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Abstract

Theory tells us that output, the capital stock and the user cost of capital are related. From the
capital accumulation identity, it also follows that the capital stock and investment have a long-run
proportional relationship. The dynamic structure thus implies a multi-cointegrating framework,
in which separate cointegrating relationships are identifiable. This has been used to justify the
estimation of investment equations embodying a reduced-form long-run relationship between
investment and output (rather than between the capital stock and output). In this paper, a new
investment equation is estimated in the full structural framework, exploiting a measure of the
capital stock constructed by the Bank, and a long series for the cost of capital. A CES production
function is assumed, and a well-determined estimate of the elasticity of substitution is obtained
by a variety of measures. The robust result is that the elasticity of substitution is significantly
different from unity (the Cobb-Douglas case), at about 0.45. Overidentifying restrictions on the
long-run relationship are all accepted. Although the key long-run parameter (the elasticity of
substitution) is highly robust to alternative specifications, single-equation investment
relationships may obscure the dynamics. There is evidence that the Johansen method is
oversized, but given this, a test for excluding the capital accumulation identity from the
investment equation is much better than using a single-equation ECM.

Key words: Investment, capital stock, identification, multicointegration.

JEL classification: C32, E22.






Summary

Neoclassical theory tells us that a profit-maximising firm’s desired capital/output ratio depends
on the real user cost of capital: this is the long-run equilibrium relationship. On the steady-state
growth path, firms remain at the optimal capital/output ratio by re-investing to offset depreciation
and steady-state growth in the capital stock. With a stationary depreciation rate, this implies that
in long-run equilibrium the investment/capital ratio is fixed. This is a second long-run
equilibrium relationship.

In this paper we exploit a measure of the capital stock constructed at the Bank, and a real user
cost of capital measure that explicitly incorporates relative prices. We relax the standard
assumption of Cobb-Douglas technology that restricts the elasticity of substitution to unity, and
instead use a constant elasticity of substitution (CES) production function that nests
Cobb-Douglas as a special case. As described above, our theoretical framework implies two
long-run equilibrium relationships: one between capital, output, and the real user cost; and the
other between investment and capital. These theoretical long-run relationships imply restrictions
on the model. They also imply a single reduced-form long-run relationship between investment,
output and the real user cost.

We estimate this system as a vector error-correction mechanism (VECM) using the Johansen
method. Our two long-run relationships form the basis for the two cointegrating vectors in the
model. The model is statistically well specified and the overidentifying theoretical restrictions on
the model are accepted. A key result is that the elasticity of substitution between labour and
capital in production is significantly lower than unity at a little under 0.45. This estimate is
obtained by a variety of measures and estimation techniques, and, as judged by external
estimates, is plausible. This is a remarkable result, because most studies of aggregate investment
have found it hard to find a significant relationship of the correct sign between investment and the
user cost.

The model also tells us how investment and capital respond when the system is not in long-run
equilibrium. Investment responds when the capital/output ratio is away from equilibrium, while
capital responds when the investment/capital ratio is away from equilibrium. This last result is
consistent with a log-linearisation of the capital accumulation identity. As with other aggregate
investment models, the model takes a long time to reach the long-run equilibrium.

Despite the robust nature of our elasticity of substitution estimate, different estimation methods
yield different results for the dynamics of investment. In particular, single-equation estimation
results suggest that investment responds to disequilibrium in the investment/capital ratio, while
our system estimation results suggest it does not respond to the investment/capital ratio.

We investigate this puzzle using simulations. We specify a model assuming the VECM results
are correct, and use it to generate artificial data series for the four variables. Investment models
are estimated on the artificial data using the single-equation and system techniques, and tested to
see which technique correctly estimates the ‘true’ model. The system estimation is better at
correctly estimating the dynamics than single-equation estimation, but rejects the restrictions



from the theoretical long-run relationships too often. The single-equation results find the
investment/capital ratio to be significant because they implicitly estimate the reduced-form
long-run relationship, rather than the two separate long-run relationships.



1. Introduction

This paper re-examines the aggregate business investment relationship within a neoclassical
framework. This is a bold enterprise, as it is a commonplace that the effect of user cost is usually
utterly insignificant on aggregate data. But over our sample, with new data and a new treatment
of the investment decision in a cointegrating framework, we uncover a robust estimate of the user
cost elasticity, consistent with a sensible estimate of the elasticity of substitution.

The empirical background is that researchers have found it difficult to find a role for the user cost
of capital. Thus in research into UK investment published over the past decade," the roles of
variously debt, profits, capacity utilisation and uncertainty have been used to augment Q and
other models of investment.® Moreover, researchers have often been uncertain how reliable
estimates of the capital stock are. Since Bean (1981), it has been common to exploit the
steady-state relationship between investment and the capital stock and model long-run
investment, rather than capital. However, this approach conflates capital accumulation and
investment dynamics into one equation.

In this paper, we take advantage of some new data and a new dynamic specification to return to
the aggregate business investment equation. We use a real user cost of capital series,
incorporating a weighted average cost of finance, that we push back to 1970. Moreover, although
ONS publish a series for the stock of capital, it was suspended in the 2002 National Accounts
Blue Book. Work at the Bank of England has been undertaken into the construction of new
estimates, and it is an equivalent measure to the ONS’ that we use here.””) We then pay particular
attention to the endogenous dynamics of the system. The reason why this is an issue is that the
capital stock is determined by the capital accumulation identity (CAI). This identity is a
difference equation explaining the growth of capital. It follows that there are steady-state
implications for the relationship between investment and capital. Thus there are two relationships
that will hold in steady state. One is a relationship between the capital stock and its drivers
(output and the user cost); this follows from the first-order conditions of the profit-maximising
firm (FOC). The other is the steady state of the accumulation identity. In a non-stationary
environment it may be helpful to estimate both of these relationships. As investment and the
capital stock are linked via accumulation, we have an example of multicointegration. There are
also interesting questions about the loadings (error correction coefficients) of the variables in the
system, which have implications for the dynamics. And to anticipate the results, we find that we
can successfully estimate a user cost neoclassical model of investment where the key parameter,
the elasticity of substitution, is both well determined and plausible.

(1) For example, Bakhshi and Thompson (2002), Carruth, Dickerson and Henley (2000), Cuthbertson and Gasparro
(1995) and Price (1995). Oliner ef al (1995) estimate ‘traditional’ and Euler equation models for US investment,
none of which do particularly well.

(2) Tobin’s Q can be derived within the standard neoclassical framework.

(3) See Oulton (2001) and Oulton and Srinivasan (2003); the latter explains the methodology employed to create our
series. This work has also involved the construction of a volume index of capital services (VICS), as an alternative to
the conventional stock measure. Each measure has its own uses, as discussed in Oulton (2001) and Oulton and
Srinivasan (2003), and VICS is especially useful in productivity and growth accounting. However, the appropriate
measure of investment in the VICS approach is not the aggregate (National Accounts) measure, but one in which,
like the VICS, the amount of investment in each asset is weighted together by its rental price. Moreover there is no
simple analogue of the user cost.



In the next section we ask what the first-order conditions and accumulation identity imply for the
long run. Then we spell out the implications for estimation within a vector error correction
(VECM) framework, and estimate the model in Sections 4 and 5. Section 6 explores the finite
sample properties of the methods with a Monte Carlo exercise, and Section 7 concludes.

2. Theory; first-order conditions and identities

The key long-run relationship explaining investment in the neoclassical model is the first-order
condition (FOC) for capital from a profit-maximising firm. Given stringent conditions on the
time paths of prices, one type of capital, a CES production function with constant returns to scale,
quadratic costs of adjustment to growth in the capital stock and labour augmenting technical
progress, an investment equation may be derived™ that is driven by the static first-order
condition,

k=y+60—-or 1)

where lower case denotes natural logs, K is the capital stock, Y output, £1is a constant and R
denotes the real user cost of capital (RCC). ®) &is the elasticity of substitution between factors of
production. Note that investment does not appear anywhere in the relationship: rather, the

long run relates capital (the cumulated depreciated stock of past investment flows) to output and
RCC.

The CALI states that the stock of capital in any period is equal to the depreciated stock from the

previous period plus (gross) investment. It is shown in (2), where /; denotes investment during

time ¢, K, is the capital stock at end time 7 and o the depreciation rate.®

Kt+1 = (1 - §)Kt + [t+1 (2)

Bean (1981) uses this to substitute for capital. Taking logs, (2) implies that in the steady state'”

k=i—In(+¢") 3)

1.®

where g* denotes the growth rate of capita By substituting (3) into equation (1), we derive a

long-run relationship (4) which links investment to output and the real user cost.”’

i=y+0—-or+In(d+g") “)

(4) See, eg Chapter VI in Sargent (1979).

(5) The data used in this note are described in the data appendix.

(6) It is assumed investment is installed at the end of the period.

(7) Steady state here is to be interpreted as a constant growth path.

(8) This growth rate, assumed stationary, is driven by the growth in the exogenous variables driving the economy —
for example, total factor productivity or population growth. In the context of a VECM conditioned on a limited
number of endogenous variables, it is a function of the constants.

(9) As g~ and S are stationary, in estimation they can be excluded from the long-run cointegrating vector. Note that

in principle 6 may be non-stationary, perhaps due to asset-level effects: see eg Tevlin and Whelan (2003) or Bakhshi,
Oulton and Thompson (2003).
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This procedure was used in Bakhshi and Thompson (2002). The authors argue the long run will
not take account of past (accumulated) investment ‘gaps’, so they also included capacity
utilisation as an integral control variable.'”

It is helpful to think about this in a cointegrating framework. In what follows we assume that £, i,
yand r are all I(1) variables, which is verified in practice. The FOC (1) defines a long-run
relationship between {k, y, r}, and the CAI (3) also implies that {k, i} cointegrate. This is an
example of multicointegration, a notion introduced by Granger and Lee (1991).
Multicointegration may occur wherever there are stock-flow relationships: for example, between
consumption, income and wealth (as wealth is cumulated savings); or between product sales,
output and inventories. In some cases, such as the latter, it can be helpful to use techniques for
analysing 1(2) series (see Engsted and Haldrup (1999)). However, in our case as k is I(1), (3)

implies that i is also I(1) (or vice versa). This follows from stationary non-zero depreciation.(n)

Thus there are two long-run relationships in the data, (1) and (3), of which (4) is the reduced
form. It will therefore also be a cointegrating relationship. Whether this necessarily enters a
single ECM as a unique relationship depends on the variables included in the cointegrating set;
we return to this shortly.

3. Modelling investment in a VECM framework

From Section 2, we have four endogenous variables, {i, &, y, } and two cointegrating vectors
(CVs) from equations (1) and (3). To re-state, these are:

k=y+60—-or 1)
i=k+y 3a)
where @ and yare constants. In VECM notation our two-CV model can be written as:

AX, =T'(L)AX, , +I1X, , + DD Q)

where L is the lag operator, X is a matrix of I(1) variables, some of which may be weakly
exogenous to the long-run relationship, and D is a set of I(0) variables both weakly exogenous to
and insignificant in the long-run cointegration space. D may contain deterministic terms such as
the constant and trend, and intervention dummies.

(10) Bean (1981) argues that omitting such a variable may not lead to significant biases. Note that output itself is
linked to capital via the production function and therefore incorporates a degree of integral control.

(11) As can be seen from the CAI (2), if o were zero and 7 were I(1) then K would be 1(2). The implicit depreciation
rate is not trended, and passes ADF and Phillips-Perron tests for stationarity.
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For a four-variable, two-vector VECM the long run can be decomposed as the reduced rank form

a, Op I
Ay Gy |:/811 B B /814:| k
ay Uy | By Bun B Puly

Qy Ay r

()

t-1
t-1

In this notation the f3; define the long-run relationships (the cointegrating vectors), and the «; the
response of each variable to the two CVs (the ‘loadings’). Although two vectors exist, it does not
necessarily follow that all variables respond to all vectors. If a loading is zero, we have weak
exogeneity: variable i is weakly exogenous to the parameters in vector j if ¢;; = 0. Note that this
does not imply that the variable is exogenous in the economic sense. From an econometric point
of view, unless £, y and r are all weakly exogenous to the long-run relationships, efficient
estimation requires the VECM to be estimated. But note that if this condition did hold,
single-equation estimation of the long-run parameters in an investment ECM would be unbiased.
Moreover, there are sufficient restrictions to identify all the parameters. We would have

Ai, = a, +dynamics +a,(i,_, —k,_ )+ a,(k_ -y, ,—pr) @)
4. VECM results

In this section we estimate the structure outlined above using the Johansen method. This is
maximum likelihood, and assumes Gaussian errors, so it is important to ensure that the residuals
in the underlying VAR are normal and white noise. In order to determine the lag structure, we
began by estimating an unrestricted VAR."'? Lag order selection criteria suggested two lags,"”
but on the serial correlation criteria, eight lags were required. There is still some evidence of
serial correlation with a significant LM test at six lags, but the test is then short of degrees of
freedom. The residual correlograms reveal no problems. This number of lags implies that the
VAR is almost certainly overparameterised, which reduces the power of the tests. Thus we
should err on the side of caution when determining the number of cointegrating vectors (use
lower critical values). But the consequences of using too low a lag length are usually thought to
be more severe. ¥ On diagnostic failures in a cointegrating context, Hendry and Juselius (2000)
conclude that ‘[s]imulation studies have demonstrated that statistical inference is sensitive to the
validity of some of the assumptions, such as, parameter non-constancy, serially correlated
residuals and residual skewness, while moderately robust to others, such as excess kurtosis
(fat-tailed distributions) and residual heteroscedasticity.” On normality, each equation in the
VAR comfortably passed tests for skewness, but there was evidence for excess kurtosis at the 1%

(12) Results are reported using dummies for 1985 Q1 and Q2 for a spike in investment, which we attribute to the
timing of a pre-announced change in tax allowances. All estimation is over the full sample (1970 Q2 — 2001 Q4),
adjusted for lags.

(13) But information criteria are not helpful in determining lag lengths in cointegrating VECMs: Cheung and Lai
(1993).

(14) There are many Monte Carlo studies of finite sample properties of the Johansen and other tests for cointegration,
examining deviations form the maintained assumptions. Much of this literature is summarised in Maddala and Kim
(1998). Results can be sensitive to the order in which assumptions about constants, trends and exogeneity are tested:
see Greenslade ef al (2002). We are guided by Hendry and Juselius (2000).
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level in the  and i equations, and at the 10% level in the y equation. While the kurtosis result
should lead to caution in interpreting results, there is no reason to suppose inference is fatally
flawed.

4.1 Results for full variable set {i, k, y, r}

Cointegration test results for the four endogenous variables are shown in Table A, and we
conclude that there are indeed 2 cointegrating vectors. With four variables and two cointegrating
vectors, we need two restrictions per vector for exact identification. (1) and (3) allow us to
overidentify both vectors, and these (overidentifying) restrictions are accepted by the data when
we impose them (Table B).!">

Only one parameter of interest is freely estimated in the cointegrating vectors, the elasticity of
substitution, which is found to be 0.443. Remarkably, this is consistent with a wide variety of
single-equation estimates we examined (ie Engle-Granger, DOLS) with varying dependent
long-run variables (capital vs investment): these estimates were all in the range 0.40-0.49.¢

This is in the region of other estimates using labour demand relationships; see eg Barrell and Pain
(1997) who report an estimate of 0.48 for the UK private sector, and Hubert and Pain (2001) who

report well-determined estimates of around 0.5 for a panel of manufacturing industries.""”

Table A: Cointegration tests: {i, k, y, r}

Null hypothesis: Trace Max-Eigen
no. of cointegrating statistic statistic
equations

None 62.6%* 30.3*
At most 1 32.4% 21.6*
At most 2 10.7 10.1

*(**) indicates rejection of null at 5% (1%) significance level.

(15) Note that the fact that investment and capital are found to be cointegrated with a (-1, 1) vector implies that
non-stationary depreciation is not a concern using our data over our sample: this potential concern was noted in
footnote 6. However, if the share of ‘new’ investment goods in total investment continues to increase (eg
computers), this issue is likely to be important in the future.

(16) These results are reported in the annex. In addition, both single-equation and VECM estimates (not reported) of
the elasticity using alternative user cost measures, eg altering the expected change in the relative price term (see data
appendix), were mainly in the range 0.3 — 0.6.

(17) NIGEM’s estimate for the United Kingdom is slightly higher at 0.66 (see NIESR (2002)), while Chirinko et al’s
(2002) panel-based estimate for the United States is slightly lower at 0.40. NIGEM’s estimate for the United States
is 0.57. But all these estimates are significantly different from one, as implied by Cobb-Douglas.
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Table B: Estimated long run of VECM
Sample: 1972:3-2001:4
LR test for binding restrictions (rank = 2):

Chi-square(3) 3.585119
Probability 0.309889
Cointegrating Eq: CointEq1 CointEq2
CAI FOC
r(-1) 0.000000 -0.443255
(0.03273)
[-13.5408]
i(-1) -1.000000 0.000000
y(-1) 0.000000 1.000000
k(-1) 1.000000 -1.000000
Constant -4.032444 0.231877
Error Correction: Ar Ai Ay Ak
CointEq1 loading 1.043869 0.083615 0.020181 -0.005900
(CA) (0.32799) (0.29191) (0.08178) (0.00547)
[ 3.18259] [ 0.28644] [ 0.24676] [-1.07843]
CointEq2 loading 0.462588 0.104653 0.055950 0.000542
(FOC) (0.11291) (0.10049) (0.02815) (0.00188)

[4.09686]  [1.04140]  [1.98722]  [0.28771]

Chart 1: Capital to output ratio Chart 2: Investment to capital ratio
Log scale Log scale
A r-3.8
2.0
- -3.9
- 1.9
18 - 4.0
17 - 41
- 1.6
- 4.2
- 15
T T T T T T T 14 T T T T T T T -4.3
1970 1975 1980 1985 1990 1995 2000 1970 1975 1980 1985 1990 1995 2000

As an informal check, Charts 1 and 2 show the capital to output and investment to capital ratios.
Evidently, the former is far from stationary, and while the latter is very persistent, it is untrended.
These impressions are consistent with the formal statistical results.

Given we have identified cointegrating vectors, we can now examine possible restrictions on the
loadings (error correction coefficients), which will have implications for weak exogeneity (WE)
of the endogenous variables with respect to the two vectors. In VECM analysis, we often have
no priors or interpretation of these restrictions, but in our case there may be something to say.
From Table B, the unrestricted estimates suggest that investment is weakly exogenous with repect
to the first vector (CAI), and capital to the second (FOC); the t-statistics in both cases are very
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close to zero, at just 0.3. Moreover, as we spell out shortly, these zero restrictions are precisely
what we would expect. Although there is no prior reason to expect this, the Ay loading with
respect to CAl is also very insignificant. The resulting estimates when we impose these
restrictions (as well as the CV restrictions) are shown in Table C. The full set of restrictions is
comfortably accepted, and all remaining loadings are now signiﬁcant.(lg)

Table C: VECM estimates with loading restrictions
Sample: 1972:3-2001:4
LR test for binding restrictions (rank = 2):

Chi-square(6) 3.770924
Probability 0.707644
Cointegrating Eq: CointEq1 CointEq2
CAI FOC
r(-1) 0.000000 -0.442782
(0.03323)
[-13.3241]
i(-1) -1.000000 0.000000
y(-1) 0.000000 1.000000
k(-1) 1.000000 -1.000000
Constant -4.032444 0.233540
Error Correction: Ar Ai Ay Ak
CointEq1 loading 1.048345 0.000000 0.000000 -0.007430
CAl (0.32574) (0.00000) (0.00000) (0.00191)
[ 3.21836] [ NA ] [ NA ] [-3.89219]
CointEq2 loading 0.464288 0.075886 0.050343 0.000000
FOC (0.11229) (0.03509) (0.01924) (0.00000)

[4.13490]  [2.16267]  [2.61641] [ NA ]

The loading coefficient on capital to the first vector (CAI) is small numerically. But the estimate
of 0.007 is plausible. To see why this is the case, note that the CAI can be re-written as

AK 1
Ak, v ——=-6+— t))
Kt—l Kt—l
We estimate something similar, namely
Ak, = g, + dynamics +, (i, ~ k. ,) ©

Thus the capital stock ecm is an approximation to the CAL It is an approximation partly because
o1s time varying, and partly because of the lag in the investment flow. We would expect

o, = é . Over the sample period the mean ratio of investment to capital is 0.0178. The long-run

coefficient (¢, adjusted for dynamics) is 0.0176. So this seemingly small loading coefficient is
about what we would expect, given the data.

(18) When we followed Greenslade et a/ (2002) and tested for cointegration imposing these weak exogeneity
restrictions, our results were unaffected; ic we found two cointegrating vectors.

15



The other non-zero loading of the capital accumulation identity is in the user cost of capital
equation. At first sight this looks odd. Why should ‘disequilibrium’ in an identity feed back into
the user cost? But the long run is the steady-state investment to capital ratio, equal to
depreciation and the steady-state growth rate of capital. This means that the relationship can
yield information about what firms are expecting to occur. When the capital stock is increasing
at a rate exceeding the steady state, firms’ investment is high relative to the steady state. And
firms will wish to do this when they expect future developments that are consistent with a higher
capital stock. This interpretation of the VECM results recalls the present-value approach which
has proved useful in several areas in economics: the current account; consumers’ expenditure;
and, most relevantly for our purposes, in the determination of stock prices. One relevant
exposition on equity valuations is in Campbell and Shiller (1988). They show that the linearised
present value of the firm implies that if there is a high dividend to price ratio, agents must be
expecting either high returns on assets in the future, or low dividend growth rates. This follows
purely from the identity and rational expectations. The interesting corollary for our purposes is
that there are implications for ¢, and therefore investment. This was first explored by Abel and
Blanchard (1986), and more recently by Lettau and Ludvigson (2002) and Robertson and Wright
(2002). To understand what is going on, suppose that g exceeds unity. This implies (see, eg
Hayashi (1982)) that the firm must be planning to increase the capital stock, and this is why ¢ is a
sufficient statistic for investment (or more strictly, for the growth in the capital stock). But while
g is indeed increasing in future growth in the capital stock, it is also decreasing in the required
rate of return (and increasing in future dividend payouts, although this is not particularly germane
to our problem). The point is that above-average current growth in the capital stock (or
equivalently, an above equilibrium investment to capital stock ratio) should be associated with
lower future market returns (lower future cost of capital). And this is precisely what is happening
in the VECM. i-k and the user cost are not cointegrated as the ratio does not depend on the user
cost, but the former nevertheless contains some information about future changes in the latter.
When i-k exceeds the long-run value future returns must be expected to fall, which implies a run
of negative rates of change in the user cost.

One interesting way to test this mechanism would be to see if the i-k ratio has predictive power
for excess returns to equities. Table D reports the results of regressing quarterly excess (over the
three-month T-bill rate) returns from the UK FT-Actuaries All-Share Total Return Index at
different horizons on the lagged ratio. To account for autocorrelation induced by overlapping
horizons the Newey-West correction is applied. The table reveals that the ratio does have
predictive power at horizons greater than a year, peaking at around 16 quarters.

Table D: Predictive power of i-k ratio for FTSE excess returns

Forecast Horizon

1 4 8 12 16 20 24
(quarters)
Coefficient -0.08 -0.27 -0.61 -1.00 -1.14 -1.15 -0.95
t-statistic -0.93 -1.64 -3.07 -3.96 -4.12 -4.01 -3.06
R’ 0.01 0.05 0.19 0.29 0.30 0.26 0.18
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The loading on the FOC in the user cost equation is explicable in terms of the long-run
relationship; in the steady state, the marginal revenue product is equated with the user cost.
Equilibration takes place via investment or the return on capital. The positive output loading on
the FOC is less easy to explain. But it is hard to judge details of the dynamic process from the
single-equation loadings, as all the dynamics in the system are important.'” Thus Chart 3 reports
the impulse responses of the endogenous variables to a one standard deviation shock to the real
user cost ().?” The vertical scale is log difference (ie approximately % difference/100), and the
horizontal scale is time periods in quarters. Investment, output and capital all overshoot the
long-run effect and then oscillate around the eventual long-run response. This protracted
oscillation is driven by the loading on CAI in the dynamic user cost equation being greater than
unity. In the next section we exclude insignificant dynamic terms and the loading falls below
one: impulse responses from this more parsimonious system exhibited less oscillation. The
response of capital is fairly slow, with the maximum (overshooting) effect occurring after six
years with the further unwind persisting beyond this. This drawn-out response is mirrored in the
investment and output responses. Part of this is likely to be linked to the fact that the real user
cost does not stabilise until at least 30 quarters after the initial shock.

Chart 3: System impulse responses
Response to Cholesky One S.D. Innovations

Response of R to R Response of | to R
.04 .010

.03+

.02

.01+

B ——

\\] -.015+
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T T T T T T T T T T T T T T
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

-.0104

-.01

Response of Y to R Response of K to R
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-.004
-.0051
006 -.005
-.0074 -.0064
-.008 L L N L L L L L L L I -.007 L L L L LI L L L L L L
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

(19) Full results are available on request.
(20) We use a Cholesky ordering where the user cost is placed first. Clearly, this is an arbitrary identification
scheme. An alternative approach would be to seek to identify structural disturbances.
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4.2 SUR VECM results

We have established the existence of two cointegrating vectors and tested the overidentifying
restrictions implied by theory. Nevertheless, with eight lags the dynamics of the system are
grossly overparameterised. Thus we looked for a parsimonious restriction of the system,
estimated by seemingly unrelated regression (SUR). When we tested down without imposing the
weak exogeneity restrictions, the dynamic capital equation responded to both cointegrating
vectors. However, investment remained weakly exogenous to the capital accumulation
identity.®"

4.3 Results for restricted cointegrating variable sets: irreducible cointegration

Our model predicts that two cointegrating vectors exist among the four variables, and we have
successfully identified them using the overidentifying restrictions from theory. It should be clear,
however, that if we restrict attention to limited sets of variables then it should be possible to
estimate unique vectors, albeit with a possible loss of efficiency. This idea was formalised and
explored by Davidson (1994, 1998) as the notion of ‘irreducible cointegration’. An irreducible
cointegrating relation is one from which no variable can be omitted without loss of the
cointegration property. Such relations may be structural or reduced form. The advantage of the
procedure he suggests is that, under certain circumstances, when the model is overidentified, it
enables the researcher to obtain information about the underlying structure directly from the data.
However, as in our case, this will not always be true: theory is still required. If our approach is
correct, we should find evidence for unique structural and irreducible cointegrating vectors in
each of the sets {k, y, 7} and {i, k}, from (1) and (5). Tables E and F reveal support for this.*?
Moreover, the restrictions on the two vectors are accepted (p values of 0.44 and 0.63 for FOC and
CAl respectively). The pattern, significance and rough magnitudes of the loadings are consistent
with those from the full system. The reduced form (4) also implies that {i, y, r} should constitute
an irreducible cointegrating set. Table G gives the test results. The trace statistic indicates
cointegration at the 5% significance level, and the failure of the max-Eigen statistic to reject the
null of no cointegration is very marginal. So this last result suggests that the Bean reduced-form
specification will work. Nevertheless, the fact that we are estimating a reduced-form
specification means that the adjustment dynamics conflate the capital adjustment and
accumulation.

Table E: Cointegration tests: {k, y, r}

Null hypothesis: Trace Max-Eigen
no. of cointegrating statistic statistic
equations

None 37.1%* 21.9%
At most 1 15.2 14.0

*(**) indicates rejection of null at 5% (1%) level.

(21) Full results are available on request.

(22) The coefficient restrictions are essential for the irreducibility argument, as without them there is evidence that
{y, r} and {k, r} cointegrate, which have no sensible economic interpretations. Thus we effectively argue that

{i-y, r}, {i-k} and {k-y, r} form conditional irreducible cointegrating sets. This is consistent, as mentioned in Section
4.1 above, with the time series for the capital to output and investment to capital ratios.
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Table F: Cointegration tests: {k, i}

Null hypothesis: Trace Max-FEigen
no. of cointegrating statistic statistic
equations

None 18.5% 18.4*

*(**) indicates rejection of null at 5% (1%) level.

Table G: Cointegration tests: {i, y, r}

Null hypothesis: Trace Max-Eigen
no. of cointegrating statistic statistic
equations

None 31.0* 18.9

At most 1 12.1 10.9

*(**) indicates rejection of null at 5% (1%) level.

5. Impulse responses

The results we have obtained thus far imply that investment equilibrates the capital stock
equilibrium condition. This automatically embodies an integral control mechanism through the
capital accumulation identity. The cointegrating relationship implied by the capital accumulation
identity does not equilibrate through the investment equation. However, no variables are weakly
exogenous with respect to either of the cointegrating relationships so efficient estimation requires
full system estimation. But given the theory and results in Table G if the cointegrated set
excludes capital a single equation might be estimated.*> Table H reports the restricted equation.
The loading is very similar to that obtained in the estimation underlying Table G (-0.13 with t
ratio —2.58). Table I reports the comparable results of using the long-run VECM results,

re-estimated parsimoniously by OLS.

(23) The specification in Table H differs from that in the Annex Al as there is no capacity utilisation term, included
for comparability with previous Bank work, but the long-run parameter and adjustment terms are very close.
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Table H: Reduced form
Dependent Variable: Ai
Sample: 1972:3-2001:4
Included observations: 118

Variable Coefficient Std. Error t-Statistic Prob.
Constant -0.497205 0.117819 -4.220088 0.0001

Ai(-2) 0.140725 0.078126 1.801246 0.0744

Ai(-3) 0.243819 0.079059 3.083996 0.0026

Ai(-4) 0.260874 0.079953 3.262853 0.0015

Ar(-1) -0.094995 0.059426 -1.598555 0.1128
i(-1)-y(-1) -0.131323 0.030064 -4.368117 0.0000

r(-1)* 0.445334 0.086550 5.145397 0.0000

D85 1 0.082034 0.029182 2.811107 0.0059

D85 1(-1) -0.145333 0.029200 -4.977103 0.0000
R-squared 0.381631 Mean dependent var 0.008487
Adjusted R-squared 0.336246  S.D. dependent var 0.035217
S.E. of regression 0.028691  Akaike info criterion -4.191229
Sum squared resid 0.089729  Schwarz criterion -3.979905
Log likelihood 256.2825  Durbin-Watson stat 1.999177
Durbin-Watson stat 1.983020  Prob(F-statistic) 0.000000

* Long-run value.

Table I: Single equation from VECM long-run results
Dependent Variable: Ai

Sample: 1972:3-2001:4

Included observations: 118

Coefficient Std. Error t-Statistic Prob.

FOC* 0.102084 0.038902 2.624121 0.0099

Ai(-7) 0.281172 0.076393 3.680612 0.0004

Ay(-5) 0.247692 0.278022 0.890909 0.3749

Ak(-7) -6.339864 1.514348 -4.186532 0.0001
Constant 0.062747 0.014437 4.346145 0.0000

1985:1 dummy 0.076325 0.028761 2.653763 0.0091
1985:1 dummy lagged  -0.153061 0.028776 -5.319031 0.0000
R-squared 0.393568 Mean dependent var 0.008487
Adjusted R-squared 0.360788  S.D. dependent var 0.035217
S.E. of regression 0.028156  Akaike info criterion -4.244620
Sum squared resid 0.087997  Schwarz criterion -4.080257
Log likelihood 257.4326  Durbin-Watson stat 2.163611

* Defined as in Table C. Normalisation on -k.

In order to calculate the different responses of investment and capital under these approaches, we
constructed two models, each of which comprised the dynamic investment equation and the
capital accumulation identity. In specifying these models, we treated y and r as exogenous, as we
are concerned here purely with the investment and capital stock dynamics. Thus the responses
differ from those in Chart 3. Our impulse was a permanent +1% shock to the level of the real
user cost (R).

The estimated response of capital under the two methods is shown below in Chart 4, with
particular periods singled out in Table J. In each case the long-run adjustment of capital reflects
the estimated elasticity of substitution in each model, as it must, which are similar in each model.
Due to the small size of investment relative to the capital stock (investment represents just under
2% of the capital stock), in both cases it takes a considerable length of time to reach the long run.
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Table J: Impulse responses at forecast horizons

Quarters after shock
Response of: 4 8 12
Capital
Reduced form -0.015 -0.043 -0.076
VECM -0.007 -0.027 -0.055
Investment
Reduced form -0.315 -0.512 -0.566
VECM -0.18 -0.363 -0.512
Chart 4: Capital impulse responses Chart 5: Investment impulse responses
% response % response
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Chart 5 shows impulse responses for investment. These converge to the long run rather more
quickly than the capital stock, but near-complete convergence is still protracted. Investment
overshoots in both models. In principle there is no special reason why the two should give
different answers, but as a matter of algebra, the reduced form is quicker partly because the long
run is defined directly in terms of investment.

6. Monte Carlo simulations

We are advocating system estimation. But this may come at the expense of low power or
incorrectly sized test statistics. To investigate this, we carried out a Monte Carlo exercise,
maintaining the restricted structure in the VECM.?* As a priori nothing rules out the possibility
that both cointegrating vectors enter the investment ECM, we conducted three experiments. The
first (Method 1) is to estimate by OLS a single equation embodying both CVs; the second
(Method 2), the single reduced-form CV, again in an OLS regression; the third (Method 3), the
correctly specified VECM, estimated by the Johansen method.

(24) In general we need to ensure that the model is estimated consistently under both the null and the alternative, and
in non-stationary environments this may not always be true. But here we maintain the reduced rank hypothesis
throughout, so this is not an issue.
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We used the parsimonious SUR system® as the underlying data generating process, although we

replace the capital ECM with the capital accumulation identity, where depreciation is stochastic,
calibrating the normal additive error on Jto match the variance of capital stock growth. Shocks
to the other three variables (investment, output and the user cost) were calibrated using the
variances of the errors from the SUR system. Having generated 200 observations for each
variable, we then estimated using each of the three methods outlined above, using the same
sample size as for our model based on UK data (120 observations). We then imposed restrictions
on each of the three estimation methods and tested for whether these were accepted. The results
reported below are based on 10,000 repetitions.

Table K: Monte Carlo results
Method 1 Method 2 | Method 3

Significance level FOC CAI RF OIR CAlsignificant, CAIWEand
significant significant| significant | rejected conditionalon  OIR jointly
OIR accepted rejected

power size power size size size
10% 89.53 73.67 96.18 62.48 0.08 52.18
5% 80.27 62.17 91.15 51.82 0.02 42.02

Estimated elasticity of substitution (actual = 0.443)

Mean 0.432 0.396 0.430
Median 0.410 0.406 0.443
Sth Percentile 0.183 0.201 0.382
95th Percentile 0.593 0.579 0.518

In Table K the first column reports the proportions with which the true hypothesis that the FOC is
significant in a dynamic OLS regression; the power of the test. For a notional size of 5%, it is
80.1%. But the striking result is that the regression fails to reject the true hypothesis that the CAI
should be excluded in the majority of cases.*® That is, the actual size of the test is much greater
than the notional, and inference would be profoundly misleading. By contrast, the reduced-form
approach is highly robust, with a power of 93.1% at a notional size of 5%. In other words, the
single reduced-form cointegrating vector is highly significant in single equations.

The VECM is oversized on the set of long-run overidentifying restrictions (OIR), rejecting the
(true) restrictions just over 50% of the time at the notional 5% significance level. But,
conditional on these restrictions being accepted, the size of the test on the (true) hypothesis that
the CAI should be excluded from the investment ECM is very small at just 0.1%. Thus
single-equation techniques will lead one to falsely include the CAI in the estimated investment
equation in the majority of cases, but this is much less likely to happen in a system context.

(25) Results available on request.

(26) This follows from the fact that the two normalised long-run relationships both contain a term in the capital stock
with unit coefficients (positive or negative, depending on the normalisation): i-k and k-y. There is also the
reduced-form relationship, i-y, and this is a restriction on the loadings of the two long-run coefficients (the restriction
being that they are equal and opposite in sign). This restriction is easily accepted, in the actual data as well as in the
Monte Carlo experiments.
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Indeed, it will almost never occur. However, the true overidentifying restrictions will be falsely
rejected roughly half the time (at a notional size of 5%).

The other question of interest is the estimate of the elasticity of substitution, o. The table gives
the mean and median estimates. The distributions are highly skewed, and the VECM mean is
substantially biased upwards, but the median estimate is very close to the true value (0.44). The
95% confidence interval is also reported, and it is clear that the VECM will estimate the
parameter with far more precision than the other methods.

Finally, we bootstrapped the residuals to avoid making possibly incorrect distributional
assumptions. We drew six period blocks to capture possible lumpiness in the depreciation series.
The main difference to the Monte Carlo results is that the simulations now reveal a much reduced
skew (Table L).

Table L: Bootstrapped results

Method 1 Method 2 | Method 3
Significance level FOC CAI RF OIR  CAlsignificant, CAIWEand
significant significant| significant | rejected conditionalon OIR jointly
OIR accepted rejected
power size power size size size
10% 93 85.14 98.72 61.7 0.08 51.71
5% 85.84 76.22 96.35 51.00 0.10 41.37

Estimated elasticity of substitution (actual = 0.443)

Mean 0.402 0413 0.379

Median 0.417 0.418 0.443

5th Percentile 0.282 0.262 0.395

95th Percentile 0.531 0.555 0.500
7. Conclusions

Economic theory tells us that output, the capital stock and the user cost of capital are
cointegrated. But from the capital accumulation identity, it also follows that the capital stock and
investment share a long-run relationship. This has been used to justify the estimation of long-run
investment, rather than capital stock, equations. Econometrically, the dynamic structure suggests
that a multi-cointegrating framework should exist, in which separate cointegrating relationships
are identifiable. This turns out to be the case for UK business sector investment. A new
investment equation is estimated, exploiting a measure of the capital stock constructed by the
Bank, and a long series for the weighted cost of capital. A CES production function is assumed,
and a well-determined estimate of the elasticity of substitution is obtained for a variety of
measures. The robust result is that the elasticity of substitution is significantly different from
unity (the Cobb-Douglas case), at about 0.45. Overidentifying restrictions on the long-run
relationship are all accepted. Although the key long-run parameter (the elasticity of substitution)
is highly robust to alternative specifications, single-equation investment relationships may

23



obscure the dynamics. Thus we finally conclude that if we are interested only in knowing the
elasticity of substitution, estimation using an OLS long-run investment relationship will return an
unbiased estimate, although the Monte Carlo results show that the VECM is considerably more
accurate. In a macroeconometric modelling context, however, we may prefer to model
investment via the long-run capital stock relationship, with the capital accumulation identity as a
separate relationship.
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Data appendix

Business investment (I) and GDP (Y) are available from the Office for National Statistics (ONS)
National Accounts data, with quarterly backruns to 1965 and 1955 respectively. We use capital
stock and associated depreciation series that have been constructed in-house following Oulton
and Srinivasan (2003). In particular, we use a four-asset wealth measure of the capital stock,
assuming that the asset split of business investment is the same as whole-economy investment
(excluding dwellings), which is available from National Accounts data.*”

The other key variable is the real user cost of capital (RCC). The full Hall-Jorgensen RCC is
defined as:

P P, P, 1-PVIC
RCC=L{c+6-E(-L-L))———

P, P. P, 1-corptax
where
c denotes real cost of finance
Py denotes price of capital goods (the IBUS deflator)
P, denotes price of all goods (the GDP deflator)
PVIC denotes present value of investment allowances
corptax denotes corporation tax rate

The price variables are available from National Accounts data, as is the effective corporation tax
rate. PVIC is based on Bank calculations, following Mayes and Young (1993). The expected
relative price inflation term is an unobserved variable, assumed to be zero. We also
experimented using a variety of assumptions about this variable including ARMA forecasts,
filtered ex-post expectations and backward-looking averages, but excluding this term improved
the fit of singly-estimated investment equations.

A more problematic issue is construction of a ‘real cost of finance’ variable. From 1982 QI, a
weighted average cost of capital (WACC) can be calculated, following Brealey and Myers (2000).
But wanting to conduct estimation prior to 1982, previous work®® has used an alternative cost of
finance described in Flemming et a/ (1976). Essentially this measure is the ratio of current
earnings to the financial valuation of companies. While in principle measuring a similar concept,
over the same sample the Flemming measure is more volatile than WACC (see Chart A1) and the
correlation is not particularly strong (0.48 over the whole sample).

(27) We are grateful to Jamie Thompson for his help in constructing the series. ONS suspended their estimates of
the capital stock in the latest Blue Book: see National Statistics (2002).
(28) See Bakhshi and Thompson (2002).
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Chart A1: WACC and Flemming cost of finance
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As an alternative we decided to construct a back series for WACC to 1970. WACC is calculated
as the weighted average of the cost of debt finance (R”) and the cost of equity finance (R”):

WACC, = AR +(1- )R/

The weight (1) is taken from company balance sheet data on the relative use of debt and equity
finance: a weight of 15% is placed on debt, and 85% on equity. We used fixed weights for debt
and equity finance: using time-varying weights, to capture changes in the relative importance of
debt and equity in company balance sheets, had only a negligible impact on the aggregate WACC
series.

Chart A2: WACC components
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The real cost of debt finance is calculated as the risk-free real interest rate, measured using the
ten-year spot rate for the index-linked yield curve, plus a measure of spreads. This measure of
spreads is for investment-grade bonds, spliced together from the FTSE Debentures and Loans
Index and the Merrill Lynch Index. The real cost of equity finance is calculated using a simple
dividend discount model. Using these calculations, the cost of equity finance is readily available
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back to 1965, but the cost of debt finance only from 1982 (Chart A2). Thus to construct a WACC
we need to backcast the cost of debt finance.

We constructed three different models to backcast the cost of debt finance using macro variables
eg GDP, base rates, and inflation. Two of the three models included leads of the dependent
variable (DV). The first model estimated the real risk-free rate and the spreads measure
separately, including leading DVs (a ‘bottom-up’ approach); the second estimated the cost of debt
finance directly including leading DVs (a ‘top-down’ approach); and the third was a ‘simple’
equation for R” with no DVs included. The three different models produced very different
backcasts for the cost of debt finance, shown in Chart A3. However, given the small weight of
debt finance, the resulting backcast WACC series were almost indistinguishable (Chart A4).
Given this, we picked the simple approach, due to concerns about the stability of the models
including leading DVs.

Note that when we estimated the VECM over the non-backcast WACC sample (1982 onwards),
the estimate of the elasticity of substitution was broadly the same (0.43, compared to 0.44 over

the whole sample), but the overidentifying restrictions were not accepted. Given the simulation
results in Section 6, this is perhaps unsurprising.

Chart A3: Backcast cost of debt finance Chart A4: Backcast WACC
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Having constructed our cost of finance term, we now have our four endogenous variables.*”

These are shown below in Charts A5 to A8 (note log scales). Unit root tests for all four variables
are shown in Tables Al and A2.°” The tests indicate that all variables are I(1) at standard
significance levels. The source of the non-stationarity in the user cost is primarily the fall in the
relative price of capital, although the real interest rate is also somewhat trended over this sample.
The result certainly holds in sample, although some readers may be sceptical that the fall will
continue. However, it is quite feasible for relative prices to be non-stationary indefinitely if there
are sources of differential productivity growth. This may be true in the production of capital
versus other types of good.

(29) All data are consistent with the 2002 Blue Book.
(30) For ADF tests, we included as many lagged differences in the auxiliary regressions as were significant.
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Chart AS: Investment (i) Chart A6: Capital stock (k)
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Table A1: ADF tests

Variable Level First difference
i -0.734 -3.5697% * *

k -0.179 -2.666*

r -0.380 -5.746% **

y 0.029 -4.786% **

* (*¥*, **%) indicates rejection of null at the 10%
(5%, 1%) significance level.

Table A2: KPSS and Phillips-Perron tests

Variable KPSS Phillips-Perron
Ho =1(0) Ho =1(1)

i 2.395% % -0.150

k 2.626%** -0.434

r 2.050%** -0.542

y 2.597*** -0.194

* (*¥*, **%) indicates rejection of null at the 10%
(5%, 1%) significance level.

28



Annex: Baseline single-equation results

Variables in single-equation estimation are as listed in the main text and the data appendix,
namely:

I Business investment

K Capital stock

Y Gross domestic product

R Real user cost of capital

FKU Capital utilisation (taken from Larsen, Neiss and Shortall (2002))
D85 1 Dummy variable for 1985 Q1 (tax allowance change)

All estimation was carried out over the full data sample (1970 Q2 — 2001 Q4), adjusted for lags.
FKU is an ‘integral control variable’, referred to in the main body of the text; (unreported) results
were similar with other measures, eg the CBI capacity utilisation balance. A baseline least
squares equation is shown in Equation A1, estimated using a ‘general to specific’ approach with
four lags of all variables. It differs in dynamic detail from Table H in the main text, for
comparability with Bakhshi and Thompson (2002).

Equation Al: Single-equation estimates with investment in the long run
Dependent Variable: Ai
Sample: 1971:2-2001:4

Coefficient Std. Error t-Statistic Prob.

Constant -1.176709 0.244373 -4.815219 0.0000

Ai(-4) 0.153563 0.079923 1.921385 0.0571

FKU(-1) 0.633699 0.187134 3.386332 0.0010

1985:1 dummy 0.106353 0.028699 3.705791 0.0003
1985:1 dummy lagged  -0.124903 0.028905 -4.321193 0.0000
i(-1)-y(-1) -0.138680 0.029959 -4.628988 0.0000

r(-1)* 0.489132 0.080269 6.093684 0.0000
R-squared 0.362020 Mean dependent var 0.008108
Adjusted R-squared 0.329021  S.D. dependent var 0.034759
S.E. of regression 0.028473  Akaike info criterion -4.224528
Sum squared resid 0.094039  Schwarz criterion -4.064485
Log likelihood 266.8085 Durbin-Watson stat 2.100567

* Long-run value.

The estimated elasticity of substitution is 0.49, significantly different from unity (as would be
implied under Cobb-Douglas technology). The equation is well specified in terms of the usual
residual test criteria (normality, homoscedasticity, serial correlation and ARCH test). In addition
we estimated a dynamic ordinary least squares (DOLS) regression with two leads to compare the
estimated elasticity of substitution in the long-run relationship. Results are shown below. The
DOLS estimate of 0.41 is a little lower than that in the Equation A1 above (0.49), but our
baseline estimate is not significantly different from the lower DOLS estimate.
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Equation A2: DOLS equation estimates (two leads): investment in the long run
Dependent Variable: i-y
Sample: 1971:1-2001:2

Coefficient Std. Error t-Statistic Prob.

Constant -6.629227 0.532656 -12.44560 0.0000

r -0.411598 0.032129 -12.81099 0.0000

Ar(-1) -0.032689 0.167817 -0.194790 0.8459

Ar(-2) 0.067514 0.165997 0.406716 0.6850

Ar(+1) -0.366995 0.162094 -2.264084 0.0255

Ar(+2) -0.480255 0.160652 -2.989412 0.0034

AG(-1) -y (-1)) 0.387622 0.234414 1.653578 0.1010
AG(-2) -y (-2)) 0.275979 0.230675 1.196396 0.2341
FKU(-1) 2.929605 0.533884 5.487349 0.0000

1985:1 dummy 0.103962 0.080356 1.293777 0.1984
1985:1 dummy lagged  -0.084816 0.082443 -1.028776 0.3058
R-squared 0.697812  Mean dependent var -2.249935
Adjusted R-squared 0.670588  S.D. dependent var 0.136100
S.E. of regression 0.078114  Akaike info criterion -2.175460
Sum squared resid 0.677298  Schwarz criterion -1.922638
Log likelihood 143.7030  Durbin-Watson stat 0.334799

We also replicated the single-equation results using the capital stock rather than investment in the
long run. The corresponding results are shown below.

Equation A3: Single-equation estimates with capital in the long run
Dependent Variable: Ai
Sample: 1971:2-2002:1

Coefficient Std. Error t-Statistic Prob.

Constant 0.064972 0.046968 1.383310 0.1692

Ai(-3) 0.206489 0.079180 2.607845 0.0103

Ai(-4) 0.239706 0.080228 2.987801 0.0034

Ak(-1) -6.035088 1.653706 -3.649433 0.0004

1985:1 dummy 0.087218 0.029647 2.941914 0.0039
1985:1 dummy lagged  -0.141157 0.029565 -4.774447 0.0000
(k(-1) —y(-1)) -0.106458 0.037287 -2.855120 0.0051
r(-1)* 0.492888 0.111973 4.401848 0.0000
R-squared 0.332974  Mean dependent var 0.008108
Adjusted R-squared 0.292372  S.D. dependent var 0.034759
S.E. of regression 0.029240  Akaike info criterion -4.163746
Sum squared resid 0.098321  Schwarz criterion -3.980839
Log likelihood 264.0704  Durbin-Watson stat 2.033090

* Long-run value.

Once again the estimated elasticity of substitution is close to 0.5. And yet again DOLS
estimation (see below) suggested a slightly smaller coefficient, but not radically different.
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Equation A4: DOLS equation estimates (two leads): capital in the long run
Dependent Variable: k-y
Sample: 1971:1-2001:2

Coefficient Std. Error t-Statistic Prob.

Constant 0.378849 0.109244 3.467919 0.0007

r -0.395811 0.030943 -12.79168 0.0000

Ar(-1) 0.011360 0.154672 0.073448 0.9416

Ar(-2) 0.030776 0.153128 0.200980 0.8411

Ar(+1) -0.339067 0.153246 -2.212560 0.0290

Ar(+2) -0.497018 0.153367 -3.240703 0.0016

Ak(-1) =y (-1)) 1.183177 0.677267 1.746989 0.0834
Ak(-2) —y (-2)) 0.912514 0.672837 1.356218 0.1778
1985:1 dummy 0.037677 0.075759 0.497334 0.6199
1985:1 dummy lagged 0.035428 0.075806 0.467358 0.6412
R-squared 0.633111  Mean dependent var 1.778145
Adjusted R-squared 0.603629  S.D. dependent var 0.118681
S.E. of regression 0.074719  Akaike info criterion -2.271751
Sum squared resid 0.625289  Schwarz criterion -2.041913
Log likelihood 148.5768  Durbin-Watson stat 0.134395

31



References

Abel, A B and Blanchard, O (1986), ‘The present value of profits and cyclical movements in
investment’, Econometrica, Vol. 54, pages 246-73.

Bakhshi, H, Oulton, N and Thompson, J (2003), ‘Modelling investment when relative prices
are trending: theory and evidence for the United Kingdom’, Bank of England Working Paper no.
189.

Bakhshi, H and Thompson, J (2002), ‘Explaining trends in UK business investment’, Bank of
England Quarterly Bulletin, Spring, pages 33-41.

Barrell, R and Pain, N (1997), ‘Foreign direct investment, technological change, and economic
growth within Europe’, Economic Journal, Vol. 107, pages 1,770-86.

Bean, C (1981), ‘An econometric model of manufacturing investment in the UK’, Economic
Journal, Vol. 91, pages 106-21.

Brealey, R and Myers, S (2000), Principles of corporate finance, 6th edition, Irwin McGraw-
Hill.

Campbell, J Y and Shiller, R (1988), ‘The dividend-price ratio and expectations of future
dividends and discount factors’, Review of Financial Studies, Vol. 1, pages 195-228.

Carruth, A, Dickerson, A and Henley, A (2000), ‘Econometric modelling of UK aggregate
investment: the role of profits and uncertainty’, Manchester School, Vol. 68, pages 276-300.

Cheung, Y and Lai, K (1993), ‘Finite sample sizes of Johansen likelihood ratio tests for
cointegration’, Oxford Bulletin of Economics and Statistics, Vol. 55, pages 313-28.

Chirinko, R, Fazzari, S and Meyer, A (2002), ‘That elusive elasticity: a long-panel approach to
estimating the price sensitivity of business capital’, unpublished.

Cuthbertson, K and Gasparro, D (1995), ‘Fixed investment decisions in UK manufacturing:
the importance of Tobin’s Q, output and debt’, European Economic Review, Vol. 39,
pages 919-41.

Davidson, J (1994), ‘Identifying cointegrating regressions by the rank condition’, Oxford
Bulletin of Economics and Statistics, Vol. 56, pages 103-08.

Davidson, J (1998), ‘Structural relations, cointegration and identification: some simple results
and their application’, Journal of Econometrics, Vol. 87, pages 87-113.

Engsted, T and Haldrup, N (1999), ‘Multicointegration and stock-flow models’, Oxford
Bulletin of Economics and Statistics, Vol. 61, pages 237-54.

Flemming, J, Price, L. and Byers, S (1976), ‘The cost of capital, finance, and investment’, Bank
of England Quarterly Bulletin, June, pages 193-205.

Granger, C and Lee, T H (1991), ‘Multicointegration’, in Engle, R F and Granger, C W J (eds),
Long-run economic relationships, Oxford: OUP.

Greenslade, J V, Hall, S G and Henry, S G B (2002), ‘On the identification of cointegrated
systems in small samples: a modelling strategy with an application to UK wages and prices’,
Journal of Economic Dynamics and Control, Vol. 26, pages 1,517-37.

Hayashi, F (1982), ‘Tobin’s marginal q and average q: a neoclassical interpretation’,
Econometrica, Vol. 50, pages 213-24.

Hendry, D F and Juselius, K (2000), ‘Explaining cointegration analysis: Part II’, unpublished.

Hubert, F and Pain, N (2001), ‘Inward investment and technical progress in the United
Kingdom manufacturing sector’, Scottish Journal of Political Economy, Vol. 48, pages 134-47.

32



Johansen, S (1995), Likelihood-based inference in cointegrating vector auto-regressive models,
Cambridge: CUP.

Larsen, J, Neiss, K and Shortall, F (2002), ‘Factor utilisation and productivity estimates for the
United Kingdom’, Bank of England Working Paper no. 162.

Lettau, M and Ludvigson, S (2002), ‘Time-varying risk premia and the cost of capital: an
alternative implication of the Q theory of investment’, Journal of Monetary Economics, Vol. 49,
pages 31-66.

Maddala, G S and Kim, I M (1998), Unit roots, cointegration and structural change,
Cambridge: CUP.

Mayes, D and Young, G (1993), ‘Industrial investment and economic policy’, NIESR
Discussion Paper No. 56.

National Statistics (2002), United Kingdom National Accounts: The Blue Book 2002, The
Stationery Office.

NIESR (2002), ‘World model manuals’, NIESR, London, mimeo.

Oliner, S, Rudebusch, G and Sichel, D (1995), ‘New and old models of business investment: a
comparison of forecasting performance’, Journal of Money, Credit and Banking, Vol. 27,
pages 806-26.

Oulton, N (2001), ‘Measuring capital services in the United Kingdom’, Bank of England
Quarterly Bulletin, Autumn, pages 295-309.

Oulton, N and Srinivasan, S (2003), ‘Capital stocks, capital services, and depreciation: an
integrated framework’, Bank of England Working Paper no. 192.

Price, S (1995), ‘Aggregate uncertainty, capacity utilisation and manufacturing investment’,
Applied Economics, Vol. 27, pages 147-54.

Robertson, D and Wright, S (2002), ‘What does q predict?’, unpublished, Birkbeck College.
Sargent, T (1979), Macroeconomic theory, Academic Press, London.

Tevlin, S and Whelan, K (2003), ‘Explaining the investment boom’, Journal of Money, Credit
and Banking, forthcoming.

33



