_y(­1) F_pi F_pi(­1) F_i(­1)

Benchmark rule
Brainardian rule
Robust rule (DEP method)

27



optimal rule parameters (lambda =0.5)
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