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Abstract

We reconsider the issue of capital income taxation in an OLG perpetual
youth framework. We show that the long run zero tax result does not gen-
erally hold. Besides the “life-cycle” motive pointed at by recent works, this
work unveils two other forces pushing toward the taxation of capital income:
the disconnection between generations and the relationship between the gov-
ernment and the individual intertemporal discount rates. We also show as a
special case, that the non zero tax result applies also if age dependent taxes
are not available, provided that the life-cycle behavior is ruled out, which
cannot happen in the standard OLG models. Finally, it emerges that unfair
life insurance contracts do not qualitatively affect the results.

Journal of Economic Literature Classification Numbers: E62, H21.
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1 Introduction

Since the seminal works by Judd [14] and Chamley [6], there has been a
growing number of contributions dealing with the issue of dynamic optimal
capital income taxation. In particular, these two authors argued that the
long run tax rate on capital income should be zero. This somehow strik-
ing result has been clarified only recently by a few works that have, on the
one hand, highlighted the strict similarity with the more traditional static
optimal taxation principles and, on the other hand, formally derived the
conditions under which it can hold. In particular, Judd [15] has shown that
the zero tax rate result descends directly from the fact that a tax on capital
income is equivalent to a tax on future consumption increasing over time:
thus, capital income should not be taxed if the elasticity of consumption is
constant over time. However, as far as infinitely lived representative agent
(ILRA) models are concerned1, while this condition is necessarily true in the
steady state, along the transition path, instead, it holds only if the utility
function is (weakly) separable in consumption and leisure and homothetic
in consumption. Moreover, both De Bonis and Spataro [9] and Erosa and
Gervais [10]2 point out that, when separability is assumed out, the violation
of the zero tax principle stems from the well known Corlett-Hague [8] rule:
since leisure cannot be taxed directly, the second best solution is to tax (sub-
sidize) the good that is more (less) complementary to it, i.e. consumption.

A further insight into the mechanism driving the mentioned result has
been given by the adoption of the Overlapping Generation models with life
cycle (OLG-LC). As shown by a number of authors3, in this setup a non
zero tax rate result holds in general, even in the long run, since the optimal
consumption and labor plan is not generally constant over life, because of
life-cycle behavior4.

1See Atkeson et al. [1]. Among other articles focusing on the optimal capital income

taxation problem see Jones et al. [13], dealing with human capital accumulation, and

Chari et al. [7], Zhu [22] and Yakadina [21], dealing with stochastic frameworks.
2Both articles adopt the primal approach to the Ramsey problem; however, the former

deals with an ILRA model, while the latter with an overlapping generation one.
3See Atkinson and Sandmo [2], Erosa and Gervais [11] and Garriga [12]; for a review

see Renström [19] and Erosa and Gervais [10].
4In this model a crucial condition for the government to implement the “second best”

policy is the availability of age-dependent taxes. The other central hypothesis, which is

common to all the models mentioned above, is the presence of a “commitment technology”,

in order to guarantee the credibility of the capital taxation announced policy.
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The aim of this work is to extend the analysis of optimal dynamic tax-
ation by considering an OLG-perpetual youth (PY) model à la Blanchard
[4] with growing population5. This extension enables us to encompass the
issues mentioned above which, up to now, have been studied separately or
under special assumptions. In fact by adopting the PY framework we can
deal with overlapping generations, finite (expected) life-time horizon (via
a constant instantaneous probability of death), life-cycle behavior and in-
vestigate the role played by both the intertemporal and intergenerational
discount rates of the policymaker.

As known, the PY framework implies the existence of life insurance con-
tracts, which individuals subscribe in order to offset the risk of dying; in
this paper we allow also for a special kind of imperfection in the credit mar-
ket, namely unfair life insurance contracts: this means that, in principle,
individuals in each period can receive insurance payments that are different
(and typically lower) than the actuarially fair ones.

The main results can be summarized as follows: first, similarly to the
ILRA models, if the intertemporal elasticity of consumption is constant and
the OLG mechanism is absent, the zero tax rule obtains even in the presence
of a probability of dying.

Second, when the government is more (less) impatient than individuals
(so that public and private intertemporal discount rates differ), the former
finds it optimal to levy positive (negative) taxes due to Pigouvian correction
motives: in fact, by doing this it lowers (increases) the current rhythm of
over (under) accumulation of capital. However, when contrasting the ben-
efits of such policies with the associated deadweight losses of distortionary
taxation, we end up with an asymmetric result as for the long run: in fact,
when the government is more patient, the current value of the distortion
generated by capital income taxation tends to zero, so that it is still optimal
to subsidize future consumption; on the contrary, when the government is
less patient, such a distortion explodes to infinity, so that taxation must
be zero. The asymmetry in the result is however ruled out in the special
case of a logarithmic utility function, that displays a unitary intertemporal
elasticity of substitution, since the change of future interest rates induced
by the tax does not affect the planned consumption pattern6.

5Buiter [5] and Weil [20] amend the Blanchard’s model by allowing for population

dynamics.
6The result is obtained by arguments equivalent to those in Lansing, even if the con-
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Third, differently from the ILRA and similarly to the OLG-LC models,
another source of non zero taxation in the long run stems from the dynamics
of the intertemporal elasticity of consumption, which, in the PY framework
is not necessarily constant at the steady state. However, even if this con-
dition does not apply (and thus even in the absence of life cycle behavior)
and the Pigouvian motive is ruled out, we find that taxation can be non
zero if the government intergenerational discount factor changes through
time. This element is obviously absent in ILRA models, but is also usually
excluded in the OLG-LC framework, since up to now it has been taken as
constant; such assumption can be well reasonable with finite lifetime horizon
and invariant population (see, for instance, Erosa and Gervais [11]), since
the share of each cohort is typically constant through time. But this is
not the case in the PY framework if the birth rate is non zero, in that the
demographic weights of each cohort decrease over time even if the net pop-
ulation growth rate is zero. Thus, while in the existing OLG-LC models the
violation of the Judd result depends crucially on the life-cycle behavior of
consumption, in the present work the mere existence of the OLG mechanism
is sufficient for delivering it. In fact, we show that when agents are perpet-
ually young, in the sense that the intertemporal allocation of consumption
and leisure at each date does not depend on age, contrary to Erosa and
Gervais [11] and Garriga [12], in this (special) case in which the life-cycle
motive is ruled out, the non zero result applies. Moreover, such result holds
even if age-dependent taxes are not available.

It is worth noting that the non zero result presented here sheds light on
the scope of capital income taxation, which is the correction of suboptimal-
ity of the market allocation of an OLG economy, due to the disconnection
between generations7. In fact, in absence of altruism, in each instant new
individuals (i.e. the new born) get into the economy, whose welfare is not
cared for by the existing generations.

Finally, we also show that the case of unfair life insurance contracts
changes only the capital income tax level but not the qualitative result
presented above.

The work proceeds as follows: in the first section we present the model
and derive the equilibrium conditions for the decentralized economy. Next,

clusion is different, given that Lansing [17] assumes the equality between the public and

private discount rates.
7The relevance of the disconnection has been firstly analyzed by Weil [20].
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we characterize the Ramsey problem by adopting the primal approach. Fi-
nally, we present the results by focusing on the new ones. Concluding re-
marks and a technical appendix will end the work.

2 The model

We consider a neoclassical-production-closed economy in which there is a
large number of agents and firms.

Private agents, who are identical in their preferences, differ as for their
date of birth s; moreover they undergo a probability of dying in each period,
equal to δ; since in each period there is also a fraction α of new born, the
population growth rate is equal to α− δ ≡ n. As a consequence, a cohort of
individuals born at date s, at time t has cardinality:

αe−δteαsN (0)

with N (0) the size of population at time 0 and s ≤ t. Now, by set-
ting N (0) equal to one, without loss of generality, the size of the whole
population, at time t, is:

N (t) =
∫ t

−∞
αeαs−δtds = ent.

Furthermore, individuals offer labor and capital services to firms by tak-
ing the net-of-tax factor prices, w̃ (s, t) and r̃ (s, t) as given. Firms, which are
identical to each other, own a constant return to scale technology F satisfy-
ing the Inada conditions and which transforms the factors into production-
consumption units. Finally, the government can finance an exogenous and
constant stream of public expenditure G, by issuing internal debt B(t) and
by raising proportional taxes both on interests and wages, referred to as
τk (s, t) and τ l (s, t) respectively. Notice that taxes can in principle be con-
ditioned on the date of birth8.

8This strong assumption can be ruled out if one eliminates life cycle behavior, since the

individual growth rate of consumption is then independent of individual characteristics.

Our results, in fact, do not rely on it.
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2.1 Private agents

The agents’ preferences can be represented by the following instantaneous
utility function:

U (c (s, t) , l (s, t))

where c (s, t) and l (s, t) are instantaneous consumption and labor supply
respectively of individuals of cohort s, as of instant t. Such utility function is
strictly increasing in consumption and decreasing in labor, strictly concave,
and satisfies the standard Inada conditions.

Agents maximize the (expected) discounted sum of lifetime utils by
choosing the optimal time path of consumption (savings) and labor hours
under the budget constraint.

That is:

max
{c(t),l(t)}∞s

∫ ∞

s
e−(β+δ)(t−s)U (c (s, t) , l (s, t)) dt (1)

sub ȧ (s, t) =
(
r̃ (s, t) + δ̃r (s, t)

)
a (s, t) + w̃ (s, t) l (s, t)− c (s, t) (2)

lim
t→∞

a (s, t) e−
∫ t

s (r̃(s,v)+δ̃r(s,v))dv = 0, a (s, s) = a

where β is the intertemporal discount rate, a the agent’s wealth; the
notation

.

() indicates the derivative with respect to time, while r̃ (s, t) =
r (t)

(
1− τk (s, t)

)
and w̃ (s, t) = w (t)

(
1− τ l (s, t)

)
are the net-of-tax factor

prices. Notice that δ̃r is the instantaneous flow of income due to insurance
(net of capital taxes)9; moreover, δr, the gross value, may differ from the
actuarially fair value δ, due to market imperfections.

The FOCs of this problem imply:

Uc(s,t) = p (s, t) (3)

Ul(s,t) = −p (s, t) w̃ (s, t) (4)

−
[
r̃ (s, t) + δ̃r (s, t)

]
p (s, t) = ṗ (s, t)− (β + δ) p (s, t) (5)

9We assume here that the government taxes also life insurance payments; however, our

results do not change qualitatively if this assumption is abandoned.
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where the expression Ui(t) is the partial derivative of the utility function
with respect to argument i = c, l at time t and p (s, t) is the current value
shadow price of wealth. According to such conditions, it can be shown that
the growth rates of consumption and labor are:

ċ

c
=

(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

) 1
θc
− θcl

θc

l̇

l
(6)

l̇

l
=

1
θl

[(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

) (
1− θlc

θc

)
−

.
w̃(s,t)
w̃(s,t)

]
1− θclθlc

θcθl

, (7)

with θj = −Ujjj
Uj

, j = c, l, the elasticity of the marginal utility and θij =

−Uijj
Ui

. Notice that, in case the utility function is additively separable in con-

sumption and labor, the growth rates above are: ċ
c =

(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

)
1
θc

and l̇
l =

(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

)
1
θl

.

2.2 Firms

Since firms run their business in a perfectly competitive framework, in each
instant they hire capital and labor services according to their market prices
(gross of taxes) and in order to maximize current period profits. This means
that, for each firm i:

dF
(
Ki (t) , Li(t)

)
dKi (t)

= r (t) (8)

dF
(
Ki (t) , Li(t)

)
dLi (t)

= w (t) . (9)

Due to the assumed identity of the firms and the presence of a CRS
technology, such conditions can also be expressed for the economy as a
whole, in per capita terms:

fk(t) = r (t) (8’)

fl(t) = w (t) , (9’)

where l(t) = L(t)
N(t) =

∫ t
−∞ νp (s, t) l (s, t) ds, in which νp (s, t) = αe−α(t−s)

is the weight of cohort s in the whole population at period t.
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2.3 The government and market clearing conditions

The government fixes an amount of exogenous public expenditure and fi-
nances it through taxes on income and by issuing debt. There is no con-
straint on the amount of debt (neither on the levels nor on the growth
rates)10. We assume that the government has access to a commitment tech-
nology that prevents it from revising the announced path of distortionary
tax rates whenever the possibility of lump sum taxation arises11. Thus, one
obtains the usual condition:

.
B (t) = r (t) B (t) + G− T (t) . (10)

Finally, since the market clearing condition implies that, at each date,
the sum of capital and debt equal the aggregate private wealth, that is:

A (t) = K (t) + B (t) , (11)

then, eq. (10) can be also written as

∫ t
−∞ αeαs−δt

[ .
b (s, t)−

(
r̃ (s, t) + δ̃r (s, t)

)
b (s, t) + τ l (s, t) w (t) l (s, t)

+ (δr − δ) b (s, t) + τk (s, t) (r (t) + δr (s, t)) k (s, t)− g
]
ds = 0. (12)

3 The Ramsey problem

Since the primal approach to the Ramsey [18] problem consists in the maxi-
mization of a direct utility function through the choice of quantities (i.e. al-
locations)12, a key point is restricting the set of allocations among which the

10The only constraint on the debt law of motion is the usual no-Ponzi game condition,

namely: lim
t→∞

B (t) e
−

t∫
r

0
(v)dv

= 0, and the starting condition B (0) = B.
11This point concerns the “time inconsistency” problem affecting optimal taxation when

a dynamic set up is considered: typically, the government has incentives to deviate from the

announced (ex-ante) second best policy, upon achieving the instant in which the policy

is phased in; in fact this happens because the stock of accumulated capital ex-post is

perfectly rigid and now should be taxed more heavily, since this would mimic a lump sum

taxation. The commitment hypothesis implies also that the capital tax at the beginning

of the policy is given, that is, fixed exogenously at a level belonging to the (0, 1) interval.
12See Atkinson and Stiglitz [3]; on the other hand, the “dual” approach takes prices and

tax rates as control variables (see Chamley [6] and Renström [19] for some examples).
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government can choose to those that can be decentralized as a competitive
equilibrium. Thus, in this paragraph we define a competitive equilibrium
and the constraints that must be imposed to the policymaker problem, in
order to achieve such a competitive outcome.

The first constraint can be obtained as follows: first, by taking eq. (2)
and multiplying both sides by e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv, we can write the following

expression:

d
[
a (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

= e−
∫ t

s [r̃(s,v)+δ̃r(s,v)]dv [w̃ (s, t) l (s, t)− c (s, t)] ;

next, by multiplying both sides by p (s, t) and exploiting the individuals’
FOCs (3 to 5) we obtain:

p (s, s) e−
∫ t

s [r̃(s,v)+δ̃r(s,v)−(β+δ)]dv
d

[
a (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

=

−e−
∫ t

s [r̃(s,v)+δ̃r(s,v)]dv [Ul (s, t) l (s, t) + Uc (s, t) c (s, t)] ⇒

−Uc (s, s)
d

[
a (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

= e−(β+δ)(t−s) [Ul (s, t) l (s, t) + Uc (s, t) c (s, t)] ;

finally, by integrating out and exploiting the individual’s transversality
condition, we get:

∫ ∞

s
e−(β+δ)(t−s)

[
Uc(s,t)c (s, t) + Ul(s,t)l (s, t)

]
dt = a (s, s) Uc(s,s), ∀s, (13)

which is referred to as the “implementability constraint”13.
As for the second constraint, writing eq. (2) in the following way:

ȧ (s, t) = [r (t) + δr] a (s, t) + w (t) l (s, t)− c (s, t)

−τk (s, t) [r(s, t) + δr] a(s, t)− τ l (s, t) w(t)l (s, t) ; (14)

integrating over the population to get the aggregate wealth:
13Such constraint must be satisfied ∀s. In the rest of the paper we assume for simplicity

that a (s, s) = a is equal to zero for each cohort.
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A (t) =
∫ t

−∞
a (s, t) αe−δteαsds;

then, deriving with respect to time, one gets:

.
A (t) = a (t, t) αe−δteαt︸ ︷︷ ︸ +

=0

∫ t

−∞

d
[
a (s, t) αe−δteαs

]
dt

ds

where a (t, t) is the initial wealth of individuals, which is supposed to be
zero.

The expression above can be written as:

.
A (t) = −δA (t) +

∫ t

−∞

.
a (s, t) αe−δteαsds, (15)

so that, including (14) into (15), we obtain:

.
A (t) = −δA (t) + [r (t) + δr]A (t)− [r (t) + δr]

∫ t

−∞
τk (s, t) a (s, t) αe−δteαsds+

(16)

− C (t) + W (t)−
∫ t

−∞
τ l (s, t) w(t)l (s, t) αe−δteαsds,

where C (t) and W (t) are aggregate consumption and gross aggregate
wages, respectively. Note that the sum of the two integrals in eq. (16) is
the total amount of revenues, T (t) .

Finally, recalling the law of motion of aggregate debt, exploiting the
market clearing condition and substituting the expression for T (t) of (10)
into (16), we get:

.
K (t) = (δr − δ) (K(t) + B (t)) + r (t) K (t) + W (t)− C (t)−G, (17)

which can also be written as:

∫ t
−∞ αeαs−δt

[ .
k (s, t)− (δ + r (t)) k (s, t)− w (t) l (s, t)

9



− (δr − δ) (b (s, t) + k (s, t)) + c (s, t) + g] ds = 0. (18)

Such expression is usually referred to as the “feasibility constraint”.
We can now give the following definition:

Definition 1 A competitive equilibrium is: a) an infinite sequence of
policies π =

{
τk (s, t) , τ l (s, t) , b (s, t)

}∞
0

, b) allocations {c (s, t) , l (s, t) , k (s, t)}∞0
and c) prices {w (t) , r (t)}∞0 such that, at each instant t: b) satisfies eq.
(1) subject to (2), given a) and c); c) satisfies eq. (8′) and eq. (9′); eqs.
(18) and (12) are satisfied.

Such allocations are often referred to as “implementable”.
In the light of the definition given above, the following proposition holds:

Proposition 1 An allocation is a competitive equilibrium if and only if it
satisfies implementability and feasibility.

Proof. The first part of the proposition is true by construction. The
reverse (any allocation satisfying implementability and feasibility is a com-
petitive equilibrium) is provided in Appendix A.

3.1 Solution

Let us suppose that the policy is introduced at the end of period t0.

The problem the policymaker faces can be stated as follows14:

max
{c(s,t),l(s,t),k(s,t)}∞0

∫ t

−∞
µg

∫ ∞

max(s,t0)
e−γg(t−max(s,t0)) {U (c (s, t) , l (s, t)) +

λ [Uccc (s, t) + Ull (s, t)]
}

dtds

sub

∫ t

−∞
µp (s, t)

[ .
k (s, t)− (δ + r (t)) k (s, t)− w (t) l (s, t) +

− (δr − δ) (b (s, t) + k (s, t)) + c (s, t) + g] ds = 0, ∀t > t0,

14We incorporate the implementability constraint into the maximand, λ being the mul-

tiplier on the implementability constraint.
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lim
t→∞

k (s, t) e
−

∫ t
max(s,t0)(r̃(s,v)+δ̃r(s,v))dv = 0, a (s, t0) given, ∀s

where µg (s, t) and γg are the weight that the government attaches to
the generation born in year s and the government discount rate, respec-
tively15, µp = αeαs−δt the size of cohort s and λ is the current value
multiplier associated to the implementability constraint, defined as λ (t) =
λe(γ−(β+δ))(t−max(s,t0)).

Now, by differentiating the feasibility constraint we get16:

c (s, t) = −
.
k (s, t)+(δ + r (t)) k (s, t)+w (t) l (s, t)+(δr − δ) (b (s, t) + k (s, t))−g.

By substituting it into the problem and by applying the calculus of
variations method, the problem can be stated as follows17:

max
{l,k}∞0

∫ t

−∞
µg

∫ ∞

max(s,t0)
e−γg(t−max(s,t0))

{
U

(
c
(
k,

.
k
)

, l
)

+ λ
[
Ucc

(
k,

.
k
)

+ Ull
]}

dtds.

Thus, the solution for k is18:

e−γg(t−max(s,t0))
{
µgUc

[
1 + λ (1 + Hc)

]
(r + δr)− γgµgUc

[
1 + λ (1 + Hc)

]
+

.
µgUc

[
1 + λ (1 + Hc)

]

+µg

(
Ucc

.
c + Ucl

.
l
) [

1 + λ (1 + Hc)
]
+ µgUc

.

λ (1 + Hc) + µgUcλ
.

Hc

}
= 0

(19)
15Note that, in principle, the former parameter may depend also on t. Moreover, we

omit the government budget constraint since, by Walras’ law, it is satisfied if the imple-

mentability and feasibility constraints hold.
16This step hinges on the assumption that

.

b (s, t) −
(
r̃ (s, t) + δ̃r (s, t)

)
b (s, t) +

τ l (s, t) w (t) l (s, t) + (δr − δ) b (s, t) + τk (s, t) (r (t) + δr (s, t)) k (s, t)− g = 0.

This means that the public balance is divided into “generational” accounts, the dynam-

ics of which is controlled by the government via labor and capital income taxes specific to

each generation.
17From now onward, we omit both the s and t indexes, when it does not generate

ambiguity.
18See Appendix B for the solution conditions of this problem. Note that the interiority

of the solution is guaranteed by the Inada conditions. However, the FOCs are necessary

but not sufficient due to the possible non convexity of the implementability constraint.

The solution for l is omitted for brevity.
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where the term Hi = Uiii+Ujij
Ui

is what is usually referred to as the “gen-
eral equilibrium elasticity”. Now, by dividing expression (19) by Ucµg

[
1 + λ (1 + Hc)

]
,

and rearranging terms, we get:

.
c

c
=

1
θc

(
r + δr − γg

)
+

.
µg

µg

−

.

λ (1 + Hc)[
1 + λ (1 + Hc)

] +
λ

.
Hc[

1 + λ (1 + Hc)
] − θcl

l̇

l

 .

Substituting for the growth rate of consumption stemming from the in-
dividual optimization condition (eq. (6)), we get the expression for the
optimal capital income tax:

τk=
1

fk + δr

[
γg − (β + δ)

]
−

.

λ (1 + Hc)[
1 + λ (1 + Hc)

] − .
µg

µg

− λ
.

Hc[
1 + λ (1 + Hc)

]
 .

(20)

4 Discussion of the results

We now discuss the results concerning capital income taxation, in both the
short and the long run.

Preliminarily, it is worth noting that eq. (20) does not yield an explicit
formula for τk, since Hc depends upon the tax rate itself19.

Next, eq. (20) shows that the imperfection in the insurance market does
not determine whether the tax rate is different from zero or not, since it
appears only in the denominator.

We can now state the following proposition:

Proposition 2 If the economy converges to a steady state, along the tran-
sition path, for t > 0, the tax on capital income is in general different from
zero unless

.
Hc = 0,

.
µg = 0 and γg = (β + δ). At the steady state the capital

income tax is different from zero, unless a)
.

Hc = 0,
.
µg = 0 and γg ≥ β + δ

or b) γg < β + δ and
[
γg − (β + δ)

]
=

.
µg

µg
.

19Moreover, we do not have any condition ensuring that the tax rate will be in the (0, 1)

interval, while we would suspect capital taxes to get sticking at the interval boundary for

a (finite) period of time since the introduction of the policy. However, in the rest of the

work we maintain the assumption of interiority of the equilibrium tax rates, for t > 0.
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Proof. As for the transition phase, the proof is straightforward by

inspection of eq. (20), which, by substituting for
.

λ, becomes:

τk =
1

fk + δr

{[
γg − (β + δ)

]
1 + λ (1 + Hc)

−
.
µg

µg

− λ
.

Hc[
1 + λ (1 + Hc)

]}
.

As for the steady state, to better understand the implications of the
model, we distinguish three cases, according to whether the policymaker
discount rate γg is equal, higher or lower than the individual one.

1. γg = β+δ. In this case λ → λ, so that τk = 1
fk+δr

{
−

.
µg

µg
− λ

.
Hc

[1+λ(1+Hc)]

}
.

2. γg > β + δ. In this case λ →∞, and τk = 1
fk+δr

{
−

.
µg

µg
−

.
Hc

(1+Hc)

}
.

3. γg < β + δ. λ → 0 and τk = 1
fk+δr

[[
γg − (β + δ)

]
−

.
µg

µg

]
.

From the proposition above, it emerges that there are four independent
forces determining the level of τk: 1) the dynamics of Hc

( .
Hc

)
; 2) the

difference between the government (γg) and individual (β+δ) intertemporal
discount factors; this also determines the third factor, i.e. 3) the dynamics
of λ, the multiplier on the implementability constraint; 4) the dynamics of
the social intergenerational weight (

.
µg); .We can now briefly comment the

role of the factors determining the optimal tax rate.

4.1 The role of the utility function

Factor 1) has been widely discussed in the literature:
.

Hc = 0 obtains if
one assumes that the utility function is homothetic in consumption and
(weakly) separable in consumption and leisure. Otherwise, future consump-
tion is taxed/subsidized if consumption demand is getting more/less inelas-
tic. Moreover, as recalled above, this factor marks the difference between
the ILRA and the OLG-LC models as for the steady state result: in fact, in
OLG models (and also in the PY version) Hc can vary with age even at the
steady state. However, as shown in eq. (20) , even in the absence of a life
cycle, in the present model the non zero tax rule can still apply.
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4.2 The role of the time discounting rates

Factors 2) and 3) can be discussed together, since they are both dependent
on the relationship between the government and individual time discount
rates. For simplicity, let us assume that

.
µgand

.
Hcare equal to zero. If

γg = β + δ (or δ = 0 and γg = β), then there is no scope for capital income
taxation, either along the transition path or at the steady state (see Erosa
and Gervais [11]). The difference between γg and (β + δ), instead, opens
the way to a Pigouvian correction. For the case of β + δ > γ, individuals
are discounting the future at a rate that is higher than the government
one. As a consequence, since they are consuming at a too high rate, the
government finds it optimal to subsidize capital, that is, future consumption.
The same reasoning, with opposite conclusions, applies in the second case
(β +δ < γ). In both situations, however, it is worth noting that the tax rate
is inversely proportional λ, which is usually interpreted as the (current value
of the distortion) brought about by non lump-sum taxation. As expected,
this relationship shown that, in general, increasing the capital income tax
worsens the overall deadweight loss. However, in the first case this parameter
tends to zero, while it gets bigger towards infinity in the other case. As a
consequence, in the long run, when λ decreases through time, there is still
room for subsidizing future consumption (i.e. current capital income). On
the other hand, when λ raises exponentially to infinity, the distortionary
effect overwhelms the welfare improvement due to the Pigouvian correction.
Hence, the government, which cares relatively less about the present than
individuals do, finds it optimal to announce a zero capital income tax for
the long run. The only exception for such asymmetry in the result is the
case of a logarithmic utility function, with Hc = −1. In fact, since the
utility function displays a unitary intertemporal elasticity of substitution,
the substitution and the income effect generated by an interest rate variation
(due to taxation) cancel out. Hence, the change of future interest rates, that
is, the change of the relative prices of future consumption, does not distort
the individual consumption/saving allocation. As a consequence, the long
run tax can be positive and equal to γg−(β+δ)

fk+δr
.

4.3 The role of the intergenerational discount factor

As for factor 4), its role can be isolated by supposing γ =(β+δ) and
.

Hc = 0.

Then, τk = −
.
µg
µg

fk+δr
, which is different from zero provided that µg, the weight
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assigned to each cohort by the government, is constant through time. This
assumption is made in the existing OLG-LC models (see, in particular, Erosa
and Gervais [11] and Garriga [12]: this element, together with the equality
between the government and the individual intertemporal discount rates,
leads to zero taxation in the absence of life cycle, i.e.

.
Hc = 0. However, this

is typically not the case in this set up. Let us consider the situation in which
the social intergenerational weight is equal to the actual demographic weight
of each cohort within the population, i.e. µg = µp

ent . Given our assumption
of a constant probability of death δ and a constant birth rate α, the relative
size of each cohort is decreasing through time, so that

.
µg

µg
= α for each

cohort and, hence, the tax is τk = α
fk+δr

. This new result clarifies that
an independent source of taxation is represented by the “disconnection” of
the economy, which is typical of OLG models: in fact, given the dynamics
of µg, the government discriminates future consumption in favour of the
present one; under a different perspective, one can note that at each date
individuals tend to oversave relatively to what could maximize welfare, since
they do not take into consideration the new born of the economy. In fact
these individuals at each date provide extra resources for redistributing (at
least the burden of taxation) among the existing generations (it is easy to
show that, if individuals were altruistic towards their descendants, the JC
zero tax rule would be restored).

Moreover, at least at the steady state, such tax does not depend on age.
Erosa and Gervais have shown that, when age-dependent taxes are not avail-
able, the zero tax result does not generally apply in OLG models, since new
constraints featuring the problem are violated (that is, the equality of the
marginal rates of substitution of consumption among individuals of differ-
ent cohorts). In our case, however, it is easy to show that such constraints
(which take the form of the equality of consumption growth rates among
individuals) are satisfied in the absence of life-cycle behavior (i.e. when
.

Hc = 0)20.

As for the case of γg 6= β + δ,when γg > β + δ, along the transition path
both factors drive to a positive taxation of capital income. As for individual
consumption, the effects of such a policy are, ceteris paribus, to lower its
growth rate with respect to that obtaining without taxation. On the other

20This property of the model can be verified by looking at eq. 6, which is constant

for each individual if θc and θcl are constant among individuals, and by reckoning that

Hc = − (θc + θcl) .
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hand, in case γg < β+δ, there is a contrasting force at work: in fact, since the
government is more forward looking (i.e. less impatient) than individuals,
it tends to subsidize future consumption; therefore, the sign of the tax will
depend on which force prevails. As for the steady state, in the first case
factor 1) becomes irrelevant because the cost of using distortionary taxation
tends to infinity. In the second one, instead, τk = 1

fk+δr

(
γg − β − δ + α

)
,

which is zero only if γg = β − n. As a consequence, the zero tax result
emerges in two very special cases, i.e. when γg = (β − n) or γg =(β + δ)
and α = 0.

5 Conclusions

We tackle the issue of taxing capital income in a perpetual youth model
à la Blanchard (i.e. an overlapping generation framework with individuals
facing a constant probability of dying) by applying the primal approach to
the Ramsey problem. Although less handleable than the traditional ones,
this extension enables us to provide a more general model which, on the
one hand, encompasses most of the existing results obtained in separated
frameworks, and, on the other hand, delivers new insights.

The thrust of the paper is that several forces are at work leading to a
non zero tax rate, in both the short and the long run.

Namely, we unveil the presence of four forces: a) the dynamics of the
general equilibrium elasticity of consumption (Hc); b) the difference between
the government and individual intertemporal discount rates, which also de-
termines c) the dynamics of the distortionary cost of taxation as for the
government; d) the dynamics of the social intergenerational discount rate;
in the case this corresponds to the actual share of each cohort within the
population, this leads to a positive taxation of capital income proportionally
to the birth rate.

The first factor has been widely discussed in the literature: given the
equivalence between capital income and future consumption taxation, it is
convenient to hit the latter relatively more if the intertemporal elasticity of
consumption is decreasing. The economic intuition underlying the role of
factor b) and c) is the following: the different degree of patience between
the policy maker and individuals generates an incentive for the former to
levy positive or negative taxes on capital for a Pigouvian correction; pre-
cisely, when the policymaker is less (more) patient than individuals, it finds
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it optimal to levy a positive (negative) tax on capital income, so as to lower
(increase) the current consumption growth rate. However, the benefits of
such policy must be confronted with the cost of using distortionary taxa-
tion. In fact, the positive taxation policy leads to an explosive distortionary
effect, which prevents the government to implement it. The only case in
which such distortionary effect does not play any role is that of unitary elas-
ticity of substitution of consumption (i.e. logarithmic utility): in fact, in
this case future change of the interest rate caused by policy does not dis-
tort the consumption pattern chosen by individuals (since the income and
substitution effects cancel out): hence, the government has room again for
positive taxation of interest income.

Finally, factor d) while being absent in both ILRA models and in OLG
ones with constant population, plays a crucial role when, as it is likely to
happen in the real world, the dynamics of the population is more compli-
cated. We show that, in a PY framework, both the size and the demographic
weight of cohorts decrease, so that a varying social intergenerational dis-
count rate appears a sensible rather than an ad hoc assumption. In fact,
when the latter equals the actual share of each generation, a positive tax
on capital income turns out to be optimal. This occurs because individu-
als, who are disconnected to each other, do not take into account the fact
that the arrival of the new born, at each date provides extra resources for
an intergenerational redistribution of the burden of taxation. On the other
hand, by reckoning this possibility, the government reduces the oversaving
of individuals by hitting future consumption proportionally to the birth rate
of the economy.

Concluding, from the analysis above it turns out that the violation of
the Chamley Judd rule does crucially depend upon the assumption of OLG
(without altruism) and/or finite lifetime horizon. In fact such devices gener-
ate a difference between the optimal rate of individual consumption growth
and that resulting in the absence of taxation, which thus gives room to
corrective public intervention. However, differently from the existing OLG-
LC models, the presence of life cycle behavior is not a necessary condition
for the non zero tax result, which obtains even if the government and in-
dividual discount rates are equal and the general equilibrium elasticity of
consumption is constant.
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6 Appendix A: Proof of Proposition 1

Proof. Since a competitive equilibrium (or implementable allocation) satis-
fies both the feasibility and the implementability constraints by construction,
in this Appendix we demonstrate the reverse of Proposition 1: any feasible
allocation satisfying implementability is a competitive equilibrium.

Suppose that an allocation satisfies the implementability and the fea-
sibility constraints. Then, define a sequence of after tax prices as follows:
w̃ (s, t) = −Ul(s,t)

Uc(s,t)
,

[
r̃ (s, t) + δ̃r (s, t)

]
=

(
β + δ −

.
p(s,t)
p(s,t)

)
, with p (s, t) =

Uc(s,t),∀s and ∀t, and a sequence of before tax prices as: fk(t) = r (t) and
fl(t) = w (t) . As a consequence, by construction such allocation satisfies
both the consumers’ and firms’ optimality conditions.
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The second step is to show that the allocation satisfies the consumer bud-
get constraint. Take the implementability constraint and substitute Uc(s,t),

Ul(s,t) by using the expressions above:

∫ ∞

s
e−(β+δ)(t−s) [p (s, t) c (s, t)− w̃ (s, t) p (s, t) l (s, t)] dt = a (s, s) p(s, s), ∀s

then, by exploiting the expression for
.
p (s, t) we get21:

∫ ∞

s
p(s, s)e−(β+δ)(t−s)e−

∫ t
s [r̃(s,v)+δ̃r(s,v)−(β+δ)]dv [c (s, t)− w̃ (s, t) l (s, t)] dt = a (s, s) p(s, s).

Finally, by eliminating p(s, s) and defining c (s, t) − w̃ (s, t) l (s, t) =
r̃ (s, t) q (s, t)− .

q (s, t) we get:

−
∫ ∞

s

d
[
q (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

dt = a (s, s)

which holds if q (s, t) = a (s, t) and lim
t→∞

a (s, t) e−
∫ t
0 [r̃(s,v)+δ̃r(s,v)]dv = 0.

Finally, as for the public sector budget constraint, by substituting the
expression for consumption obtainable by the individual budget constraint
into the feasibility constraint, we get:∫ t

−∞ αeαs−δt
[ .
k (s, t)− (δ + r (t)) k (s, t)− w (t) l (s, t)− (δr − δ) (b (s, t) + k (s, t))

−ȧ (s, t) +
(
r̃ (s, t) + δ̃r (s, t)

)
a (s, t) + w̃ (s, t) l (s, t) + g

]
ds = 0.

Finally, by defining b (t) = k (t) − a (t) and exploiting the definition of
taxes, the previous expression becomes:∫ t

−∞ αeαs−δt
[ .
b (s, t)−

(
r̃ (s, t) + δ̃r (s, t)

)
b (s, t) + τ l (s, t) w (t) l (s, t)− g

+(δr − δ) b (s, t) + τk (s, t) (r (t) + δr (s, t)) k (s, t)
]
ds = 0,

which is eq. (12) in the text.
21The equations below hold ∀s.
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7 Appendix B: The “calculus of variations” method

We now sketch the strategy adopted for solving the Ramsey problem pre-
sented in Section 3.1.

Following Kamien and Schwartz [16], suppose the problem has the form

max
∫ ∫

F (t, s, x (t, s) , xt (t, s) , xs (t, s)) dsdt

where the symbol xy indicate the partial derivatives of variable x with
respect to y (x can be also a vector of variables). The Euler equation for
such a problem is the following:

Fx − ∂Fxt/∂t− ∂Fxs/∂s = 0.

Moreover, in case the problem contains also a (double) integral con-
straint, such as:∫ ∫

q (t, s, x (t, s) , xt (t, s) , xs (t, s)) dsdt = 0,

this constraint can be appended to the integrand with a multiplier func-
tion λ (t, s), so that, if the solution x∗ maximizing F subject to the constraint
does exist, then there is a function λ (t, s) such that x∗ satisfies the Euler
equations for ∫ ∫

(F + λq) dsdt.
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