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1 Motivation and summary of results

A popular test of market rationality and risk neutrality has been that of the uncovered interest parity
(UIP) hypothesis by regressing of the spot rate changes on the forward premium (interest rate differ-
ential). To circumvent the binding restrictions of this estimation strategy, which relies on a wide array
of assumptions other than rationality and risk neutrality, we suggest testing the UIP directly by using
information revealed by option prices and summarized in implied risk neutral distributions.
The UIP hypothesis relates the current and expected future exchange rates with returns on assets de-

nominated in appropriate currencies by asserting that expected returns from investing in these currencies
should be identical with expectations made rationally. The UIP hypothesis (or some of its modifica-
tions) has become a cornerstone of most theoretical models of international macroeconomics, regardless
of whether they stem from the Keynesian paradigm or are derived from micro-foundations. Hence the
large reliance of empirical economic models, which various institutions have used for forecasting and for
answering politically relevant questions about economic policy, on this hypothesis (e.g. Bank of England,
2000).
Nevertheless, a large part of the empirical literature rejected the UIP hypothesis and often a sig-

nificantly negative relationship between interest rate differential and appropriate spot rate changes was
reported. Engel (1996) in his survey cited almost 200 articles and concluded that regression based em-
pirical tests almost always rejected the hypothesis. Engel (1996) also cited many potential economic and
also econometric explanations for the rejections, but none of them was able to interpret regression results
completely.
However, the literature on the peso problem (Krasker, 1980), on the regime changes (Evans and Lewis,

1995) and on the learning hypothesis (Lewis, 1989) suggests that rejections might be at least partly caused
by the short length of the available samples. The scope of the small sample bias was shown by Baillie
and Bollerslev (2000), who constructed a model with persistent daily volatility and in which they impose
the UIP. The model is able to simulate results reported in the literature. Indeed, some of the more recent
empirical findings point in this direction. Flood et. al (2001) found that UIP performed much better in
the 1990s than in previous decades and that the case for the rejection appears weaker if one allows for
longer samples, and Chinn and Meredith (2002), who used post-Bretton Woods time series of interest
rates on longer maturity bonds, found coefficients of the correct sign close to unity. Huisman et. al (1998)
tested the UIP using a random time effects panel model, which granted more efficiency than the usual
bilateral regression and which allowed the control of several potentially biasing factors. In contrast with
previous results, their estimates of the slope coefficient are significantly positive and average to 1/2.
A more serious attack on the traditional regression as a testing strategy for the UIP hypothesis

was launched by Barnhart, McNown and Wallace (1999), who argued that regression-based tests might
be uninformative because of inconsistent coefficient estimates due to simultaneity bias. Although this
possibility was understood earlier (Fama, 1984; Liu and Maddala, 1992), Barnhart et. al (1999) argued
that this problem is more pervasive than commonly recognized. They show that when the simultaneity
is accounted for then the estimates of slope coefficients with the forward premium are virtually one
for several major currency pairs. Further, by simulations they show that widely cited tests wrongly
reject forward unbiasedness at high rates even if data were generated by models consistent with the UIP.
Perhaps, a less severe simultaneity problem might arise when the longer term interest rates are taken
into account, and if so then the results of Barnhart et. al (1999) may shed some light on the findings of
Chinn and Meredith (2002).
Such results also correspond with the intuitive view of practitioners in central banks and other institu-

tions that the correlation of the exchange and interest rates likely depends on the nature of the underlying

3



shock in a fully specified dynamic model, in which the UIP is one of the structural relationships (e.g.
Beneš et. al, 2002b). For example, when interest rates react to a demand inflationary shock, exchange
rates move together as a response. On the other hand, when the exchange rate depreciates owing to,
say, a rise in the risk premium, the interest rates react to counter the inflationary consequences and
hence move against the exchange rate. Within such a model, the sign of the observed exchange-interest
rate correlation depends on the nature of the prevailing disturbances. Reduced form econometrics would
deliver biased results in any case, however.
Our paper adds to this recent literature which is supportive of the UIP hypothesis. We argue that

the normality of residuals is not met in the samples which we have and that skewness and kurtosis in
the distributions of the future exchange rate may account for some of the UIP rejections. In fact, it is
common knowledge that the financial returns are not normal, that they usually have heavy tails and that
they might be skewed. Therefore, it seems odd to test efficiency, which involves the notion that rational
market players utilize all available information, and restrict the expectation error to be normal.
In testing the UIP, we propose using additional information provided by option data, which may

reveal the structure of the exchange rate expectations. We estimate risk neutral distributions implied
by option prices and use them directly for testing. By favouring this approach we commit ourselves
to the assumption of investors’ risk neutrality. At least for the first approximation, we deem the risk
neutrality assumption appropriate for the case of currencies of two major countries with a comparable
macroeconomic environment and financial system.
The idea of utilizing the information carried by options in this context is not new. Related litera-

ture includes Lyons (1988), who by assuming lognormality used option-implied volatilities to calculate
conditional second moments of expected returns. Based on them he modeled the risk premium by us-
ing portfolio balance model. Relying on the regression-based tests he concluded, as did the traditional
literature based on the time series estimates of variance, that the forward unbiasedness hypothesis fails;
he also found implausible parameter estimates for the rational risk premium model. Malz (1997b) gen-
eralized Lyon’s (1988) approach by avoiding the assumption of lognormality. He estimated the whole
implied risk neutral distributions (RNDs) from the over-the-counter (OTC) options, which allowed him
to enhance regression tests with the third and fourth distributions’ moments. He found that if currency
excess returns are regressed on variance, skewness and kurtosis then plausibly signed coefficient estimates
are obtained for several currency pairs including dollar-yen, with a highly significant coefficient for the
variance1. However, due to a low significance of the skewness for the excess return in the univariate
regression, he concluded that there is little evidence of peso problem effects. Moreover, enhancing the
traditional Fama regression with distributions’ skewness did not help; the coefficient for forward premium
remained virtually always negative. The potential of options for capturing the peso problem was also
studied by Bates (1996) who used option prices to estimate parameters of the jump-diffusion process2 .
By conditioning on them he extended the traditional regression (e.g. Hodrick and Srivastava, 1987) of
futures returns on the interest rate differential. Interpreting the estimates,Bates (1996) concluded that
jump-diffusion distributions implicit in dollar-mark month options described the ex-post distribution very
poorly and that for dollar-yen these distributions contained no information whatsoever for the subsequent
evolution of the dollar - yen futures price. He argued that although the implied distributions might serve
as a barometer of market sentiment, it did not appear that the peso problem consequences of skewed
and fat-tailed distributions, implied at times by currency futures options, could explain rejections of
uncovered interest parity.

1This finding was confirmed also by Gereben (2002) for the New Zealand dollar.
2Malz (1996) applied a similar model to estimate realignment probabilities before the EMS crisis.
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Our way of using options for the tests of the UIP hypothesis differs from the approaches mentioned
above. Being aware of pitfalls of single equation estimation pointed out by Barnhart et. al (1999) we avoid
the regression estimation altogether. Instead, we estimate a class (parametrized by a single parameter)
of implied distributions, and then use these distributions for testing directly. When testing for the zero
mean of the observed expectation errors we use the implied RNDs for mapping the errors, without any
information loss, to the independent standard normal observations. We cannot reject the hypothesis in
either of the subsamples containing uncorrelated observations of non-overlapping contracts. The same
result is obtained when all the observations are pooled into one sample by estimating its covariance
structure. This result is quite robust with respect to the parametric form of the distribution. In turn,
this means that the UIP hypothesis is not rejected on conventional levels for maturity of one month.
By way of comparison, we ran the same tests using the distributional assumptions of the expectation
errors assumed by the conventional linear regression. We cannot reject the hypothesis either, although
the results appear weaker.
Furthermore, we test the more general hypothesis that RNDs are good approximations for the true

distributions of the future spot rate. Our approach to testing differs from the one applied by Ait-
Sahalia, Wang and Yared (2001) to the densities implied by S&P options. In contrast to Ait-Sahalia,
Wang and Yared (2001), who compared RNDs implied by option prices with RNDs estimated from the
dynamics of the underlying asset under the assumption that this dynamics is a diffusion, we avoid making
any assumptions about the nature of the true stochastic process. In fact, under the maintained joint
hypothesis of market’ rationality and risk neutrality and given the parametrization of the option implied
RNDs we transform realized asset prices in a way that allows us to test whether these transformations
were drawn from a single, e.g. particular multinomial, or standard normal density. To this end, we apply
three tests: a variant of the Pearson test, a likelihood ratio test, and the Kolmogorov-Smirnov test for
the whole class of distribution parametrizations.
The tests are powerful enough to discriminate well between different parametrizations of the RND

estimated from option prices. We found that lognormality was strongly rejected, as was the Malz (1997a)
distribution. However, for some more fat-tailed distribution in the class, we found quite a good fit
measured by the p-values of the tests. This result legitimizes the hypothesis that actual realizations of
the exchange rate were drawn from the implied risk neutral distributions.
For estimation of the RNDs we utilized two methods, each applied to a different market segment. To

estimate RNDs from the Chicago Mercantile Exchange data we employed a non-parametric Jackwerth
and Rubinstein (1996) methodology. For estimation of RNDs from OTC options we used the technique of
Malz (1997a), of a quadratic extrapolation of the volatility smile in the delta space, which was generalized
by Cincibuch (2003) to account for very heavy tails of the distributions.

2 Risk neutrality, rationality and the UIP hypothesis

The uncovered interest rate parity hypothesis asserts that an expected change in the spot rate compen-
sates the interest rate differential between two different currencies when a risk neutral agents form their
expectations rationally:

Et(ST )

St
= e(it−i

∗
t )(T−t), (1)

where the right hand side of the equation refers to an interest rate differential between the domestic
(i) and foreign (i∗) currency continuously compounded interest rates with appropriate maturities, and
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where S denote spot exchange rates, observed in the respective time period. The operator Et(.) denotes
rational expectations based on the information at t. As long as the investors are rational, the market
expectations coincide with mathematical expectations. Let Λt,T denotes the actual distribution over
which the expectation in equation (1) is taken.
There is a close relationship between the expectations related to the UIP hypothesis and the arbitrage

based covered interest rate parity (CIP). Under condition of no arbitrage opportunity, the synthetic
forward rate determined by the CIP is equal (up to a difference possibly due to transaction costs) to the
actual market forward rate Ft,T . The CIP market clearing condition is then:

Ft,T
St

= e(it−i
∗
t )(T−t). (2)

The CIP holds in practice with greatest accuracy between major currencies, which was confirmed by
numerous studies, e.g. Fratianni and Wakeman (1982). Therefore, it follows that the parity (1) is
practically equivalent to the condition that forward rate is an unbiased predictor of the future spot rate

Et[ST ] = Ft,T . (3)

Therefore, conditions (1) and (3) are often used interchangeably and we may conveniently focus on a
later formulation (3) in search of testable specifications of the hypothesis.
The hypothesis can be generalized if assumptions of rational and risk neutral pricing are extended

from forwards to other contingent contracts. It is a well established theoretical result that the price of
a traded security can be expressed as an expected discounted security payoff where the expectation is
taken with respect to an appropriate risk-neutral measure (Cox and Ross, 1976; Ross, 1976). If c (S,X)
is the price of a European call option with underlying asset S, strike X and maturity T then the the risk
neutral distribution of the spot rate on the future date T denoted by ΛRNt,T is implicitly defined by

c (S,X) ≡ e−i(T−t)
Z ∞
0

max (ST −X, 0) dΛRNt,T (ST ) , (4)

where r denotes the domestic risk free interest rate and ST is the random spot rate at the option’s
maturity T. The distribution ΛRNt,T can be estimated from option prices and other market data as of the
current date t.
In order to reformulate (3) in terms of risk neutral measure let us first observe that under no arbitrage

opportunity3 the European option with zero strike is priced as

c (S, 0) = Se−i
∗(T−t), (5)

where i∗ denotes foreign interest rate. Further, from equation (4) it follows that

c (S, 0) = e−i(T−t)
Z ∞
0

STdΛ
RN
t,T (ST ) = e

−i(T−t)ERNt [ST ]. (6)

From (5) and (6) and from arbitrage based covered interest rate parity (2) it directly follows that forward
rate is always the mean of the risk neutral distribution:

Ft,T = E
RN
t [ST ].

3Under no arbitrage opportunity two portfolios with the same payoff profile should have the same price. The call option
c (St, 0) pays at maturity in any case ST and the foreign currency riskless bond market investment with valued Ste−r

∗(T−t)
also pays at maturity ST . Thus, the relationship (5) holds.
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Thus one may restate the hypothesis (1) or (3) as

ERNt [ST ] = Et[ST ]. (H0)

In other words, the risk neutral form of the UIP stipulates equality of expectations taken with respect
to the risk-neutral measure implied by prices of traded securities and the one taken with respect to the
actual distribution of the asset.
The natural generalization of the claim H0 is to hypothesize not only equality of the first moments

but equality of the whole distributions:
ΛRNt,T ≈ ΛT . (H∗0 )

In a logical sense this hypothesis is obviously stronger than that of the ordinary UIP, but economically
the same argument is behind both H0 and H∗0 . The UIP claims that on average it should not make any
difference whether one takes a short or long position in the forward contract. However, from (5) and
from covered interest rate parity it follows that F = ei(T−t)c (S, 0) and therefore we may understand the
hypothesis H0 as a claim that one option contract with one particular strike is fairly priced. Indeed, it is
natural to assume that on average it should not make any difference whether one takes a short or long
position in any option contract with any exercise price. This directly leads to hypothesis H∗0 , which is
thus conceptually equivalent to hypothesis H0.

3 Data

We base our tests on the dollar-yen currency pair, because it represents one of the deepest option markets.
Moreover, due to the relatively wide interest rate differential and distinct phases of the business cycle in
Japan and USA, we might expect severe violations of the UIP for dollar-yen pair. For the parametric
methods and econometric regressions we work with the OTC market, where we dispose of time series of
dollar-yen spot, forward and option quotes. The series start in 1992 and finish August 2000, i.e. they
represent 2124 daily observations, provided by two large market makers. Specifically, the data consist
of time series of at-the-money-forward (ATMF) volatilities, 25-delta risk reversals and 25-delta strangles
for one-month options together with appropriate forward rates. From the OTC quotes, we backed out
implied volatilities for three exercise prices. Due to the fact that the OTC market quotes options in terms
of implied volatilities, the data do not suffer from the problem of stalled prices which sometimes occurs
in the data from the exchanges.
Another source of option data is the Chicago Mercantile Exchange, in particular we use close-of-

business data for dollar-yen currency futures and actually traded dollar-yen currency futures option
contracts. The dollar-yen parity is convenient, because here options are traded with enough liquidity at
the CME and therefore the estimation of RNDs can be double-checked. The CME data is also employed
in the nonparametric method of deriving RNDs. The source of interest rate data is the Bloomberg
database.
In the sampling procedure we have to confront possible problems stemming from overlapping data.

To avoid mutually dependent observations we construct non-overlapping samples. Specifically, we design
a sampling procedure whereby we obtain several subsamples, each of them containing such dates that
between the trade dates of options and their maturity dates no other observation occurred in a particular
subsample. We undertake the tests only on subsamples containing at least 50 observations. We found
13 such subsamples and we perform each test individually for every subsample. While this is correct in
principle, potential efficiency may be lost from considering fewer data in isolation. Ideally, we would like
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to have one statistic to decide about a particular hypothesis, and not 13. We therefore design a method
that corrects for serial correlation of the observations and provides with full sample results as well.

4 Regression results

Our approach has been motivated by some unrealistic assumptions behind UIP tests based on the Fama
regression estimates. It is therefore instructive, by a means of reference, to see how the conventional tests
perform in our data sample. Let sT and ft,T denote the natural logarithms of ST and Ft,T respectively.
Then the following testing specification

sT − st = a+ b(ft,T − st) + uT , (7)

is easily derived from (3) if rational expectations are assumed and the Jensen inequality issue is neglected.
Then standard assumptions are usually placed on the regressors and the error term. The specification was
used in many tests of the forward rate unbiasedness (e.g. Fama, 1984) and hence also the UIP hypothesis.
The UIP hypothesis implies a = 0 and b = 1 in (7), but the research on UIP has concentrated mostly
on testing b = 1, because it is usually argued that the non-zero constant term could be accounted for by
an average risk premium and it might include also the Jensen’s inequality term. Rewritten in the matrix
form the regression (7) reads

∆s = βX + u. (8)

The vector β = (a, b) is formed by regression coefficients, the data matrix X has two columns, the first
consisting of ones and the second containing forward premia (interest rate differentials) and u is the
vector of prediction errors.
Data are sampled daily, yet the prediction horizon is about one month. Because of ensuing serial corre-

lation, methods based on the assumption that observations are independently and identically distributed
can not be immediately utilized. One option is to avoid mutually dependent observations altogether and
test the hypotheses on subsamples consisting only of forward contracts that do not overlap as it was done
for example by Fama (1984). Estimation results for these subsamples are shown in the first thirteen rows
of Table 1.
However, potential efficiency is likely to be lost from considering fewer data in isolation. Therefore,

we make an attempt to use all data in one test by estimating a covariance structure among them. In the
Section 11.1 we derive the explicit form of the covariance structure var(u) stemming from the maturity
of the contracts which is larger than the sampling period. The same approach we were able to use again
when the moving average correlation problem is tackled for other tests of hypotheses.
Specifically, we assumed that the prediction errors per business day are homoskedastic with variance

σ2 and ucorrelated. As τ (t) denotes maturity in business days for the contract concluded on t, we write

ut ∼ N
¡
0, τ (t)σ2

¢
. (9)

Under theses assumptions for day to day disturbances we derived matrices P and F such that the
components of new series ũ = uPF are identically independently distributed, i.e. ũ ∼ N ¡0,σ2I¢ . Thus,
instead of regression (8) the following transformed equation is estimated4

∆sPF = βXPF + ũ.
4For this purpose, either the Hansen and Hodrick (1980) or Newey and West (1987) way of estimating asymptotic

covariance matrix was often pursued in the literature.
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Full sample estimation results of these are shown in the last line of the Table 1. They are consistent
with regressions on subsamples, and the narrower confidence intervals show higher efficiency gained by
pooling the data.
The results are similar to those routinely found by other authors for most currencies and time periods.

As usual, b = 1 can be rejected with enough confidence and the estimates are negative for all subsamples,
a is insignificantly different from zero and the overall fit of the regression, measured to be R2 is negligible.
The latter fact is disturbing, because it may point to a misspecified equation. Alternatively, a low R2

may come from a high variance of the error term.
The full sample result is close to what was found by Flood and Rose (2001) for dollar-yen in 1990 in

their estimate also based on the daily observations. For the one month maturity they report an estimate
of b equal to −1.17 with the Newey-West standard error of 1.11. The standard error of our estimate is
about 1.255.
Because â is insignificant, we impose this as a restriction and re-run this more parsimonious specifi-

cation:
sT − st = b(ft,T − st) + uT . (10)

Again, estimate of b turns out to be negative (b̂ = −1.1) and insignificant, but remarkably different
from unity with a 5% confidence interval of (−2.87, 0.66) . This form of the Fama regression is interesting,
because we may use it to express the expectation error (or, equivalently, the excess return on the domestic
asset) under rational expectations as:

sT −Et(sT ) = sT − ft,T
= sT − st + st − ft,T
= (b− 1)(ft,T − st) + uT, (11)

where in the last equality we made use of equation (10). Under rationality, expectation errors, sT −
Et(sT ),, should be zero on average, which under the conventional assumptions for uT implies zero mean
of the term (b − 1)(ft,T − st) as well. Surprisingly, as the first line in Table 2 shows, we cannot reject
nullity of the excess return either for the full sample or for any of the subsamples. This means that for
a risk neutral investor it does not pay to speculate against the interest rate parity. However, examining
the right hand side of (11) we find that the forward premium in our sample is significantly different from
zero and we showed earlier that b is significantly different from unity, which is a contradiction.

5 Measuring the “UIP failure” by implied distributions: An
example of non-parametric approach

The purpose of this section is to undertake an illustrative ‘test’ of the UIP hypothesis by constructing the
RND implied by currency option prices on two different days when the UIP gave seemingly misleading
predictions about a change in the dollar-yen exchange rate. We used end-of-day settlement prices from

5The difference between the two estimates is most likely mainly due to a slightly different data sample. While we have
fewer than 9 years of data between 1992 and 2000, the Flood and Rose (2001) estimates are based on a decade of data of
the 1990s.
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the CME from 4 January 1999 on the options on yen futures contracts expiring in June 19996. The date
was chosen because it lies significantly ahead of the expiration date and the forward rate (i.e. the unbiased
predictor according to the UIP) predicted an exchange rate movement over the expiration period in an
opposite direction from what actually happened. On 4 January yen spot rate was at 112. The futures rate
(June contract) on this day stood at 109.7 Yen/USD. In other words, the UIP predicted an appreciation
of the yen by 2% over the 6 months left to maturity. In reality, though, on 7 June 1999 (the last day of
options trading) the exchange rate stood at 120.8 Yen/USD, i.e. a depreciation more than 7%.
Next, we checked how the prediction given by the UIP in January 1999 about the exchange rate in

June 1999 is consistent with implied distributions. We estimated a risk neutral distribution implied by
the options’ prices on this day using a non-parametric method developed by Jackwerth and Rubinstein
(1996). They construct a smooth density function by minimizing the norm that measures the density
function’s second derivative, constrained by the condition that option prices are discounted expectations
of the options’ payoffs at maturity. Like these authors, we chose among the proposed objective functions
the maximum smoothness criterion as it does not require any prior about the true distribution7.
The method is designed for European options, but for the sake of simplicity, using only out-of-the-

money options, we chose to ignore the issue of the early exercise premium associated with the CME
contracts, which are American futures options. Indeed, Whaley (1986) reports an early exercise premium
to be significant only for deep in-the-money options. For a other way of estimating RNDs implied by
American futures options see Cincibuch (2003).
The estimation procedure involves a subjective choice of the smoothness parameter; however for the

given purpose all reasonable candidate distributions are very similar and they yield virtually the same
test statistics. We report one of the obtained distributions in the Figure 1, marking all the relevant
information: the spot rate on the date of purchase, the mean of the distribution (almost identical to the
futures rate on the same date), and the actual (futures) rate at the option’s expiration.
We note that the distribution is slightly skewed towards appreciation of the yen, causing that the

modus - most likely outcome - represents some depreciation. Perhaps more importantly, we observe that
the distribution is relatively wide. Because the means of the distributions coincide with the forward rate
expectations, we may actually test for the hypothesis that market expectations are consistent with the
UIP. The probability level at which the realization of the exchange rate in June would be sufficient to
reject the null of the mean equal to the forward rate is 21%. This shows that if the RND reflected the
consensus expectations then the actual outcome would not be unexpected

6 Estimation of parametric RNDs from OTC data

The non-parametric approach is not suitable for formal testing of the UIP hypothesis as it is relatively
intensive in the number of strikes available for each maturity date. Specifically, in order to derive RNDs of
market expectations in the above example more than a dozen of exercise prices was used. Such numbers
of strikes are only available on organized market exchanges. However, the relatively small number of

6The use of end-of-day prices is sometimes criticised for the possible existence of asynchronous, so-called stalled quotes
and using actual tick data is suggested. We consider this a minor objection given that settlement prices are set at the end
of each trading day by a committee of CME officials, because these prices are used for margining purposes. As such they
should have a good information value.

7 In fact, it is equivalent to fitting a cubic spline between the available option prices. In addition, the smoothness
criterion has the advantage of providing a closed form solution of the searched option prices, which greatly facilitates the
computations. Also other modalities of the estimation including non-negativity constraints and asymptotic conditions can
be found in the original paper.
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maturity days available there8 effectively prevents the non-parametric methods from rigorous testing of
the UIP hypothesis. Moreover, not always is the organized exchange market deep enough to consider the
available option prices for traded strikes as representing true market prices. This also limits the use of
exchange traded options in the UIP testing to occasional examples of RNDs for particular data points,
such as those shown above.
Instead, we resorted to a parametric approach to estimation RNDs from the option prices traded on

the OTC market. This has the advantage of a relative abundance of maturity days (in fact, virtually every
business day is a maturity day for some 1 month contracts). The disadvantage is that the OTC market
usually quotes only three benchmark strike prices, hence some parametric inter-, and extrapolation of
the implied distribution has to be used. This approach nonetheless still allows for far less restrictive
assumptions about the distribution of exchange rates than those implied by conventional methods of UIP
testing.
The OTC data based techniques are formulated in terms of the market convention of quoting option

prices. Not only do OTC market participants quote currency option prices most often in volatility9

terms, but the OTC market also developed a way of normalizing of the option moneyness. Instead of
specifying an exercise price in dollars, OTC market participants use an option’s delta. Thus, instead of
dollar exercise price - option price pairs, traders usually quote options in delta - volatility terms10. This
convention allows them to abstract from immediate changes of the spot rate, which together with interest
rates determines the first moment of the RND, and focus on the options’ substance, i.e. on the nature of
uncertainty inherent in the dynamics of the spot rate.
It is not difficult to show that equation (4) together with the Black-Scholes formula establish an

equivalence between RND and the volatility smile (e.g. Cincibuch, 2003). Because of this equivalence, it
is possible to view the RND estimation as a curve fitting problem for the volatility smile. From the OTC
market, only volatilities for three benchmark deltas are readily available11 . Therefore, it is natural that
methods interpolating these three points by a quadratic function have been suggested in the literature.
While Shimko (1993) proposed fitting volatilities by the quadratic function in the volatility - dollar

exercise price space, Malz (1997a) put forward the quadratic function for the smile in the volatility - delta
space. The transformation between dollar exercise prices and deltas is highly non-linear and therefore
both approaches lead to quite distinct RNDs. In particular, the distributions differ in their fat-tailedness.
Moreover, Malz (1997a) noted that while the quadratic smile fitted into the dollar space is problematic
since it might break non-arbitrage constraints for the volatility function, the quadratic smile in delta
space avoids this problem. On the other hand, Cincibuch (2003) showed that a quadratic smile in the
delta space significantly underestimates volatilities implied by exchange traded options that were deeply
out or in the money.
The method which we used for the OTC data is a straightforward generalization of Malz’s approach

(Malz, 1997a) and it is documented in Cincibuch (2003). This method allows for controlling the degree
of fat-tailedness of the estimated distribution. The market uses hedging deltas instead of dollar exercise

8E.g. on CME only twelve per year.
9Under the Black-Scholes model the spot rate follows a geometric brownian motion and the terminal RND is lognormal.

The volatility parameter is the only unobservable variable in the Black-Scholes pricing formula, and therefore this formula
can be used as mapping that converts volatilities into prices and vice versa even, in situations where the Black-Scholes
assumptions do not hold.
10The functional relationship between excercise prices and volatilities is often called the volatility smile. Under the

Black-Scholes model the volatility smile degenerates into a horizontal line.
11Usually, volatilities for excerice prices corresponding to 0.25, approximately 0.50 and 0.75 delta of call options are

quoted.
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prices as an alternative measure of option’s moneyness and the transformation between these two 12

involves the cumulative density function of the standard normal distribution. Thus, another ’generalized
delta’ is obtained by replacing the transforming standard normal by another distribution. In particular,
by changing the standard deviation of the transforming normal distribution from unity to G we get a class
of moneyness spaces. Then G is optimized so that the quadratic function interpolating the OTC quotes
fits better peripheral options traded on an organized exchange (CME). It follows from the functional
forms involved that higher G makes the resulting RND more fat-tailed.
To enhance the robustness of our conclusions we present the results of extensive testing of the hy-

potheses for a spectrum of values of the fat-tailedness parameter G. It turns out that at least for the
dollar - yen, raising G above 1 significantly improves this fit. It is sufficient, though, to consider G
approximately between 2 and 10. It shown in the original paper that the appropriate value of parameter
G may enhance the interpolation of the OTC prices by information from exchange traded quotes.

7 Monte Carlo Experiment

Empirical results presented in Section 4 point to a possible misspecification of the Fama regression. We
take this as evidence that vindicates alternative approaches to testing for the UIP, such as those based
on implied RNDs introduced in this paper. In order to strengthen this point we design a Monte Carlo
experiment in which we let hypothetical realizations of the exchange rate in our sample dates be drawn
from RNDs implied by option prices at these dates. We generate 20000 vectors of ’future’ spot rates and
run the regression (8) on these data sets.
These artificial data sets were drawn under assumptions of forward rate unbiasedness, so if the esti-

mator of b is consistent, it should approach unity in large samples. We therefore gradually increase the
length of the sample to investigate the small sample properties of the estimator. We display the results in
Figure 2. The horizontal axis measures the number of observations used for regression estimates and the
vertical axis shows the estimate of the coefficient b. The crosses present the mean of 20000 estimates of
b, while the punctuated lines show the 95% confidence intervals of these means. We observe a downward
small sample bias, which seems to be disappearing only slowly. Following Krasker (1980), we argue that
this small sample bias is likely caused by leptokurtic nature of the sampling distributions.

8 Tests of zero means of expectation errors
The traditional approach to testing market efficiency exploits only exchange rate and interest rate data
and imposes a normality restriction on the market’s expectations. This assumption seems inappropriate
given widespread awareness among market participants of the non-normality of returns. The purpose of
this section is to introduce a straightforward test of forward rate unbiasedness, which relaxes the normality
assumption and takes into account this market opinion of the uncertainty inherent in the dynamics of
the spot rate. This opinion is contained in prices of currency options and can be summarized by implied
RNDs.
For the purpose of the test we have to address the fact that for each observation ST there is a different

theoretical distribution ΛRNt,T . Next, we describe the standardization procedure that allows using familiar
statistical methods. Provided that theoretical cumulative density functions ΛRNt,T are increasing and if the
12 It is worthwhile to emphasize that using the options’ delta as a measure of moneyness is a pure market convention.
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hypothesis ST ∼ ΛRNt,T holds then the random variables ΛRNt,T (ST ) are uniformly distributed on the unity
interval. Further, let Φν denote a cumulative distribution function of the normal distribution with zero
mean and variance ν2. Then, it is obvious that Φ−1ν

¡
ΛRNt,T (ST )

¢ ∼ N ¡0, ν2¢ . This transformation yields
normalized deviations from theoretical means13.
Moreover, since the observations are sampled more often than option and forward contracts mature,

we have to control for the moving average serial correlation. For serial correlation adjustment, which is
described in Section 11.1, it is useful to keep the standard deviation of the normalized errors proportional
to the number of business days between date t, when a contract was concluded, and its maturity day
T . Let this number is denoted by τ (t) . Its dependence on t stems from the fact that interbank market
contracts like 1M are of fixed maturity only approximately. Weekends and holidays introduce some
irregularities. Therefore, the normalized errors are constructed as

²
τ(t)
t ≡ Φ−1τ(t)

¡
ΛRNt,T (ST )

¢
(12)

from which the hypothesis follows that

²
τ(t)
t ∼ N

³
0, τ (t)

2
´
. (13)

It is shown in Proposition 1 of Section 11.1 that under modest assumptions regarding the nature
of serial correlation it is possible to give the explicit form of the covariance matrix var (²τ ) and to
transform the observations ²τ(t)t into mutually independent and standard normally distributed variablese²τt ∼ N (0, 1).
We employ a t-test to examine whether E (e²τ ) = 0 in the case of the full sample (with removed serial

correlation), and whether E (²τ ) = 0 in the case of individual subsamples of uncorrelated observations. In
fact, one could use the z-test instead of the t-test, because the theoretical variance is known, but by using
only the t-test we try to diminish the dependence on how accurately the distributions’ dispersion is esti-
mated. We return to the more general hypothesis of similarity of the theoretical and actual distributions
in Section 9.
In the first row of Table 2, we demonstrate that the average excess return in the available samples is

indeed insignificantly different from zero, assuming normality of i.i.d. regression error terms. Relaxing
the normality and i.i.d. of regression error terms, the last three rows of the table contain confidence
intervals for the mean of standardized excess returns for various RNDs estimation methods. Evidently,
the confidence intervals center around zero irrespective of the method or sample. We thus conclude that
the inability to reject the assumption of forward rate unbiasedness is a robust finding with respect to the
RNDs estimation method. In fact, even if the more demanding z-test is used instead of the t-test, there
would be no rejections.

9 Tests of distributions equality

In this section, we present the results of three tests of the stronger hypothesis that empirical distributions
are well approximated by estimated implied RNDs. Thus, we test rationality and risk neutrality of
investors more broadly, since the forward rate unbiasedness concerns only the first moments of the
13 In fact, the mapping Φ−1ν ◦ ΛMt,T generalizes the procedure of standardization of heteroskedastic observations. Indeed,

for ΛMt,T = N
¡
µT ,σ

2
T

¢
and ν = 1, it would boil down to the usual linear transformation: Φ−1ν ◦ ΛMt,T (ST ) = ST−µT

σT
.
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distributions. By accepting this hypothesis we would also accept the forward rate as an unbiased predictor
of the future exchange rate. Indeed, the converse is not true. If the hypothesis about implied RNDs were
rejected, the forward rate unbiasedness would not be yet excluded.
The tests outlined here are used both for full sample data transformed into identically independently

distributed random variables and also for subsamples containing non-overlapping contracts with variant
theoretical terminal distributions. In the case of subsamples of serially uncorrelated observations the
random variables Yj stand for the actual realizations of the spot rate ST and the cumulative distribution
functions Ψj represent estimated risk neutral distributions ΛRNt,T .
Before the tests can be used for the full sample, the serial correlation has to be accounted for. It is

done in the very same way as described in Section 8. In this case, the random variables Yj stand for the
standardized excess returns e²τ(t)t and all the functions Ψj collapse to the cumulative density function of
the standard normal distribution.
Let Y1, Y2, ..., Yn be independent random variables and let the theoretical cumulative distribution

functions Ψ1,Ψ2, ...,Ψn of the random variables are all increasing. Let yj denote a realization of the
variable Yj , j = 1, 2, ..., n. Then, given that Yj ∼ Ψj , the random variable Ψj (Yj) is uniformly dis-
tributed on the unity interval. Also, because Yj are independent variables, the transformed observations
Ψ1 (y1) ,Ψ2 (y2) , ...,Ψn (yn) represent independent random draws from the uniform distribution. Further,
divide the unity interval into k subintervals Ui =

­
i−1
k ,

i
k

¢
, i = 1, 2, ...k. Then, provided that Yj ∼ Ψj ,

events Ψj (Yj) ∈ Ui are multinomially distributed with equal probabilities p0 = 1
kof outcomes. We

tested the hypothesis H0 : Yj ∼ Ψj for each j using Pearson and generalized likelihood ratio χ2 tests for
multinomial distributions.
Let Ni be the number of actual realizations that fell into the i− th bracket, i.e.

Ni = |{Ψj (yj) ∈ Ui ; j = 1, 2, ..., n}| .
Then the Pearson’s test statistics is

Qk =
kX
i=1

(Ni − np0)2
np0

.

Under the H0 the statistics Qk is asymptotically χ2 distributed with k− 1 degrees of freedom. If α is an
approximate size of the test and χ21−α (k − 1) is (1− α) th quantile of χ2 (k − 1) then the test is

Reject H0 if and only if Qk > χ21−α (k − 1) .
The alternative way for testing the hypothesis is to use a variant of the generalized likelihood ratio test,

which is also a uniformly powerful test. The likelihood ratio for the hypothesis of equality of distributions
can be computed as

λ = nn
kY
j=1

µ
p0
Nj

¶Nj

.

Under the H0 the statistic −2logλ is asymptotically χ2 (k − 1) distributed.
These two tests stem from transforming the problem of distributions equality to testing parameters of

the multinomial distribution. The dimension of this multinomial distribution as well as the values of its
parameters are variables of choice; in other words, we may arbitrarily select the number of quantiles and
their relative sizes. A legitimate question would then be, what is the optimal multinomial distribution.
In fact, there is a trade off; a lower number of quantiles would leave more data for each distribution’s
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parameter and thus it would lead to a more powerful test. On the other hand, a small number of quantiles
might poorly capture the distribution’s shape. For example, a test based on two equal quantiles would
focus only on the equality of the distributions’ medians. Therefore, it might cause an acceptance of the
hypothesis for two quite distinct distributions with the same median. At the same time due to the relative
abundance of data this test would lead to a rejection of the hypothesis for two quite similar, perhaps
economically equivalent distributions with only slightly different medians. For the sake of completeness
however, we present results for the whole range of quantiles. The roughest division we present is into five
quantiles, which corresponds to the four-dimensional multinomial distribution. Note that the estimated
distributions are also parametrized by four parameters (three for the quadratic smile, one for the G-
space). Regarding the other extreme we recall the rule of thumb for the Pearson test, which stipulates
that the theoretical frequencies should be at least six. This would imply for our number of observations
the finest division into more than two hundred quantiles. However, we deem that such fine quantiles do
not correspond to the nature of the problem. We therefore report a maximum of eighty quantiles, which
leads to theoretical frequencies of about fifteen.
The third test we used to assessH∗0 does not hinge on the multinomial distribution. It is a Kolmogorov-

Smirnov one sample test. If JN is the empirical cumulative distribution function then the test statistic
is

sup
t
|JN (e²τt )−Φ1 (e²τt )| . (14)

The critical values for this statistic are tabulated.
Table 3 exhibits p-values of Pearson’s test and the likelihood ratio for the full sample for different

values of the fat-tailedness parameter G and number of quantiles k. The last column shows p-values
for the Kolmogorov-Smirnov test. Tests are strong enough to distinguish comfortably between different
parameters G. For example, the hypothesis that actual observations are consistent with the Black-Scholes
lognormal model is comfortably rejected. The empirical distribution of the full 1247 observations into
40 quantiles under the lognormal hypothesis is also plotted on Figure 3 and the reason for the rejection
is obvious. In reality, more observations fell to the extreme quantiles than was predicted by lognormal
distribution. Further, the record for G = 1 shows that neither Malz RND’s tails are not heavy enough
(Figure 4 illustrates this case). This bodes very well for the efficiency of the option market, because
as Cincibuch (2003) found, the Malz’s extrapolation of the OTC benchmark volatilities underestimates
the prices of CME options with extreme strikes, i.e. the that market thinks that the actual distribution
of returns allows for extreme events more often than predicted by Malz’s function. Only tails of the
distribution with G = 2 are already heavy enough to conform to the data. Figure 5 reveals that for this
calibration the theoretical distribution leads to a relatively good approximation of the uniform density.
In fact, if the sizes of the tests are set to 10%, only this distribution is not rejected. In addition, this
parametrization is not completely arbitrary, it was found by Cincibuch (2003) that this parametrization
also corresponds relatively well to option prices for extreme strikes traded on the CME.
For the sake of completeness, in Table 4 we report a summary of results for the mutually correlated

subsamples of the serially uncorrelated observations. However, it is obvious that the power of the test is
quite low for 100 or fewer observations in a single sample.
It emerges from the results of the three tests that the available evidence does not contradict the

hypothesis that the implied RND is a good approximation of the true distribution of expectation errors.
Moreover, the tests of zero means of expectation errors developed in the preceding subsections are more
focused and therefore we argue that they are more powerful as concerns the proper UIP hypothesis. In
any case, a variety of tests check for the robustness of our results.
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10 Conclusion

The purpose of the paper was to point at the potential significance of non-restricted distributions of ex-
pectations in testing for the UIP hypothesis. We corroborate the idea that the conventional tests, which
in their majority tend to reject the hypothesis, may have erred by using overly restrictive assumptions
about the shape of the distribution of error terms, or by simply misspecifying the reduced form regres-
sion relationship. As an alternative, we propose using risk-neutral probability distributions implied by
currency option prices. First, we illustrate one such method on a case when the UIP apparently seemed
to give misleading predictions about the future development in the dollar-yen exchange rate, yet the
kurtosis and partly the skewness of the estimated distribution was such that the observed realization of
the exchange rate was not an extreme event. Further, the Monte Carlo simulation shows a significant
small sample bias if the traditional regression is run on data drawn from estimated RNDs.
With these results as motivation, we set on rigorous testing of the UIP hypothesis using implied

RNDs from OTC option prices. We test whether the observed expectation errors center around zero
(as they should under rationality and risk neutrality) using their estimated RNDs. We cannot reject
the hypothesis in either of our samples. The same result was obtained in an attempt to pool all the
observations into one sample by estimating its covariance structure. By way of comparison, we ran the
same tests using the distributional assumptions of the expectation errors assumed by the conventional
regression. We cannot reject the hypotheses either, which contrasts with simple regression estimates.
Then we proceeded to the more general hypothesis that actual realizations of the exchange rate are

drawn from the implied risk-neutral distribution. A novel way of transforming of the realized spot rates
allowed for application of established statistical tests for distributions equality. If the RNDs implied by
options are estimated reliably then this course represents a direct testing procedure for joint hypothesis
of the option market rationality and risk neutrality. We performed three tests of distributions equality
on a class of RNDs estimates based on the OTC data. We found that the tests are strong enough to
discriminate among the different parametrizations, which differ mainly in a way how they extrapolate
implied distributions’ tails. Moreover, we realized that there is a RNDs parametrization which well
corresponds with realized spot rates. Essentially, we found an empirical support for market rationality
and risk neutrality.

11 Appendix

11.1 Serial correlation

With data sampled daily and a one month prediction horizon, a serial correlation problem arises. In
order to exploit all the information contained in the data we model the covariance structure induced by
overlapping contracts. Specifically, we assume that the correlation between two normalized errors ²τ(t)t

and ²τ(s)s , which were derived in Section 8, is proportional to the size of their mutual overlap. Because
variables ²τ(t)t are normally distributed according (13), there might be differences of some pure random
walk with normal disturbances with some variance σ2, e.g. eSt+1 = eSt+ ²1t with ²1t ∼ N ¡0,σ2¢ iid. Under
this notation ²τ(t)t = eSt+τ(t)− eSt we might write ²τ(t)t =

Pτ(t)−1
i=0 ²1t+i. The following proposition gives the

explicit form for the covariance matrix of the vector ²τ =
³
²
τ(1)
1 , ²

τ(2)
2 , ...²

τ(N)
N

´
if day to day spot rate

changes ²1t are uncorrelated and homoskedastic.
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Proposition 1 If cov
¡
²1t , ²

1
s

¢
= σ2 for t = s and if cov

¡
²1t , ²

1
s

¢
= 0 for t 6= s then

var (²τ ) = σ2Ω,

where components of the matrix Ω are given by

Ωt,s = max [0,min [t+ τ (t) , s+ τ (s)]−max [t, s]] .

Proof. Let δts be components of the identity matrix, δts = 1 for t = s and δts = 0 for t 6= s. Then

{var (²τ )}t,s = cov
³
²
τ(t)
t , ²τ(s)s

´
= cov

τ(t)−1X
i=0

²1t+i,

τ(s)−1X
j=0

²1s+j

 =

=

τ(t)−1X
i=0

τ(s)−1X
j=0

cov
¡
²1t+i, ²

1
s+j

¢
=

τ(t)−1X
i=0

τ(s)−1X
j=0

cov
¡
²1t+i, ²

1
s+j

¢
=

=

τ(t)−1X
i=0

τ(s)−1X
j=0

σ2δt+i,s+j = σ2
t+τ(t)−1X
m=t

s+τ(s)−1X
n=s

δm,n =

= σ2max [0,min [t+ τ (t) , s+ τ (s)]−max [t, s]] .

We assume that under the hypothesis we might write ²τ ∼ N ¡0,σ2Ω¢ . Since Ω is a real symmetric
matrix there exists a matrix P such that D = P−1ΩP is diagonal. Moreover P is such that P−1 = P

0

and therefore D = P
0
ΩP. It follows that ²τP ∼ N ¡0,σ2D¢. Because the matrix Ω is positive definite,

all its eigenvalues on the diagonal of D are positive and we can have a diagonal matrix F such that
Fij =

1√
Dij

for i = j. Let define e²τ = ²τPF. Then one can easily realize that
²̃τ ∼ N ¡0,σ2I¢ . (15)

where I denotes an identity matrix.
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Estimates and 5% confidence
intervals for coefficients of

Sample intercept forward premium R2 F-stat p-val
# 1 (103 obs.) 0.01 (-0.00,0.02) -2.88 (-6.54,0.78) 0.024 2.43 0.12
# 2 (102 obs.) 0.01 (-0.00,0.02) -2.95 (-6.74,0.84) 0.023 2.39 0.13
# 3 (102 obs.) 0.01 (-0.00,0.02) -2.80 (-6.40,0.80) 0.023 2.37 0.13
# 4 (101 obs.) 0.01 (-0.00,0.02) -2.78 (-6.41,0.85) 0.023 2.32 0.13
# 5 (101 obs.) 0.01 (-0.00,0.02) -3.17 (-6.77,0.44) 0.030 3.04 0.08
# 6 (99 obs.) 0.01 (-0.00,0.03) -3.27 (-7.19,0.65) 0.028 2.75 0.10
# 7 (98 obs.) 0.01 (-0.00,0.03) -3.09 (-6.89,0.70) 0.027 2.61 0.11
# 8 (96 obs.) 0.01 (-0.00,0.02) -2.89 (-6.71,0.93) 0.023 2.25 0.14
# 9 (92 obs.) 0.01 (-0.00,0.02) -2.94 (-6.73,0.86) 0.026 2.36 0.13
# 10 (86 obs.) 0.01 (-0.00,0.03) -2.91 (-7.22,1.39) 0.021 1.81 0.18
# 11 (82 obs.) 0.01 (-0.00,0.03) -2.89 (-7.20,1.43) 0.022 1.77 0.19
# 12 (70 obs.) 0.00 (-0.01,0.02) -1.28 (-5.41,2.85) 0.006 0.38 0.54
# 13 (50 obs.) 0.01 (-0.01,0.03) -0.58 (-6.38,5.21) 0.001 0.04 0.84
Full (1247 obs.) 0.01 (-0.00,0.01) -2.20 (-4.66,0.26) 0.003 3.79 0.05

Table 1: Estimates of the traditional regression
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Estimation method
Confidence interval
for the full sample

Intersection of confidence
intervals for subsamples 1 - 13

Residuals from constrained
regression for a = 0 and b = 1

(-0.000, 0.001) (-0.007, 0.004)

Lognormal RND (-0.040, 0.089) (-0.175, 0.149)
Malz’s RND (-0.041, 0.082) (-0.174, 0.139)

Generalized ∆-space RNDs
(Intersections of conf. intervals

for G = 2, 3, ..., 11)
(-0.044, 0.072) (-0.172, 0.127)

Table 2: Confidence intervals (5%) for the mean of excess returns
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80 quantiles 40 quantiles 20 quantiles 10 quantiles 5 quantiles Kolmogorov
Method Pearson LR Pearson LR Pearson LR Pearson LR Pearson LR Smirnov
Lognormal 0.02 0.06 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03
G = 1 0.04 0.05 0.13 0.15 0.05 0.06 0.05 0.05 0.02 0.02 0.06
G = 2 0.22 0.23 0.60 0.55 0.26 0.23 0.47 0.48 0.10 0.10 0.21
G = 3 0.13 0.13 0.71 0.72 0.14 0.14 0.20 0.20 0.09 0.10 0.15
G = 4 0.25 0.25 0.21 0.25 0.15 0.17 0.12 0.11 0.03 0.03 0.07
G = 5 0.11 0.08 0.27 0.26 0.22 0.23 0.05 0.05 0.01 0.01 0.06
G = 6 0.01 0.01 0.08 0.09 0.05 0.05 0.06 0.06 0.01 0.01 0.05
G = 7 0.00 0.00 0.15 0.15 0.09 0.09 0.06 0.06 0.01 0.01 0.05
G = 8 0.01 0.01 0.15 0.16 0.04 0.04 0.06 0.06 0.01 0.01 0.05
G = 9 0.01 0.01 0.11 0.12 0.06 0.06 0.07 0.07 0.01 0.01 0.05
G = 10 0.02 0.02 0.09 0.10 0.06 0.07 0.09 0.09 0.01 0.01 0.06
G = 11 0.02 0.03 0.10 0.11 0.08 0.08 0.07 0.07 0.01 0.01 0.06

Table 3: Pearson, generalized likelihood ratio and Kolmogorov-Smirnov tests of equality of distributions.
P-values for the full sample with 1247 observations.
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10 quantiles 5 quantiles
Method Pearson LR Pearson LR
Lognormal 2 of 13 3 of 13 0 of 13 0 of 13
G = 1 2 of 13 2 of 13 0 of 13 0 of 13
G = 2 2 of 13 2 of 13 0 of 13 0 of 13
G = 3 2 of 13 2 of 13 0 of 13 0 of 13
G = 4 2 of 13 2 of 13 0 of 13 0 of 13
G = 5 2 of 13 2 of 13 0 of 13 0 of 13
G = 6 2 of 13 2 of 13 0 of 13 0 of 13
G = 7 2 of 13 2 of 13 0 of 13 0 of 13
G = 8 2 of 13 2 of 13 0 of 13 0 of 13
G = 9 2 of 13 2 of 13 0 of 13 0 of 13
G = 10 2 of 13 2 of 13 0 of 13 0 of 13
G = 11 2 of 13 2 of 13 0 of 13 0 of 13

Table 4: Pearson’s and generalized likelihood ratio tests of equality of distributions for non-overlapping
subsamples
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Figure 1: Example: The UIP and implied distribution
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Figure 2: Estimates of b in Monte Carlo
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Figure 3: Full sample, method: logn, divison in 40 quantiles
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Figure 4: Full sample, method: 1, divison in 40 quantiles
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Figure 5: Full sample, method: 2, divison into 40 quantiles
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