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Abstract

Any non-stationary series can be decomposed into permanent (or
"trend") and transitory (or "cycle") components. Typically some
atheoretic pre-filtering procedure is applied to extract the permanent
component. This paper argues that analysis of the fundamental un-
derlying stationary economic processes should instead be central to
this process. This argument is not, in itself new, since the links be-
tween multivariate Beveridge-Nelson trends and cointegration have
been known for some time. But, despite the early work of King et
al. (1991), there have been relatively few applications of the ap-
proach, possibly due to the perceived deficiencies of Beveridge-Nelson
trends as derived from univariate representations, and a lack of trans-
parency. We present an alternative derivation, whereby transitory
components can be derived explicitly as a weighting of observable
stationary processes, that have clear economic interpretations. We il-
lustrate with two examples: from Garratt et al’s (2003) model of the
UK economy; and from Robertson and Wright’s (2002) model of the
US stock market.
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1 Introduction
Macroeconomic analysis is largely (with the exception of endogenous growth
theory) formulated in terms of stationary processes, yet most economic mag-
nitudes are trending. Probably the majority of economists assume that the
trend element is not purely deterministic, but also includes stochastic ele-
ments. There is as a result widespread use of a range of de-trending proce-
dures, usually of the “black box” variety, where a trend is extracted by some
pre-filtering procedure, usually univariate in nature This paper argues that
analysis of economic fundamentals should instead be central to this process.
We argue that the process of detrending should be viewed from a differ-

ent angle. Rather than deriving trends, and then analysing the properties of
whatever stationary processes are left over, we argue that economists should
look first for the underlying stationary processes, in terms of identifiable eco-
nomic fundamentals, ideally with a clear basis in theory. Once you pin down
the stationary processes that link a set of variables (most of which are likely
to be non-stationary) and, crucially, have identified their predictive power
for changes in the underlying variables, deviations from trend1 are simply
projections from current values of the underlying stationary processes. By
implication,the trends themselves effectively drop out as whatever is left over.
The nature of the trends will thus depend on the nature of the fundamental
stationary processes.
This argument is not, in itself new, since, for example, the links be-

tween multivariate Beveridge-Nelson (henceforth B-N) trends and cointegra-
tion have been known for some time. It is widely known that cointegration
implies common stochastic trends: in a set of n variables with r stationary
(usually, but not necessarily, cointegrating) relations, there will be n − r
common trends (Stock and Watson 1988a,b). Multivariate equivalents of B-
N (1981) trends for each of the n variables can then be derived as weightings
of these underlying n− r trend elements (Newbold and Arino, 1998). How-
ever, despite the early work of King et al (1991) there have been relatively
few applications of this approach. This may possibly due to the perceived
deficiencies of B-N trends as derived from univariate representations, that are
frequently viewed as "too volatile" (see, for example Massmann and Mitchell
2002; Favero, 2001). It may also reflect a lack of transparency of the process
by which the trends are derived.
We focus on the B-N decomposition, because the trend elements that

1These are frequently referred to as estimates of the “cycle” (most notably when the
variable in question is some measure of output). This is however increasingly a misnomer,
since by no means all detrending procedures result in series that are in any sense necessarily
cyclical.

2



result, as infinite horizon forecasts, must by definition be limiting forecasts
of any permanent component that can be derived by alternative techniques.
Any alternative trend, or permanent component, can thus always be ex-
pressed as the sum of the B-N trend plus a stationary component.
While B-N trends are typically derived from the moving average represen-

tation, we show that the equivalent derivation from the vector autoregressive
representation has the distinct advantage that deviations from trend can be
related directly to the underlying observable stationary processes that drive
the system. In principle these may be derived on purely statistical grounds;
however there is a well-known difficulty in clearly identifying the true value of
r, the number of stationary relations (which are typically cointegrating rela-
tions, but may in principle include some series that are univariate stationary),
in a set of n variables. We show that, when r is chosen atheoretically, the
resulting deviations from trend can be highly sensitive to the chosen value of
r, implying considerable uncertainty about whether a series is even above or
below trend, let alone by how much.
It would be very satisfactory if theory entirely eliminated this form of

uncertainty; but that would realistically be too much to hope for. Even
when we have theory to assist us, we cannot avoid a degree of uncertainty
about whether the data reject the theory. Thus even when we use theory
to derive cointegrating relations we still suffer both from an element of rank
uncertainty, and from uncertainty, for a given rank, as to which cointegrating
relations to include in the system. Our empirical examples do suggest a
limited amount of evidence that, when cointegrating relations are chosen
on the basis of theory, the resulting detrended series inhabit a somewhat
narrower space. But the much more crucial factor in our analysis is that,
even when significant differences remain, our framework allows us to relate
these differences directly to the inclusion or exclusion of certain economic
relationships from the system.
This could be argued to make perfect sense. If we assert, for example,

that output, or the value of the stock market, is “above trend” or “above its
equilibrium” by some amount, we must always at least implicitly be positing
some underlying disequilibrium, or set of disequilibra that will, in uncondi-
tional expectation, be expected to disappear. Crucially, we are also assuming
that a fall in output or the stock market will be an important part of that
adjustment process, and that this fall is predictable. In our framework, we
can directly identify the link between deviations from trend and the under-
lying economic disequlibria. But, since there is almost always doubt about
the statistical credentials of any process that is assumed to mean-revert,
we must inevitably end up with different answers about whether output or
the stock market is above or below “trend”, depending on which underlying
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mean-reverting processes we believe in.
Equally, if we start from the fundamental stationary processes (that may

in principle reflect frictions such as adjustment costs) that have predictive
power, we cannot have clear priors on whether the resulting trends should be
"smooth". The notion that Beveridge-Nelso trends are of necessity volatile
is easily shown to be a fallacy; but equally, it is an unavoidable consequence
of this approach that the nature of the trends must be determined by the
nature of the underlying stationary processes.
We illustrate our analysis with two empirical examples, with a particular

focus on two series, real UK GDP and the real value of the US stock market,
that have the common property that they appear, as univariate processes, to
be very close to being random walks. A univariate B-N decomposition would
accordingly imply that each series was very close to, or equal to its trend, all
the time. Once we derive trends in a multivariate context, however, and in
particular, once we allow for cointegration, we show that estimated deviations
from trend become distinctly more significant, and more persistent. We show
that both the magnitude and direction of deviations can be very sensitive to
our assumptions about the underlying stationary processes; but, crucially,
the source of these differences is clear, because they can be related directly
to economic fundamentals. Thus, we argue, theory can help to illuminate
the interior of the black box.
Section 2 describes our approach to detrending, first outlining a general

case then describing our detrending in the context of the VECM form used in
the next sections. Section 3 then outlines a purely atheoretical multivariate
approach to the derivation of trends in the context of our two examples en-
abling a direct contrast to be made with the results in section 4, which adopt
an approach which uses the fundamental economic relationships outlined in
the work of Garratt et al. (2003a) and Robertson andWright (2003). Section
5 describes the results and section 6 concludes.

2 Beveridge Nelson Trends as Conditional Coin-
tegrating Equilibrium Values

2.1 A General Definition

The most general definition of B-N trends is as limiting forecasts, absent
deterministic growth as the forecast horizon goes to infinity. Thus, for any
individual scalar variable, xt define its B-N trend, bxt, by

bxt = lim
h→∞

Etxt+h − gh
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where g, the element of deterministic growth, is typically a constant, but may
in principle be a deterministic function of h. If ∆xt can be given a stationary
moving average representation of the form

∆xt = g + C(L)εt

(the deterministic growth element is, it should be noted, typically ignored)
then the B-N trend can be expressed as

∆bxt = g + C(1)εt

and is thus by definition a random walk with drift. This representation
generalises easily to vector processes (Newbold and Arino, 1998).
The random walk feature of B-N trends is sometimes represented as a

disadvantage, but is a necessary consequence of their forward-looking nature.
Thus, suppose we take any arbitrary partitioning of xt into a permanent and
transitory component, of the form

xt = xPt + xTt

then, since the transitory component must always, satisfy

lim
h→∞

Etx
T
t+h = 0

then it must trivially follow that

lim
h→∞

Etx
P
t+h = bxt

and hence
xPt = bxt + v(L)εt

where v(L) is some stationary lag polynomial. Thus any possible permanent
component can always be partitioned into the random walk B-N trend and
some other stationary component.

2.2 Beveridge-Nelson Trends in a Cointegrating VAR

When a vector of time series can be given a vector autoregressive represen-
tation B-N trends can be derived in a form that is readily interpretable in
terms of the underlying stationary processes.2 Assume a cointegrating VAR
in n variables, of rank r:

∆xt = Ψ+Φ∆xt−1+αβ0xt−1+εt (1)

2Note that univariate reduced forms will typically be higher order ARIMA processes.
We would rationalise MA error terms in univariate representations as typically capturing
missing cointegrating relations.
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or equivalently

(∆xt − g) = Φ(∆xt−1−g) +α(β0xt−1−κ) + εt (2)

where x and Ψ are n×1 vectors, Φ is an n×nmatrix, α is an n×r matrix, β0
is an r×nmatrix and ε is a n×1 vector of error terms. The n×1 vector g and
the r× 1 vector κ are the trend growth rates in the variables and the steady
state values of the stationary relationships respectively and represent the
deterministic components of the system. Note that these vectors of constants
can (as shown below) be derived directly from the intercepts in the estimated
VAR, and hence the data require no pre-filtering (cf Newbold and Arino,
1998; Rotemberg and Woodford 1996).
Higher order VARs can be dealt with by creating new variables for lagged

differences, that do not, however, enter the cointegrating relations (n in-
creases, but r does not). Note also that β0 may in principle include columns
in which there is only a single non-zero element, thus nesting systems in
which one or more series is independently stationary (as, for example, in
Blanchard and Quah (1989) -type bivariate representations of output growth
and unemployment).
The nonstationary system as specified in (1) and (2) can be given equiv-

alent stationary representations. For (1), this is given by,

yt =

·
Ψ
0

¸
+Cyt−1 + vt

where

yt =

µ
∆xt
β0xt−1

¶
, vt =

µ
εt
0

¶
(3)

C =

·
Φ+αβ0 α

β0 Ir

¸
(4)

where C ((n+ r)× (n+ r)) is of full rank.β.
This can be expressed as a zero mean system

eyt = Ceyt−1 + vt (5)

where

eyt =

µ
∆ext
β0ext−1 − κ

¶
∆ext = ∆xt−g,ext = xt−gt− γ,
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where γ is any vector in the space defined by β0γ = κ. andµ
g
κ

¶
=

·
Ψ
0

¸
[I−C]−1

The system in (5)can be rewritten entirely in deterministically detrended
form, given β0g = 0. The forecast values for the (deterministically) detrended
system in ext, h periods ahead of period t are given by

Etext+h = ext + J hX
i=1

Cieyt
where

J =
£
In 0

¤
In the system with drift, as h goes to infinity, conditional forecasts from
period t go to infinity, but in the driftless system they will go to finite values:

Etext+∞ = ext + J ∞X
i=1

Cieyt
= ext + Feyt

where F ≡ JC[In+r−C]−1 ≡
£
F∆ FECM

¤
The matrices F and J have dimension (n× (n+ r)), and the matrices F∆

and FECM dimension (n×n) and (n× r) respectively. This can be given the
“infinite horizon error correction” representation

Etext+∞ − xt = Φ∞∆ext +α∞(β
0ext−κ)

or equivalently, using the underlying series,(6)

lim
h→∞

Et (xt+h − gh− xt) = Φ∞∆ (xt − g) +α∞(β
0xt−κ) (7)

where Φ∞ = F∆−FECMβ
0

α∞ = FECM

where Φ∞ and α∞ are of the same dimensions as Φ and α, and can
be given a similar interpretation. In the long run any disequilibrium in the
cointegrating relations in period t must, in expectation, be eliminated fully
by adjustment of the variables in ex, with the elements of α∞ determining
the proportion of the adjustment taken up by any given variable.
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3 Atheoretic Multivariate De-Trending
The above analysis assumes implicitly that the true structure of the model
is known. However, uncertainty regarding the correct multivariate empir-
ical representation of the data is extremely high. As a precursor to any
estimation we first have to choose what we regard as an appropriate set of
variables (presumably motivated by the question being asked and in relation
to a theory) and if we assume a VECM form, we would wish to allow for the
possibility of incorporating long-run relationships into our model, in which
case we would need to know about the orders of integration of the variables
being considered. Finally we also need to define the order of the VAR be-
ing used. These three preliminary stages in any estimation alone generate
considerable uncertainty and any results and implications of the subsequent
analysis are always conditional on these choices.
Even when abstracting from these choices there still remains areas of

uncertainty concerning the validity with which short and long run restrictions
might be imposed on the data. In particular we are still left with considerable
uncertainty both about the rank of β (assuming a VECM) and for any given
rank, the form of the cointegrating relationships and the true values of their
coefficients. The extent of the uncertainty concerning the model is viewed
as being a clear weakness in the multivariate approaches to business cycle
facts, the results of which are seen as being model specific (see Kozicki, 1999).
There is considerable debate about the appropriate method of determining
the rank r. Alternative approaches can yield quite different values, especially
in relatively large models, as a our first example shows.
Given this uncertainty our initial aim is to focus on what difference adopt-

ing a range of assumptions regarding rank of β makes to the properties of the
deviations derived using the approach outlined in section 2. The nature of
the exercise is deliberately atheoretical in the sense that it does not impose
any restrictions on the matrix β except those required for exact identifica-
tion. It might be the case that you have no prior regarding the number, if
any, of long run relationships that exist in the data and that the uncertainty
or low power of tests used to determine the correct rank order is such as to
to be uninformative. All this is done in the context of two examples, which
define a set of variables motivated by a particular exercise, where statistical
tests suggest the variables are I(1) and the lag length has been determined.
In this sense we focus only on rank uncertainty.
In our first example, taken from Garratt et al. (2003a), we consider the

following set of variables:

xt = (p
o
t , et, r

∗
t , rt,∆pt, yt, pt − p∗t , ht − yt, y

∗
t , t)

0 , (8)
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where pot which is the logarithm of oil prices, et is the logarithm of the
nominal exchange rate (defined as the domestic price of a unit of the foreign
currency, so that a depreciation of the home currency increases et), r∗t is
the foreign short term nominal interest rate, rt is the domestic short term
nominal interest rate variable variable, pt is the logarithm of domestic prices,
yt is the logarithm of real per capita domestic output, p∗t is the logarithm of
foreign prices, y∗t is the logarithm of real per capita foreign output, ht is the
logarithm of the real per capita money stock and t is a deterministic time
trend.
Proceeding assuming all the variables are I(1) and using a VAR(2) model

with unrestricted intercepts and restricted trend coefficients (see Garratt
et al. 2003a for details), and treating the oil price variable, pot , as weakly
exogenous for the long-run parameters (or ‘long-run forcing’), Garratt et al.
(2003a) compute Johansen’s ‘trace’ and ‘maximal eigenvalue’ statistics to test
for the appropriate rank of the system. They find that maximal eigenvalue
statistic indicates the presence of just two cointegrating relationships or r =
2, at the 95% significance level whereas the trace statistics reject the null
hypotheses that r = 0, 1, 2, 3 and 4 at the 5 per cent level of significance but
cannot reject the null of hypothesis that r = 5. In addition if one were to
use various model selection criteria then the Akaike Information Criterion
(AIC) suggests r = 8 , Schwartz Bayesian Criterion (SBC) r = 1 and the
Hannah Quinn Criterion (HQC) r = 6. Clearly there is a reasonable degree
of uncertainty regarding the correct rank. 3

Given that at this stage we are adopting an atheoretical approach we do
not use any theory to further inform our choice but instead adopt a practical
view which is to try a range of different rank restrictions and for our purpose
of identifying output deviations cycle see what difference it makes to their
resulting properties. Hence we analyse a range of rank restrictions, r = 0
through to 7, where the β matrix is exactly identified and in all cases the
VAR is of order 2. Note the r = 0 case is the VAR where no long run
relationship exists and as such provides us with a useful benchmark with
which to compare the effect of imposing long run relationships.

3However we should note that as shown by Cheung and Lai (1993), the maximum
eigenvalue test is generally less robust to the presence of skewness and excess kurtosis
in the errors than the trace test. Given that there is evidence of non-normality in the
residuals of the VAR model used to compute the test statistics (see Garratt et al. 2003a),
it could be argued that it is more appropriate to base our rank or cointegration tests on
the trace statistics. Similarly the power of the model selection criteria is known to be
relatively low. Therefore one might argue that the weight of the evidence lies with the
trace statistic conclusion of r = 5 but where there is sufficient uncertainty surrounding
the exact value of r.
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Figure 1 plots the output deviations computed for all eight exact identified
cases. Table 1 reports the correlation coefficients, standard deviations and
some sign tests for the resulting output deviations, all for the period 1965q1-
1999q4 (140 observations). As is evident from the inspection of Figure 1
the output deviations for the range of models examined show a very wide
variation (we denote the exactly identified models of ranks 0 through to 7 as
Ex0, Ex1, .....Ex7). On examining the eight variants, it is clear that output
deviations computed from the rank 7 model, Ex7, has very low correlation
with any other trend deviation, the highest being 0.46 (with Ex4) but where
the other correlations are near zero. Note it is also negative for 73% of the
period. The output deviation for the most likely rank of 5, Ex5, are near
identical to those generated by the rank 6 model, Ex6, with a correlation
coefficient of 0.99, near identical standard deviations and both are negative
for approximately 44% of the period. If the true rank were 5 then imposing
a rank of 6 would, in this example, make little difference to the resulting
deviation for output. The deviations for output from the zero rank and
rank 1 models, Ex0 and Ex1, also show high comovement with a correlation
coefficient of 0.97 but where their correlations with Ex5 and Ex6 are low at
approximately 0.45 or less.4 Hence as is clear from Figure 1 there are large
differences in the implied deviations for output. The output deviations for the
models of rank 2, 3 and 4, Ex2, Ex3 and Ex4 form another sub-group with
correlation coefficients of 0.9 and above. Clearly the rank matters in terms of
the properties of the output deviations where, for example, the differences in
the output deviation computed from a model of say rank 2 compared to rank
5 (the two ranks highlighted by the the trace and Maximum eigenvalue test
statistics) are large. It is worth emphasising that this feature continues to
be true when analysing trend deviations for the other variables in the model
and for the cases of rank 8 and 9, where the deviations become even more
volatile. 5

It is clear that an atheoretic approach provides very little guidance on a
trend and trend deviation (cycle) decomposition as the properties of the de-
viations vary a lot according the rank we impose which, given our uncertainty
on the rank, makes it a difficult method to use.

4The output deviation computed from the rank zero case is in fact very close to that
derived using a univariate Beveridge-Nelson decomposition.

5It is worth noting that the standard deviation of the output deviations increases as
the rank of the model increases. A possible intepretation of this might be that as as rank
rises, we allow in equilibrium relationships possibly a long way from current values, but
with increasingly slower adjustment speeds (Evans and Reichlin 1994) .
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4 Inside the Black Box: Multivariate De-Trending
Using Long Run Theoretical Restrictions

Given that the atheoretic approach does not resolve our uncertainty regarding
the form of the model, as an alternative to an atheoretical approach we can
posit certain relationships based on theory. In principle these can be long-run
or short-run relationships (UIP or random returns being an example of the
latter); but in this paper we focus on long run.

4.1 Deviations from trend in models with cointegrat-
ing relations based on theory

In our first example we adopted an atheoretical approach using the data
set of Garratt et al. (2003a). However, the main emphasis of their work
is to provide a long-run theoretical structure to a VECM model of the UK
economy. They described five long-run relationships which were argued to
be important to a small open economy like the UK, a detailed account of
which, along with an outline of a framework for long run macro-modelling,
is given in Garratt et al.(2003a). In brief, we note here that the five long-run
relationships are: (i) Purchasing Power Parity (PPP), which assumes that,
due to international trade in goods, domestic and foreign prices measured
in a common currency equilibrate in the long-run (ii) Interest Rate Parity
(IRP) which assumes that, under conditions of free capital flows, arbitrage
between domestic and foreign bond holdings will, equilibrate domestic and
foreign interest rates in the long-run (iii) an “output gap” (OG) relationship
implied by a stochastic version of the Solow growth model with a common
technological progress variable in production at home and abroad (iv) a real
money balance (RMB) relationship, based on the condition that the economy
must remain financially solvent in the long run; and (v) the Fisher Interest
Parity (FIP) relationship which assumes that, due to inter-temporal exchange
of domestic goods and bonds, the nominal rate of interest should in the long-
run equate to the real rate of return plus the (expected) rate of inflation.
In contrast to the atheoretical exercise the attempt to relate the long run

to explicit theory implies the presence of over identifying restrictions Estima-
tion of the model subject to all the (exact- and over-identifying) restrictions
enables a test of the validity of the over-identifying restrictions, and hence the
underlying long-run economic theory, to be carried out. Such an empirical
exercise is conducted by Garratt et al. (2003a) using quarterly UK data over
the period 1965q1-1999q4. Their results showed that: (i) a VAR(2) model
can adequately capture the dynamic properties of the data; (ii) there are
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five cointegrating relationships amongst the nine macroeconomic variables;
and that (iii) the over-identifying restrictions suggested by economic theory,
cannot be rejected6.
The estimated model of Garratt et al. (2003a) with rank 5 and the five

long-run relationships described above provides us with our benchmark theo-
retical case. As in the atheoretic case, the degree of uncertainty remains large
with respect to the appropriate rank and therefore we would wish to try al-
ternative rank orders. However, given that we have chosen to use a long-run
theory to identify a model we also have to consider alternative forms of the
β matrix and ask the question what difference does it make to the resulting
output deviations. The long-run theory in Garratt et al. (2003a) suggests,
amoung others, five cointegrating relationships, so in the first instance it we
are able to use this prior to help reduce the number of alternative long run
structures considered by ruling out models of rank 6 and above.7 However, it
also expands the number of models by allowing for alternative combinations
of models at rank 4, 3, 2 and 1. In this example we confine ourselves to con-
sider all the combinations of the five estimated long run relationships (where
no further estimation is done)8 which requires us to consider five theoreti-
cal models with four cointegrating relationships or rank four (each long-run
relationship is dropped one at a time), ten models with three cointegrating
relationships, ten models with two cointegrating relationships, five models
with one long run relationship, which when combined with the benchmark
case gives us a total of 31 models.
In what follows we will give a description of the properties of the de-

viations in output implied by these range of models. However given that
theory requires us to impose a set of over identifying restrictions we are in
a position to test the restrictions and therefore ascertain how plausible the
proposed model might be. We wish here to consider the effects of imposing
a long-run theoretical structure on the output cycle, but also to continue
considering the effects of model uncertainty. However, before we consider all
the alternatives above (see Table 2 for some comparisons) we are in a posi-

6Likelihood ratio tests (reported in Table 2) which use asymptotic critical values reject
the theory. But when bootstraping, due to small samples and large numbers of variables
the long-run theory restrictions cannot be rejected.

7The theroy of Garratt et al. (2003a) does allow for the possibility of more than five
cointegrating vectors and as such there is uncertainty concerning the prior. However the
form of the five long-run relations selected are considered to be the least controversal of the
range of possibilities and we therefore use these a means of restricting the choice available
to us.

8To examine the alternatives in the true sense would require us to re-estimate the
parameters and restrictions for each specification. Our aim here is to assess the sensitivity
of the results to dropping combinations of the long-run relations.
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tion to test the overidentifying restrictions implied by our set of alternative
models and where clear rejections are apparent rule we ought then to be in
a position not to consider them as plausible alternatives. For example, when
using model selection criteria there might be a subset of models which it
is difficult to choose between in which case model uncertainty needs serious
consideration, however there also might be a large subset of models that one
can with some reasonable degree of confidence rule out on statistical criteria.
Hence in Table 2, we report the likelihood ratio test of the overidentifying
restrictions for each of our 31 models, where for each rank the overidentified
restrictions are tested against the exactly identified model of the same rank.
Using the asymtotic critical values all the alternatives are clearly rejected.
It would appear then that only the benchmark case has some validity

in that it is not rejected by the data. However, despite these rejections we
think it is still instructive to examine model uncertainty so as to get an
understanding of the elements of the benchmark structure which contribute
most the properties of the cycle in output growth. By examining the empiri-
cal structure using our long-run theory we avoid the data mining critiques of
the atheoretical approach. Further support for the form of the structure used
here is also provided in Garratt et al. (2003b) who find that the benchmark
model performs well as compared to an exactly identified rank 5 model in an
out of sample forecasting exercise. It may also be the case that measurement
errors may obscure the true relationships and hence the diagnostics may, for
example, reject the PPP restrictions of 1− 1− 1 in favour of 1− α− β.
Figure 2 plots the output deviations derived from the benchmark overi-

dentified model which imposes the long run theory (Ov5) alongside the athe-
oretical exactly identified case where the impose the rank of 5 (Ex5). That
is we might imagine that there is reasonable evidence regarding the rank but
wish to know what difference imposing the long-run theory makes. From
the plot we observe a limited degree of co-movement between the two cycles,
where the correlation coefficient is relatively low, at 0.36, and the standard
deviation are for Ov5 and Ex5 are 2% and 3% respectively. The size of
the deviations also differ significantly and it is clear that imposing the long
run restrictions has implications for output deviations over and above just
imposing the most likely rank restriction. The plot is consistent with the
asymtotic rejection of the long-run theoretical restrictions, which would more
than likely not be rejected if indeed the two deviations were similar.
A consideration, not addressed so far, is whether the deviations them-

selves make sense in terms of actual economic events which occurred during
the period. Interpreting what is a sensible or plausible deviation is of course
very subjective and is made especially difficult in the UK as, there is no
equivalent to the NBER dating committee on peaks and troughs which are
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often used as a benchmark points, for the US. However, other researches
have focussed on the UK, as well as European business cycles and so it is
useful to use them as, at the very least, a point of comparison. For example,
Birchenhall, Osborn and Sensier (2000) suggest the following dates for peaks
and troughs in the cycle or deviation of UK GDP growth; peaks: 1973q3,
1979q2 and 1990q2 and troughs: 1975q3, 1981q1 and 1992q2. In the case of
the two deviations plotted in Figure 2, the theoretical deviation (Ov5) peaks
are in 1973q3, 1979q4 and 1990q1 and troughs are in 1972q1, 1977q3, 1982q4
and 1993q2 whereas the atheoretical deviation (Ex5) peaks are in 1974q4,
1979q4, 1989q2 and troughs are in 1971q3, 1977q3, 1986q4 and 1994q1. The
suggestion here is that the deviations derived from this approach approxi-
mately correspond to previously identified peaks and troughs. This does not
necessarily validate the derived deviations nor does it suggest a preference
for the theoretical deviation, although the timing is clearly an issue of inter-
est. The possible advantage of the theoretical deviation in this instance is
that the proposed decomposition which the long run framework of the model
allows may aid the identification of the deviation in relation to known eco-
nomic events or additional information thought to be relevant at the time of
specific output deviations.
Model uncertainty remains an issue despite the results rejecting the range

of alternatives models. Hence in Figure 3 we plot the benchmark models out-
put deviation alongside the output deviations generated from the five models
with four long run or cointegrating relationships, where each of the models
five long run terms are dropped one at a time. This allows for model uncer-
tainty with respect to the β matrix to be examined plus it allows us highlight
which of the long run relationships are important as regards the properties
of the output deviation. Figure 3 suggests that the degree of uncertainty
concerning the output deviation is as great when considering alternative β
matrices as it is when considering different ranks. However, it proves dis-
tinctly easier to place some understanding of this uncertainty. For example,
the deviation computed when excluding the FIP relationship is near identical
to that of the benchmark model (the correlation coefficient is one) and as
such it does not contribute to the uncertainty regarding the output deviation.
This is also the case when excluding the IRP relationship where the result-
ing deviation has a correlation of 0.98 with the benchmark deviation and to
a lesser extent is true when dropping the PPP relationship which produces
a deviation which has a correlation coefficient of 0.80 with the benchmark
deviation. However, excluding the OG relationship appears to make a sig-
nificant difference to the output deviation which becomes more volatile and
has a correlation coefficient of just 0.32 (see Table 2) with the benchmark
theory based output deviation.
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Before we proceed to examine the source of the uncertainty for the output
deviation and to motivate why the breaking down of the output deviation
movements is of interest we first need to make clear the contribution the short
run dynamics to the output deviation movements. Recall that equation (6)
breaks down the movements in the deviation into both short and long run
components and therefore we need to be clear on the relative contributions
of each of the sources. Figure 4 performs this task and plots the breakdown
of the contribution of the long-run and short run components to the output
deviation. The overall implication of Figure 4 is that contribution of the
short run dynamics to the output deviation is relatively small and whilst
their contribution is non-trivial at certain points it is not persistent and it
does appear to be the case that the cyclical elements in output is driven
largely by the cointegrating relationships.

5 A long-run decomposition
An alternative representation given in Figure 5, shows the output deviations
or cycles alongside the contributions of the five cointegrating relations where
on the evidence presented in Figure 4 we exclude the contribution of the
short run dynamics. The breakdown of the long-run contributions serve to
emphasise a number of points. As described above, and emphasised in Fig-
ure 3 and by the correlations reported in Table 2, it is clear that their is
no contribution from the real interest rate (FIP) relationship on the output
deviation. Thus real interest rate movements whose effects would be chan-
nelled through investment, the capital stock and output are not significant in
explaining short run movements. Small but nonetheless prominent roles are
apparent for deviations from UIP and PPP, which according to the correla-
tion coefficients in Table 2, were suggested to have relatively small effects.
For example, in the periods 1965-1972, 1979-1983 and 1993-1997 deviations
from PPP are of some influence on the output deviation. It would appear
that the long-run relation in real money balances (RMB) appears to have
very large effects; these are however to a significant extent negatively related
with the contribution of the “convergence” long-run relation, in y− y∗. This
negative correlation is however readily explicable by the fact that both rela-
tions include output, but with opposite signs. An alternative representation
is given in Figure 6, where the contributions of the two long run relations
involving output are combined.9 In this representation, the combined impact
of the two output long-runs is quite strongly related to the implied output

9Note that the ECMs themselves are not combined (which would clearly eliminate any
impact of output at all).
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deviation itself. There remains however, roles for deviations from PPP (i.e
movements in the real exchange rate) and for the difference between domestic
and foreign interest rates.
An alternative way to bring out this feature is shown in Table 2 which

shows that the output deviation series from the benchmark model is very
similar to the series derived from a number of lower rank models: one of
rank three, excluding FIP and UIP, the other of just rank two, where the two
relations included are just the two “output long-runs”. However, in sharp
contrast, when either of these two key relations is excluded, the correlation
falls much more markedly - especially so when the output gap is excluded
[correlation falls to 0.3]. Thus output deviations in the model are essentially
driven by these two relations; and when one or other is excluded, given the
distinct differences between two underlying long-run relations, the implied
output deviations series is in consequence significantly different. Note also
that the inference regarding the output deviation or cycle is more robust to
the exclusion of the RMB long-run (the correlation of the resulting deviation
with the benchmark falling to 0.8) than it is to exclusion of output gap.

6 Conclusion
We have illustrated a method of computing and interpreting multivariate
B-N trends which explicitly allows for the use of stationary fundamental
economic relationships. It does not resolve the issue of uncertainty with
respect to the wide range of deviations which can be derived depending on
the model structure, most clearly illustrated in our atheoretical examples.
It will always be difficult to avoid uncertainty regarding the definition of
a deviation given that we exist in a world of uncertain data and models.
However our framework at least enables you to understand the nature of the
uncertainty, and relate it to economic fundamentals as illustrated in our two
examples.
Note also that although our emphasis has been on long-run or cointegrat-

ing relations, it is in fact just as applicable to any stationary process that
has predictive power for the variable of interest. In what we’ve looked at
short run dynamics or delta terms have very little impact; but they might
in principle for, e.g. inflation, where growth rates may be much more persis-
tent (though ambiguity about whether inflation has a constant steady state).
In principle other mean-reverting processes might also have predictive power
without explicitly being cointegrating relations, e.g., capacity utilisation; un-
employment (cf Blanchard and Quah, 1989); mean-reverting financial ratios.
Possible areas for further work includes; invetigating the impact of imposing

16



short-run as well as long-run restrictions. e.g., unpredictable returns; strict
UIP; granger causality restrictions; analysing the impact on inference when
deviations are of very low rank (e.g., re-examine Rotemberg and Woodford’s
1996 covariance structure), deriving directly from the VAR, rather than esti-
mating using generated deviations. and investigating the link with Blanchard
and Quah (1989).
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Table 1 : Statistics for the Output deviations Derived from the Exactly
Identified Models

Model Correlation Coefficients Std Dev Sign Tests
Ex0 Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7

Ex0 1.00 0.00566 82 (58.6%)
Ex1 0.97 1.00 0.00676 77 (55%)
Ex2 0.57 0.55 1.00 0.01897 81 (57.9%)
Ex3 0.60 0.61 0.90 1.00 0.02076 84 (60%)
Ex4 0.57 0.56 0.91 0.98 1.00 0.02097 85 (60.7%)
Ex5 0.43 0.45 0.69 0.71 0.74 1.00 0.03024 61 (43.6%)
Ex6 0.41 0.43 0.67 0.70 0.73 0.99 1.00 0.02906 62 (44.3%)
Ex7 0.13 0.10 0.32 0.45 0.46 -0.03 -0.03 1.00 0.03201 102 (72.9%)

Notes: The sign test states the number of times during the period 1965q1-1999q4 (140
observations) a negative value of the trend deviation or deviation is recorded, the term in
the brackets records this same number as a percentage of the total outcomes

Table 2 : Alternative deviations and Likelihood Ratio Tests of
Overidentified Restrictions

Model Correlation Std Dev LR Test p-value
Benchmark 1.00 0.02078 71.49 (23) 0.00
Ov4: ex PPP 0.88 0.02055 81.32 (22) 0.00
Ov4: ex IRP 0.98 0.02037 82.72 (22) 0.00
Ov4: ex OG 0.32 0.02998 71.55 (22) 0.00
Ov4: ex RMB 0.80 0.01238 95.35 (24) 0.00
Ov4: ex FIP 1.00 0.02079 114.32 (22) 0.00
Ov3: ex PPP, IRP 0.91 0.01965 70.13 (19) 0.00

Ov3: ex PPP, OG 0.42 0.02719 72.29 (19) 0.00
Ov3: ex PPP, RMB 0.79 0.01209 89.89 (21) 0.00
Ov3: ex PPP, FIP 0.88 0.02061 116.17 (19) 0.00
Ov3: ex IRP, OG 0.38 0.02661 70.69 (19) 0.00
Ov3: ex IRP, RMB 0.59 0.00819 98.17 (21) 0.00
Ov3: ex IRP, FIP 0.98 0.02041 114.72 (19) 0.00
Ov3: ex OG, RMB 0.35 0.01138 86.02 (21) 0.00
Ov3: ex OG, FIP 0.32 0.03103 107.58 (19) 0.00
Ov3: ex RMB, FIP 0.80 0.01236 131.22 (21) 0.00
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Table 2:Continued

Model Correlation Std Dev LR Test p-value
Benchmark 1.00 0.02078 71.49 (23) 0.00
Ov2: ex PPP, IRP, OG 0.51 0.02378 48.14 (14) 0.00
Ov2: ex PPP, IRP, RMB 0.58 0.00817 77.16 (16) 0.00
Ov2: ex PPP, IRP, FIP 0.91 0.01981 93.59 (14) 0.00
Ov2: ex PPP, OG, RMB 0.63 0.00989 71.69 (16) 0.00
Ov2: ex PPP, OG, FIP 0.48 0.02637 98.66 (14) 0.00
Ov2: ex PPP, RMB, FIP 0.79 0.012 115.43 (16) 0.00
Ov2: ex IRP, OG, RMB -0.17 0.01015 80.08 (16) 0.00
Ov2: ex IRP, OG, FIP 0.35 0.029 93.08 (14) 0.00
Ov2: ex IRP, RMB, FIP 0.60 0.00844 111.91 (16) 0.00
Ov2: ex OG, RMB, FIP 0.34 0.012 113.65 (16) 0.00
Ov1: inc PPP -0.17 0.01022 80.51 (9) 0.00

Ov1: inc IRP 0.67 0.01 83.96 (9) 0.00
Ov1: inc OG 0.56 0.0082 77.62 (9) 0.00
Ov1: inc RMB 0.55 0.024 56.59 (7) 0.00
Ov1: inc FIP 0.26 0.00563 43.54 (9) 0.00

Notes: The term "Ov" refers to overidentified, the number given is the number of long

run relations in the overidentified model and the term "e"x refers to the long-run
relations excluded from the model which are then listed. The final set lists the long run
relations included and therefore uses the term "inc" The correlation coefficient is the

correlation of the benchmark model output deviation with the output deviation
computed using the alternative model, Std Dev is the output deviation standard

deviation and LR Test is the likelihood ratio test of the overidentified restrictions where
the number being tested is given in brackets
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Table 3 : Statistics for the Output deviations Derived from the Over Identified
Models Excluding each Long Run Relation.

Model Std Dev
Ov5 Ex PPP Ex IRP Ex OG Ex RMB Ex FIP

Ov5 1.00 0.0208
Ex PPP 0.88 1.00 0.0205
Ex IRP 0.98 0.85 1.00 0.0204
Ex OG 0.32 0.52 0.26 1.00 0.0300
Ex RMB 0.80 0.66 0.88 -0.08 1.00 0.0124
Ex FIP 0.99 0.88 0.98 0.32 0.80 1.00 0.0208

Notes: Ov5 denotes our benchmark model with five cointegrating vectors and the terms
PPP, IRP, OG, RMB and FIP denote the cointegrating relationship excluded from the

model with four cointegrating vectors, Ov4.. The sign test states the number of times
during the period 1965q1-1999q4 (140 observations) a negative value of the trend
deviation or deviation is recorded, the term in the brackets records this same number as

a percentage of the total outcomes

20



Figure 1: Output Deviations Derived From a Range of Exactly
Identified Models
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Figure 2: Output Deviations with and without Long-run Theory
(where r = 5)
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Figure 3: Impact on Output Deviations of Excluding the Long
Run

Relationships One at a time
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Figure 4: Decomposition of Benchmark Output Deviations into
Long and Short Run Deviations
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Figure 5: Decomposition of the Benchmark Models Output
Deviations into each of the Long-run Relationships Contributions
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Figure 6: Decomposition of the Benchmark Models Output
Deviations into Combined Output and other Long-run

Contributions
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