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    Abstract 

 
The focus of this paper is on the leading indicator properties of high-yield corporate 
spreads regarding the level of real economic activity. This is motivated by the 
financial accelerator mechanism underlying business cycle fluctuations as suggested 
by Bernanke and Gertler (1989). We examine the out-of-sample forecast performance 
of high-yield spreads regarding employment and industrial production in the US, 
using both a point forecast and a probability forecast exercise. Our main findings 
suggest the use of few factors obtained by pooling information from a number of 
sector-specific high-yield credit spreads. This can be justified by observing that there 
is a substantial gain from using a Dynamic Factor model fitted to credit spreads 
compared to the prediction produced by benchmarks, such as an AR, and ARDL 
models that use either the term spread or the aggregate high-yield spread as 
exogenous regressor.  
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1. Introduction 

Previous literature that relates predictions of proxies for real economic activity to 

financial variables has focused mainly on the information from the government debt 

market, the corporate debt market and the stock market1. The prominent financial 

leading indicators for policy makers are the inverse of the slope of the nominal yield 

curve (e.g., term spread, defined as the difference between the 10-year Treasury bill 

rate and the 3-month Treasury bill rate), the paper-bill spread (defined as the 

difference between yields on the commercial paper and the Treasury bill) and the 

return on stock market indices.  

It has been documented that these financial indicators have lost considerable 

forecasting power in recent years. More specifically, a worsening in the term spread 

predictive content regarding the US recession in the early 1990s has been documented 

by Haubrich and Dombrosky (1996) and Dotsey (1998). More recently, Stock and 

Watson (2003b) find that although the term spread did turn negative in advance of the 

2001 recession, this inversion, however, was small by historical standards. 

Furthermore, the study of Friedman and Kuttner (1998) shows a poor forecasting 

performance of the paper-bill spread. Finally, Fama (1981) and Harvey (1989) show 

that the linkage between stock market indicators and output growth is unclear, while 

Stock and Watson (1989, 1999) and Estrella and Mishkin (1998) find evidence of 

little marginal forecasting content in stock prices. 

In this paper, in line with Gertler and Lown (1999), Mody and Taylor (2003, 

2004) and Stock and Watson (2003b), we explore the leading indicator properties of 

high-yield corporate bond spreads regarding US employment and industrial 

production growth. This is motivated by the financial accelerator model developed by 

Bernanke and Gertler (1989). Gertler and Lown (1999), and Mody and Taylor (2004) 

present evidence of strong in-sample predictive power of the aggregate high-yield 

credit spread. Mody and Taylor (2003), and Stock and Watson (2003b) find good out-

of-sample forecasting performance of the aggregate high-yield corporate spread 

relative to the term spread and to an AR, respectively.  

This paper contributes to the small but fast growing literature on the leading 

indicator properties of credit spreads in the following two ways. First, we are 

                                                 
1 See Stock and Watson, 2003a, for a comprehensive survey of the literature. 
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interested in assessing whether it is better to forecast economic activity using the 

aggregate high-yield spread (as previously done in this literature) or there is 

forecasting gain from pooling the information in a number of sector-specific high-

yield spreads. For this purpose, we use the approximate Dynamic Factor (DF) method 

developed by Stock and Watson (1998, 2002) to model the dynamics of various high-

yield credit spreads through a relatively small set of common factors. These factors 

are then used to produce point forecasts for the US real economic activity by using the 

h-step-ahead projection method. Other related applications of h-step-ahead forecast 

using the DF model include those by Stock and Watson (2002) and by Forni, Hallin, 

Lippi and Reichlin (2003), among others. In particular, Stock and Watson (2002) use 

a large dataset of real and financial variables to forecast economic activity in the US, 

while Forni, Hallin, Lippi and Reichlin (2003) concentrate only on a dataset of 

monetary and financial variables to forecast economic activity and inflation in 

Europe. However, neither of these studies includes high-yield credit spread data in its 

information set. On the other hand, in this paper, given that our main motivation is to 

test the financial accelerator mechanism, our information set is focused more on 

financial variables and in particular on US corporate bonds rather than on a whole set 

of economic variables. 

 

Secondly, we are not only interested in point forecast accuracy (as the existing 

literature has done), but we also focus on forecast accuracy regarding a contraction in 

the US economy. For this purpose, we use Monte Carlo simulation to produce 

probability forecasts of a contraction and we evaluate their accuracy. This probability 

forecast exercise is closely related to the work by Anderson and Vahid (2001), Garratt 

et al. (2003) and Galvão (2006). In these studies, the probability forecasts are obtained 

from a dynamic forecasting exercise. Our study makes a contribution to the above 

literature by being the first to produce probability forecasts using the h-step-ahead 

projection method. 

The outline of the paper is as follows. In Section 2, we describe the dynamic 

factor method and the point forecast exercise. Section 3 shows how to obtain 

probability forecasts by stochastic simulation and how to evaluate their accuracy. 

Section 4 presents the empirical analysis. Finally, Section 5 summarises the main 

findings of this paper and concludes them.  
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2. Empirical Methodology 

For the purpose of forecasting, we use the h-step-ahead projection based upon the 

following autoregressive distributed lag (ARDL) model2: 

 

htththhht yLxLy ++ +++= εγβα )()(     (1) 

 

where 1200 [ln( ) ln( )]t h t h ty y y
h+ +≡ −  is an h-step ahead (scalar) variable to be 

forecasted. The latter can be either the employment or the industrial production series 

(in logs). Therefore, the l.h.s of equation (1) measures annualised growth rates. The 

r.h.s. variables in (1) are current and past values of the dependent variable as well as 

the predictor variable, tx . Moreover, )...()( ,1,0,
p

phhhh LLL ββββ +++=  and 

)...()( ,1,0,
s

shhhh LLL γγγγ +++=  are lag polynomials for the predictor variable and for 

the dependent variable, respectively. The subscript h denotes the dependence of the 

projection on the forecast horizon. As Stock and Watson (2003a) point out the 

inclusion of ty  with its past values is motivated by questioning whether tx  has 

predictive content for hty +  above and beyond that contained in ty  (and its past values) 

since ty  is expected to be serial correlated. 

As for the predictor variable tx  we choose to work on either the term spread or on 

a single credit spread, or on r common factors to credit spreads. The latter are 

obtained by estimating the following factor model fitted to the standardised N 

dimensional vector xt of credit spreads: 

 

t t tx F e= Λ +        (2) 

 

where Λ is an N r×  matrix of factor loadings and Ft describes the r dimensional 

vector of static factors. The factors estimates are obtained by principal component 

                                                 
2 Notice that the h-step-ahead projection approach contrasts with the iterated approach of estimating a 
one-step ahead model, then iterating that model forward to obtain h-step ahead predictions. There are 
two main advantages of the h-step-ahead projection approach. First, it eliminates the need for 
estimating additional equations for simultaneously forecasting tx , e.g. by a VAR. Second, it can 
reduce the potential impact of specification error in the iterated model (including the equation of tx ) 
by using the same horizon for estimation as for forecasting.       
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analysis (see Stock and Watson, 1998, 2002).3 More specifically, the r principal 

components *
tF  are given by T1/2W, where the matrix W is T r×  and it has, on the 

columns, the eigenvectors corresponding to the r largest eigenvalues of the sample 

covariance matrix. The latter, given the T N×  (standardised) panel X of credit 

spreads, is measured by 'XX . Principal component analysis gives a consistent 

estimation (for large N and T) of the space spanned by the static factors Ft. The model 

specification in (2) is the static representation of the Dynamic Factor model (see 

Stock and Watson, 1998, 2002), where the ith series entering in the vector xt given in 

equation (2) is described as follows: 

 

( )it i t tx L f eλ= +                  (3) 

 

for Ni ,...,1= . In Eq. (3), the lag polynomials )(Liλ  are modelled as having finite 

orders of at most q, so jq

j iji LL ∑ =
=

0
)( λλ  and the vector of common dynamic factor 

tf  is modelled as having dimension 
_
r . The relationship between the static and 

dynamic factors is given by ),...,( ′′′= −qttt ffF , and the dimension of the space spanned 

by the static factor is 
_

)1( rqr +≤ .  

To produce h-step-ahead forecasts through the DF model we follow Stock and 

Watson and we split the analysis in two stages. In the first stage, we retrieve the 

principal components *
tF . In the second stage, we run an OLS regression of hty +  on a 

constant, on the principal components *
tF  and on ty  (and its lags). The resulting 

coefficient estimates are then able to produce the forecast of hty +  as 

ththh yLF )(
^

*
0,

^^

γβα ++ . The out-of-sample forecasts are obtained using recursive OLS. 

We run the regressions for t = 1993:m8,…,2000:m2-h, then the values of the 

regressors at t = 2000:m2 are used to forecast hmy +2:2000 . All parameters, factors, and 

so forth are then re-estimated, information criteria are re-computed, and models were 

                                                 
3 It is important to point out that there are also alternative methods to the estimation of the static factors 
proposed by Forni et al. (2000) and by Kapetanios and Marcellino (2003). The former base its analysis 
on the frequency domain, whereas the latter is based upon a state space model. 
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selected using data from 1993:m8 through 2000:m3, and forecasts from these models 

are then computed for hmy +3:2000 .The final out-of-sample forecast is made in 2005:m4-

h for 4:2005 my . The dimension of the static factor space, r, and the order of the lag 

polynomial, )(Lhγ , are selected using the recursive BIC criterion as in Stock and 

Watson (2002). The maximum order for r and for the lag polynomial )(Lhγ  is set to 6 

and 12, respectively.  

To produce h-step-ahead forecasts through an ARDL model with either the term 

spread or individual credit spreads as predictors tx , we use the estimated regression, 

ththh yLxL )()(
^^^

γβα ++ . The lag orders p and s for the polynomials in (1) are selected 

using the recursive BIC criterion assuming 12== sp  as the maximum lag length. 

 

Point Forecast Evaluation Criteria  

In this section we describe how to evaluate the accuracy of point forecasts. First, we 

consider the Mean Square Forecast Error (MSFE), given by:   

 

∑
−

=
++ −

+−−
=

hT

Tt
hhtht yy

hTT
MSFE

2

1

2
|

^

12

)(
1

1                                        (4) 

 

where 1T  and hT −2  are respectively the first and last dates over which the out-of-

sample forecast is computed (so that forecasts are made for dates 21 ,...,ThTt += . If the 

MSFE of the ARDL model computed relative to the MSFE of the benchmark is less 

than 1, then the former performs better than the latter. In order to determine whether 

this difference is statistically significant, we report the Diebold and Mariano (1995) 

(DM) test.  

Second, we consider an encompassing test based upon the following regression: 

 

ht

b

ht

a

htht uyyy
++++

++−+= ββα )1(      (5) 

 
where a

hty +  is the candidate h-step-ahead forecast and b
hty + is the benchmark h-step-

ahead autoregressive forecast. Given Eq. (5) we test two null hypotheses. Specifically, 
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if 0=β , then the candidate model forecast encompasses the benchmark; if 1=β , 

then the benchmark forecast encompasses the candidate. The two tests are 

implemented by checking the statistical significance of the slope coefficient in the 

following two regressions4: 

 

ht
a

ht
b

ht
a

htht uyyyy +++++ +−+=− )()( βα  (5a) 

ht
b

ht
a

ht
b

htht uyyyy +++++ +−+=− )()( βα  (5b) 

 

Note that we include the intercept α  to account for a forecast bias. 

Finally, we compare the sign of the forecasts with that of the actual realizations. 

We report the Success Ratio, which is the fraction of times the sign of the actual 

values is correctly predicted. Also, we calculate the Pesaran and Timmermann (1992) 

nonparametric test (PT) of directional change. 

 

 

3. Probability Forecasts 

The point forecast exercise described in the previous section is useful for model 

selection, but it does not address directly the interests of forecast users. Policy makers 

are typically more interested in forecasts of future turning points or prediction of 

events such as recessions. In this section, we compare models according to their 

ability to out-of-sample forecast bad outcomes related to contractionary periods in the 

real economic activity. Contractionary periods in real activity can be identified by 

using rules based on those employed in the algorithms to identify turning points of 

classical business cycles. Previous related work includes that by Fair (1993), 

Anderson and Vahid (2001) and Galvão (2006). 

In particular, we focus on scenarios described as at least two consecutive negative 

quarterly growth rates in employment (or industrial production) over the next five 

quarters. For this purpose we use probability forecasts obtained by Monte Carlo 

simulation. In subsection 4.1 we explain the artificial generation of scenarios through 

stochastic simulation using the Dynamic Factor, ARDL and AR models. Then, in 

                                                 
4 The t-ratios are computed by using a heteroscedastic autocorrelation robust (HAC) robust covariance 
estimator (see Newey-West, 1987). 
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subsection 4.2 we describe the indicators used to assess the accuracy of probability 

forecasts. 

 

3.1 Stochastic Simulation of Models 

Before describing the simulation experiment associated with the Dynamic Factor 

model, we explain how to account for the impact of the dynamic factors ft on the h-

step ahead projections. This is done following the suggestion by Forni, Lippi, 

Reichlin (2003) who use an eigenvalue-eigenvector decomposition ofΣ . The latter is 

the covariance matrix of the r reduced form residuals ν obtained by fitting a VAR(1) 

on the r principal components. The eigenvalue-eigenvector decomposition is a 

factorisation of Σ  that gives an r×q matrix R. The latter allows to measure the impact 

of the q dynamic factors (common shocks) on the r principal components. Any choice 

of q would imply a different coefficient matrix R such that the reduced form 

disturbances ν are unchanged. Therefore, given that the focus of this paper is on 

forecasting, what matters is the r (e.g., the dimension of the static factor space). Given 

r (obtained through recursive BIC), we fix q, the number of dynamic factors (common 

shocks) describing a specific scenario, to 1. This will allow us to keep the 

computational intensity of the Monte Carlo experiment limited to 10000 replications. 

We now describe the artificial generation of scenarios using the Dynamic Factor 

model. After estimating the principal components and after fitting the VAR(1) on the 

principal components, we use the point estimates for the coefficients  αh, βh, γh and the 

impact multiplier matrix R to produce the out-of-sample forecasts under a large 

number of scenarios. For this purpose, we use the following specification: 

 
*( ) ( )t h h h t t h h t t hy F Rf L yα β γ ε+ + += + + + +               (6) 

 

Equation (6) describes the h-step ahead forecast conditional on the information set at 

time t, associated with a specific scenario. The specific scenario is described by the 

joint realisations of the dynamic factor (common shock) ft+h and of the idiosyncratic 

shock εt+h. Both shocks are assumed to be orthogonal to each other and they are 

obtained using random draws from an iid standardised Gaussian distribution. In 

particular, the number of replications (draws) is 10000 which gives 10000 forecasts 

corresponding to each scenario. 
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The artificial generation of scenarios using the ARDL with either the term spread 

or the individual credit spreads, and the AR models are similar. More specifically, 

after estimating recursively the coefficients of the models used to produce the point 

forecast conditional on the information set at time t, a scenario is artificially generated 

by the ARDL model is given by: 

 

( ) ( )t h h h t h t t hy L x L yα β γ ε+ += + + +       

 

whereas the stochastic simulation of the AR model is obtained from:  

 

( )t h h h t t hy L yα γ ε+ += + +                               

 

Therefore, the only shock producing the various scenarios is the idiosyncratic 

innovation εt+h . 

Given monthly observations, the actual realisations for a contraction in 

employment (or industrial production) are identified by at least two consecutive 

periods of negative quarterly growth rates in employment (or industrial production) 

over the next five quarters, and this is the case when5:  

 

a) the 3-month differences yt+3-yt and yt+6-yt+3 are both negative, or if: 

b) the 3-month differences yt+6-yt+3 and yt+9-yt+6 are both negative, or if: 

c) the 3-month differences yt+9-yt+6 and yt+12-yt+9 are both negative, or if:  

d) the 3-month differences yt+12-yt+9 and yt+15-yt+12 are both negative 

 

To our knowledge, probability forecasts so far have been obtained from a dynamic 

forecasting exercise (see, for instance, Anderson and Vahid, 2001, Garratt et al., 2003 

and Galvão, 2006). In this respect, we contribute to the above studies by being the 

first to attempt to produce probability forecasts using the h-step-ahead projection 

method. 

In order to compute the probability forecast of a contraction in employment (or 

industrial production) over the next five quarters conditioning on the information set 

                                                 
5 This definition of a contraction in employment (or industrial production) can be seen as the classical 
definition of the business cycle.     
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dated 2000:m2, we first produce the following five forecasts under a specific scenario 

u: 

 

2000: 2 2000: 2 2000: 2( ) ( )
m h

u
h h m t h h m t hy F Rf L yα β γ ε

+ + += + + + + , for h = 3, 6, 9, 12 and 15  

 

The superscript u picks the specific scenario involved in the stochastic simulation 

experiment.  Given the point forecast for the long differences 
2000: 2 3m

uy
+

, 
2000: 2 6m

uy
+

, 

2000: 2 9m

uy
+

, 
2000: 2 12m

uy
+

, 
2000: 2 15m

uy
+

, it is possible to retrieve the conditional predictions for the 

quarterly growth rates in the next five quarters. In particular, a scenario u would 

identify a contraction if:  

 

e) the forecasted quarterly growth rates  
2000: 2 3m

uy
+

 and 
2000: 2 6 2000: 2 3m m

u uy y
+ +
−  are both 

negative, or if: 

f) the forecasted quarterly growth rates 
2000: 2 6 2000: 2 3m m

u uy y
+ +
−  and 

2000: 2 9 2000: 2 6m m

u uy y
+ +
−  are both 

negative, or if: 

g) the forecasted quarterly growth rates 
2000: 2 9 2000: 2 6m m

u uy y
+ +
−  and 

2000: 2 12 2000: 2 9m m

u uy y
+ +
−  are both 

negative, or if: 

h) the forecasted quarterly growth rates 
2000: 2 12 2000: 2 9m m

u uy y
+ +
−  and 

2000: 2 15 2000: 2 12m m

u uy y
+ +
−  are 

both negative. 

 

We assign score one to a prediction of contraction in scenario u and zero otherwise. 

We repeat the exercise for each of the 10000 draws, and finally, we divide the sum of 

the scored ones by the total number of scenarios. This number gives the probability 

forecast regarding a contraction in employment (or industrial production) over the 

next five quarters, conditioning on the information set at 2000:m2. Then, we add one 

observation and repeat the same exercise to obtain the probability forecast regarding a 

contraction in employment over the next five quarters, conditioning on the 

information set at 2000:m3. We carry on until we reach the information set dated 

2004:m1. This exercise will give 45 probability forecasts. This is due to the 60 

observations describing the evaluation period for the point forecast (running from 
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2000:m5–2005:m4). Therefore, the information set common to the different forecast 

horizons consists of 45 observations, running 2000:m2–2004:m1.  

 

3.2 Assessing Accuracy of Probability Forecasts 

To evaluate these probabilities, we employ the quadratic probability score (QPS), and 

the log probability score (LPS), as suggested by Diebold and Rudebusch (1989). Let 

Pt be the probability forecast for the “contraction in employment (or industrial 

production)” by the model for the next five quarters conditional on the information set 

at time t. The variable Rt is binary and it takes value 1 if the contraction occurs in the 

actual data within the five quarters ahead period of time t, and it is equal to 0 

otherwise. Then the QPS and LPS are written as 

 

2

1

1 2( )
T

t t
t

QPS P R
T =

= −∑  

∑
=

+−−−=
T

t
tttt PRPR

T
LPS

1

)]ln()1ln()1[(1
 

 

The QPS score ranges from 0 to 2, with 0 being perfect accuracy. The second one 

ranges from 0 to ∞. LPS and QPS imply different loss functions with large mistakes 

more heavily penalized under LPS. 

 

 

4. Empirical Analysis  

The analysis was carried out using monthly data for the period 1993:m8-2005:m4. All 

the series including data on the term spread, the US non-farm payroll employment and 

industrial production were obtained from Datastream. 

The point forecast results for the employment growth are reported in detail in 

Tables 1a-1d and those for the industrial production growth are in Tables 2a-2d. In 

these tables we report the 3-, 6-, 9-, and 12-month-ahead forecasts for the period 

2000:m5-2005:m4. A careful inspection suggests the following results.  

First, the Dynamic Factor model for credit spreads improves substantially upon 

the AR. In particular, as for the employment growth, the 3-, 6-, 9-, and 12-month-

ahead MSFE values indicate a 32%, 48%, 61% and 66% improvement, respectively.  

For industrial production growth, the corresponding figures are 28%, 48%, 62% and 
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64%, respectively. Also, the Diebold-Mariano test suggests that, for employment, the 

forecast improvements are significant at 1% level for the 3- and 6-month horizons, 

and at 10% level for the 9-month horizon. As for the industrial production, the 

improvements are more modest (at 10% level for the 3-, 6- and 9-month horizons). 

Furthermore, the Dynamic Factor forecast encompasses the AR whereas the latter 

does not forecast encompass the former (the only exception is the 9-month horizon for 

employment growth). As for the Success Ratio, the results show that the Dynamic 

Factor model provides more accurate predictions than those corresponding to the AR. 

Second, a number of sector-specific high-yield spreads (such as automotive, 

consumer cyclical, capital goods, finance, insurance, packaging, supermarkets, 

conglomerates) very often improve upon the AR and upon the term spread. However, 

the forecast performance of the individual spreads is not superior to the one associated 

with the Dynamic Factor. In particular, at 9- and 12-month horizons the Dynamic 

Factor model considerably improves upon the individual spreads in terms of the 

relative MSFEs and the Success Ratio. 

Third, the aggregate high-yield corporate spread shows good leading indicator 

properties relative to the AR and to the term spread. This result is in line with Stock 

and Watson (2003b) and Mody and Taylor (2003, 2004). Interestingly, the Dynamic 

Factor model still has the best forecasting performance. For instance, it delivers 

substantially lower relative MSFEs than those corresponding to the aggregate high-

yield spread at all horizons. 

Fourth, the forecasting performance of the term spread is of particular interest, 

given its prominence in the literature. It is possible to observe that the term spread 

forecasts (at the different horizons) are particularly poor relative to those of the 

Dynamic Factor in terms of all criteria and for both industrial production and 

employment growth. Also, even though the MSFEs produced by the term spread are 

lower than those associated with AR, the Diebold-Mariano test suggests that this 

improvement is not significant. Moreover, according to the Success Ratio, only the 3-

month-ahead forecast of employment, and the 3-, 9-, and 12-month-ahead forecasts of 

industrial production are more accurate than those of the AR. According to the 

encompassing test, the term spread outperforms clearly the AR in five cases, except 

for 3- and 6- month-ahead forecasts of employment and for 12-month-ahead forecasts 

of industrial production. This is consistent with the recent empirical studies reviewed 
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in the introduction, which found a deterioration of the forecasting performance of the 

term spread as a predictor of output growth in the US since 1985. 

Notice that the Diebold-Mariano and the forecast encompassing tests can be used 

use to compare non-nested models. However, in our work the evidence is mixed since 

the recursive BIC criterion used for model selection suggests the choice of a 

benchmark AR, which in some periods is nested but in other periods is not nested in 

the various ARDL candidate models6. We argue that, even though, we should 

interpret with caution the Diebold-Mariano and encompassing tests results, the 

relative MSFEs and the directional changes support some candidate ARDL, 

particularly, the Dynamic Factor model.  

We now turn our focus on the accuracy of probability forecasts. Tables 3a-3b 

report the QPS and LPS scores to evaluate the accuracy of the probability forecasts 

regarding a contraction in employment and industrial production over the next five 

quarters. Overall, the results are consistent with the point forecast findings. More 

specifically, there are substantial gains when using an ARDL model with Dynamic 

Factors. For instance, for a contraction in employment the probability forecasts 

obtained from the Dynamic Factor model are 21% and 24% (in terms of QPS and 

LPS, respectively) more accurate than those of the AR; while for a contraction in 

industrial production there is a 20% and 46% improvement relative to the AR.  

Also, there are gains when the Dynamic Factor model is compared to the term 

spread. For example, for employment, the scores obtained from Dynamic Factor are 

22% and 10% lower than those from the term spread; while, for industrial production, 

there is 13% and 40% improvement upon the AR. 

Furthermore, the Dynamic Factor for credit spreads is more accurate than the 

aggregate high-yield credit spread in predicting contraction events. In particular, for 

employment the accuracy gains are of 22% and 21%, while for industrial production 

the there are of 32% and 46%. In this light, it is believed that the present work 

contributes to the literature by suggesting that to test the financial accelerator 

mechanism it is better to build forecasting models for economic activity based on a 

small number of factors that effectively summarise large amount of information about 

the high-yield corporate bond market.  

                                                 
6 See also Stock and Watson (2003b) for a similar argument. 
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Finally, even though some sector-specific high-yield spreads forecasts are more 

accurate than those corresponding to the AR and the term spread, overall the Dynamic 

Factor model is the best in predicting contraction events in employment and industrial 

production. 

 

  

5. Conclusions 

The focus of this paper is on testing the financial accelerator mechanism (see 

Bernanke and Gertler, 1989) by investigating (out-of-sample) the leading indicator 

properties of high-yield corporate spreads regarding the level of real economic 

activity. Our empirical analysis leads to the following conclusions. In line with 

Gertler and Lown (1999) and Mody and Taylor (2003, 2004) we find strong evidence 

of the financial accelerator mechanism (see Bernanke and Gertler, 1989). Our work, 

however, goes one step further and suggests that rather using the aggregate high-yield 

spread (as in the previous studies aforementioned), it is better to use few factors 

extracted from a number of disaggregated high-yield credit spreads. As shown, there 

is a substantial improvement in the forecasting performance of the Dynamic Factor 

compared to the one corresponding to AR models or to ARDL models where the 

exogenous regressor is either the term spread or the individual credit spread. Also, we 

focus on the prediction of average, using a point forecast analysis, but also of 

“adverse” scenarios, computing probability forecasts regarding a contraction in the 

real economic activity. To our knowledge, the present study is the first attempt in the 

literature to produce probability forecasts using the h-step-ahead projection method. 

Finally, the superior forecasting performance of the Dynamic Factor model can be 

explained by recognizing that the factor extraction is obtained by averaging out noisy 

information contaminating the empirical observed sector-specific credit spreads.  
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      Table 1a. Out-of-sample forecasting results: Employment, 3-step-ahead horizon 

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT           DM 

 
    Encompassing  

Benchmark models    
AR      1.000 0.767  4.081              
Term spread        1.027 0.783  4.288         0.581          0.572 [0.932] 
     
HY Corporate spread models     
HY (Dynamic factor)      0.679 0.867  5.613         0.010       -0.838 [6.544] 
HY (Aggregate)       0.865 0.850          5.348         0.151        -0.559 [3.421] 
HY (Aerospace)       0.992 0.850  5.346         0.458        0.090 [1.149] 
HY (Automotive)       0.770 0.817  4.817         0.085       -0.193 [7.070] 
HY (Building materials)       0.965 0.800  4.532         0.398        0.280 [1.974] 
HY (Banking)       0.995 0.800  4.553         0.486        0.861 [1.376] 
HY (Consumer cyclical)       0.904 0.817  4.802         0.234          -0.461 [3.089] 
HY (Capital goods)       0.848 0.834  5.081         0.171          -0.460 [4.691] 
HY (Chemicals)       0.871 0.834  5.074         0.160       -0.627 [3.704] 
HY (Construction machinery)       0.926 0.834  5.074         0.219       -0.715 [2.595] 
HY (Consumer products)       0.894 0.767  4.021         0.073       -2.064 [4.856] 
HY (Electric)       0.962 0.817  4.847         0.328           0.315 [1.274] 
HY (Energy)       1.045 0.850   5.346         0.709        0.986 [0.010] 
HY (Entertainment)       0.899 0.817  4.817         0.149       -0.739 [3.055] 
HY (Finance)       0.912 0.817  4.813         0.188           0.109 [2.605] 
HY (Insurance)       0.928 0.817         4.847         0.263           1.525 [3.385] 
HY (Media-cable)       0.912 0.900  6.248         0.239           0.351 [2.258] 
HY (Metals)       0.884 0.800  4.531         0.235       -0.620 [3.888] 
HY (Media-noncable)       0.908 0.833  5.081         0.275           0.177 [2.652] 
HY (Natural gas)       1.005 0.833        5.081         0.520        0.333 [1.467] 
HY (Oil field services)       1.017 0.833      5.135         0.583           0.726 [0.582] 
HY (Paper)       0.943 0.883  5.883         0.239       -1.409 [3.430] 
HY (Packaging)       0.684 0.833  5.184         0.021       -1.084 [7.384] 
HY (Pharmaceuticals)       0.976 0.867  5.624         0.367            0.222 [1.562] 
HY (Railroads)       0.955 0.833  5.093         0.166           -0.428 [2.770] 
HY (Retailers)       0.925 0.783            4.288         0.289           -0.228 [2.780] 
HY (Services)       0.936 0.850  5.346         0.289           -0.578 [2.653] 
HY (Supermarkets)       0.837 0.850  5.348         0.127           -0.582 [3.470] 
HY (Technology)       0.879 0.900  6.188         0.116           -0.334 [3.302] 
HY (Telecommunications)       0.887 0.833  5.074         0.141            0.394 [3.224] 
HY (Transportation)       0.964 0.850            5.348         0.322            0.925 [1.946] 
HY (Textile)       0.893 0.850 5.348         0.121            0.504 [3.770] 
HY (Utility)       1.034 0.850            5.375         0.649            0.898 [0.217] 
HY (Airlines)       1.045 0.833  5.074         0.718           1.246 [-0.048] 
HY (Conglomerates)       0.701 0.767  4.021         0.047            1.085 [7.261] 
HY (Consumer noncyclical)       0.948 0.817  4.817         0.275           -0.957 [3.581] 
HY (Environmental)       1.077 0.850  5.346         0.767           1.324 [-0.175] 
HY (Independent energy)       1.045 0.833  5.081         0.705            0.943 [0.043] 
HY (Finance composite)       0.965 0.800  4.561         0.339            0.292 [1.455] 
HY (Gaming)       1.005 0.783  4.259         0.524           -0.063 [1.506] 
HY (Health care)       0.972 0.867  5.613         0.361        -0.518 [2.443] 
HY (Home construction)       0.940 0.817  4.847         0.232        -0.233 [2.658] 
HY (Industrial)       0.852 0.867  5.613         0.123         -1.071 [4.250] 
HY (Lodging)       1.022 0.850  5.346         0.587          0.565 [0.878] 
HY (Natural gas distribution)       1.005 0.817  4.817         0.525         -0.008 [1.424] 
HY (Natural gas pipeline)       0.992 0.833  5.081         0.463          0.165 [2.375] 
HY (Refining)       1.033 0.817  4.803         0.697          0.963 [0.135] 
              

Notes: MSFE is the mean square forecast error relative to the MSFE for the univariate autoregression; the Success 
Ratio gives the number of correct forecasts over the total number of observations; the PT presents values of the 
statistic of Pesaran and Timmermann (1992) test; the null hypothesis is that each set of forecasts and the actual 
values are independently distributed; this statistic is asymptotically normal; Encompassing tests the null 
hypothesis that the credit spread model forecast encompasses the benchmark AR (first t-ratio of slope coefficient 
in regression 4a) and the benchmark AR forecast encompasses the credit spread model (second t-ratio (in brackets) 
of slope coefficient in regression 4b).  

 
 
 
 
 
 



 19

Table 1b: Out-of-sample forecasting results: Employment, 6-step-ahead horizon 

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT          DM 

 
    Encompassing  

Benchmark models     
AR      1.000 0.750  3.870              
Term spread        0.997 0.717  3.414         0.490        -0.193 [1.183] 
     
HY Corporate spread models     
HY (Dynamic factor)      0.517 0.833  5.424         0.008       - 1.314 [10.80] 
HY (Aggregate)       0.798 0.817  4.935         0.001        -1.297 [4.312] 
HY (Aerospace)       0.979 0.817  4.902         0.342        -0.311 [1.593] 
HY (Automotive)       0.661 0.817  4.935         0.045        -0.911 [7.797] 
HY (Building materials)       0.927 0.750  3.908         0.192        -1.033 [2.749] 
HY (Banking)       0.894 0.733  3.662         0.205        -0.965 [4.536] 
HY (Consumer cyclical)       0.802 0.750  3.908         0.013        -2.090 [6.361] 
HY (Capital goods)       0.787 0.800  4.651         0.003        -2.156 [7.137] 
HY (Chemicals)       0.807 0.767  4.122         0.017        -2.258 [5.997] 
HY (Construction machinery)       0.850 0.750  3.870         0.016        -1.549 [3.529] 
HY (Consumer products)       0.763 0.717  3.414         0.020        -3.776 [6.726] 
HY (Electric)       0.941 0.817  4.892         0.241            0.497 [1.874] 
HY (Energy)       1.012 0.783  4.402         0.582         0.439 [0.346] 
HY (Entertainment)       0.774 0.700  3.164         0.072        -1.453 [5.621] 
HY (Finance)       0.832 0.800  4.636         0.143         0.559 [4.145] 
HY (Insurance)       0.790 0.867  5.678         0.086         0.587 [3.643] 
HY (Media-cable)       0.881 0.883  5.941         0.234        -0.010 [3.029] 
HY (Metals)       0.790 0.750  3.870         0.032        -1.853 [5.767] 
HY (Media-noncable)       0.888 0.850  5.427         0.013        -0.499 [3.266] 
HY (Natural gas)       0.964 0.750  3.908         0.308        -1.163 [5.645] 
HY (Oil field services)       1.008 0.800  4.633         0.583         0.851 [0.301] 
HY (Paper)       0.914  0.817  4.935         0.055           -2.318 [4.198] 
HY (Packaging)       0.668 0.783  4.527         0.030        -0.598 [5.892] 
HY (Pharmaceuticals)       0.967 0.817  4.902         0.185        -0.379 [2.526] 
HY (Railroads)       0.889 0.817  4.892         0.081        -2.727 [4.922] 
HY (Retailers)       0.854 0.667  2.654         0.176        -0.957 [4.750] 
HY (Services)       0.885 0.767  4.155         0.023        -1.397 [3.653] 
HY (Supermarkets)       0.684 0.783  4.402         0.044        -0.976 [8.885] 
HY (Technology)       0.771 0.900  6.193         0.011        -0.839 [3.803] 
HY (Telecommunications)       0.886 0.900  6.236         0.234         0.559 [3.127] 
HY (Transportation)       0.934 0.783  4.376         0.243         0.200 [1.865] 
HY (Textile)       0.768 0.817  4.892         0.063        -1.653 [5.264] 
HY (Utility)       1.012 0.817  4.902         0.571          0.761 [0.374] 
HY (Airlines)         1.013 0.783  4.402         0.611          0.980 [0.157] 
HY (Conglomerates)       0.590 0.767  4.571         0.054          0.308 [7.814] 
HY (Consumer noncyclical)       0.840 0.683  2.911         0.112         -2.127 [5.509] 
HY (Environmental)       1.029 0.750  3.908         0.656         0.888 [-0.089] 
HY (Independent energy)       1.015 0.750  3.908         0.602          0.504 [0.251] 
HY (Finance composite)       0.835 0.800  4.660         0.140         -0.080 [3.818] 
HY (Gaming)       0.959 0.733  3.662         0.216         -1.442 [3.101] 
HY (Health care)       0.905 0.716  3.414         0.157         -1.965 [3.981] 
HY (Home construction)       0.863 0.767  4.122         0.008         -1.520 [4.459] 
HY (Industrial)       0.763 0.833  5.179         0.001         -2.147 [5.671] 
HY (Lodging)       0.992 0.783  4.402         0.447          -0.072 [1.395] 
HY (Natural gas distribution)       0.945 0.733  3.662         0.196         -3.671 [5.446] 
HY (Natural gas pipeline)       0.924 0.750   3.908         0.119         -1.459 [3.688] 
HY (Refining)       0.950 0.750  3.908         0.259         -0.267 [3.262] 
              

Notes: See the notes to Table 1a. 
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Table 1c: Out-of-sample forecasting results: Employment, 9-step-ahead horizon  

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT          DM 

 
    Encompassing  

Benchmark models     
AR      1.000 0.750  3.951              
Term spread        0.980 0.650  2.494         0.404       -0.824 [2.195] 
     
HY Corporate spread models     
HY (Dynamic factor)      0.387 0.900  6.318         0.066       -2.099 [16.21] 
HY (Aggregate)       0.753 0.800  4.675         0.038       -1.092 [3.722] 
HY (Aerospace)       0.990 0.767  4.151         0.431        0.191 [0.891] 
HY (Automotive)       0.679 0.800  4.795         0.129       -0.390 [6.595] 
HY (Building materials)       0.909 0.683  2.924             -       -1.640 [3.830] 
HY (Banking)       0.863 0.617  1.909         0.098       -1.260 [5.489] 
HY (Consumer cyclical)       0.728 0.783  4.432         0.026       -2.074 [6.006] 
HY (Capital goods)       0.732 0.800  4.796         0.017       -2.410 [7.159] 
HY (Chemicals)       0.753 0.767  4.191         0.076       -2.898 [7.603] 
HY (Construction machinery)       0.831 0.733  3.659         0.115       -1.356 [3.437] 
HY (Consumer products)       0.737 0.683  2.924         0.066       -5.343 [8.883] 
HY (Electric)       0.866 0.783  4.399         0.209        0.055 [2.694] 
HY (Energy)       1.038 0.733  3.659         0.710       1.613 [-0.800] 
HY (Entertainment)       0.698 0.717  3.473         0.128       -1.548 [6.445] 
HY (Finance)       0.773 0.817  4.911         0.213        0.410 [4.237] 
HY (Insurance)       0.740 0.883  5.945         0.168        0.679 [3.678] 
HY (Media-cable)       0.916 0.850  5.428         0.380        0.846 [2.288] 
HY (Metals)       0.737 0.767  4.254         0.073       -1.940 [6.475] 
HY (Media-noncable)       0.897 0.767  4.191         0.000       -0.145 [2.669] 
HY (Natural gas)       0.978 0.733  3.659         0.355       -1.426 [4.632] 
HY (Oil field services)       1.035 0.767  4.151         0.846       2.269 [-0.808] 
HY (Paper)       0.902 0.783  4.488         0.064       -2.381 [4.347] 
HY (Packaging)                                                0.653 0.800  5.038         0.104        0.087 [6.630] 
HY (Pharmaceuticals)       0.984 0.767  4.151         0.277        0.626 [2.110] 
HY (Railroads)       0.904 0.733  3.626         0.131       -1.824 [3.709] 
HY (Retailers)       0.729 0.683  3.198         0.012       -1.646 [6.479] 
HY (Services)       0.882 0.700  3.170            -        -1.369 [3.632] 
HY (Supermarkets)       0.630 0.717  3.415         0.111       -0.546 [8.875] 
HY (Technology)       0.795 0.817  4.921         0.064       -0.145 [3.263] 
HY (Telecommunications)       0.890 0.900  6.248         0.307        0.620 [2.605] 
HY (Transportation)       0.924 0.750  3.904         0.320        0.378 [1.809] 
HY (Textile)       0.777 0.750  3.877         0.222       -1.069 [3.711] 
HY (Utility)       1.026 0.767  4.151         0.681       1.587 [-0.168]  
HY (Airlines)         1.039 0.767  4.151         0.777       2.024 [-0.914] 
HY (Conglomerates)       0.617 0.750  4.420         0.120        0.690 [5.637] 
HY (Consumer noncyclical)       0.787 0.667  2.676         0.074       -2.188 [5.929] 
HY (Environmental)       1.046 0.700  3.170         0.745       1.771 [-0.989] 
HY (Independent energy)       1.042 0.700  3.170         0.729       1.729 [-1.022] 
HY (Finance composite)       0.785 0.783  4.421         0.247        0.042 [3.940] 
HY (Gaming)       0.991 0.700  3.232         0.420          -0.249 [1.768]   
HY (Health care)       0.887 0.683  2.924         0.031       -1.723 [3.899] 
HY (Home construction)       0.863 0.700  3.170         0.040       -2.016 [5.240] 
HY (Industrial)       0.722 0.817  4.960         0.018        -1.911 [5.350] 
HY (Lodging)       1.015 0.700  3.170         0.602        0.835 [0.212] 
HY (Natural gas distribution)       0.946 0.683  2.989         0.075       -2.964 [4.405] 
HY (Natural gas pipeline)       0.921 0.717  3.415         0.048       -1.693 [3.209] 
HY (Refining)       0.927 0.717  3.415         0.165       -0.535 [4.114] 
              

Notes: (-) denotes the test cannot be calculated; See the notes to Table 1a. 
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     Table 1d: Out-of-sample forecasting results: Employment, 12-step-ahead horizon 

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT          DM 

 
    Encompassing  

Benchmark models     
AR      1.000 0.733  3.712              
Term spread        1.004 0.650  2.588             -       -0.628 [2.159] 
     
HY Corporate spread models     
HY (Dynamic factor)      0.344 0.883  6.015         0.155       -1.665 [22.32] 
HY (Aggregate)       0.800 0.750  3.904         0.230       -0.253 [2.823] 
HY (Aerospace)       0.993 0.683  2.879         0.427        0.290 [1.151] 
HY (Automotive)       0.747 0.733  3.891         0.257        1.300 [6.977]   
HY (Building materials)       0.909 0.633  2.121         0.117       -1.030 [3.365] 
HY (Banking)       0.838 0.583  1.422         0.066       -1.070 [7.593] 
HY (Consumer cyclical)       0.735 0.700  3.317         0.183       -1.233 [6.267] 
HY (Capital goods)       0.756 0.733  3.788         0.164       -1.275 [5.942] 
HY (Chemicals)       0.726 0.700  3.128         0.191       -2.251 [8.327] 
HY (Construction machinery)       0.821 0.667  2.628         0.238       -1.188 [3.869] 
HY (Consumer products)       0.703 0.733  3.788         0.152       -5.547 [10.35] 
HY (Electric)       0.844 0.766  4.130         0.292        0.371 [2.275] 
HY (Energy)       1.030 0.700  3.170         0.718       1.096 [-0.121] 
HY (Entertainment)       0.606 0.767  4.254         0.197       -0.969 [7.545] 
HY (Finance)       0.700 0.800  4.647         0.261        0.502 [4.553] 
HY (Insurance)       0.750 0.850  5.428         0.302        1.245 [3.531] 
HY (Media-cable)       0.986 0.817  4.911         0.485        1.950 [1.242] 
HY (Metals)       0.715 0.767  4.465         0.172       -1.232 [6.230] 
HY (Media-noncable)       0.959 0.700  3.128         0.300        0.879 [1.921] 
HY (Natural gas)       0.970 0.733  3.712             -       -1.671 [3.869] 
HY (Oil field services)       1.036 0.717  3.377         0.889       2.036 [-0.342] 
HY (Paper)       0.935 0.750  3.951         0.048       -0.915 [2.806] 
HY (Packaging)                                                 0.716 0.800  5.038         0.194        0.566 [5.517] 
HY (Pharmaceuticals)       0.978 0.717  3.377         0.398        0.530 [1.307] 
HY (Railroads)       0.894 0.733  3.659         0.178       -2.043 [4.361] 
HY (Retailers)       0.706 0.683  3.360         0.161       -1.421 [8.374] 
HY (Services)       0.903 0.650  2.376         0.142       -0.857 [3.723] 
HY (Supermarkets)       0.635 0.650  2.376         0.228        0.627 [9.319] 
HY (Technology)       0.858 0.750  3.951         0.234        0.560 [2.677] 
HY (Telecommunications)       0.948 0.850  5.487         0.415        1.384 [1.266] 
HY (Transportation)       0.899 0.767  4.130         0.367        0.662 [1.607] 
HY (Textile)       0.737 0.800  4.647         0.285       -1.310 [5.537] 
HY (Utility)       1.045 0.717  3.377         0.787       1.795 [-0.438] 
HY (Airlines)         1.002 0.717  3.377         0.516        1.280 [0.040] 
HY (Conglomerates)       0.624 0.800  5.038         0.207        1.134 [6.069] 
HY (Consumer noncyclical)       0.761 0.650  2.494         0.204       -1.866 [6.398] 
HY (Environmental)       1.044 0.717  3.473         0.750       0.946 [-0.046] 
HY (Independent energy)       1.034 0.717  3.473         0.741       1.085 [-0.160] 
HY (Finance composite)       0.655 0.817  4.911         0.239        0.076 [5.731] 
HY (Gaming)       1.010 0.683  3.078            -                0.210 [1.672] 
HY (Health care)       0.873 0.617  1.975         0.229       -0.937 [3.723] 
HY (Home construction)       0.891 0.667  2.676         0.153       -1.078 [4.055] 
HY (Industrial)       0.758 0.783  4.432         0.177       -1.057 [4.222]  
HY (Lodging)       1.032 0.650  2.425         0.759        1.155 [0.173] 
HY (Natural gas distribution)       0.867 0.633  2.238         0.081       -2.630 [6.167] 
HY (Natural gas pipeline)       0.891 0.750  4.021         0.124       -2.339 [3.757] 
HY (Refining)       0.897 0.683  2.924         0.229        0.035 [4.358] 
              

Notes: (-) denotes the test cannot be calculated; See the notes to Table 1a. 
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Table 2a: Out-of-sample forecasting results: Industrial production, 3-step-ahead horizon 

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT           DM 

 
    Encompassing  

Benchmark models     
AR      1.000 0.600  1.388              
Term spread        0.951 0.633  1.949         0.320       -1.234 [2.748] 
     
HY Corporate spread models     
HY (Dynamic factor)      0.712 0.833  5.170         0.092        0.739 [8.911] 
HY (Aggregate)       0.836 0.733  3.555         0.088       -0.560 [3.356] 
HY (Aerospace)       0.967 0.633  1.949         0.251       -0.487 [1.508] 
HY (Automotive)       0.807 0.683  2.818         0.110        0.645 [4.191] 
HY (Building materials)       0.875 0.667  2.483         0.077       -1.355 [2.960] 
HY (Banking)       0.856 0.633  1.949         0.126       -2.446 [5.816] 
HY (Consumer cyclical)       0.857 0.683  2.754         0.109       -0.944 [3.375] 
HY (Capital goods)       0.820 0.717  3.305         0.075       -0.686 [3.929] 
HY (Chemicals)       0.844 0.700  3.017         0.058       -1.800 [4.314] 
HY (Construction machinery)       0.889 0.667  2.483         0.062       -2.116 [3.822] 
HY (Consumer products)       0.943 0.633  1.932         0.096       -1.983 [2.871] 
HY (Electric)       0.897 0.700  3.091         0.208        0.718 [3.463] 
HY (Energy)       0.977 0.617  1.670         0.131       -0.998 [1.789] 
HY (Entertainment)       0.820 0.700  3.017         0.092       -2.705 [5.845] 
HY (Finance)       0.881 0.750  4.034         0.271        0.471 [2.621] 
HY (Insurance)       0.900 0.750  3.955         0.338        1.099 [2.467] 
HY (Media-cable)       0.958 0.683  2.856         0.411        0.641 [1.892] 
HY (Metals)       0.830 0.650  2.210         0.115       -0.282 [4.015] 
HY (Media-noncable)       0.875 0.717  3.301         0.086       -0.402 [3.241] 
HY (Natural gas)       0.958 0.650  2.209         0.119       -2.198 [2.876] 
HY (Oil field services)       0.976 0.650  2.253         0.366        0.911 [1.582] 
HY (Paper)       0.917 0.717  3.287         0.125       -0.710 [2.207] 
HY (Packaging)       0.826 0.700  3.042         0.096        0.412 [3.104] 
HY (Pharmaceuticals)       0.921 0.667  2.531         0.157       -1.016 [2.489] 
HY (Railroads)       0.924 0.683  2.756         0.163       -0.869 [3.006] 
HY (Retailers)       0.845 0.633  1.949         0.112       -1.353 [4.727] 
HY (Services)       0.899 0.683  2.748         0.065       -1.116 [3.355] 
HY (Supermarkets)       0.794 0.750  3.825         0.096       -0.844 [4.765] 
HY (Technology)       0.883 0.767  4.085         0.038       -0.461 [3.550] 
HY (Telecommunications)       0.947 0.667  2.483         0.358        0.404 [1.205] 
HY (Transportation)       0.952 0.683  2.810         0.371        0.705 [2.324] 
HY (Textile)       0.953 0.650  2.226         0.357        0.136 [1.035] 
HY (Utility)       0.939 0.683  2.777         0.152       -0.057 [3.505] 
HY (Airlines)       0.991 0.633  1.949         0.392        0.937 [0.410] 
HY (Conglomerates)       0.853 0.717  3.343         0.202        0.737 [2.636] 
HY (Consumer noncyclical)       0.865 0.683  2.748         0.082       -2.172 [4.338]  
HY (Environmental)       0.988 0.583  1.102         0.352       -0.775 [1.889] 
HY (Independent energy)       0.982 0.617  1.670         0.237       -0.758 [1.726] 
HY (Finance composite)       0.891 0.667  2.624         0.243       -0.132 [2.666] 
HY (Gaming)       0.978 0.567  0.809         0.317       -0.431 [1.398] 
HY (Health care)       0.867 0.683  2.748         0.051       -2.711 [4.652] 
HY (Home construction)       0.942 0.633  1.932         0.233       -0.322 [2.415] 
HY (Industrial)       0.834 0.733  3.555         0.081       -0.660 [3.460] 
HY (Lodging)       0.975 0.633  1.949         0.338        0.086 [1.319] 
HY (Natural gas distribution)       0.934 0.617  1.652         0.076       -2.601 [3.495] 
HY (Natural gas pipeline)       0.960 0.650  2.203         0.225       -0.659 [1.574] 
HY (Refining)       0.982 0.600  1.388         0.288       -0.473 [0.940] 
     

Notes: See the notes to Table 1a. 
 

 
 
 
 
 
 
 
 
 



 23

 Table 2b: Out-of-sample forecasting results: Industrial production, 6-step-ahead horizon 

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT          DM 

 
    Encompassing  

Benchmark models     
AR      1.000 0.650 2.110  
Term spread        0.955 0.633  1.808         0.363      -1.110 [2.487] 
     
HY Corporate spread models     
HY (Dynamic factor)      0.518 0.883  5.904         0.092      -0.525 [11.05] 
HY (Aggregate)       0.812 0.717  3.260         0.110      -0.819 [3.566] 
HY (Aerospace)       0.957 0.633  1.843         0.274      -0.530 [1.642] 
HY (Automotive)       0.808 0.667  2.397         0.120      -0.143 [3.525] 
HY (Building materials)       0.883 0.650  2.162         0.078      -2.146 [3.591] 
HY (Banking)       0.847 0.667  2.416         0.185      -2.544 [6.086] 
HY (Consumer cyclical)       0.816 0.733 3.502         0.145         -1.544 [4.031] 
HY (Capital goods)       0.786 0.733  3.502         0.078      -1.581 [4.427] 
HY (Chemicals)       0.824 0.717  3.224         0.078      -2.354 [4.904] 
HY (Construction machinery)       0.884 0.650  2.162         0.124      -1.502 [3.085] 
HY (Consumer products)       0.902 0.667  2.389         0.066      -2.737 [3.711] 
HY (Electric)       0.898 0.667  2.607         0.278       1.416 [3.743] 
HY (Energy)       0.986 0.650  2.131         0.276      -0.257 [0.895] 
HY (Entertainment)       0.746 0.717  3.235         0.120      -2.891 [6.683] 
HY (Finance)       0.802 0.717  3.510         0.248      -0.029 [3.589] 
HY (Insurance)       0.803 0.783  4.399         0.276       0.647 [3.375] 
HY (Media-cable)       0.941 0.683  2.834         0.398       0.697 [2.188] 
HY (Metals)       0.776 0.700  2.949         0.082      -1.345 [4.229] 
HY (Media-noncable)       0.894 0.700  2.980         0.104      -0.688 [3.276] 
HY (Natural gas)       0.955 0.650  2.131         0.125      -2.851 [3.373] 
HY (Oil field services)       0.976 0.633  1.915         0.394       1.022 [1.359] 
HY (Paper)       0.915 0.717  3.231         0.124      -1.208 [2.531] 
HY (Packaging)       0.802 0.717  3.231         0.114       0.001 [2.946] 
HY (Pharmaceuticals)       0.921 0.683  2.732         0.193      -0.711 [2.592] 
HY (Railroads)       0.898 0.700  2.949         0.116      -1.912 [4.749]   
HY (Retailers)       0.771 0.667  2.424         0.125      -2.507 [6.601] 
HY (Services)       0.864 0.717  3.259         0.029      -2.684 [5.169] 
HY (Supermarkets)       0.731 0.750  3.771         0.142      -0.452 [4.767] 
HY (Technology)       0.877 0.750  3.771         0.054      -0.360 [3.537] 
HY (Telecommunications)       0.923 0.733  3.498         0.322       0.087 [1.511] 
HY (Transportation)       0.942 0.683  2.834         0.398       0.903 [2.226] 
HY (Textile)       0.952 0.667  2.490         0.413       0.285 [0.915] 
HY (Utility)       0.954 0.667  2.448         0.243       0.986 [2.884] 
HY (Airlines)         1.001 0.650  2.162         0.513       1.685 [0.066] 
HY (Conglomerates)       0.826 0.733  3.527         0.246       0.713 [2.649] 
HY (Consumer noncyclical)       0.827 0.700  2.957         0.116      -2.510 [4.961] 
HY (Environmental)       0.987 0.650  2.111         0.278      -1.103 [1.931] 
HY (Independent energy)       0.986 0.650  2.111         0.269      -0.378 [0.964] 
HY (Finance composite)       0.823 0.700  3.205         0.248      -0.464 [3.549] 
HY (Gaming)       0.986 0.600  1.251         0.403      -0.240 [1.111]  
HY (Health care)       0.853 0.666  2.416         0.098      -2.480 [4.379] 
HY (Home construction)       0.920 0.683  2.680         0.248      -0.563 [2.467] 
HY (Industrial)       0.804 0.750  3.771         0.097      -1.077 [3.851] 
HY (Lodging)       0.971 0.617  1.585         0.351      -0.159 [1.159]  
HY (Natural gas distribution)       0.925 0.617  1.523         0.153      -1.821 [2.661] 
HY (Natural gas pipeline)       0.948 0.667  2.396         0.246      -0.989 [1.812] 
HY (Refining)       0.993 0.617  1.550         0.376      -0.362 [0.938] 
     

Notes: See the notes to Table 1a. 
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Table 2c: Out-of-sample forecasting results: Industrial production, 9-step-ahead horizon 

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT          DM 

 
    Encompassing  

Benchmark models     
AR     1.000 0.583  0.310           
Term spread       0.937 0.717  2.748         0.314       -1.276 [2.639] 
     
HY Corporate spread models     
HY (Dynamic factor)     0.375 0.917  6.377         0.101       -0.444 [15.88] 
HY (Aggregate)      0.759 0.733  3.392         0.146       -0.524 [3.082] 
HY (Aerospace)      0.912 0.567  0.379         0.208       -1.217 [2.792] 
HY (Automotive)      0.772 0.717  2.754         0.166        0.144 [3.706] 
HY (Building materials)      0.835 0.700  2.574         0.119       -3.422 [5.645] 
HY (Banking)      0.801 0.733  3.222         0.194       -2.922 [7.998] 
HY (Consumer cyclical)      0.712 0.783  4.053         0.169       -2.549 [6.713]  
HY (Capital goods)      0.696 0.750  3.476         0.098       -2.128 [5.768] 
HY (Chemicals)      0.763  0.683  2.518         0.147       -1.961 [5.043] 
HY (Construction machinery)      0.834 0.667  2.298         0.210       -1.236 [3.209] 
HY (Consumer products)      0.842 0.650  1.548         0.101       -5.413 [7.394] 
HY (Electric)      0.887 0.683  3.022         0.356        1.750 [3.023] 
HY (Energy)      0.968 0.600  0.819         0.265        0.031 [0.845] 
HY (Entertainment)      0.649 0.783  4.102         0.158        -2.692 [8.366] 
HY (Finance)      0.705 0.650  2.342         0.229       -0.171 [5.021] 
HY (Insurance)      0.728 0.700  2.957         0.243        1.069 [4.869] 
HY (Media-cable)      0.927 0.683  3.022         0.387        1.306 [2.483] 
HY (Metals)      0.687 0.733  3.111         0.076       -1.637 [4.965] 
HY (Media-noncable)      0.882 0.700  2.653         0.092       -0.158 [2.419] 
HY (Natural gas)      0.928 0.600  0.948         0.193       -1.690 [2.412] 
HY (Oil field services)      0.978 0.567  0.519         0.418        1.761 [0.814] 
HY (Paper)      0.873 0.667  1.989         0.076       -1.626 [3.313] 
HY (Packaging)      0.757 0.750  3.476         0.148        0.206 [3.195]  
HY (Pharmaceuticals)      0.904 0.650  1.966         0.261       -0.002 [1.750] 
HY (Railroads)      0.890 0.683  2.416         0.140       -1.670 [3.579] 
HY (Retailers)      0.657 0.800  4.555         0.117       -4.640 [12.77] 
HY (Services)      0.838 0.733  3.082         0.073       -2.690 [5.405] 
HY (Supermarkets)      0.686 0.750  3.430         0.198        0.047 [5.518] 
HY (Technology)      0.857 0.700  2.653         0.039        0.086 [2.956] 
HY (Telecommunications)      0.880 0.733  3.300         0.286        0.259 [2.138] 
HY (Transportation)      0.946 0.667  2.680         0.439        1.171 [1.615] 
HY (Textile)      0.903 0.667  2.543         0.394        0.405 [1.411] 
HY (Utility)      0.955 0.617  1.540         0.302        1.408 [1.791] 
HY (Airlines)        0.994 0.600  1.075         0.466        1.998 [0.060] 
HY (Conglomerates)      0.814 0.783  4.024         0.261        1.195 [2.823] 
HY (Consumer noncyclical)      0.752 0.750  3.405         0.158       -3.582 [8.013] 
HY (Environmental)      0.972 0.617  0.929         0.245       -1.267 [2.098] 
HY (Independent energy)      0.972 0.633  1.293         0.255       -0.026 [0.860] 
HY (Finance composite)      0.744 0.683  2.879         0.243       -0.617 [4.886] 
HY (Gaming)      0.953 0.650  1.453         0.301       -0.916 [1.811] 
HY (Health care)      0.806 0.717  2.835         0.156       -2.114 [4.739] 
HY (Home construction)      0.846 0.700  2.450         0.187       -2.291 [4.976] 
HY (Industrial)      0.737 0.733  3.300         0.111       -0.911 [3.740] 
HY (Lodging)      0.943 0.550  0.019         0.319       -0.274 [1.462] 
HY (Natural gas distribution)      0.874 0.683  2.055         0.169       -1.980 [3.209] 
HY (Natural gas pipeline)      0.901 0.633  1.516         0.247       -1.928 [3.093] 
HY (Refining)      0.981 0.617  0.929         0.299       -0.760 [1.757] 
     

Notes: See the notes to Table 1a. 
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Table 2d: Out-of-sample forecasting results: Industrial production, 12-step-ahead horizon 

 
Forecasting period 2000:m5-
2005:m4 

 
MSFE relative 
to AR 

 
Success 
Ratio    

 
PT          DM 

 
    Encompassing  

Benchmark models     
AR     1.000 0.567  -0.268   
Term spread       0.933 0.700   2.722        0.331       -2.142 [3.510] 
     
HY Corporate spread models      
HY (Dynamic factor)     0.359 0.833   4.913        0.150        0.221 [18.23] 
HY (Aggregate)      0.761 0.650   1.966        0.259        0.149 [2.219]  
HY (Aerospace)      0.896 0.533  -0.718        0.224       -0.799 [2.407] 
HY (Automotive)      0.793 0.683   2.104        0.237           0.696 [2.970] 
HY (Building materials)      0.791 0.633   1.072        0.173        -3.480 [6.623] 
HY (Banking)      0.770 0.767   3.753        0.233       -2.790 [9.641] 
HY (Consumer cyclical)      0.662 0.750   3.430        0.228       -1.927 [6.811] 
HY (Capital goods)      0.686 0.683   2.104        0.178        -1.294 [5.028] 
HY (Chemicals)      0.726 0.633   1.404        0.222       -0.967 [4.321] 
HY (Construction machinery)      0.814 0.617   1.172        0.280       -0.678 [2.785] 
HY (Consumer products)      0.812 0.667   1.678        0.169       -4.883 [6.966] 
HY (Electric)      0.873 0.650   1.966        0.381        1.999 [2.230] 
HY (Energy)      0.947 0.533  -0.718        0.278         0.482 [0.544] 
HY (Entertainment)      0.565 0.783   4.056        0.207       -1.342 [8.799] 
HY (Finance)      0.646 0.666   2.543        0.263        1.072 [5.631] 
HY (Insurance)      0.737 0.717   3.171        0.313        1.892 [3.983] 
HY (Media-cable)      0.930 0.583   1.562        0.397        2.574 [1.650] 
HY (Metals)      0.683 0.717   2.748        0.117       -0.977 [4.255] 
HY (Media-noncable)      0.905 0.600   0.687        0.236        0.626 [1.428] 
HY (Natural gas)      0.916 0.517  -0.734        0.287        -0.409 [1.482] 
HY (Oil field services)      0.963 0.483  -1.133        0.388         2.097 [0.080] 
HY (Paper)      0.868 0.583   0.456        0.151       -0.948 [2.347] 
HY (Packaging)      0.778 0.633   1.404        0.207        0.668 [2.503]  
HY (Pharmaceuticals)      0.884 0.517  -0.393        0.314        0.553 [1.262] 
HY (Railroads)      0.875 0.633   1.293        0.157       -1.210 [2.743] 
HY (Retailers)      0.621 0.817   4.825        0.190       -3.218 [12.84] 
HY (Services)      0.857 0.650   1.197        0.208       -2.264 [5.198] 
HY (Supermarkets)      0.694 0.767   3.718        0.272        1.130 [5.246] 
HY (Technology)      0.880 0.600   0.819        0.229        1.077 [1.751] 
HY (Telecommunications)      0.881 0.633   1.751        0.264        1.170 [1.453] 
HY (Transportation)      0.924 0.600   1.204        0.440        1.559 [1.048] 
HY (Textile)      0.847 0.567   0.657        0.376        0.815 [1.478] 
HY (Utility)      0.954 0.533  -0.190        0.315        1.616 [0.866] 
HY (Airlines)        0.973 0.467  -1.327        0.419        2.602 [-0.787] 
HY (Conglomerates)      0.831 0.783   4.024        0.280        1.696 [2.375] 
HY (Consumer noncyclical)      0.716 0.750   3.440        0.237       -2.453 [7.773] 
HY (Environmental)      0.960 0.583   0.152        0.260       -1.340 [2.120] 
HY (Independent energy)      0.961 0.567  -0.268        0.282        0.667 [0.362] 
HY (Finance composite)      0.666 0.650   2.342        0.254        0.558 [5.697] 
HY (Gaming)      0.945 0.617   0.670        0.323       -0.957 [1.816] 
HY (Health care)      0.773 0.633   0.959        0.244       -1.139 [4.073] 
HY (Home construction)      0.840 0.667   1.630        0.263       -2.210 [5.329] 
HY (Industrial)      0.734 0.650   1.854        0.217       -0.250 [2.650] 
HY (Lodging)      0.927 0.550  -0.499        0.333        -0.102 [1.379] 
HY (Natural gas distribution)      0.826 0.683   2.032        0.225       -1.364 [2.897] 
HY (Natural gas pipeline)      0.850  0.533  -0.351        0.260       -0.967 [2.337] 
HY (Refining)      0.958 0.567  -0.268        0.296       -1.127 [2.829] 
     

Notes: See the notes to Table 1a. 
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   Table 3a: Measures of out-of-sample forecasting performance of the probability  
                    of contraction in employment  

 
Forecasting period 2000:m5-2005:m4 

 
       QPS      

 
        LPS 
    

Benchmark models   
AR        0.870             1.290 
Term spread          0.785             1.086 
   
HY Corporate spread models   
HY (Dynamic factor)        0.690             0.980 
HY (Aggregate)         0.883             1.259 
HY (Aerospace)         0.895             1.301 
HY (Automotive)         0.665             1.014 
HY (Building materials)         0.873             1.277 
HY (Banking)         0.788             1.143 
HY (Consumer cyclical)         0.798             1.148 
HY (Capital goods)         0.821             1.195 
HY (Chemicals)         0.817             1.182 
HY (Construction machinery)         0.854             1.245 
HY (Consumer products)         0.777             1.134 
HY (Electric)         0.948             1.332 
HY (Energy)         0.866             1.246 
HY (Entertainment)         0.748             1.090 
HY (Finance)         0.875             1.216 
HY (Insurance)         0.907             1.284 
HY (Media-cable)         0.928             1.337 
HY (Metals)         0.768             1.146 
HY (Media-noncable)         0.943             1.350 
HY (Natural gas)         0.883             1.304 
HY (Oil field services)         0.900             1.288 
HY (Paper)         0.883             1.290 
HY (Packaging)         0.669             1.012 
HY (Pharmaceuticals)         0.931             1.361 
HY (Railroads)         0.843             1.227 
HY (Retailers)         0.801             1.176 
HY (Services)         0.881             1.275 
HY (Supermarkets)         0.763             1.120 
HY (Technology)         0.860             1.242 
HY (Telecommunications)         0.905             1.287 
HY (Transportation)         0.897             1.266 
HY (Textile)         0.827              1.177 
HY (Utility)         0.932             1.353 
HY (Airlines)           0.870             1.228 
HY (Conglomerates)         0.655             1.010 
HY (Consumer noncyclical)         0.799             1.169 
HY (Environmental)         0.882             1.301 
HY (Independent energy)         0.882             1.294 
HY (Finance composite)         0.865             1.216 
HY (Gaming)         0.858             1.252 
HY (Health care)         0.805             1.165 
HY (Home construction)         0.846             1.212 
HY (Industrial)         0.847             1.216 
HY (Lodging)         0.877             1.270 
HY (Natural gas distribution)         0.818             1.192 
HY (Natural gas pipeline)         0.868             1.278 
HY (Refining)         0.785             1.117 
   

Notes: QPS is the quadratic probability score; LPS is the log probability score; contraction in employment 
is defined in section 4.1.   
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   Table 3b: Measures of out-of-sample forecasting performance of the probability  
                    of contraction in industrial production 

 
Forecasting period 2000:m5-2005:m4 

 
       QPS      

 
        LPS 
    

Benchmark models   
AR        0.909              2.129 
Term spread          0.837              1.864 
   
HY Corporate spread models   
HY (Dynamic factor)        0.731             1.143 
HY (Aggregate)         1.076             2.098 
HY (Aerospace)         0.922             1.946 
HY (Automotive)         0.887             2.051 
HY (Building materials)         0.868             1.973 
HY (Banking)         0.802             1.652 
HY (Consumer cyclical)         0.840             1.670 
HY (Capital goods)         0.923             1.907 
HY (Chemicals)         0.965             2.019 
HY (Construction machinery)         1.035             2.262 
HY (Consumer products)         0.859             1.953 
HY (Electric)         1.208             2.979 
HY (Energy)         0.884             1.676 
HY (Entertainment)         0.779             1.422 
HY (Finance)         0.881             1.522 
HY (Insurance)         0.881             1.918 
HY (Media-cable)         1.081             2.078 
HY (Metals)         0.891             2.074 
HY (Media-noncable)         1.093             2.168 
HY (Natural gas)         0.915             2.078 
HY (Oil field services)         1.055             1.793 
HY (Paper)         0.928             2.051 
HY (Packaging)         0.808             1.675 
HY (Pharmaceuticals)         1.086             2.386 
HY (Railroads)         0.871             1.469 
HY (Retailers)         0.891             1.966 
HY (Services)         0.961             2.042 
HY (Supermarkets)         0.995             2.060 
HY (Technology)         1.151             2.177 
HY (Telecommunications)         0.977             2.086 
HY (Transportation)         1.066             2.126 
HY (Textile)         0.891             1.984 
HY (Utility)         1.141             2.435 
HY (Airlines)           1.039             1.700 
HY (Conglomerates)         0.716             1.774 
HY (Consumer noncyclical)         0.953             2.082 
HY (Environmental)         0.864             2.000 
HY (Independent energy)         0.873             1.796 
HY (Finance composite)         1.025             1.814 
HY (Gaming)         0.851             1.669 
HY (Health care)         0.947             1.612 
HY (Home construction)         0.871             1.675 
HY (Industrial)         1.028             2.012 
HY (Lodging)         0.887             1.798 
HY (Natural gas distribution)         0.843             1.617 
HY (Natural gas pipeline)         0.866             1.915 
HY (Refining)         0.837             1.917 
   

Notes: See the notes to Table 3a. 
 
 
 
 
 
 
 
 
 


