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Abstract 
  
 
  
This paper provides a new approach of measuring the effects of money in both the long-
run and the short-run horizons. The key identifying assumptions used to identify and 
measure the effect of money are long-run neutrality and long-run homogeneity. 
  
The first chapter shows that both long-run propositions imply certain linear restrictions to 
be imposed on the cointegrating space. By testing the validness of such linear restrictions, 
both long-run propositions are tested. Compared with the previous long-run tests, the 
cointegration test in this paper does not depend heavily on the auxiliary assumptions, 
including identification restrictions and the correct selection of macroeconomic variables 
to be included in the empirical work. 
  
The second chapter shows that the linear restrictions imposed by the long-run 
propositions can be used to identify the monetary shocks when the long-run proposition 
is overidentifying. In such a case, it is proved that the monetary shocks can be identified 
with the following three identifying assumptions: (1) a monetary shock is long-run 
neutral and homogeneous; (2) monetary shocks are not correlated with other structural 
shocks; and (3) the long-run effect of money is linearly independent from the long-run 
effects of other structural shocks. 
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CHAPTER 1

New Tests of Long-Run Monetary Neutrality and
Homogeneity

1. Introduction

The effect of money on real activity is one of the central research topics in macroeco-

nomics. Standard macroeconomic models suggest short-run effects of money on both real

output and the price level, with the longer-run effects on nominal variables but not on real

variables. The research reported in this chapter devises new tests of long-run propositions

about the effect of money on economic activity, in particular the long-run neutrality (LRN)

and the long-run homogeneity (LRH). In this chapter, as in much prior work, long-run neu-

trality is defined as the implication that a once-for-all change in the level of money should

not have a long-run impact on real variables. Similarly, long-run homogeneity is defined

as the implication that such a permanent change in the level of money should affect all

nominal variables proportionately in the long run.

There is a lengthy history of efforts to test LRN and LRH. One notable early strand of

research on these two issues was at the Federal Reserve Bank of St. Louis during the 1970s.

The St. Louis researchers ran regressions of the first difference of log output on the current

and lagged values of money growth and then computed a long-run multiplier of money —

the sum of the regression coefficients — as the basis for LRN and LRH tests. These tests

were part of a larger effort by the St. Louis researchers to characterize the empirical effects

of monetary and fiscal policy on macroeconomic activity, which was heavily criticized for

its reduced form nature and its lack of concern about the direction of causality (see, e.g.

Ando and Mogiliani (1990)). In the context of LRN and LRH, the force of this criticism is
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that a long-run multiplier which differs from its theoretical value — of zero for LRN and of

one for LRH — may be a reflection of central bank policy response to economic conditions

rather than a rejection of the long-run proposition. Later, in the early 1970s, Sargent

and Lucas pointed out another important difficulty with LRN tests based on an estimated

long-run multiplier: when the economy does not embody any long-run variation in money,

the estimated long-run multiplier does not accurately capture the long-run effect of money.

Their argument was a forerunner of the critique that Lucas subsequently made: if long-run

variation in money is not a part of the environment that shapes the behavioral responses of

economic agents, then a reduced form analysis — such as regressions or vector autoregressions

— can never provide an answer about the effect of a long-run change in money.

Concern about causality and the Lucas critique cast a shadow over applied research

on long-run (LR) tests for nearly two decades. However, Fisher and Seater (1993) pointed

out that the pessimism was not necessarily justified if economists are concerned about

whether a LR hypothesis held in a particular history and the historical data contained

long-run variation in money. In the situation where money was nonstationary (integrated

of order one), they showed how LRN can be tested via a long-run regression with proper

identifying assumptions made to disentangle the causality between output and money. For

convenience in the discussion below, we call tests based on these two ideas — integration

and identification— second generation tests of LR propositions.1 These second generation

studies principally concerned bivariate relations between variables: they look at relations

between money and output to test LRN and between money and the price level (or nominal

income) to test LRH.

Two drawbacks of the long-run neutrality tests along second generation lines have been

pointed out in the literature. One is that the results of the test are heavily dependent on

identifying assumptions. More formally, identification involves making the correct mapping

between the forecast errors and structural shocks, particularly the monetary shock. The

1Other related research is contained in Geweke (1986), who uses frequency domain methods, and King
and Watson (1997), who use vector autoregression (VAR) methods.



3

importance of this set of assumptions (and the fragility of neutrality tests with respect

to them) is most apparent in the VAR analysis of King and Watson (1997), where the

sensitivity of the long-run neutrality tests to various identifying assumptions is graphically

displayed. Yet, while such a VAR approach to neutrality testing has become popular2, its

application also requires that the researcher select the list of variables properly. This is

because the vector of variables used in a second generation study must reveal the shocks in

the economy correctly to the researcher. More formally, it must be possible to map between

the forecast errors and the true structural shocks. If the researcher is studying a subvector

of economic activity, then there are many reasons that this mapping may be infeasible.

So accurate specification of the data vector is an essential part of second generation tests.

Thus, any rejection of LRN or LRH in a VAR context can signal that the theory is wrong

or that the identification and/or variable selection assumptions are incorrect.

In this chapter, I develop a LR test based on cointegration concepts which depends on

a basic identifying assumption shared with the second generation tests: there must be an

independent source of nonstationary variation in the monetary time series. But my test

does not require either of the other maintained assumptions of the second generation tests:

it can evaluate LRN and LRH without a parametric identifying assumption and without

correct specification of the macroeconomic data vector.

Turning to the details, I follow the approach of second generation tests in working with a

vector autoregression that is nonstationary in levels, so that there can be the stochastic trend

in money that these studies and my approach both rely on. But, in contrast to these earlier

studies, I suppose that there may be cointegration among the macroeconomic variables and

study a system with three or more variables so as to test LRN and LRH. To be precise,

I employ a vector error correction (VEC, henceforth) model of a form that is standard in

cointegration analysis. With an application of the Granger representation theorem3, I prove

2e.g. Bernanke and Mihov (1998), Serletis and Koustas (1998), and Bae and Ratti
(2000).

3Please refer to Chapter 4 of Johansen(1995).
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that any LR hypothesis can be interpreted as a set of linear constraints on the orthogonal

cointegrating space, which in turn imposes restrictions on the cointegrating space. This

orthogonality condition is independent of the conventional identifying assumptions employed

in the second generation LR tests.

The LRN and LRH hypothesis constrain the cointegrating vector space, with a sacri-

fice in degrees of freedom which is dictated by the particular hypothesis. Exploiting this

property, I show how to construct a likelihood ratio test for a particular LR hypothesis.

When the degrees of freedom sacrificed is larger, the LR hypothesis is stronger, i.e., more

constraining on the estimated model. Hence, the LR hypothesis that I derive in this chap-

ter can be used to test LRN against LRH since, as I formulate these hypotheses, LRH is a

stronger hypothesis involving a greater sacrifice in degrees of freedom.

I apply my LR tests to two different data sets for real output, nominal interest rate,

the price level and nominal money stock: one is an annual data set based on the monetary

history of Friedman and Schwartz (1982), which covers 1940-1975, and the other is a post

WWII quarterly data set which covers 1959:1-2002:2. For the latter period, I split the data

into two subsamples: one is a pre-Volcker sample and the other is a post-1983 sample. For

all samples, I did not reject long-run neutrality (LRN). Long-run homogeneity was rejected

in the pre-Volcker sample of quarterly data, but not in the other two samples.

2. An Overview of Long-Run Tests

There has long been interest in testing propositions about the long-run link between

money and real or nominal variables, which are at the heart of classical macroeconomics.

In this section, the history of such tests is reviewed and the alternative approach taken in

this chapter is highlighted.

To begin, it is useful to review the two basic long-run propositions considered in this

chapter. In the long run, a permanent change in the level of the money stock is assumed
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to affect nominal variables proportionately and not to affect real variables. In this chapter,

these are called the long-run homogeneity (LRH) and long-run neutrality (LRN) propo-

sitions. For example, if the nominal variable is nominal income then the homogeneity

proposition could be investigated via the regression

Yt = bmt + cxt + et,

where Yt is log nominal income, mt is log money stock, xt are other variables that affect

nominal income and et is an error term. In this regression setting, the LRH hypothesis is

that b = 1 since this implies that

∂Yt
∂mt

= b = 1.

A comparable regression for the LRN hypothesis is

yt = dmt + gxt + et,

where yt is log real income and the other variables are as above, The neutrality hypothesis

is that d = 0, since that implies

∂yt
∂mt

= d = 0.

2.1. The beginning. In the 1960s, researchers at the Federal Reserve Bank of St.

Louis began the empirical study of the relationship between nominal income and the money

stock in a dynamic regression framework,

∆Yt = B(L)∆mt +C(L)xt + εt(2.1)

where B(L) = Σmi=0BiL
i and C(L) = Σfi=0CiL

i are polynomials in the lag operator L and

∆ = 1− L indicates a first difference here and below.

The St. Louis researchers were motivated to study such distributed lag models by

Friedman’s (1969) argument that there was a lag in the effect of monetary actions on the

macro economy. In the well-known work of Anderson and Jordan (1968), the main focus

of the regression analysis was two-fold. First, they sought to determine the nature of the

lags in the effects of monetary policy in estimating the B coefficients. Anderson and Jordan
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found that there was a less than one-for-one short-run effect of money on nominal income,

i.e., B0 < 1. To calculate the effect of a sustained change in the level of money on the

path of nominal income, they calculated dynamic multipliers. Given that the regression is

in first-difference form, they calculated the effect of a sustained change, beginning at t, on

nominal income at date t+s as ∂Yt+s/∂mt = Σsi=0Bi.
4 Second, they sought to test whether

a specific set of x’s, measures of fiscal policy, affected nominal variables as suggested by the

prominent brand of Keynesian macroeconomics.

Later St. Louis analysis—Andersen and Karnosky (1972)–used this regression frame-

work to test LRH as follows. They imagined a permanent change in the level of money

beginning at date t. They calculated that the long-run multiplier attached to this change

was

lim
s→∞

∂Yt+s
∂mt

= Σsi=0Bi = B(1),

so that they tested LRH by testing whether the sum of coefficients was equal to unity. They

also implemented the comparable test for LRN, investigating whether lims→∞ ∂yt+s/∂mt =

Σsi=0Bi = B(1) was zero.

2.1.1. Simultaneity. The St. Louis approach was controversial. Notably, Ando and

Modigliani (1990) criticized the St. Louis regression for not recognizing that nominal income

and the money stock were simultaneously determined.

However, Sims (1972) provided some support in a bivariate context for the St. Louis

regression, building on Granger’s (1969) earlier work on testing for causality. Theoretically,

Sims established that it was only legitimate to run the regression

A(L)Yt = B(L)mt + eY,t,

4To understand this, we ignore C(L)xt and εt in (2.1). It follows that ∂Yt+s ≡ (Yt+s −
Yt−1) = Σsj=0∆Yt+j = Σsj=0Σmi=0Bi∆mt+j−i. Conditional on time t money variation, i.e.
setting ∆mt+i−j = 0 for all i 6= j, the long-run multiplier ∂Yt+s/∂mt ≡ ∂Yt+s|∆mt =
Σsi=0Bi.
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for the purposes of the St. Louis researchers if the reverse regression

C(L)mt = D(L)Yt + em,t,

displayed D coefficients that were zero. Looking at nominal income and money empirically,

he found evidence that the D coefficients were statistically insignificant.

However, subsequent studies produced a more ambiguous result in terms of Sims-

Granger causality of money for real and nominal income, with causality being found in

some data sets and for some variable lists. These ambiguous findings are the motivation for

development of tests of LRH and LRN which can be employed in settings where there is a

dynamic endogeneity.

2.1.2. The rational expectation critique. The interpretation of the St. Louis regressions

was also called into question by the analyses of Sargent (1971) and Lucas (1972). Studying

an economy in which only unanticipated monetary changes had real effects and which oth-

erwise displayed the LRH and LRN properties, Lucas (1972) showed that restrictions on

sums of coefficients did not provide a way of testing the classical propositions.5 To illustrate

Lucas’s point, consider an economy in which the behavior of real and nominal income is

given by

yt = φ(mt −Et−1mt) + ey,t
Yt = mt − φθ(mt −Et−1mt) + eY,t

where φ is a positive parameter and 0 < θ < 1. That is: unanticipated monetary expansions

raise real income and raise nominal income less than one-for-one. If the money supply is

given by the first-order autoregression mt = ρmt−1 + em,t, it then follows that the rational

expectations solutions for real and nominal output are

yt = φmt − φρmt−1 + ey,t(2.2)

Yt = (1− φθ)mt + ρφθmt−1 + eY,t(2.3)

5Sargent (1971) made a similar point in a Phillips curve framework.
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Under Lucas’s assumption that the money supply process is stationary(|ρ| < 1), the sum of
coefficients in the real output equation is inconsistent with neutrality(φ(1− ρ) > 0). These

implications occur despite the fact that the model is one with a strong form of neutrality

and homogeneity.

On the basis of this finding, Lucas and Sargent argued against evaluating the long-run

effects of monetary policy on the basis of relatively unrestricted distributed lag models. Fur-

ther, Lucas and Sargent argued that testing of the classical propositions required specifica-

tion and estimation of a detailed structural model, so that the expectational and behavioral

lags could be separated.

2.2. Second Generation LR Tests. A second generation of long-run tests was devel-

oped by Geweke (1986), Fisher and Seater (1992) and King and Watson (1997). Although

these studies differ in the details, each was based on the core idea that long-run propositions

are testable if there is suitable long-run variation in money. As an example, suppose that

the money stock is assumed to be a random walk (ρ = 1) in the Lucas model just consid-

ered. This assumption means that all changes in money are unanticipated and permanent.

Evaluating the expressions above at ρ = 1, it then follows that the sum of coefficients on

the monetary variables in (2.2) is zero as suggested by prior neutrality tests and the sum

in (2.3) is one as suggested by prior homogeneity tests.

Working from the assumption that there is exogenous long-run variation in money, the

second generation LR tests all seek to determine how real or nominal variables respond to

these variations in the long-run variation in money. If the study concerns real income, so

that LRN is the hypothesis of interest, then the long-run effect should be zero. By contrast,

if the study concerns nominal income or the price level, then this long-run effect should be

unity. One way of determining these long-run effects is via considering the comovement of

long-run variations in money and other variables.
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2.2.1. Long-run variations. The long-run variation ∆∞xt−1 of a variable x is defined as

limk→∞(xt+k−xt−1), which is equal to limk→∞Σki=0∆xt+i. The second generation LR tests
concern long-run variation conditional on a one-time shock, or, equivalently, the long-run

response to a one-time shock. In our case, it would be the long-run response to a one-time

monetary shock.

If xt is I(1) stationary, then its long-run variation can be modeled by the following

approximate autoregressive process of its first difference,

C(L)∆xt = εt.

If we invert the process, ∆xt = C(L)−1εt. Letting C(L)−1 = Σ∞j=0ψjLj , it then follows that

limk→∞Σki=0∆xt+i = limk→∞Σki=0Σ
∞
j=0ψjεt+i−j . Accordingly, the long-run response of x

to a one-time shock at time t can be calculated by setting all εt+i−j = 0 except i = j, which

is

∆∞xt−1|εt = lim
k→∞

Σki=0Σ
∞
j=0ψjεt+i−j |εt+i−j = 0 for all i− j 6= 0

= (Σ∞j=0ψj)εt

= C(1)−1εt.

2.2.2. Neutrality of long-run variations. Within the Lucas model studied in the last

section, the money supply process is mt = ρmt−1 + em,t where |ρ| ≤ 1.

∆mt = ρ∆mt−1 + (1− L)em,t
= (1− ρL)−1(1− L)em,t.

In this case, C(L)−1 = (1− ρL)−1(1− L). Long-run variations in money will exist only if
C(1)−1 6= 0. This happens only when ρ = 1. In that case, the long-run response of m to

one-time shock em,t is em,t itself.
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From (2.2), it follows that the output response is

∆yt = φ(1− L)∆mt + (1− L)ey,t
= (1−L)(φem,t + ey,t).

The long-run response ∆∞yt−1 conditional on em,t shock is zero, which is obtained by

replacing 1 for L in the expression above. That is, in the Lucas model, there is neutrality

of long-run variations in money: the shock em,t has a long-run effect on m but not on y.

As discussed above, when ρ = 1, em,t produces the long-run variation in money, which the

second generation tests require.

2.2.3. VAR-based second generation methods. Neutrality tests based on vector autore-

gressions are more complicated than the simple Lucas example on three dimensions. First,

they allow real output to be potentially affected by real shocks in the long-run. Second, they

allow for money growth to respond to its own lags and to lags of output growth. Third, they

allow for short-run interactions of real and nominal variables. All of these considerations

are reflected in the following structural vector autoregression,

πry∆yt = πrm∆mt +Σ
p
i=1αyy,i∆yt−i +Σ

p
i=1αym,i∆mt−i + u

r
t(2.4)

πmm∆mt = πmy∆yt +Σ
p
i=1αmy,i∆yt−i +Σ

p
i=1αmm,i∆mt−i + u

m
t .

In this structural VAR, there are two structural shocks ur and um. The former refers to real

productivity shocks. The latter refers to monetary shocks. In addition, both variables are

treated endogenously, which mitigates the causality problems previously discussed in the

context of the St. Louis regression. Short-run interactions of ∆yt and ∆mt are governed

by the π coefficients, while the dynamic interactions are governed by the α coefficients
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The long-run responses of yt−1 and mt−1 to ut shocks, i.e. ∆∞yt−1|ut and ∆∞mt−1|ut
respectively, are the solutions to the following system: πry −Σpi=1αyy,i −(πrm +Σpi=1αym,i)

−(πmy +Σpi=1αmy,i) πmm −Σpi=1αmm,i


 ∆∞yt−1|ut
∆∞mt−1|ut

 =
 urt

umt

(2.5)

Inverting (2.5), ∆∞yt−1
∆∞mt−1

 |ut = ϕ

 πmm −Σpi=1αmm,i πrm +Σ
p
i=1αym,i

πmy +Σ
p
i=1αmy,i πry −Σpi=1αyy,i


 urt

umt

(2.6)

where ϕ = 1/((πry −Σpi=1αyy,i)(πmm−Σpi=1αmm,i)− (πmy +Σpi=1αmy,i)(πrm+Σpi=1αym,i)).
The long-run effect of a monetary shock um is ∆∞yt−1

∆∞mt−1

 |umt = ϕ

 πrm +Σ
p
i=1αym,i

πry −Σpi=1αyy,i

umt .

This expression is at the heart of second-generation tests. Using it, the implication of

LRN is that (πrm +Σ
p
i=1αym,i) / (πry −Σpi=1αyy,i) = 0. If we replace real income (y) with

nominal income (Y ), the implication of LRH is that (πrm +Σ
p
i=1αym,i) / (πry −Σpi=1αyy,i) =

1. That is: the second generation LR tests focused on the statistical behavior of the ratio

(πrm +Σ
p
i=1αym,i) / (πry −Σpi=1αyy,i), which Fisher and Seater (1993) called the long-run

derivative (LRD) of y (or Y ) with respect to m.

2.2.4. Identification and Second-Generation LR tests. By its nature, the LRD is a struc-

tural parameter, which requires identifying assumptions to estimate it. These identifying

assumptions are most easily discussed if we follow the actual practice used in some of the

prior literature. To begin, suppose that we estimate a reduced form VAR as

∆yt = Σpi=1ayy,i∆yt−i +Σ
p
i=1aym,i∆mt−i + εyt(2.7)

∆mt = Σpi=1amy,i∆yt−i +Σ
p
i=1amm,i∆mt−i + εmt
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Comparing this expression with (2.4), we note a structural relationship between reduced

form shocks (forecast errors, εt) and structural shocks ut that takes the form

 urt

umt

 =
 πry −πrm
−πmy πmm


 εyt

εmt

 .
To compute the LRD, second generation LR tests imposed different identifying assumptions

regarding π parameters.

Geweke assumed πrm = 0, which implies that real output does not respond to money

aggregate within the current period, according to the first equation in (2.4). Using this

approach, he found an evidence supporting LRN for real output. However, when he studied

real balances, the test result did not support LRN, since the estimated long-run effect of

money on real balances was not zero.

Fisher and Seater assumed that money is long-run exogenous by imposing −(πmy +
Σpi=1αmy,i) = 0. That is: the real shock u

r
t is assumed not to affect the variation in money

in the long-run. (Formally, given this assumption, the second equation of (2.5) governing

the long-run response of money implies that: the long-run response ∆∞mt−1|ut of money
does not depend on the long-run response ∆∞yt−1|ut of output). Using this assumption,
FS found an evidence against LRN for the U.S. real income, and the German real balance.

But they did not reject LRH for the U.S. price level and nominal income.

King and Watson explored the relation between test results and identifying assumptions

within the bivariate VAR setting. Varying πrm, they found that the LRD tends to reject

LRN when the assumed πrm value is small, but does not when it is large. Varying πmy,

they found that the LRD tends to reject LRN when the assumed value is large, but not

when it is small.

Taken together, the results of these studies indicate that tests of LRN and LRH are

quite sensitive to the identifying assumptions used by different researchers.
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3. Why cointegration is a valuable basis for New LR Tests

The key insight of this chapter is that cointegration is a valuable basis for constructing

new long-run tests. In this section, I provide a series of examples illustrating why this is so,

working to generalize the examples of the last section. Then, in section 3.3 below, I provide

formal proofs that show how to exploit the ideas that are exemplified in the current section.

In the discussion of second-generation tests that we just completed, we saw that the

LR tests based on the LRD rely heavily on two sets of maintained assumptions. First, it

is clear that these tests depend on explicit identifying assumptions. Following Sims’s(1980)

discussion of the subtlety of identifying assumptions, we know that making right identifying

assumptions is difficult. Second, the second-generation procedures rely importantly on the

correct specification of the vector autoregression system: the analyst needs to be able to

map between forecast errors and structural shocks. But, suppose that the macroeconomic

data is really generated by a VAR in three variables, while the second generation researchers

studied a system with only two variables. Then, it is quite likely that there is no way to

map between structural shocks and forecast errors in the way that is required for the LRD

tests.

A good econometric testing methodology should require the weakest possible auxiliary

assumptions. My belief is that cointegration provides a valuable basis for weakening these

maintained assumptions and I begin by displaying a series of examples that show why this

is so.

3.1. The simplest example. To begin with the simplest example, we use the Lucas

example of (yt,mt) to demonstrate our cointegration test. The model is

yt = φ(mt −Et−1mt) + uyt
mt = mt−1 + umt .
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Recall that the solution to this model is:

yt = φ∆mt + u
y
t

∆mt = umt .

With recursive iteration, it follows that mt = m0 + Σ
t
i=1u

m
i , so that the solution can be

expressed as

yt = φumt + u
y
t(3.1)

mt = m0 +Σ
t
i=1u

m
i .(3.2)

From this solution, it is not difficult to tell that yt is stationary and mt is I(1) stationary;

and there is an I(1) component in mt that is Σti=1u
m
i .

To implement a neutrality test empirically, we need to think of describing the behavior

of output under the alternative of nonneutrality. In this case, we would need to append a

term so that (3.1) becomes

yt = φumt + u
y
t + b(m0 +Σ

t
i=1u

m
i )(3.3)

In this case, both yt and mt are I(1) stationary, but they are cointegrated. It is clear that

the cointegrating vector is (1, −b), i.e., that yt − bmt is stationary within this extended
model.

To provide some further understanding of the content of the cointegrating vector, con-

sider the long-run variation (∆∞yt−1,∆∞mt−1) of (y,m) to a one-time monetary shock at

time t  ∆∞yt−1
∆∞mt−1

 |umt =
 b

1

umt
in line with our previous discussion in Section 2.2.1. The long-run response vector (b, 1)0

captures the contribution of the I(1) component coming from monetary shocks to each

variable.6 Hence, estimation of the cointegrating vector provides one way of isolating the

6The contributions of the I(1) component from monetary shocks to yt is bΣti=1u
m
i as in

(3.3), and to mt is Σti=1u
m
i as in (3.2).
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long-run effect of monetary shocks in this example. First, one determines that cointegrating

vector. Second, one calculates the long run response vector, (b, 1)0, which is orthogonal to

the estimated cointegrating vector.

Importantly, though, this same strategy can be used to test long-run neutrality. LRN

is a hypothesis about the long-run response of (yt,mt) to monetary shock, which says that ∆∞yt−1
∆∞mt−1

 |umt =
 0
g

umt .
where we can always normalize g to one. Then, if LRN is true, the cointegrating vector of

(yt,mt) should be orthogonal to (0, 1).

The geometry behind this testing strategy is illustrated in Figure 1. The long-run

response vector that is implied by LRN is (0,1). Under long-run neutrality, the cointegrat-

ing vector is β1 = (1, 0) which is orthogonal to the LRN long-run response vector (0,1).

Other potential cointegrating vectors can be written in the form β2 = (b1, b2) and are not

compatible with LRN because β2 ∗ (0, 1)0 = b2 is non-zero.

This example highlights the general point that LRN imposes orthogonality restrictions

on a cointegrating vector or, more generally, on the space of cointegrating vectors as we

will see later in this chapter. If the orthogonality condition is violated, then LRN can be

rejected. This example also illustrates that a LRN test based on cointegration does not

require the identifying assumption imposed in second-generation LRN: it is not necessary

to take a stand on the π coefficients in order to extract monetary shocks. We will see

that this property extends to other LR tests, such as long-run homogeneity, and to larger

systems.

3.2. Subtleties of LR tests based on cointegration. In the two variable example

that we just studied, there is only one permanent shock, which is a monetary shock. For a

bivariate model with one permanent shock, the cointegrating rank is one. However, when

we investigate models with three or more variables, there can be other permanent shocks
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in addition to the monetary shock even if there is cointegration. This section accordingly

studies a series of three variable examples, in which the variables are real output (yt), the

price level (pt) and the money stock (mt). We use this example to illustrate the subtleties

encountered in LR tests when multiple permanent shocks are present.

Extending the earlier example, suppose that our three variables are governed by the

following equations:

yt = θ(pt −Et−1pt) + uyt(3.4)

pt = gmt − yt + udt(3.5)

mt = αmt−1 + umt(3.6)

where uyt is a supply or productivity shock; u
d
t is a money demand shock; and u

m
t is money

supply shock. The economic interpretation of our three equations is that (3.4) represents a

Lucas supply curve; that (3.5) is money demand equation; and that (3.6) is money supply

equation. We assume that uyt , u
d
t , and u

m
t mutually independent. It is apparent that this

simple model embeds LRN as a result of the Lucas supply curve and rational expectations.

It also embeds LRH if g = 1.7 These properties are reflected in the solution8:

yt = πgumt + π(udt −Et−1udt )− θ(uyt −Et−1uyt ) + (1 + θ)uyt

mt = αtm0 +Σ
t
i=1α

t−iumi

pt = gαtm0 + gΣ
t
i=1α

t−iumi

−πgumt − π(udt −Et−1udt ) + θ(uyt −Et−1uyt )− (1 + θ)uyt + u
d
t

where π = θ/(1 + θ).

In particular, given this solution, we can explore three different cases, which differ in

terms of the permanent structural shocks. In all three cases, we assume α = 1. That is, in

7Though LRN and LRH certaintly do not necessarily require the Lucas supply curve and
rational expectations, this simple model will help make more transparent the cointegration
implications of LRN and LRH.

8Please refer to the appendix.
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common with the second generation tests, we require that at least one of the permanent

shocks is a monetary shock umt . Hence the solution can be reduced to

yt = πgumt + π(udt −Et−1udt )− θ(uyt −Et−1uyt ) + (1 + θ)uyt(3.7)

mt = m0 +Σ
t
i=1u

m
i(3.8)

pt = gm0 + gΣ
t
i=1u

m
i

−πgumt − π(udt −Et−1udt ) + θ(uyt −Et−1uyt )− (1 + θ)uyt + u
d
t(3.9)

We now explore a series of cases.

3.2.1. One permanent shock. When there is only one permanent shock and it is a mone-

tary shock, both productivity shock and money demand shock are stationary. For simplicity

in the algebra, but without loss of generality, we assume both uy and ud are iid mean zero.

ThenEt−1udt = Et−1u
y
t = 0. Consider the difference yt+k−yt−1,mt+k−mt−1 and pt+k−pt−1.

From (3.7) to (3.9),

yt+k − yt−1 = πg(umt+k − umt−1) + π(udt+k − udt−1) + (uyt+k − uyt−1)

mt+k −mt−1 = Σt+ki=t u
m
i

pt+k − pt−1 = gΣt+ki=t u
m
i − πg(umt+k − umt−1)− (uyt+k − uyt−1) + (1− π)(udt+k − udt−1)

Therefore, the long-run responses of y, m and p are:
∆∞yt−1

∆∞mt−1

∆∞pt−1

 |ut =

0 0 0

0 0 1

0 0 g



uyt

udt

umt

 .(3.10)

As discussed above, this confirms that umt produces a long-run effect but not the other

two structural shocks. But, more importantly, it shows that the long-run effect of umt on

(y,m, p) is (0, 1, g).

Since there is only one permanent shock, the cointegrating rank should be two for this

three variable system. That is: there are two cointegration vectors, which we now work

to determine. From the solution, there is no I(1) component in yt under LRN, just as
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in the example that we explored earlier. Accordingly, one of the cointegrating vectors is

(1, 0, 0). Yet, mt has the I(1) component Σti=1u
m
i and pt has the I(1) component gΣ

t
i=1u

m
i .

If (βy,βm,βp) is a cointegrating vector, then βyyt + βmmt + βppt should not contain any

I(1) components. That is

βy × 0 + βmΣ
t
i=1u

m
i + βp(gΣ

t
i=1u

m
i ) = 0.

It is easily verified that vector (0, g,−1) satisfies this restriction, as well as (1, 0, 0).

Hence, in this example, the origin of the I(1) components in yt, mt and pt is the perma-

nent monetary shock. The contribution of this I(1) component to each variable is (0, 1, g)

which is exactly the long-run response of (y,m, p) to a one-time monetary shock as in

(3.10). A cointegrating vector gives a weight of linear combination of (y,m, p) such that

the long-run response of this linear combination is zero to any one-time permanent shock.

In conclusion, both of the cointegrating vectors must be orthogonal to the (non-zero)

long-run response vector in (3.10). It follows that the other way of finding cointegrating

vectors is to find the vectors that are orthogonal to the long-run response matrix in (3.10).

From this representation, we can easily see that (1, 0, 0) and (0, 1,−g) are one version of
the cointegrating vectors.

Figure 2 shows the orthogonality conditions in this case. The cointegrating space con-

sistent with long-run neutrality and long-run homogeneity is space B1. It is comprised of all

vectors that are orthogonal to the long-run response (0, 1, 1). By contrast, the cointegrating

space B2 is orthogonal to the long-run response vector (1,1,2), which is inconsistent with

both LRN and LRH.

While we have worked out the cointegration implications of LRN and LRH for a specific

model above, let’s now suppose we do not know the detailed structure of the economy.

Under LRN, the I(1) component from money, i.e. Σti=1u
m
i , enters mt and pt, but not yt.

Let the weights it contribute to the nonstationarity of (yt,mt, pt) be (0, 1, g) which is the
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long-run response of (yt,mt, pt) to a one-time permanent monetary shock. If (βy,βm,βp)

is a cointegrating vector, by definition, βyyt + βmmt + βppt can not have I(1) component

from money, i.e. βy × 0 + βm × 1 + βp × g = 0 that is the cointegrating vector should

be orthogonal to (0, 1, g). This orthogonality condition must be true under LRN without

knowing the entire economic structure. The cointegration test of LRN is to test whether

the cointegrating vector of (y,m, p) is orthogonal to (0, 1, g) for some g. A test of LRH is a

test of whether the cointegrating vector of (y,m, p) is orthogonal to (0, 1, 1), i.e. the special

case of g = 1. Once the orthogonality property is rejected, LR hypotheses are rejected.

3.2.2. Two permanent shocks. While the previous example is a helpful one, it is more

realistic to assume that there are multiple permanent shocks. Hence, we consider two cases:

(i) where there is a stochastic trend in real output; and (ii) where there is a stochastic trend

in money demand.

uyt shock is I(1) stationary:

Let uyt = u
y
t−1 + u

r
t where u

r
t is an iid mean zero shock. Therefore, u

y
t = u

y
0 + Σ

t
i=1u

r
i ,

Et−1uyt = u
y
t−1 and Et−1u

d
t = 0. The solution to (3.4) to (3.6) is then:

yt = πgumt + πudt − θurt + (1 + θ)(uy0 +Σ
t
i=1u

r
i )

mt = m0 +Σ
t
i=1u

m
i

pt = gm0 + gΣ
t
i=1u

m
i − πgumt

−πgumt − πudt + θurt − (1 + θ)(uy0 +Σ
t
i=1u

r
i ) + u

d
t .

The long-run response of (y,m, p) is:
∆∞yt−1

∆∞mt−1

∆∞pt−1

 |ut =


1 + θ 0 0

0 0 1

−(1 + θ) 0 g



urt

udt

umt

 .

From the solution, the I(1) components in yt, mt and pt are Σti=1u
r
i , Σ

t
i=1u

m
i and

gΣti=1u
m
i −Σti=1uri respectively. If (βy,βm,βp) is a cointegrating vector, then βyyt+βmmt+
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βppt should have no I(1) component left. That is

βy(1 + θ)Σti=1u
r
i + βmΣ

t
i=1u

m
i + βp(gΣ

t
i=1u

m
i − (1 + θ)Σti=1u

r
i ) = 0.

It is easily verified that vector (−1, g,−1) satisfies this property. The solution (βy,βm,βp)
must be able to remove both nonstationary components Σti=1u

r
i and Σ

t
i=1u

m
i . The coin-

tegrating vector can also be found through the space that is orthogonal to the long-run

response matrix.

Now suppose we do not know the structure of the economy. Under LRN, the long-run

response of (yt,mt, pt) to a one-time monetary shock is (0, 1, g) which shows the contribution

of monetary shock to the I(1) component embedded in each variable. If (βy,βm,βp) is a

cointegrating vector, by definition, βyyt + βmmt + βppt must remove all I(1) components,

including the I(1) component from monetary shock. Therefore, βy×0+βm×1+βp×g = 0.
The cointegrating vector should be orthogonal to (0, 1, g). This orthogonality condition must

be true under LRN. Of course, it is apparent that if the economy behaves according to (3.4)

to (3.6), the estimated cointegrating vector will converge to (−1, g,−1) which is orthogonal
to (0, 1, g). Data series generated from this process will satisfy the LRN orthogonality

condition.

It is important to note that the additional shock changes the cointegrating rank from two

to one, but it does not change the essence of the cointegration test for LRN or LRH. LRN

requires the cointegrating vector to be orthogonal to vector (0, 1, g), while LRH requires it

to be orthogonal to (0, 1, 1). This is the same as the case of one permanent shock.

udt is I(1) stationary:

Similar to the previous case, let udt = u
d
t−1 + uvt . Then Et−1udt = udt−1 and Et−1u

y
t = 0.

This can be interpreted as the income velocity of money being nonstationary. The model
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solution will be:

yt = πgumt + πuvt + u
y
t

mt = m0 +Σ
t
i=1u

m
i

pt = gm0 + gΣ
t
i=1u

m
i

−πgumt − πuvt − uyt + ud0 +Σti=1uvi .

The long-run response of (y,m, p) is:


∆∞yt−1

∆∞mt−1

∆∞pt−1

 |ut =

0 0 0

0 0 1

0 1 g



uyt

uvt

umt

 .

The cointegrating rank is one with cointegrating vector being (1, 0, 0) up to a scale

adjustment. Apparently this vector is orthogonal to (0, 1, g). For LRH, it should be orthog-

onal to (0, 1, 1). That is: the orthogonality properties are the same irrespective of which

permanent shock is added.

The contribution of the I(1) component from monetary shock is still (0, 1, g). For any

cointegrating vector (βy,βm,βp), βyyt + βmmt + βppt must remove all I(1) components

including the component from monetary shock. Therefore, βy × 0 + βm × 1 + βp × g = 0.
This orthogonality condition is the same as before. Even though the additional permanent

shock is now from money demand shock and it creates different I(1) component than the

real shock example, the orthogonality condition imposed by LRN or LRH is still the same.

3.2.3. Three permanent shocks. This means that both uyt and u
d
t are nonstationary. We

maintain the assumptions that their stochastic processes are uyt = uyt−1 + u
r
t and u

d
t =
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udt−1 + uvt as before. The model solution will be:

yt = πgumt + πuvt − θurt + (1 + θ)(uy0 +Σ
t
i=1u

r
i )

mt = m0 +Σ
t
i=1u

m
i

pt = gm0 + gΣ
t
i=1u

m
i

−πgumt − πuvt + θurt − (1 + θ)(uy0 +Σ
t
i=1u

r
i )

+ud0 +Σ
t
i=1u

v
i .

The long-run response of (y,m, p) is:
∆∞yt−1

∆∞mt−1

∆∞pt−1

 |ut =


1 + θ 0 0

0 0 1

−(1 + θ) 1 g



urt

uvt

umt

 .

When there are three permanent shocks, the cointegrating rank is zero. The only

possible cointegrating vector is zero vector which is orthogonal to (0, 1, g) under LRN, and

orthogonal to (0, 1, 1) under LRH. The orthogonality properties are still the same as before

even now we have two extra permanent shocks than monetary shock. However, in this case,

the orthogonality properties are not informative in testing LRN or LRH since zero vector is

orthogonal to any vector. Thus, there is a limitation of the cointegration test in that there

must be a proper cointegrating rank. However, in practice, this has not turned out to be

important: we can use a larger vector system to avoid this problem. We will return to this

issue later in our analysis as well.

The conclusion from our examples so far is that: no matter how many different perma-

nent shocks are present in the system, cointegrating vectors give linear combinations that

remove all I(1) components from each different shock, including the monetary shock. The

reason that they can remove all I(1) components is that they are orthogonal to the long-run

response of the variables in the system. LRN and LRH impose certain restrictions on the

long-run responses to the monetary shock. That is: cointegrating vectors must be orthog-

onal to the long-run response of a monetary shock that is constrained by LRN or LRH.
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These constrained orthogonality conditions imposed by LRN and LRH can be used to test

LRN and LRH. Because the entire test relies on cointegration, the cointegrating rank must

be greater than zero.

3.3. General Approach. We now turn to discussing the general approach which is

taken in this chapter, displaying two important points alluded to in the introduction. First,

we show that the long-run implications of hypotheses like LRN and LRH are unaffected by

identification restrictions like those used in the second generation tests. Second, we show

that our LRN and LRH tests may be executed even if it is not possible to make a structural

interpretation of errors because the researcher has chosen a data vector that contains only

a portion of the relevant data.

3.3.1. VECM background. If a vector of series Xt is I(1) stationary and is cointegrated

with cointegrating vectors β, so that β0Xt is I(0), then the Granger representation theorem

(e.g., Hamilton (1994), page 582) indicates that a vector error correction model is a suitable

empirical specification for capturing the dynamics of nonstationary variables. The VEC

model then takes the form

∆Xt = D + αβ0Xt−1 +Σpi=1Γi∆Xt−i + εt.(3.11)

For our current purposes, it is important to recognize that the Granger representation

theorem does not guarantee a structural interpretation of the εt: these are just the one-

step-ahead forecast errors for ∆Xt given the variables β0Xt−1 and ∆Xt−i.

An additional consequence of Granger’s theorem is

Lemma 1. The vector moving average solution of (3.11) is

Xt = C(Dt+Σ
t
i=1εi) +C(L)(D + εt) + Pβ⊥X0

where

1. C = β⊥(α0⊥Γβ⊥)
−1α0⊥ and Γ = I −Σpi=1Γi;
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2. Pβ⊥ is a projection matrix projecting vectors into sp(β⊥);

3. C(L) = Σ∞i=0CiLi is a matrix polynomial with Ci matrices absolutely summable.9

This solution makes clear that the long-run response of X to εt shock is:

∆∞Xt−1|εt = Cεt

which is orthogonal to sp(β). This corresponds to our previous discussion about cointegrat-

ing vectors; they give linear combinations that eliminate all I(1) components from different

shocks.

3.3.2. Irrelevance of traditional identification assumptions. Now, following the practice

in second-generation tests, let us assume that there is a possible structural interpretation

of the VECM and its associated vector moving average solution. For this purpose, we

assume that the forecast errors εt are linearly related to the structural shocks ut according

to εt = Πut,

∆∞Xt−1|ut = CΠut.

The long-run response to structural shocks is simply a projection from Π to the range space

of C which by nature falls in sp(β⊥), and is orthogonal to sp(β) regardless the structural

relation Π. Therefore we have the following lemma:

Proposition 1. The long-run response to structural shocks must be orthogonal to coin-

tegrating vector space regardless of identifying structure Π.

LRN and LRH are hypotheses about certain columns of CΠ. In the (y,m, p) example,

LRN implies that one column of CΠ looks like (0, 1, g) with g unknown10 and LRH implies

that one column of CΠ looks like (0, 1, 1). According to Proposition 2, LRN imposes the

restriction that (0, 1, g) ∈ sp(β⊥), and LRH imposes the restriction that (0, 1, 1) ∈ sp(β⊥).
9The exact expression of Ci is complex, and out of the purpose of this paper. For details,

please refer to Chapter 4 of Johansen(1995).
10This is equivalent to saying that one column of CΠ looks like (0, gm, gp) with both gm

and gp unknown but normalizing gm to one.
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Therefore, regardless of any identifying structure Π, β in (3.11) should be either orthogonal

to some vector like (0, 1, g) under LRN or orthogonal to (0, 1, 1) under LRH.

The orthogonality between long-run hypothesis and cointegrating vectors is always true

regardless of the identifying assumption Π. Due to this property, we are able to construct a

likelihood ratio test to evaluate whether data support the orthogonality conditions implied

by LRN or LRH without imposing conventional identifying assumptions.

3.3.3. Irrelevance of accurate specification of the data vector. The other advantage of

a cointegration approach for constructing LR tests is that the researcher does not need to

accurately specify the data vector. To see this, suppose that the true data vector in the

economy is Zt, which contains Xt as its first m of n elements, with the remaining elements

being Wt. Suppose further that all of the elements of Zt are I(1) stationary and that the

cointegration restrictions take the form β0xx 0

β0xw β0ww


 Xt

Wt


Given Lemma 1 and the Granger representation theorem, Zt can be modeled as

Zt ≡

 Xt

Wt

 =
 Ψxm Ψx˜m

Ψwm Ψw˜m

Σti=1
 umi

u˜mi

+ Z̃0
where Z̃0 is a projection of initial values, um and u˜m are monetary and non-monetary

shocks respectively. Without loss of generality, we have ignored the transitory components

for convenience and simplicity in the discussion.

Consider a partial system consisting of Xt only. Orthogonality between cointegrating

vectors and the long-run response matrix implies that

β0xxΨxm = 0.(3.12)

Therefore, βxx which serves as a cointegrating matrix for the partial system still maintains

the orthogonality property imposed by the long-run response function. The restrictions

imposed by LRN or LRH on Ψxm still impose restrictions on the cointegrating matrix βxx
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of Xt according to the orthogonality condition (3.12). In addition, the Xt nonstationary

process with cointegrating matrix βxx can be approximated by a VEC model according to

the Granger representation theorem. Hence, a researcher following my methodology can

still test LRN and LRH even though the system does not include the complete list of macro

variables. Accurate specification of the data vector is not necessary.

By contrast, for the second generation LR tests, there is an even greater problem if the

researcher studies only a partial system. The Wold decomposition theorem guarantees only

that the forecast errors are uncorrelated with lagged ∆X’s. But some forecast errors are

typically weighted averages of the innovations to Z at date t and prior dates. Therefore,

any shocks identified from these forecast errors are unlikely to include an accurate monetary

shock. My method does not have this problem since I do not have to extract the monetary

shock from the model forecast errors.

3.3.4. Permanent Monetary Shocks and Identifying Assumptions. The LR tests, both

cointegration test and the second generation test, require the assumption of the existence of

permanent monetary shocks. If monetary shocks are transitory as the discussion of Lucas

and Sargent studies, then the only way to test LRN and LRH is to specify the deep structure

of the economy.

In this section, I want to alert the reader that an important identifying assumptions

regarding the long-run variation of money is being made in doing a LR cointegration test.

To illustrate this point, take the Lucas supply curve from Section 2.1.2 as an example,

yt = φ(mt −Et−1mt) + uyt .

If mt = mt−1 + umt , then the solution to this model is

yt = φ∆mt + u
y
t

mt = mt−1 + umt .
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The solution is also expressible in terms of a structural VEC model as (3.11), which is ∆yt
∆mt

 =
 1
0

 · −1 0

¸ yt−1

mt−1

+
 εyt

εmt


with  εyt

εmt

 =
 1 φ

0 1


 uyt

umt

 .
In this model, the adjustment coefficient α = (1, 0)0 and the cointegrating vector β =

(−1, 0)0. The identifying assumption πm regarding monetary shocks is (φ, 1)0. According to
Lemma 1, the long-run response of (y,m) to monetary shocks is equal to β⊥(α0⊥β⊥)

−1α0⊥πm

which is (0, 1). Thus, the long-run variation in money creates evidence of LRN. More

generally, the LR approach presumes that there is exogenous long-run variation in m. But

a virtue of this approach is that LR propositions can be tested without uncovering this

trend in money.

To make this point more dramatically, suppose we consider another money supply rule.

In particular, monetary authority targets real income with the rule mt = yt + umt and the

productivity shock uyt is I(1) stationary with u
y
t = u

y
t−1+u

r
t .
11 The structural VEC solution

to this model is12 ∆yt
∆mt

 =
 η

(1 + η)

 · 1 −1 ¸
 yt−1

mt−1

+
 εyt

εmt


with  εyt

εmt

 =
 1 η

1 (1 + η)


 ũrt

umt


where η = φ/(1−φ) and ũrt = η∆urt+u

r
t .
13 In this model, α = (η, (1+η))0 and β = (1,−1)0.

The identifying structure πm regarding the monetary shocks is πm = (η, (1 + η))0. Notice

11In this example, monetary shock umt is a transitory shock. To highlight the identifi-
cation issue, I maintain one permanent shock which is the productivity shock uyt here.

12Please refer to the appendix.
13Note that the structural error ũt is serially correlated. In practice, we can put in lags

of (∆yt,∆mt) into the model to correct the serial correlation. The forecast errors, (ε
y
t , ε

m
t )’s,

can be consistently estimated.
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that πm ∈ sp(α) in this case. Therefore, the long-run response of (y,m) to monetary shocks
is β⊥(α0⊥β⊥)

−1α0⊥πm = 0. Thus, the monetary shocks are transitory shocks and LR tests

do not work under this policy rule.

In a more general setting, the cointegration LR test rules out the identifying structure

that the contribution πm of monetary shocks to the system errors belong to sp(α).According

to Lemma 1, if πm ∈ sp(α), then the monetary shock is transitory. Therefore, by requiring
the existence of permanent monetary shocks, certain monetary policy rules have been ruled

out.

In summary, the cointegration (LR) tests require the existence of permanent monetary

shocks, just as the second generation tests did. Hence, they are based on the crucial as-

sumption that observed trends in m partly reflect autonomous variation in the monetary

authority’s behavior rather than solely monetary response to trends originating elsewhere in

the macroeconomy. However, given that maintained assumption, the LR tests can be con-

ducted under weaker auxiliary assumptions concerning details of identification and accurate

specification of the data vector.

4. Estimation with Long-Run Neutrality Restrictions

LR hypotheses impose restrictions on the cointegrating space through an orthogonality

property between the cointegrating space and the long-run response functions. Based on

this observation, I want to construct a likelihood ratio statistic to test both LRN and

LRH. In order to do this, I need to compute the maximal likelihood values with these LR

restrictions.

4.1. Hypothesis Setting. The nature of a likelihood ratio test requires us to compute

the likelihood value of a VEC model with constraints implied by a specific LR hypothesis.

LRN and LRH hypotheses concern the long-run response of variables to a monetary shock.

As discussed above, LRN imposes zero restrictions on the long-run response of real variables;
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LRH imposes further restrictions on the long-run response for all nominal variables. Con-

sider the three variable(y, p, m) example in Section 2. Under LRN, the long-run response

of (y, p,m) to a monetary shock should be (0, gm, gp). Under LRH, gm = gp in addition to

the zero restriction. Let us call the long-run response vector to monetary shock γ. Since

γ ∈ sp(β⊥), a restricted VEC model that accommodates LRN must have the estimated

cointegrating vector β orthogonal to γ—that is γ0β = 0. This looks like a standard linear

restriction on β, the estimation of which could be dealt with easily. However, the value of

γ is unknown when testing LRN.

Since the γ is unknown, the maximum likelihood estimation of a VEC model accommo-

dating LRN needs to find the MLE of both γ and β with (i) some elements of γ satisfying

zero restrictions; and (ii) γ and β orthogonal to each other. Instead of estimating both

γ and β with restrictions, we propose a method that transforms all restrictions on γ into

restrictions on β. By doing so, the estimation problem will be converted into a problem of

estimating a restricted β. We will show also that the restrictions on β look like standard

linear restrictions and can be dealt with traditional estimation methods. In addition, given

an estimated β, the MLE of γ can be obtained by solving a linear equation system.

First, notice that most long-run effects γ can be written in the following form:

γ =Hψ

with H pre-specified and full rank and with ψ unknown. In the example above, for LRN,

γ = [0, gp, gm]
0 which can be expressed as

γ =


0 0

1 0

0 1


 gp

gm

 .
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For LRH, γ = [0, gm, gm]
0 which can be expressed as

γ =


0

1

1

 [gm] .
A VEC model satisfying LRN or LRH should be able to admit the long-run response as

above in its orthogonal cointegrating space sp(β⊥). We can describe these LR hypotheses

in terms of the following:

H0 : The VEC model admits long-run effect γ with γ =Hψ and H(n× s) being

prespecified and full rank.

In this expression, s is the number of free parameters to be estimated in the long-run

response vector that is implied by the specific LR hypothesis. Let Θ(H0) be the set of

parameters—consisting of {α,β,D,Γi,the variance covariance matrix Ω of ε} following the
notation of (3.11)—that are admissible under the null hypothesis H0. For any β admissible

to Θ(H0) , there must exist at least one solution ψ such that β0Hψ = 0. It is clear that if

we can estimate β properly, then the MLE of ψ is simply the solution to the orthogonality

condition, i.e. β0Hψ = 0. Therefore, to find the MLE of the VEC model within the Θ(H0)

parameter space, we do not have to estimate β and γ jointly.

We are going to show that the parameter set Θ(H 0
0) generated by the following hypoth-

esis,

H 0
0 : There are at least r − s+ 1 cointegrating vectors lying in the space sp(H⊥),

is equivalent to Θ(H0). That is: {α,β, D,Γi,Ω} in Θ(H 0
0) must insure the existence of at

least one solution ψ such that β0Hψ = 0. Under H0
0, the cointegrating matrix β(n× r) can

be decomposed into two parts: β1(n× s− 1) and β2(n× r − s+ 1) with no restriction on
β1 and H

0β2 = 0.

If we interpret the hypothesis in this way, then all restrictions are imposed on β and are

linear. Given that β is estimated, the MLE of ψ can be obtained from the orthogonality
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condition, β0Hψ = 0. One potential problem is that: given any β satisfyingH 0
0, it is possible

to find the other base β̃ of sp(β) such that β̃ is a linear transformation of β but it does not

satisfy H 0
0. However, what important is the vector space itself, not the base we choose to

represent the cointegrating matrix. Therefore we have to define admissibility properly to

ensure that β̃ is also admissible to Θ(H0
0) . Notice that two VEC models, say {α,β,D,Γi,Ω}

and {α̃, β̃,D,Γi,Ω}, are observationally equivalent if there is a nonsingular matrix R such
that α̃ = αR0−1 and β̃ = βR. If this is true, then the products of the adjustment coefficients

and cointegrating vectors are the same for both models—that is α̃β̃
0
= αβ0.

Definition 1. The cointegrating matrix β is admissible with respect to the hypothesis

H 0
0 if one of its observationally equivalent versions satisfies the hypothesis.

4.1.1. The Hypothesis Equivalence Theorem and Its Proof. Now we are ready to prove

the following Hypothesis Equivalence Theorem.

Theorem 1. Given that the cointegrating rank of the VEC model is equal to r, the

following two hypotheses are equivalent:

H0 : The VEC model admits a long-run effect γ(n× 1) with γ =Hψ

and H(n× s) prespecified and full rank.

H 0
0 : There are at least r − s+ 1 cointegrating vectors lying in the space sp(H⊥).

Proof. The proof is done in two parts. First, we prove that Θ(H0) ⊇ Θ(H 0
0). Then,

that Θ(H0) ⊆ Θ(H 0
0).

If (α,β) ∈ Θ(H 0
0),
14 then β can be divided into two groups β1(n×s−1) and β2(n×r−s+1)

such that β = [β1,β2] and β2 ∈ sp(H⊥). To prove that β ∈ Θ(H0), it is sufficient to show
that there exists ψ such that β ⊥ γ given γ = Hψ. By the definition of β2, β2 ⊥ γ regardless

14The parameters in the model include not only the error correction coefficients (α,β),
but also other short run parameters, Γi. Since these other parameters will not be constrained
under either form of our null hypotheses, to keep the expressions terse, we treat (α,β) as
the only parameters in our model for notation at simplicity.
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of any choice of ψ so we only need to check the orthogonality condition for β1. To ensure the

existence of a nonzero ψ, β01H must have rank less than s. Since β1 has dimension n×s−1,
rank(β0H) ≤ s− 1 < s.

If (α,β) ∈ Θ(H0), then there exists a nonzero ψ such that given γ = Hψ, β ⊥ γ. This means

that β0H has rank less than s. Because [H,H⊥] form a base for <n, β can be decomposed
into β = Hφ1+H⊥φ2. Since rank(φ01H 0H) < s and H 0H is invertible, rank(φ1) < s; there

exists a nonsingular square matrix R such that φ1R = [φ1a(n× s− 1), 0(n× r− s+1)] and
φ2R = [φ2a(n×s−1),φ2b(n×r−s+1)]. Define β̃ = βR, then β̃ = [Hφ1a+H⊥φ2a,H⊥φ2b];

at least r − s + 1 cointegrating vectors in β̃ lie in sp(H⊥). Let α̃ = αR0−1. It follows that

αβ0 and α̃β̃0 are observationally equivalent. (α̃, β̃) ∈ Θ(H 0
0) by definition 1 this implies that

(α,β) ∈ Θ(H 0
0).

Hypothesis H 0
0 shows the constraints of the LR hypothesis imposed on cointegrating

space in terms of the sacrifice of the degrees of freedom for the choice of cointegrating space.

To under this point clearly, we use the bivariate (y,m) and trivariate (y,m, p) models as

examples to demonstrate the loss of degrees of freedom in the choice of cointegrating space.

For the bivariate model with LRN, the long-run response of (y,m) to the monetary

shock is  ∆∞yt−1
∆∞mt−1

 |umt =
 0
1

 [gm] .
Therefore, the matrix H is equal to the vector (0, 1)0. Suppose the cointegrating rank is

one. Hypothesis H 0
0 says that at least one cointegrating vector should belong to sp(H⊥)

where H⊥ = (1, 0)0 in this example. A cointegrating vector that satisfies LRN is like β1

in Figure 3, which should be orthogonal to the long-run response vector to the monetary

shock that is H. Without imposing LRN, no orthogonality condition is imposed on the

cointegrating vector space. Therefore, the choice of cointegrating vector is free in the (y,m)

plane. In addition, any other cointegrating vector in this plane, such as β2, is a rotation
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of the cointegrating vector β1. Therefore, by imposing LRN, the researcher sacrifices one

degree of freedom in choosing cointegrating space. In Figure 3, it means that Rotation 1 is

prohibited.

For the trivariate model with LRH, the long-run response of (y,m, p) to the monetary

shock is 
∆∞yt−1

∆∞mt−1

∆∞pt−1

 |umt =

0

1

1

 [gm] .(4.1)

Therefore, the matrixH is equal to the vector (0, 1, 1)0 and s = 1. Suppose the cointegrating

rank r is two in this example. Then the possible cointegrating space allowed to choose is

the cointegrating space B1 in Figure 4, which is orthogonal to H. However, if there is no

LR restriction imposed, then it is free to choose the cointegrating space from the (y,m, p)

space. From the Figure, any cointegrating vector space can be represented as a combination

of Rotation 1 and Rotation 2 of the cointegrating space B1. By imposing LRH, these two

rotations are prohibited. This is exactly equal to r − s + 1 in this example. Also, from
the Figure, both cointegrating vectors are in sp(H⊥). This is exactly what hypothesis H 0

0

suggests, since r − s+ 1 = 2− 1 + 1 = 2.

Now, continue with the previous example, but impose LRN instead. Then the long-run

response of (y,m, p) to the monetary shock is
∆∞yt−1

∆∞mt−1

∆∞pt−1

 |umt =

0 0

1 0

0 1


 gm
gp

 .(4.2)

It follows that

H =


0 0

1 0

0 1


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and s = 2. In this case, any rotation of the B1 cointegrating space in the direction of

Rotation 1 around y-axis will produce a cointegrating space that satisfies LRN. Therefore,

by imposing LRN, the researcher sacrifices only Rotation 2. There is only one degree of

freedom in choosing cointegrating vector space is sacrificed. Again, this is consistent with

hypothesis H 0
0, since r− s+1 = 2−2+1 = 1. In addition, hypothesis H 0

0 requires that one

cointegrating vector lie in sp(H⊥) where H⊥ = (1, 0, 0)0 in this example. The reader can

verify from Figure 4 that the vector (1, 0, 0) is always contained in the cointegrating space

that satisfies LRN, which is also implied by hypothesis H 0
0.

The reader might ask: what happens if r ≤ s−1? Consider rank(β0H).When r ≤ s−1,
rank(β0H) < s regardless of any choice of the cointegrating matrix. There always exists

a nonzero ψ such that γ = Hψ and γ ⊥ sp(β): the long-run effect hypothesis does not
impose any restriction on the VEC model. Using the bivariate and trivariate examples as

before, r ≤ s−1 implies zero cointegrating rank (r = 0) for the bivariate example with LRN
(s = 1) and for the trivariate example with LRH (s = 1). In both cases, the only possible

cointegrating vector is zero vector which is orthogonal to any vector. Therefore it can not

provide an informative cointegration test. For the trivariate example with LRN (s = 2),

r ≤ s − 1 implies r ≤ 1. There are two possible situations: One is r = 0, the other is

r = 1. r = 0 implies zero cointegrating vector. Therefore it does not provide an informative

cointegration test. r = 1 is more subtle. Let (βy,βm,βp) be the cointegrating vector.

Under LRN, the long-run response of (y,m, p) to the monetary shock can be normalized as

(0, 1, gp). Orthogonality condition implies that βm + βpgp = 0 which actually imposes no

restriction on the cointegrating vector at all since gp is also a free parameter. Therefore,

r = 1 does not provide formative cointegration test either.

4.2. Estimation. The estimation procedure we use here follows section 7.2.3 in Jo-

hansen (1995) with slight modifications to fit our specific requirements. We are dealing with

a maximum likelihood estimation of the following VEC model,
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∆Xt = D + αβ0Xt−1 +Σpi=1Γi∆Xt−i + εt(4.3)

εt
iid∼ N(0,Ω)

with restrictions that β(n× r) = [β1(n× s− 1), H⊥b2] where H⊥(n×n− s) is pre-specified
and b2(n− s× r − s+ 1) is to be estimated.

According to the Frisch-Waugh-Lovell theorem, we can concentrate (4.3) into

R0t = α1β
0
1R1t + α2b

0
2H

0
⊥R1t + εt

with

R0t = the orthogonal projection error of ∆Xt on a constant and ∆Xt−1, . . . ,∆Xt−p

R1t = the orthogonal projection error of Xt−1 on a constant and ∆Xt−1, . . . ,∆Xt−p.

Let β2 = H⊥b2 and define

Ri.βj .t = the orthogonal projection error of Rit on β0jR1t

Sij.βk = ΣtRi.βk.tRj.βk.t/T

Sij = ΣtRitRjt/T .

The following lemma excerpted from Theorem 7.4 in section 7.2.3 of Johansen (1995) gives

necessary conditions to solve for the MLE of β with restrictions.

Lemma 2. The maximized value Lmax of the likelihood function is given by

L−2/Tmax = |S00|Πm1

i=1(1− ρi)Π
r−m1

j=1 (1− λj)

where 1 > λ1 > · · · > λr−m1
are defined as the largest r −m1 solutions to the eigenvalue

problem:

|λH0
⊥S11.β1H⊥ −H0

⊥S10.β1S
−1
00.β1

S01.β1H⊥| = 0,(4.4)

and 1 > ρ1 > · · · > ρm1
are defined as the largest m1 solutions to the eigenvalue problem:

|ρS11.β2 − S10.β2S−100.β2S01.β2 | = 0.(4.5)
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The eigenvectors corresponding to λ1, . . . ,λr−m1
constitute the MLE b̂2 of b2; the MLE β̂2

of β2 is then β̂2 = H⊥b̂2. The eigenvectors corresponding to ρ1, . . . , ρm1
constitute the MLE

of β1.

Equations (4.4) and (4.5) give necessary conditions to solve for the MLE of β1 and

β2. However, both eigenvalue problems are mutually dependent. Johansen proposed an

iterative method to compute the estimators, which is summarized in the appendix and is

used in my applied work.

5. Test Statistic

5.1. Computation of the Likelihood Ratio Test Statistic. Let Lumax and Lrmax be

the maximal likelihood values with and without LR restrictions respectively. The likelihood

ratio test statistic Q defined as

Q = 2(logLumax − logLrmax)

is the likelihood ratio test statistic for the LR hypothesis. The computation of Lrmax is

reviewed in Section 3.2. As to the computation of Lumax, which is more standard, the reader

is referred to the appendix.

5.2. The Asymptotic Distributions. For both restricted and unrestricted models,

we maintain the same cointegrating rank and number of lags. Therefore the distribution of

the likelihood ratio statistics Q will be χ2 asymptotically.15 The only work we have to do

here is to compute the correct degrees of freedom for our test statistic.

The LR hypothesis imposes restrictions on the cointegrating vector space only, but not

on other short-run parameters in the VEC model. The degrees of freedom of the statistic

is thus determined by the difference of the dimensions of the tangent space of the αβ0 term

in both VEC models—one without restrictions and one with restrictions.
15For the detail of the asymptotic distribution, please refer to Chapter 13 of

Johansen(1995).
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Theorem 2. Consider the long-run effect hypothesis

H0 : The model admits a long-run effects with each effect γ

expressible as Hψ with H(n× s) prespecified and full rank.

Given the cointegrating rank of r, the likelihood ratio test statistic Q of the model with long-

run effect restrictions H0 against the model without restrictions follows a χ2 asymptotic

distribution with degrees of freedom equal to r − s+ 1.

Proof. According to Theorem 1, H0 imposes on the cointegrating matrix β(n× r) the
restrictions that r−s+1 cointegrating vectors should be in sp(H⊥). According to Theorem
3 in Johansen and Juselius (1992), the degree of freedom is r − s+ 1.

According to the discussion following the Hypothesis Equivalence Theorem in Section 4.1.1,

the degrees of freedom here is exactly the sacrifice of the degrees of freedom in choosing

cointegrating space.

By the properties of likelihood ratio tests, our test can be easily extended to test two

forms of the LR hypothesis if one is nested in the other. Consider the following hypotheses

H0 : The VEC model admits a long-run effects with each effect γ

expressible as HAψA with HA(n× sA) prespecified and full rank.

H1 : The VEC model admits a long-run effects with each effect γ

expressible as HBψB with HB(n× sB) prespecified and full rank.

with HA being n× sA and HB being n× sB. The following proposition ensures that H0 is
nested in H1.

Proposition 2. If sp(HA) ⊂ sp(HB), then H0 is nested in H1.

Proof. For β ∈ Θ(H0), there exists a nonzero ψ(sA × 1) such that β0HAψ = 0. Since
sp(HA) ⊂ sp(HB), there exists a nonzero Γ such that HA = HBΓ. Therefore, β0HB(Γψ) =
0. It is evident that β ∈ Θ(H1). Hence H0 is nested in H1.
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Suppose QA is the Q statistic of testing HA with degrees of freedom dfA; and QB is the

Q statistic of testing HB with degrees of freedom dfB. Then the likelihood ratio test of HA

against HB has Q statistics equal to QA −QB with degrees of freedom dfA − dfB. Hence
we have the following proposition.

Proposition 3. For the nested hypothesis testing

H0 : The VEC model admits a long-run effects with each effect γ

expressable as HAψA with HA(n× sA) prespecified and full rank.

H1 : The VEC model admits a long-run effects with each effect γ

expressable as HBψB with HB(n× sB) prespecified and full rank

with HA being n×sA, HB being n×sB and sp(HA) ⊂ sp(HB). Then, the Q-statistic QA⊂B
is computed as QA⊂B = QB −QA and has a χ2 distribution asymptotically with degrees of

freedom, sB − sA.

Proof. We only need to prove its degrees of freedom. According to Theorem 2, the

degrees of freedom for QA is r− sA+1. The degrees of freedom for QB is r− sB+1. Their
difference is sB − sA with sB > sA since sp(HA) ⊂ sp(HB).

This proposition is important for testing LRH since LRH is a special case of LRN. Hence

it is nested in LRN. With this proposition, the LRH test can be easily conducted. Taking

(y,m, p) trivariate model as an example, the LRH in (4.1) has an H matrix, say HA, equal

to 
0

1

1

 .
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and LRN in (4.2) has an H matrix, say HB, equal to
0 0

1 0

0 1

 .
According to Proposition 2, the LRH hypothesis is nested in LRN hypothesis.

6. Empirical Application

In this section, we apply our cointegration test for LRN and LRH16 to two different

U.S. macro data sets: annual data from Friedman and Schwartz (1982) and post-WWII

quarterly data. In addition to the test results for our method, we also provide results of the

FS test and the Geweke test.

The Friedman and Schwartz data set spans 1869 to 1975. However, we focus only on

the post-1939 period, i.e. the years after the Great Depression. The reason for this sample

selection is the previous evidence of structural breaks provided by Boschen and Otrok (1994)

and Haug and Lucas (1997). For the post-WWII data set, we split it into three subsamples:

one is from 1959:1 to 1978:4 (the pre-Volcker period), the other is post-1983 period (which

will be referred to post-Volcker experiment period), and another is the sample between

these two periods. We drop the last subsample due to its small sample size (only twenty

observations.)

Before we test LRN and LRH, we need to test whether money stock has a unit root,

which is required for any LR test. Our unit root tests we used are based on three different

test statistics proposed by Ng and Perron (2001). Test results are in Table 1. For the

Friedman and Schwartz data, we rejected a unit root for money at the 10 percent level,

but not at the 5 percent level. Given that FS and Geweke both regarded money to be I(1)

stationary in their LR tests and that the unit root is not strongly rejected, we maintain the

16LRN refers to long-run neutrality but allows non-homogeneity. LRH refers to both
long-run neutrality and homogeneity. Therefore LRH is a special case of LRN
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unit root assumption of money. For both post-WWII quarterly data sets, we did not reject

a unit root for money at both 5 percent and 10 percent testing sizes.

6.1. Friedman and Schwartz Data. To begin, we further describe the econometric

methods of FS and Geweke. This discussion concentrates on the essence of each test and

highlights the identification assumptions in these two second generation LR tests.

6.1.1. The LR test of Fisher and Seater. Consider the reduced form VAR

B(L)

 ∆Xt
∆mt

 =
 εx,t

εm,t

 .(6.1)

Then, the long-run responses of X and m with respect to time t forecast errors will be ∆∞Xt−1
∆∞mt−1

 = B(1)−1
 εy,t

εm,t

 .
where, as above, ∆∞Xt−1 = limk→∞(Xt+k−Xt−1) and ∆∞mt−1 = limk→∞(mt+k−mt−1).
The identifying assumptions considered are εx,t

εm,t

 = Π
 ur,t

um,t

 ,(6.2)

where um is the monetary shock and ur is the real shock. The long-run responses of X and

m with respect to structural shocks are then ∆∞Xt−1
∆∞mt−1

 = B(1)−1Π
 ur,t

um,t

 .(6.3)

To consider alternative identifying assumptions, it is convenient to partition the matrix

B(1)−1Π into four blocks,

B(1)−1Π =

 γx,r γx,m

γm,r γm,m

 .(6.4)
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As an identifying assumption, FS imposed the long-run exogeneity of money, which is that

long-run response of m does not depend on the long-run response of X. This means that

γm,r = 0.
17 They also assumed that ur,t and um,t are not correlated.

The consequences of these identifying assumptions was that FS could produce regres-

sion tests of LRN and LRH. The regression coefficient β of ∆∞Xt on ∆∞mt is equal to

cov(∆∞Xt,∆∞mt)/var(∆∞mt) = γ2x,m/γ
2
m,m for a bivariate VAR. Following FS, some au-

thors also call β the long-run derivative LRDx,m of X with respect to m. If X is a nominal

variable, then the monetary shock should move X and m proportionately in the long-run

under LRH, i.e. γx,m = γm,m so that β = 1. If X is a real variable, then the monetary

shock has no impact on X in the long-run under LRN, i.e. γx,m = 0 so that β = 0.

In principle, the estimation of β can be done through the following regression

∆∞Xt = a+ b∆∞mt + et.

In practice, it is impossible to take an infinite long-horizon difference. FS therefore took a

finite long-horizon difference instead, using the regression model

∆kXt = a+ b∆kmt + et(6.5)

where ∆kXt = Xt+k −Xt and ∆kmt = mt+k −mt. In theory, if k increases with sample
size at a proper speed, then the estimator b converges to the true value.

Replicating the FS results, we run the regression (6.5) for k from one to thirty. Figure 5

displays the estimates of b for different k and their 95 percent confident intervals18. When

17In a bivariate VAR, we can invert B(1)−1Π in (6.3) into the following representation

1

(γx,rγm,m − γm,rγx,m)

·
γm,m −γx,m
−γm,r γx,r

¸·
∆∞Xt
∆∞mt

¸
=

·
ur,t
um,t

¸
.

If the long-run response ∆∞Xt does not enter the the long-run response function of ∆∞mt,
it means γm,r = 0.

18The confidence intervals are constructed with consistent estimates of the variance-
covariance matrix using the approach of Newey and West(1987). The Bartlett window is
used with truncation lags determined by the criterion of Newey and West(1994). The t-
statistic of b estimator follows a t distribution with degrees of freedom [T/k] where T is the
sample size and [ ] rounds T/k to the nearest interger.
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k approaches thirty, the 95 percent confident interval includes 1 when X is nominal income

and when X is the price level. Hence, LRH is not rejected. When X is replaced with real

income, the confidence interval for large k includes zero. Hence, LRN is not rejected, either.

6.1.2. The LR test of Geweke. Consider the reduced form VAR (6.1) and the identifying

framework (6.2). Given a block diagonal variance-covariance matrix of structural shocks u, Σr 0

0 Σm

 ,
the matrix spectral density s(ω) of [Xt,mt]0 at frequency ω = 0 is equal to

s(0) =
1

2π
B(1)−1Π

 Σr 0

0 Σm

Π0B(1)−10.(6.6)

Following (6.4), this spectral density can be expressed as

s(0) =
1

2π

 γr,rΣrγ
0
r,r + γr,mΣmγ

0
r,m γr,rΣrγ

0
m,r + γr,mΣmγ

0
m,m

γm,rΣrγ
0
r,r + γm,mΣmγ

0
r,m γm,rΣrγ

0
m,r + γm,mΣmγ

0
m,m

 .
Note that the upper left block of s(0) is the long-run variance of Xt or the variance of ∆∞Xt

equivalently.

Studying LRN, Geweke tested if the following parameter, called fm→X(0), is equal to

zero.

fm→X(0) = log(
¯̄
γr,rΣrγ

0
r,r + γr,mΣmγ

0
r,m

¯̄
/
¯̄
γr,rΣrγ

0
r,r

¯̄
).

Three aspects of this approach need to be discussed. First, to estimate fm→X(0), the Π

matrix must be identified. Geweke adopted a recursive identifying scheme, assuming that

the ordering of the vector [Xt,mt]0 was from the most endogenous to the most exogenous.

This assumption makes Π an upper triangular matrix. In addition, Geweke assumed that

all diagonal elements of Π were normalized to one. With these assumptions, fm→X(0)

measures the long-run feedback from m to X. If money is neutral in the long-run, its long-

run feedback to X should be zero. Second, the statistic fm→X by nature is always greater
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than zero. Therefore, whether LRN is confirmed depends on whether the confidence interval

of the estimated fm→X(0) close to zero or not.

The estimate of fm→X(0) can be constructed with the estimates of B(1), Π, Σr and

Σm which can be obtained through traditional ordinary least squares regression of the VAR

(6.1). However, Geweke alternatively used the extended Yule-Walker algorithm following

Whittle (1963) and our replication adopts his practice.19

The estimation results are shown in Table 2. Eighty percent confidence intervals20 are

constructed by the R-fold replication method, the details of which are contained in an

appendix to this chapter. The estimated long-run feedback from money to the real income

and to the income velocity of money is close to zero. Their confidence intervals are close

to zero, too. Real income and the income velocity of money gave support for LRN.21 If

we combine these two results together, it also shows the support for LRH. However, when

we replace the X variables with real money balance, or both real income and real money

balance together, the estimated long-run feedbacks are not close to zero. Their confidence

intervals are not close to zero either. LRN is not strongly supported in this case.

6.1.3. Cointegration test. In this section, we report results of our cointegration test for

two different VEC models. The first uses real income(y), money stock(m), and the price

level(p) so as to make for ready comparability with the results of Fisher-Seater and Geweke.

All variables are in logarithms. The second augments this basic system with the nominal

interest rate, so as to produce a model similar to that studied in many VAR analyses.

19Geweke opted for this approach in order to ensure the invertibility of the estimated
matrix polynomial B(L).

20The small confidence intervals are used because of the replication method typically
gives wide confidence intervals. We follow Geweke in using the eighty percent confidence
interval.

21By construction, the parameter fm→X(0) is always greater than zero. The lower bound
of the confidence interval will be greater than zero, too. Therefore the conclusion regarding
LRN and LRH is based on whether the confidence interval is close to zero enough.
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6.1.4. Results for three variable system. Let Xt = [yt,mt, pt]
0 and assume that it is

described by a VEC model,

∆Xt = C + αβ0Xt−1 +Σki=1∆Xt−i + εt

To apply our LR test, we have to determine the number of lags k and the proper cointegrat-

ing rank. We use the Posterior Information Criterion(PIC, hereafter) proposed by Phillips

and Ploberger (1996) to select model lags and cointegrating rank simultaneously.22 The

VEC model selected by PIC involves a cointegrating rank of one and indicates that it is

necessary to include only one lag of ∆X, i.e., that k = 1.

First, consider the LRH hypothesis under which the long-run response of (y,m, p) to

monetary shocks should be 
∆∞yt−1

∆∞mt−1

∆∞pt−1

 |umt =

0

1

1

 [gm](6.7)

in the γ = Hψ form. The H matrix is equal to the vector (0, 1, 1)0 here. Without imposing

any restriction, we find that the estimated cointegrating vector is (16, 4466,−11, 6244, 5, 9478)0

which is not orthogonal to the H vector. Now we imposed LRH restrictions on the

MLE of the cointegrating vector. The restricted estimate of the cointegrating vector is

(8.7955,−14.4571, 14.4571) which is orthogonal to H through the orthogonality restriction

imposed by LRH. This might be interpreted as a long-run money demand function with

an income elasticity of 8.8/14.5 ' 0.6, since it would imply m − p − 0.6y is stationary.
The geometry relations between restricted and unrestricted estimates of the cointegrating

vectors are shown in Figure 6. In Figure 6, β1 is the unrestricted estimate, and β2 is the

restricted one. β2 is orthogonal to H vector, but not β1. The likelihood ratio test result

22The conventional approach is to use a model selection criterion—such as BIC or AIC—
to select lags first, and then to choose cointegrating rank, for example by the likelihood
ratio test of Johansen (1995) or the multivariate unit root test of Stock and Watson (1988).
However, as pointed out by Johansen (1992), such a sequential model selection may be
inconsistent. Chao and Phillips (1999) compared AIC, BIC and PIC; and found some finite
sample evidence in favor of PIC.
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of LRH is reported in Table 4(a). The Q statistic is 1.5688 which is smaller than both 5

percent and 10 percent critical values. Therefore, we do not reject LRH.

However, in this trivariate VECM, the LRN hypothesis is not testable. Recall that

the definition of LRN is that the long-run response of (y,m, p) to monetary shocks can be

expressed as


∆∞yt−1

∆∞mt−1

∆∞pt−1

 |umt =

0 0

1 0

0 1


 gm
gp



for some nonzero gm. Let β1 = (β1y,β1m,β1p). To satisfy LRN, β1mgm+β1pgp = 0 for some

(gm, gp). When there is only one cointegrating vector, given any (β1m,β1p) value we can

always find a (gm, gp) value to fulfill the β1mgm + β1pgp = 0 condition.
23 Therefore, LRN

does not impose any restriction on the cointegrating space. Refer back to the discussion on

page 33. It is not testable because r ≤ s− 1 with r = 1 and s = 2 in line with discussion
above.

6.1.5. Results for a four-variable system. In order to test LRH against LRN, we need

cointegrating rank larger than the rank of H matrix minus one as discussed in Section 3.1.

Therefore, we expand the system. Many studies of nominal and real interactions using VAR

methods concern systems that augment the basic three variable model with the nominal

interest rate, as we do in this system. The cointegrating rank and the number of lags in

this four variable VEC model selected by PIC are two and one respectively, so that we have

a enriched set of testing possibilities.

There are two types of LR test we are interested. One is that monetary shock is long-run

neutral, but may not be long-run homogeneous, which implies a long-run effect of money

23In our trivariate model, the unrestricted estimated β1 is orthogonal to the long-run
response function under LRN with gm = 5.9478 and gp = 11.6244.
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like:



∆∞yt−1

∆∞Rt−1

∆∞mt−1

∆∞pt−1


|um,t =



0 0

0 0

1 0

0 1


 gm
gp

 .(6.8)

The other is that monetary shock is both long-run neutral and homogenous, which implies

a long-run effect like:



∆∞yt−1

∆∞Rt−1

∆∞mt−1

∆∞pt−1


|um,t =



0

0

1

1


[gm] .(6.9)

The test of (6.8) is LRN test; the test of (6.9) is LRH test. Both of them are testable since

the cointegrating rank in this system is larger than the rank of H matrix minus one.

One thing worth mentioning is the long-run effect on the nominal interest rate. In a

system where money is I(1), it should be zero under LRN. That is: the change in money

level affects only the long-run price level but not the inflation rate and the real interest rate

should not be affected under LRN, the long-run response of nominal rate should be zero.

Before we go to the test results, it is useful to investigate the geometric relations be-

tween cointegrating space and long-run hypotheses. Let β1 = (β1y,β1R,β1m,β1p)
0 and

β2 = (β2y,β2R,β2m,β2p)
0 be two linear independent cointegrating vectors in this four-

variable VECM. If the model admits LRH, then both of them should be orthogonal to the

vector (0, 0, 1, 1)0. This orthogonality condition is equivalent to the requirement that the

space spanned by (β1y,β1m,β1p)
0 and (β2y,β2m,β2p)0 is orthogonal to the vector (0, 1, 1)0,

and the space spanned by (β1R,β1m,β1p)
0 and (β2R,β2m,β2p)0 is orthogonal to the vector
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(0, 1, 1)0. In Figure 7(a) and 7(b)24, the space BY0 is spanned by the unrestricted esti-

mates of (β1y,β1m,β1p)
0 and (β2y,β2m,β2p)0; the space BR0 is spanned by the unrestricted

estimates of (β1R,β1m,β1p)
0 and (β2R,β2m,β2p)0.25 Both of them do not satisfy the or-

thogonality condition for LRH. Therefore, the unrestricted estimated VECM can not admit

LRH. In Figure 7(c) and 7(d), the space BY1 is spanned by the LRN-restricted estimates

of (β1y,β1m,β1p)
0 and (β2y,β2m,β2p)0; the space BR1 is spanned by the LRN-restricted es-

timates of (β1R,β1m,β1p)
0 and (β2R,β2m,β2p)0.26 As the reader can tell, both of them are

very close to the spaces that admit LRH. This aspect will show in the test result below

that: when we test LRH against LRN, LRH is not rejected.

The test results are in Table 4(b). Both LRN and LRH are not rejected under 5 percent

and 10 percent testing size. Then we further test LRH against LRN. The testing Q-statistic

value is simply the difference of the test values of LRN and LRH, and its degrees of freedom

are also the difference of the degrees of freedom of LRN and LRH tests. The Q-statistics

value is 1.1946 with one degree of freedom, which is not significant under both 5 percent

and 10 percent size. That is: the long-term Friedman-Schwartz data support LRH.

6.2. post-WWII Quarterly Data. In this section, we use post-WWII quarterly data

from 1959:1 to 2002:2. The sample is split into three subsamples: one is the pre-Volcker pe-

riod (from 1959:1 to 1978:4), the other is post-1983 period(refer to post-Volcker experiment

period), another is the sample between these two periods. We drop the last subsample due

to its small sample size (only twenty observations.)

6.2.1. LR test of Fisher and Seater. The long regression results are in Figure 6. For

the pre-Volcker sample, the long horizon estimate(refers to large k) of the LRD is close to

24In Figure 7, the space with normal vector (0, 1, 1) is graphed. This space is the space
that can admit LRH. It provides contrast to visualize the difference between unrestriced
estimates and restricted estimates.

25The unrestricted estimate of β1 = (−20.1803, 0.3418, 13.1949,−6.2688) and β2 =
(19.6202,−1.8818,−4.7390, 5.9697).

26The LRN-restricted estimate of β1 = (−0.0074,−0.0740, 0.8110,−0.5803) and β2 =
(−0.9951, 0.0991, 0, 0)
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one for nominal income and price, so that LRH is not rejected. It is close to zero for real

income, so that LRN is not rejected. Note that this finding is consistent with my earlier

results using the Friedman and Schwartz annual data.27

When we move the sample period from pre-Volcker to post-1983, the results using the

FS method change dramatically. Though the long horizon estimate of LRD is close to zero

for real income, it is far from one for nominal income and price. Thus: LRN is not rejected,

but LRH is rejected.

The change of the FS testing results can be rationalized from two possible angles: one

is that money is not LRH after 1983, the other is that the monetary policy changed after

1983, which changed the identifying structure.

6.2.2. LR test of Geweke. The estimate of the long-run feedback fm→X(0) for the post-

WWII quarterly data is reported in Table 5, which displays more mixed results than the FS

test. For the pre-Volcker data, the estimate is close to zero for real balances. Thus, LRH is

not rejected. However, the estimate is far from zero for real income or the joint test of real

income and real balances. Hence, LRN is rejected. These results are not consistent with

each other, since if LRN is rejected, LRH can not be true. For the post-1983 data, LRN is

rejected for real income, real balance, or the joint test of both. But it is not rejected for

the income velocity of money.

6.2.3. Cointegration test. The VEC model employs the same four variables as previously

used for the Friedman and Schwartz data. After PIC model selection, we select a zero lag

and a cointegrating rank equal to two for pre-Volcker sample; we select one lag and a

cointegrating rank equal to two for post-1983 sample.

The test results for the pre-Volcker data are reported in Table 6(a). When testing LRN,

we do not reject LRN at 5 percent and 10 percent testing size. However, when testing LRH,

27This is no surprise, since the pre-Volcker period is covered in the annual data we used.
The only difference is its data frequency.
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it was significantly rejected at both testing sizes. Given the test results, if we believe in

LRN, we can test LRH against LRN. We found that LRH is rejected. Therefore money is

long-run neutral but not homogenous in this period. This is different from the test results

of the annual data from Friedman and Schwartz. In the annual data, LRH is not rejected.

For the pre-Volcker data, since LRH is not significantly supported, the long-run response

of price may not be proportionate to the long-run response of money to LRN monetary

shock. It would be interesting to know the long-run response of price to monetary shock—

that is the estimate of gp in (6.8). We normalized gm to one, and found the estimated gp to

be 2.8489. Therefore, in this period, for a one-time increase of LRN permanent monetary

shock that increases money stock by one percent in the long-run, price level will increase

by 2.85 percent in the long-run. This implies that permanent monetary shock has long-run

impact on the income velocity of money, which will increase by a 1.85 percent response in

the long run.

The testing results for the post-1983 data are reported in Table 6(b). Both LRN and

LRH are not rejected at 10 percent size. When testing LRH against LRN, we do not reject

LRH under 10 percent size. In this period, long-run proportional movement of nominal

variables in response to LRN monetary shock is supported.

In summary: LRN is not rejected for both pre-Volcker and post-1983 data. As to LRH, it

is not strongly supported in pre-Volcker period, but is strongly supported in post-1983 data.

We found that for the pre-Volcker data, a one-time increase of permanent LRN monetary

shock that increases money stock by one percent in the long-run, price level increases by

2.85 percent in the long-run. The long-run increase of the income velocity of money is then

1.85 percent.
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7. Conclusion

Previous tests of long-run monetary propositions concerning neutrality and homogeneity

based on vector autoregressions require estimating the effects of permanent monetary shocks

on real and nominal variables. If the estimated monetary effect on a real variable is not

significantly different from zero, then long-run neutrality is not rejected. If the estimated

effect on a nominal variable is not different from one, then long-run homogeneity is not

rejected.

These tests have a serious drawback: their measures of the long-run effects of money are

heavily dependent on identifying assumptions and other maintained assumptions including

the choice of variables included in the VAR. Thus, for example, any rejection of long-run

neutrality or homogeneity can signal that the theory is incorrect or that the identifying

assumptions are wrong.

This chapter uses different approach to test long-run neutrality and homogeneity. I show

that these propositions can be cast in terms of linear restrictions on cointegrating space,

which is independent of any traditional identifying assumption. Based on this argument, the

likelihood ratio test of linear restrictions on cointegrating vectors can be applied to testing

long-run neutrality and homogeneity. The test is then applied to three different data sets:

the post Great Depression annual data set from Friedman and Schwartz; the post-WWII

pre-Volcker quarterly data set; and the post-1983 quarterly data set of the U.S. The test

results do not reject long-run neutrality for all three data sets.

Besides long-run neutrality, I also tested long-run homogeneity which is not rejected in

the annual data set and the post-1983 quarterly data set, but is rejected in the pre-Volcker

quarterly data set. Given that long-run homogeneity is rejected in the pre-Volcker period,

I estimated the long-run response of price to a one-time permanent monetary shock. The

estimated results is: for a one-time increase of permanent long-run neutral monetary shock

that increases money stock by one percent in the long-run, price level increases by 2.85
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percent in the long-run. Long-run increase of the income velocity of money is then 1.85

percent.



CHAPTER 2

Long-Run Identification When the Long-Run Proposition is
Over-Identifying

1. Introduction

Since the work of Sims in 1980, vector autoregressions have been widely used in economic

profession to study the dynamic effects of structural shocks in the economy. Researchers

first estimate a reduced form vector autoregression (VAR), then try to recover its structural

form through some identifying assumptions. There are two types of identification methods

generally employed: one is long-run identification; and the other is short-run identification.

Short-run identification orders variables in the system according to the assumptions

regarding their degree of contemporaneous exogeneity. The identifying assumptions allow

the researcher to transform a structural VAR estimation into a sequence of recursive re-

gressions. Take money and output as an example. If the researcher believes that money

reacts to output contemporaneously but not vice versa, then money is more endogenous

than output. Some examples of structural VAR study using short-run identification are

Christiano, Eichenbaum and Evans (1994), Eichenbaum and Evans (1995), and Bernanke

and Mihov (1998). Short-run identification, though easy to use, has a problem of choosing

proper ordering. It usually relies on the researcher’s subjective belief. Cochrane (1994) crit-

icizes short-run identification for the analysis of monetary shocks, arguing that, ”empirical

researchers typically fish for VAR specifications to produce impulse-responses that capture

qualitative monetary dynamics, ....” Beside the subjective ordering criticism, if all vari-

ables in the system are allowed to react to each other contemporaneously, then short-run

identification can not be used.



53

The other type of identification identifies structural shocks using assumptions regarding

the shocks’ long-run effects. For an example, if the researcher believes that money is long-

run neutral, then the idea of long-run identification is to use this long-run proposition to

identify monetary shocks. The long-run neutrality of money is a widely accepted proposition

among economists and can be tested without strong assumptions.1 Therefore, using long-

run identification to identify monetary shocks is attractive for many researchers. Some

papers falling in this category are Blanchard and Quah (1989); King, Plosser, Stock and

Watson (1991); and Jang and Ogaki (2001). However, such works on long-run identification

has a problem: without choosing variables carefully, the unrestricted estimate of a VAR

may not be able to accommodate the long-run proposition. That is, there may not exist

any identifying structure that produces an identified structural shock consistent with the

long-run proposition. In other words, the long-run proposition may be over-identifying.

When the long-run proposition is over-identifying, long-run identification requires proper

restrictions on model estimation. In my previous chapter, I developed a restricted estima-

tion approach that ensures the estimated system will admit long-run proposition. With the

tool developed in chapter one, I show that the long-run proposition combined with two more

identifying assumptions provides necessary and sufficient conditions to identify the perma-

nent structural shock up to a scale adjustment. These two extra identifying assumptions

are: (i) the structural shock to be identified must be uncorrelated with other structural

shocks; and (ii) the long-run effect of the structural shock to be identified must be linearly

independent from the long-run effects of other structural shocks.

This chapter uses an open economy VAR model to demonstrate the application of

the method and then identifies U.S. monetary shocks. Because the model includes two

countries’ interest rates and exchange rates, I can discuss one issue in the International

Finance literature: the uncovered interest parity(UIP) puzzle. UIP says that a one percent

increase in the interest rate differential between home and foreign countries should predict

1See chapter one.
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a one-percent home currency depreciation. However, many empirical studies — such as

Fama(1984) and Froot and Frankel(1989) — widely reject this parity. These authors find

currency depreciation is not one-percent. But, more strikingly, for most foreign currencies,

exchange rates even respond with the wrong sign. In addition, they show that the excess

returns of the foreign investment tend to be serially correlated, which also violates the

implication of UIP. In this chapter, I use a structural VAR based on long-run identification

to examine whether U.S. monetary shocks are important in accounting for UIP deviations.

2. An Overview of Long-run Identification

There has long been interest in identifying structural shocks based on the assumption

regarding their long-run effect. For instance, to identify monetary shock based on the

assumption that its long-run effect is neutral to all real variables. In this section, the

history of such an identifying approach is reviewed and the alternative approach taken in

this chapter is highlighted.

2.1. The Blanchard and Quah Approach. The frontier work in long-run identi-

fication was done by Blanchard and Quah in 1989. They used a bivariate VAR model to

identify demand shocks based on the assumption that such shocks do not produce a long-run

effect on real output.2 To be more clear, they model the stochastic process of real output

growth rate (∆y) and unemployment rate (u) with a VAR as follows:

C(L)Xt = εt

where Xt = [∆yt, ut]0 and C(0) = I. This is a reduced form unless structurally both ∆y and

u do not respond to each other contemporaneously. Since these two variables are stationary,

C(L) is invertible. The effect of the forecast errors εt on Xt is simply

Xt = C(L)
−1εt.

2There are two more identifying assumptions needed to be imposed: the structural
shocks are not correlated; and the variance of demand shocks is equal to one.
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Now, assume that there is a linear structural relation between the forecast errors εt and

the structural shocks ut which can be expressed as εt = Πut. Then the effect of structural

shocks on Xt are

Xt = C(L)
−1Πut.

Let ut = [udt , u
s
t ]
0 where ud represents the demand shock and us represents the supply shock.

Given that ∆yt involves the first difference of real output, the upper left corner of C(1)−1Π

presents the long-run effect of a demand shock on real output level. BQ impose a long-run

restriction on the upper left value, requiring it to be zero. This implies that demand shocks

have no long-run effect on the real output level.3 The long-run restriction that they impose

can help the researcher to identify the first column of the identifying structure Π, which

identifies demand shocks.

2.2. The King, Plosser, Stock and Watson Approach. The long-run identifica-

tion proposed by Blanchard and Quah, though simple to apply, has some major problems

or limits. First it is limited to a specific type of bivariate model: one variable must be first

difference stationary, the other must be level stationary. This makes the interpretation of

the identified shock difficult. In most macro models, there are more than two structural

shocks. Second, the model does not allow the cointegration of nonstationary variables to

present. In a more general stochastic model, cointegration appears frequently.

King, Plosser, Stock and Watson (KPSW, hereafter) in 1991 developed another long-

run identification method. They use some structural cointegration relations — that are

agreed by many economists — within a vector error correction model (VECM) to identify

those shocks that have long-run effect on the system. These shocks are called permanent

shocks. Mathematically, the core of their idea lies in the observation that the long-run effect

of permanent shocks must be in the orthogonal cointegrating space. To understand this,

3In this model, both structural shocks have no long-run effect on the unemployment
rate since by nature it is stationary.
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consider the following VECM.

∆Xt = D + αβ0Xt−1 +Σpi=1Γi∆Xt−i + εt.(2.1)

According to an auxiliary lemma to Granger Representation Theorem stated below, the

stochastic process of Xt as in (2.1) can be expressed in terms of a vector moving average

process with initial values.

Lemma 3. The vector moving average solution of (2.1) is

Xt = C(Dt+Σ
t
i=1εi) +C(L)(D + εt) + Pβ⊥X0

where

1. C = β⊥(α0⊥Γβ⊥)
−1α0⊥ and Γ = I −Σpi=1Γi;

2. Pβ⊥ is a projection matrix projecting vectors into sp(β⊥);

3. C(L) = Σ∞i=0CiLi is a matrix polynomial with Ci matrices absolutely summable.4

Given this moving average representation, the forecast error in time t has a long-run effect on

X with the magnitude C, the space spanned by which lies in the orthogonal cointegrating

space sp(β⊥). Suppose the structural relationship between the forecast errors and the

structural shocks is εt = Πut. Then the long-run effect of structural shocks is CΠut. Each

column in CΠ presents the long-run effect of a unit increase of a specific structural shock.

Apparently, it must lie in sp(β⊥).

KPSW exploit the fact that since the long-run effect vector of a permanent structural

shock must lie in sp(β⊥). They can estimate sp(β⊥) and then choose a specific base, each

vector of which has some economic interpretation. If they can identify the shocks that

produce long-run effect like the vectors they choose for the base, then they can give the

identified shocks structural meanings according to the economic interpretation to the base

vector. For example, if one column vector of the base has long-run neutrality property

4The exact expression of Ci is complex, and not relevant to the purpose of this paper.
For details, please refer to Chapter 4 of Johansen(1995).
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which would be the property of the long-run effect of money under long-run neutrality

proposition, then an identified shock that produces long-run effect as that column vector

is called monetary shock. For example, consider the six-variable VECM they used: the

variables are real output (y), real consumption (c), real investment (i), real money balance

(m− p), nominal interest rate (R) and inflation rate (∆p). Based on economic reasoning,
three cointegration relations are imposed: (c− y) = φ1 (R−∆p), (i− y) = φ2 (R−∆p),
and m − p = βyy − βRR. The first two cointegration relations describe the effects

on the consumption share and investment share of a change in real interest rate. The

third relation is a money demand equation. There are three stochastic trends. Let Xt =

(y, c, i,m− p,R,∆p)0. KPSW then select a base, say Ã, that is orthogonal to these three

cointegrating vectors so as to represent the long-run effects of three different permanent

structural shocks.

Ã =



1 0 0

1 0 φ1

1 0 φ2

βy −βR −βR
0 1 1

0 1 0


.(2.2)

The permanent shocks that produce the long-run effect corresponding to each column of

Ã respectively are called the balanced-growth shock, the neutral inflation shock and the

real-interest-rate shock. The naming of these three shocks is based on the property of each

column of Ã. The shock that produces long-run effect as the first column of Ã leads to a

unit of long-run increase in y, c and i. That is why it is called the real-balance-growth shock.

The shock that produces the second column of Ã is called the neutral inflation shock since

it produces no long-run effect on y, c and i but moves nominal interest rate R and inflation

rate ∆p proportionately in the long-run. The third column corresponds to real-interest-rate

shock since the shock produces a long-run effect on real interest rate.
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If the contemporaneous impact of these three permanent shocks on Xt is ΠP , then the

long-run effects of these three permanent shocks should be equal to CΠP . Ideally, CΠP

should be equal to Ã in order to preserve the economic interpretations of these three shocks.

However, in generalCΠP = Ã is over-identifying as in the KPSW paper. Instead of imposing

restriction on the VECM estimation, KPSW supplement more structural parameters to be

identified in order to make the system just-identifying. These extra structural parameters

are contained in a square matrix denoted as π which is assumed to be lower triangular with

the diagonal elements being normalized to one. They then impose the identifying restriction

that CΠP = Ãπ instead. The long-run effects of three permanent shocks will be

Ãπ =



1 0 0

1 0 φ1

1 0 φ2

βy −βR −βR
0 1 1

0 1 0




1 0 0

π12 1 0

π31 π32 1

 .(2.3)

2.3. The Jang and Ogaki Approach. By throwing in more structural parameters

in π, the KPSW approach creates a major problem: since the shocks they identified produce

long-run effects as Ãπ instead of Ã, those identified structural shocks no longer carry the

properties that determine the interpretation of each shock. For example, the second shock —

if producing the long-run effect like the second column of Ã — is called the neutral inflation

shock. However, its long-run effect under the CΠP = Ãπ identifying assumption is not

equal to the second column of Ã but to Ã times the second column of π, which is a linear

combination of the second and third columns of Ã. Consequently, the second shock no

longer maintains the long-run neutral property unless the identified π32 fortuitously takes

on a value of zero.



59

Jang and Ogaki (JO, hereafter) investigate (2.3) further and find an improvement on

the KPSW approach. To understand the JO variation, notice that

Ãπ =
h
Ãπ(1.2), Ã(3)

i
where π(1,2) denotes the first and second columns of π and Ã(3) is the third column of

Ã. The identified shock corresponding to the third column of ΠP will always produce the

long-run effect equal to Ã(3). It maintains the economic interpretation from Ã(3). They

show that the researcher can just-identify the third shock if the following three identifying

assumptions are used: (i) the long-run effect of the shock, which is Ã(3) here, should comply

with some long-run proposition; (ii) the long-run proposition imposes zero restrictions but

no other types of restrictions on Ã(3); and (iii) given the estimated sp(β⊥), the vector in

sp (β⊥) that can be chosen to represent Ã(3) is unique up to a scale adjustment.

JO use the federal funds rate (Rff ), the nonborrowed reserve ratio (NBRX), U.S. real

output (yus), U.S. price (pus), foreign real output (yfor), foreign interest rate (Rfor), and

the real exchange rate (e, dollar/foreign) in a VECM to identify monetary shocks. In this

seven variable system, they first conclude that the cointegrating rank is equal to three,

which implies four permanent shocks — and monetary shocks are one of them. Therefore,

sp(β⊥) has the dimension equal to four. Let Xt = (yus, yfor, e, Rff , Rfor,NBRX, pus, )
0.

JO try to identify U.S. monetary shocks, assuming that the long-run effect of the shocks

should be long-run neutral to yus, yfor and e. Since the dimension of sp(β⊥) is four, the

unrestricted estimate of it will be able to admit a base Ã generically as below

Ã =



× × × 0

× × × 0

× × × 0

× × × 1

× × × ×
× × × ×
× × × ×



.
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Notice that the last column of it is uniquely determined and satisfies the long-run neu-

tral assumption regardless of the researcher’s choice for the first three linear independent

columns.

2.4. The Admissibility Problem. Both the KPSW and JO approaches have a prob-

lem in choosing a vector to represent the long-run effect of a structural shock: though the

long-run proposition suggests a reasonable vector to be chosen, without imposing proper

restrictions on β estimation, the researcher may not be able to choose that vector since it

may not be in sp(β⊥). When this happens, sp(β⊥) does not admit the long-run proposi-

tion. KPSW realize this problem: that is why they impose restrictions on β estimation,

even though with these restrictions, CΠP = Ã is still over-identifying. For the JO approach,

it looks like there is no restriction on β estimation needed since the long-run proposition

they use imposes only zero restriction on the long-run effect vector but not other types of

restrictions. However, even zero restriction can cause an admissibility problem.

The admissibility problem in the JO paper can be highlighted once we notice that

the long-run neutrality proposition they impose is not truly long-run neutral. First, the

monetary shocks they identify will affect the money level in the long-run but not its growth

rate. Therefore, its long-run impact on inflation rate should be zero. Since nominal rate is

the sum of the expected real rate and the expected inflation rate, and the long-run effect

of a monetary shock on inflation rate is zero, the long-run effect of a monetary shock on

interest rates (Rus and Rfor) should be zero under the long-run neutrality assumption.

Therefore, if the last column Ã(4) of Ã represents the long-run effect of monetary shocks

which is long-run neutral, then it should be (0, 0, 0, 0, 0, 1,×)0. Generically the base of an
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unrestricted estimated sp(β⊥) can be normalized as the following echelon form

Ã =



1 0 0 0

× 1 0 0

× × 1 0

× × × 1

× × × ×
× × × ×
× × × ×



,

which unfortunately can not admit a vector like (0, 0, 0, 0, 0, 1,×)0. Thus, the JO method

will fail whenever the number of zero restriction imposed by the long-run neutrality is larger

than or equal to the number of stochastic trends.

Due to the limited number of stochastic trends found in most macro empirical studies,

it is very likely that long-run neutrality will impose more zero restrictions than the num-

ber of stochastic trends. In this case, the long-run proposition requires some restrictions

to be imposed on sp(β⊥) estimation. When this happens, long-run identification is over-

identifying. Besides, if the researcher believes in long-run homogeneity, then all nominal

variables should have a proportional long-run response to a monetary shock. Therefore,

there are more restrictions on the choice of vector to represent the long-run effect of mon-

etary shocks, which in turn implies more restrictions to be imposed on sp(β⊥) estimation.

This chapter is designed to resolve this problem, and to bring long-run identification and

estimation into a more compact framework.

3. Long-Run Identification When the Long-Run Proposition is

Over-Identifying

This chapter provides a new long-run identification method to partially identify one

permanent structural shock based on three identifying assumptions. The first is that the
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permanent structural shock to be identified satisfies some long-run proposition that is over-

identifying; the second is that the shock to be identified is uncorrelated with other structural

shocks; the third is that there is no linear combination of other structural shocks which can

produce the same long-run effect as the shock to be identified.

3.1. Over-identifying Long-run Proposition. One novelty of this chapter is to

extend the long-run identification method to the case that the long-run proposition is over-

identifying. I will first show in this section the conditions under which a long-run proposition

is over-identifying. I will then determine what kind of restrictions on estimation should be

imposed in this situation.

3.1.1. When is the long-run proposition over-identifying? In section 2.4, I briefly dis-

cussed the situation in which a long-run proposition that imposes zero restrictions is over-

identifying. Here, I want to extend the discussion to a more general type of long-run propo-

sition: the type that imposes linear restrictions on the long-run effect. Let us call this type

of long-run proposition a linear long-run proposition(a linear LR proposition, hereafter).

Consider a VECM as in (2.1) with n variables and γ the long-run effect vector of

some permanent shock that we want to identify. A linear LR proposition imposes linear

restrictions on the long-run effect vector γ, which can be expressed as that this vector must

lie in some subspace of Rn. To understand the form of a linear LR proposition, take the

example of a four-variable VECM in real output (y), the nominal interest rate (R), the price

level (p), and a money aggregate (m). Suppose we are interested in identifying permanent

monetary shocks um which are the autonomous unexpected movement from the central bank

that has long-run impact on at least m. Let Xt = (y,R,m, p)0; and γ = (gy, gR, gm, gp)
0 be

the vector representing the long-run effect of umt on these four variables. Without imposing

any long-run proposition on γ, γ can be any vector in R4. Suppose the researcher believes

that monetary shocks must be long-run neutral, then umt has no long-run effect on y and
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R, i.e. gy = gR = 0. The long-run effect γ that is long-run neutral can be expressed as

γ = Hψ

with

H =



0 0

0 0

1 0

0 1


and ψ =

 gm
gp

 .(3.1)

Apparently γ ∈ sp(H) ⊂ R4. It is true that any linear restriction on γ can be expressed as

limiting the choice of γ to some subspace of R4 since these restrictions can be expressed in

γ = Hψ form with H being some known matrix and ψ being some vector denoting the free

parameters in γ that are not constrained by the linear LR proposition.5 For later discussion

convenience, I define a linear long-run proposition as follows:

Definition 2. Given Xt being n×1, a linear long-run proposition on a long-run effect
vector γ (n× 1) can be expressed as

γ = Hψ(3.2)

where H is n× s and full rank and ψ is s× 1 for some s ≤ n.

In line with the discussion in section 2.2, any long-run effect must be orthogonal to the

cointegrating vector space, that is β0γ = 0. Suppose the cointegrating rank is r. Therefore

β is (n× r). If the long-run identified permanent shock can produce a long-run effect

expressible as (3.2), then β0Hψ = 0, then this implies that β0H with dimension (r × s) must
have a rank less than s. Otherwise, β0Hψ = 0 has no solution6: there is no way to identify

a permanent shock that can produce a long-run effect expressible as Hψ. Apparently, the

rank of β0H is related to whether the estimated sp(β) can admit a linear LR proposition.

5Linear LR proposition imposes restrictions on γ like B0γ = 0 which is equivalent to
γ = Hψ where H = B⊥.

6We do not consider zero vector as a solution since the shock to be identified is a
permanent shock which should produce long-run effect. The shocks that have long-run
effect expressible as Hψ with ψ = 0 are not permanent shocks by definition.
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Proposition 4. Given the cointegrating matrix β(n×r) and the H(n×s) implied by a
linear LR proposition, if both of them are full rank, then sp(β) (or sp(β⊥)) can admit this

linear LR proposition if and only if rank(β0H) < s.

The proof is rather straightforward. If rank(β0H) < s, then the dimension of the null

space of β0H is at least one. There exists non-zero ψ such that β0Hψ = 0. This means that

it is possible to choose some long-run effect vector γ from sp(β⊥) that is consistent with

the linear LR proposition characterized by the H matrix.

3.1.2. A restricted estimation when the long-run proposition is over-identifying. Macroe-

conomic empirical studies frequently detect a fairly small number of stochastic trends.

Therefore, when the VECM system is large or the long-run proposition imposes strong

restrictions expressible as a small dimension of sp(H), it is very likely that r ≥ s. Generi-
cally an unrestricted estimate of β will produce the case that β0H has full rank. Under the

r ≥ s situation, rank(β0H) = s which by Proposition 4 implies that sp(β) can not admit a
linear LR proposition. Therefore, a linear LR proposition will be over-identifying.

In terms of the literature discussed above — the KPSW and the JO paper, each provides

over-identifying examples. In the KPSW paper, Xt = (y, c, i,m− p,R,∆p)0 as mentioned
in section 2.2. The long-run effect of a neutral inflation shock is γ = (0, 0, 0, gm−p, gR, g∆p)0

with gR = g∆p 7 can be expressed as

γ = Hψ(3.3)

7gR = g∆p = 1 in KPSW paper. This can be interpretted as some normalization. Here
gm−p represents −βR.
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with

H =



0 0

0 0

0 0

1 0

0 1

0 1


and ψ =

 gm−p
gR

 .

Since there are three stochastic trends, the cointegrating matrix β is (6× 3). The cointe-
grating rank r is 3 and the dimension s of sp(H) is 2. Generically, an unrestricted estimate

of β0H will have a rank equal to 2 which is not less than s. According to Proposition

4, an unrestricted estimate of sp(β) can not admit a neutral inflation shock unless some

restrictions are imposed on β estimation.

In the JO paper, Xt = (yus, yfor, e,Rff , Rfor,NBRX, pus, )0. As argued in section 2.4, a

long-run neutral monetary shock should produce long-run effect γ = (0, 0, 0, 0, 0, gNBRX , gpus)0

which can be expressed as (3.3) with

H =



0 0

0 0

0 0

0 0

0 0

1 0

0 1



and ψ =

 gNBRX
gpus

 .

The dimension s of sp(H) is 2. In their paper, the cointegrating rank r = 3. Without

imposing restrictions on β estimation, generically β0H would have rank equal to 2. Since

this is not less than s, long-run neutrality of money is an over-identifying proposition.
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If the unrestricted estimate of β can not admit the long-run proposition, then some

restrictions must be imposed on the VECM estimation. As proved in chapter one, the

following Hypothesis Equivalence Theorem holds.

Theorem 3. Given that the cointegrating rank of the VECM is equal to r, the following

two hypotheses are equivalent:

H0 : The VECM admits a long-run effect γ(n× 1) with γ =Hψ

and H(n× s) prespecified and full rank.

H 0
0 : There are at least r − s+ 1 cointegrating vectors lying in the space sp(H⊥).

This means that in KPSW empirical model, the restriction which needs to be imposed to

ensure the admissibility of a neutral inflation shock is that two cointegrating vectors must

be in sp(H⊥). In the JO empirical model, the restriction to ensure the admissibility of a

long-run neutral monetary shock is that two cointegrating vectors must lie in sp(H⊥). The

restricted estimation algorithm to ensure the admissibility is stated in chapter one, section

4.2.

4. Identifying Permanent Structural Shocks

A linear LR proposition requires that the long-run effect γ of the shock to be identified

must be expressible as γ = Hψ, where H is known. In other words, it requires γ ∈ sp(H).
When the unrestricted estimate of β does not admit the linear LR proposition, applying

the restricted estimation described in section 3.1.2 will ensure the existence of a long-run

effect vector γ which complies with the proposition. To locate the γ that is consistent with

the long-run proposition, we can solve the linear problem β0Hψ = 0 for ψ. Any such Hψ

— belonging to sp(H) and orthogonal to sp(β) — can serve as a candidate to represent the

long-run effect of the shock to be identified.
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In this section, I will show that given the estimated sp(β) admitting the linear LR

proposition, the researcher can identify a permanent structural shock by choosing one vec-

tor in sp(H) to represent its long-run effect with the help of the following two additional

identifying assumptions: (i) the shock to be identified is not correlated with other structural

shocks; and (ii) there is no linear combination of other structural shocks which produces

the same long-run effect as the shock to be identified.

4.1. Choosing a long-run effect vector. First, we have to choose one vector to rep-

resent the long-run effect of the shock to be identified. A reasonable candidate to represent

the long-run effect of the shock should belong to sp(H) and be orthogonal to sp(β). As

discussed before, it must be expressible as Hψ where ψ is some solution to β0Hψ = 0. If

the dimension of the null space of β0H is one, then the choice of ψ is unique up to a scale

adjustment. Given β̂, we can solve for the estimate ψ̂ of ψ by solving β̂
0
Hψ = 0 with one

of the parameters in ψ being normalized to one. Then the estimated long-run effect of

the permanent structural shock to be identified is γ̂ = Hψ̂. I will use γ̂ to represent the

long-run effect of the shock to be identified.

Given the estimated long-run effect of the shock to be identified, the identifying assump-

tions (i) and (ii) can identify the shock. For illustrative purpose, I call the shock monetary

shocks, um, which I want to identify from a VECM as of (2.1). Suppose there is some

linear identifying structure Π between the structural shocks ut and the forecast errors εt,

taking the form as εt = Πut. Then the long-run response of Xt to the structural shocks ut

is ∆∞Xt−1|ut = CΠut = β⊥(α0⊥Γβ⊥)
−1α0⊥Πut. Partition ut into two different shocks: one

is a permanent monetary shock umt and the rest are u
˜m
t . That is

ut =

 umt

u˜mt

 .
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Accordingly, I can partition the identifying structure Π into two blocks corresponding to

umt and u
˜m
t , respectively, such that

Π = [πm,π˜m] .

The goal of the entire identification is to identify πm and the variance σ2m of u
m
t . Let n be

the number of variables in the VECM. Then I have n parameters from πm(n× 1) and one
from σ2m to be identified. The next job is to count the number of identifying equations.

4.2. Identifying equations from the long-run proposition: n−r equations. Let
γ be the long-run effect vector we choose to represent the long-run response ∆∞Xt−1|umt .
According to Lemma 1, we know ∆∞Xt−1|umt = β⊥(α0⊥Γβ⊥)

−1α0⊥πm. Therefore,

β⊥(α
0
⊥Γβ⊥)

−1α0⊥πm = γ.(4.1)

Though there are n equations in (4.1), r of them are not linear independent from the rest

of the equations. This is because by nature, γ ∈ sp(β⊥) which can be expressed as γ = β⊥h

with h being n− r × 1. Therefore, there are only n− r linear independent equations that
can be used to solve for πm which is

(α0⊥Γβ⊥)
−1α0⊥πm = h.(4.2)

4.3. Identifying equations from the linear independent long-run effect as-

sumption: r equations. Let us partition the long-run response of Xt to structural

shocks ut into two blocks: one is γ, the long-run response of Xt to the monetary shock umt ;

the other is Λ˜m, the long-run response matrix of Xt to other shocks. Therefore

∆∞Xt−1|ut = γumt + Λ˜mu
˜m
t

=

·
γ Λ˜m

¸
ut.

Given the identifying structure εt = Πut, we have ut = Π−1εt. Therefore, ∆∞Xt−1|ut =·
γ Λ˜m

¸
ut =

·
γ Λ˜m

¸
Π−1εt. According to Lemma 1, the long-run response ofXt to

the time t forecast errors εt is ∆∞Xt−1|εt = β⊥(α0⊥Γβ⊥)
−1α0⊥εt. Hence,

·
γ Λ˜m

¸
Π−1 =
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β⊥(α0⊥Γβ⊥)
−1α0⊥ and consequently

·
γ Λ˜m

¸
Π−1α = 0. Let us partitionΠ−1 into [g0m,G0˜m]

0.

Then,
·
γ Λ˜m

¸
Π−1α = γgmα+Λ˜mG˜mα = 0. If the long-run effect γ is linearly inde-

pendent from the long-run effects Λ˜m of other structural shocks, then γgmα+Λ˜mG˜mα = 0

if and only if gmα = 0.

There are two things worth mentioning. First, given the partition of Π−1, the contem-

poraneous relation between a monetary shock umt and the forecast error εt is umt = gmεt,

which can be interpreted as the within-period reaction function of the monetary authority

to the unexpected change to the VAR variables. The orthogonality condition between gm

and α thus implies that, if the long-run effect of money is linearly independent from the

long-run effects of other structural shocks, then the within-period reaction function gm must

be orthogonal to the adjustment coefficient α that is associated to the deviations from the

long-run equilibrium cointegrating relations. Second, the structural shocks do not have to

be divided into transitory shocks and permanent shocks as in the KPSW and JO papers.

It is possible for all shocks to have permanent effects as long as that there are no linear

combination of other shocks which produce the same long-run effect as umt .

Now I want to use the orthogonality condition between gm and α to produce r extra

identifying equations. Since εt = Πut, the relation between the variance covariance matrix

Σε of εt and the variance covariance matrix Σu of ut is Σε = ΠΣuΠ
0, i.e. Π−1Σε = ΣuΠ

0.

Therefore, gmΣε = σ2mπ
0
m since umt is assumed to be uncorrelated with other structural

shocks. Hence gmα = 0 implies σ2mπ
0
mΣ

−1
ε α = 0, i.e. π0mΣ−1ε α = 0 since σ2m > 0. We have

r extra identifying equations as below:

α0Σ−1ε πm = 0.(4.3)

4.4. Identifying equation from the Π−1Π = I: one equation. Notice that (4.2)

and (4.3) give exactly n equations to identify πm for monetary shocks, which is independent

of identifying the volatility σ2m of monetary shocks. To identify σ
2
m, we can use the nature
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that Π−1Π = I which implies that gmπm = 1. According to the previous discussion, we

know gm = σ2mπ
0
mΣ

−1
ε . Therefore

σ2m = 1/(π
0
mΣ

−1
ε πm).(4.4)

Through the discussions of section 4.2 to 4.4, we have the following proposition regarding

identifying permanent monetary shocks.

Proposition 5. Given that the estimated sp(β) can admit a unique normalized γ which

represents the long-run effect of the shock to be identified, we can partially identify this shock

through restrictions (4.2) to (4.4) if the following two identifying assumptions are made:

1. The shock to be identified is not correlated with other structural shocks.

2. The long-run effect of the shock is linearly independent from the long-run effects of

other structural shocks.

5. VAR Model of International Monetary Transmission: An Application

In this section, I apply my method to identify U.S. monetary shock and study its

international transmission to four different foreign countries: Germany (GM), France (FR),

Italy (IT) and the United Kingdom (UK). There are four separate VAR models: always

one foreign country v.s. U.S. For notational simplicity, I always use the European country

name to denote each panel without referring to the U.S.

The selection of variables in a VAR is a subtle issue. The variables selected should permit

us to extract the structural shock that we are interested in. In this chapter, I am interested

in the U.S. monetary shock. In order to extract it, the reduced form VAR should be compact

enough to include variables about which the monetary authority is concerned and therefore

builds into its monetary policy rule. Here, I choose the U.S. real income (y), the price level

(p), the nominal interest rate (R) and a money aggregate (m) , since these four variables

are the essential variables in most small-scale macro models. An objective of this chapter
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is to analyze the importance of U.S. monetary shocks in explaining uncovered interest rate

parity deviations. Therefore, two more foreign variables, foreign nominal interest rates (R∗)

and nominal exchange rates (s)8, are included.

The VAR model in this chapter is

∆Xt = αβ0Xt−1 +Σpi=1Γi∆Xt−i + et(5.1)

where Xt = (yt, pt, Rt,mt, R∗t , st)0. This is a VECM. The forecast error et is assume to be

iid normally distributed with mean zero and Eete0t = Ω. To estimate this model, I need to

determine the number of lags p and the proper cointegrating rank r. I use the Posterior

Information Criterion(PIC, hereafter) proposed by Phillips and Ploberger (1996) to select

model lags and cointegrating rank simultaneously.9 The selection results are in Table 7.10

All country panels have their cointegrating rank equal to two, which means that there are

four stochastic trends in each system.

5.1. Identification of U.S. monetary shocks. I use the long-run identification

method in this chapter to identify U.S. monetary shocks, based on three assumptions: first,

monetary shocks should be long-run neutral and long-run homogeneous; second, monetary

shocks are not correlated with other structural shocks; and third, the long-run effect of

money is linearly independent from the long-run effects of other structural shocks.

5.1.1. Long-run neutrality and homogeneity of money. Let umt be the U.S. monetary

shocks, and define ∆∞Xt−1|umt ≡ limk→∞(Xt+k − Xt−1)|umt to be the long-run response

8Nominal exchange rates are defined as the U.S. dollar against the foreign currency. For
the detail of the source of data, please refer to the appendix.

9The conventional approach is to use a model selection criterion, such as BIC or AIC,
to select lags first, and then to choose cointegrating rank, for example, by the likelihood
ratio test of Johansen (1995) or the multivariate unit root test of Stock and Watson (1988).
However, as pointed out by Johansen (1992), such a sequential model selection may be
inconsistent. Chao and Phillips (1999) compared AIC, BIC and PIC; and found some finite
sample evidence in favor of PIC.

10The minimal cointegrating rank and lag are set to be zero. The maximal lag is set to
be four.
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of X to the time t monetary shock umt . If money is long-run neutral(LRN) and homoge-

neous(LRH), then

γ ≡ ∆∞Xt−1|umt =



∆∞yt−1

∆∞pt−1

∆∞Rt−1

∆∞mt−1

∆∞R∗t−1

∆∞st−1


|umt =



0

gm

0

gm

0

gs


.(5.2)

There are several aspects of the long-run proposition formalized in (5.2) that are worth

mentioning. First, the long-run response of the U.S. price is equal to the response of money

because of LRH. Second, the long-run response of nominal interest rates is zero. This is

because that nominal interest rate is the sum of the expected real interest rate and the

expected inflation rate. Long-run neutrality requires the long-run response of real interest

rates to be zero. In addition, the shock identified in this model produces a long-run effect

only on the price level but not on its first difference (the inflation rate). Therefore, the

long-run response of inflation rates should be zero too. Consequently, the long-run response

of the nominal interest rate to a monetary shock is zero. Third, there is no restriction on

the long-run response of the nominal exchange rate since it also depends on the long-run

response of foreign money and the model does not include a foreign money variable. Fourth,

the long-run proposition is over-identifying. If we write γ in the Hψ format, then

H =



0 0

1 0

0 0

1 0

0 0

0 1


and ψ =

 gm
gs

 .
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The rank of β0H is equal to two which is not less that the dimension of sp(H). According

to Proposition 4, the long-run proposition is over-identifying. Fifth, the long-run propo-

sition is testable. From chapter one, we know that a long-run proposition is testable if

the cointegrating rank(r) is larger than the number(k) of free parameter in ψ minus one.

This condition holds here. Table 8 shows that the test results do not reject the long-run

proposition (5.2) for all countries at both five and ten percent levels.

5.2. The Effects of U.S. Monetary Shocks. Estimating the VECM via the ap-

proach of section 3.1.2 and following the identifying approach in section 4, I can identify

both πm (the short-run impact of U.S. monetary shock) and σm (the variance of U.S. mon-

etary shock). With the identified shocks, I can study the impulse response functions of all

variables, including foreign interest rates and exchange rates. Then I examine whether U.S.

monetary shock itself can generate the exchange rate dynamics which are consistent with

the UIP deviations observed in the data.

5.2.1. The impulse response functions. In this section, I study the short-run and the

intermediate-run effects of U.S. monetary shocks.

The impulse response functions to a U.S. monetary shock are shown in Figure 9. The

graph is based on the normalized monetary shock which moves up the U.S. nominal interest

rate by one percent in the short-run. The qualitative responses of U.S. variables are the

same across all country panels. When there is an increase in the nominal interest rate,

the price level and output will be contractionary. This fits the story of a contractionary

monetary shock. The response of money is expansionary in the short-run, except the GM

panel, which seems to be abnormal. However, the abnormality disappears (the response

of money becomes contractionary) immediately after one month for all country panels.

Therefore, I refer to the impulse responses given here as the impulse responses to a U.S.

contractionary monetary shock.
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The effects of a contractionary U.S. monetary shock are: (i) the U.S. nominal interest

rate increases in the short-run, then falls back to its long-run level gradually; (ii) the

price level decreases monotonically through time; and (iii) the money aggregate — though

increases immediately when the shock happens — decreases through time and reaches a

long-run contractionary level gradually. As to the output impulse response, I found that

the contractionary effect reaches its maximum after ten months, with output going back to

its long-run level gradually because of long-run neutrality of money.

The exchange rate response is similar across all country panels. Foreign currencies are

depreciating over time, which is consistent with the steady decreasing pattern of U.S. money

aggregate. Foreign nominal interest rates responses are different across countries in the

short-run. For UK, the nominal interest rate decreases in the short-run, which can occur if

the UK monetary authority responds to a U.S. contractionary monetary shock by expanding

money supply. For GM, FR and IT, the nominal interest rate increases in the short-run,

which can occur if their authorities respond with a contractionary money supply. However,

in the intermediate-run, all foreign countries’s nominal interest rates are above their long-

run levels. If the adjustment of interest rates reflects the money supply pattern, this means

that in the intermediate-run all foreign countries’s money supply is contractionary. Put in

the language of modern macroeconomics, they are strategically complementary to the U.S.

money supply.

Given long-run neutrality and homogeneity of money, monetary shocks have a long-run

impact only on money level and foreign exchange rates, with the long-run response of price

being proportional to the long-run response of money. Since the two long-run propositions I

use do not require foreign money to move proportionately to the U.S. money in the long-run,

exchange rate response does not have to be proportional to the US money in the long-run

either. The estimated long-run responses of foreign exchange rates are shown in Table

9. A U.S. monetary shock that increases U.S. money by one percent in the long-run will
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appreciate all foreign currencies in the long-run. This means that the long-run responses of

these four foreign money supplies are less than that of the U.S. money supply.11

5.2.2. Uncovered Interest Parity. In this chapter, I also study the dynamics of exchange

rates and interest rates in order to re-examine a classical proposition called uncovered

interest parity (UIP). UIP implies

Et(∆st+1) = (Rt −R∗t ) /1200.(5.3)

The interest rate differentials are dividend by 1200 is because the interest rate data I use is

in annual percentage. The division will convert the data series into monthly rates. If UIP

holds — and taking into account of risk premium, then

∆st+1 = α+ (Rt −R∗t )/1200 + ξt+1.

Here the constant term α is the risk premium, and ξt+1 can be interpreted as the excess

returns of foreign asset investment.

UIP implies two different time-series properties of exchange rates. First, interest rate

differentials should not predict the excess returns. Thus, if we consider the following re-

gression.

∆st+1 = α+ β(Rt −R∗t )/1200 + ξt+1,(5.4)

Then the β regression estimate should be equal to one. Otherwise, interest rate differentials

are correlated with the excess returns. Using the data set in this chapter, the estimated

β values are not consistent with this implication. Table 10 shows the estimated results.

Except IT, all β estimates are significantly different from one and of the wrong sign, which

is a standard finding discussed earlier in this chapter.

11The impulse response functions in Figure 9 are based on the normalization that the
U.S. nominal interest rate increases by one percent in the short-run. The effects on the
U.S. money level is however long-run contractionary. Table 9, however, is based on the
normalization that the U.S. money level is long-run expansionary.
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Second, if UIP holds, then the excess returns should not be serially correlated. This

implies that the ex post UIP deviation ηt+1, where

ηt+1 = ∆st+1 − (Rt −R∗t )/1200,

should not be serially correlated. The sample estimated autocorrelation of the ηt+1 are in

Table 11. Except UK, all other foreign countries violate the non-serial-correlation implica-

tion of UIP.

There is also another implication of UIP if UIP holds. Dornbusch (1976) points out that

a once-for-all unexpected change in money level should create exchange rate overshooting

in the short-run. That is the domestic currency over-depreciates compared to its long-

run equilibrium level. Though there are works such as Eichenbaum and Evans (1995)

using VAR to study the exchange rate overshooting, to legitimately examine whether the

exchange rate dynamics are consistent with Dornbusch’s story, the monetary shocks we

identify must create a once-for-all effect on the money level. In most VAR studies, unless

the money supply equation is a first difference equation with no lag and does not depend on

other variables, the identified monetary shocks generate feedback within the system. The

movement of money level will be a gradual adjustment process instead of a once-for-all level

change. Therefore, it is impossible to use the VAR system in this chapter to talk about

exchange rate overshooting directly. However, the failure of the data compliance with the

previous two implications of UIP is an evidence against the effectiveness of overshooting

claim.

5.2.3. How Important Are U.S. Monetary Shocks in Accounting for the UIP Regression

Puzzle. To understand the importance of U.S. monetary shocks in accounting for the UIP

regression puzzle, we need to understand the regression implication and its relationship with

structural shocks. Given the regression model (5.4), the UIP regression is a conditional
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expectation of ∆st+1 on interest rate differentials, that is12

E∆st+1|(Rt −R∗t ) = α+ (Rt −R∗t ) +Eξt+1|(Rt −R∗t ).

If β deviates from one, it implies that the current interest rate differential has predictive

power for the future excess return. Consider only linear prediction, we will have Eξt+1|(Rt−
R∗t ) = γ0 + γ1(Rt − R∗t ) + νt+1, where γ1 = cov(ξt+1, Rt − R∗t )/var(Rt − R∗t ). Therefore,
the UIP regression coefficient β can be expressed as β = 1+γ1, where γ1 measures the bias

of regression coefficient due to the predictability of interest rate differentials to the future

excess returns. Since both ξt+1 and Rt −R∗t can be expressed as a moving average process
of past structural shocks in a structural VAR system, γ1 can be decomposed into different

structural shocks. Suppose there are n structural shocks, i.e. u1t , . . . , u
n
t , then

γ1 = cov(ξt+1, Rt −R∗t )/var(Rt −R∗t )

= Σni=1cov(ξt+1, Rt −R∗t |ui)/var(Rt −R∗t )

= Σni=1
var(Rt −R∗t |ui)
var(Rt −R∗t )

cov(ξt+1, Rt −R∗t |ui)
var(Rt −R∗t |ui)

.

Therefore the contribution to the UIP regression deviation from U.S. monetary shocks

can be decomposed into two parts: one is its contribution to the volatility of interest

rate differentials, i.e. var(Rt − R∗t |um)/var(Rt − R∗t );13 the other is the UIP regression
coefficient conditional on a world with only the presence of the U.S. monetary shocks, i.e.

cov(ξt+1, Rt −R∗t |um)/var(Rt −R∗t |um). 14

The estimated results of the conditional bias and the U.S. monetary shocks contributions

are in Table 12. The results show that U.S. monetary shocks cause a downward bias in the

UIP regression coefficient. However, their contribution is negligible. None of them is larger

than one percent.

12For notation simplicity, interest rates here are referred to monthly rate already. There-
fore, I omit the division of 1200.

13This part is the variance-covariance decompostion for interest rate differentials. The
symbol ”|um” does not mean that it is conditional on the information of um, but conditional
on the information that other shocks are zero all the time.

14The computation of this conditional regression coefficients is in the appendix to this
paper.
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5.2.4. How Important Are U.S. Monetary Shocks in Accounting for UIP Deviation Per-

sistence. Figure 10 shows the impulse responses of the UIP deviations. For all four countries,

a U.S. monetary shock that increases U.S. interest rate by one percent in annual rate will

decrease the future excess return of foreign asset investment. However, this excess return —

in favor of U.S. investment — will disappear gradually through time.

The estimated conditional serial correlation of the excess returns for four countries are

in Table 13.15 Though they are consistent with the positive autocorrelation we saw in Table

11, the one-period lagged autocorrelations are too small. U.S. monetary shocks themselves

do not generate the extent of serial correlation that we see in the data.

6. Conclusion

In this chapter, I construct a long-run identification method that can partially identify

the permanent structural shock, when — as is commonly the case — we believe in a long-run

proposition regarding its effect which is over-identifying. Isolating this structural shock

requires two other assumptions: (i) the shock to be identified is uncorrelated with other

structural shocks; and (ii) there is no linear combination of other structural shocks that

produces the same long-run effect as the shock to be identified.

I applied my method to identify U.S. monetary shocks based on long-run neutrality

and homogeneity. The application is used to study not only the internal effects of U.S.

monetary shocks but also the international transmission of U.S. monetary shocks to four

different foreign countries: Germany, France, Italy and the United Kingdom.

The structural VAR study in this chapter is also used to study the uncovered interest rate

parity(UIP) puzzle. I analyze whether U.S. monetary shocks can account for two different

aspects of deviations from UIP. One is the predictability of the interest rate differentials

for the future excess returns of foreign investment; the other is the serial correlation of the

15The computation of the conditional serial correlation of excess return can be obtained
through its impulse response function. For detail, please refer to the appendix.
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excess returns. I found that though U.S. monetary shocks generate these UIP deviations

with the right sign in each case, the contributions of monetary shocks to accounting for the

general deviations are small.
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Table 1. Unit root test for money stock

Ng-Perron test statistics MZa MZt MSB
Friedman and Schwartz data:
post Great Depression

−15.0378∗ −2.7243∗ 0.1812∗

post WWII data: pre-Volcker
period

−0.9696 −0.4369 0.4506

post WWII data: post-1983
period

−1.7246 −0.7655 0.4439

Asymptotic critical values: 5% −17.3000 −2.9100 0.1680
10% −14.2000 −2.6200 0.1850

* significant at 10 percent level
† Null hypothesis is that the series has a unit root.
‡ All test statistics are constructed under spectral GLS-detrended(including constant,
and linear trend) autoregression with regression lags determined by the Modified
Schwartz Information Criterion. The maximal lag allowed is 6.

Table 2. Friedman and Schwartz data: Geweke test

X variables fm→X(0) 80% C.I. Lags in VARs∗
y 0.00013 (0.00000, 0.00030) 4
m− p 0.18871 (0.00204, 0.43581) 4
y,m− p 0.15790 (0.02022, 0.35669) 1
v† 0.00215 (0.00046, 0.00464) 4
† v = p+ y −m is the income velocity of money.
* lags are selected by BIC with maximal lags allowed to be 5.
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Table 3. Friedmand and Schwartz data: Unrestricted Estimation of the
VECM

(a) Cointegrating vectors β
y m p

β̂ 16.4466 −11.6244 5.9478
(b) Adjustment coefficients α

y m p
α̂ −0.0024 −0.0156 −0.0034

Table 4. Friedmand and Schwartz data: Cointegration test

(a) Three Variable Case
H0 H1 Q statistic d.f

LRN as (6.7) not H0 1.5688 1
(b) Four Variable Case

H0 H1 Q statistic d.f
LRN as (6.8) not H0 2.216 1
LRH as (6.9) not H0 3.4106 2
LRH LRN 1.1946 1
* significant at 10 percent level
** significant at 5 percent level
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Table 5. Post-WWII Quarterly data: Geweke test

(a) Pre-Volcker Data
X variables fm→X(0) 80% C.I. Lags in VARs∗
y 0.50099 (0.09926, 0.90873) 1
m− p 0.00322 (0.00003, 0.00775) 1
y,m− p 2.64590 (0.83660, 4.76890) 1
v 0 N.A.∗∗ 0

(b) Post-1983 Data
X variables fm→X(0) 80% C.I. Lags in VARs∗
y 0.39254 (0.04648, 0.84426) 2
m− p 0.57986 (0.02868, 1.31810) 1
y,m− p 0.53938 (0.17882, 0.94721) 1
v 0.12082 (0.00406, 0.28649) 2
* lags are selected by BIC with maximal lags allowed to be 6.
** when there is no lag selected, fm→X(0) is always zero
under the recursive identifying assumptions.

Table 6. Post-WWII Quarterly data: Cointegration test

(a) Pre-Volcker Data
H0 H1 Q statistic d.f

LRN as (6.8) not H0 0.8657 1
LRH as (6.9) not H0 8.9192∗∗ 2
LRH LRN 8.0535∗∗ 1
(b) Post-1983 Data
H0 H1 Q statistics d.f
LRN as (6.8) not H0 0.7159 1
LRH as (6.9) not H0 0.8176 2
LRH LRN 0.1017 1
* significant at 10 percent level
** significant at 5 percent level
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Table 7. VECM Selections

lags p cointegrating rank r
GM 1 2
UK 1 2
FR 1 2
IT 1 2

Table 8. Long-run neutrality test

Countries Q statistics† d.f. Countries Q statistics d.f.
GM 0.6161 1 FR 0.0249 1
UK 0.5404 1 IT 0.0254 1
† The Q statistic follows a χ2 distribution asympotically
with r − (k − 1) degrees of freedom.
* significantly reject (5.2) at ten percent size.
** significantly reject (5.2) at five percent size.

Table 9. The estimated long-run responses of foreign exchange rates

Country (%) Country (%)
GM 4.1174† FR 5.1599
UK 4.4238 IT 2.1253
† The estimations are based on the normalization
of the long-run response of the U.S. money
to one percent increase.
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Table 10. The UIP Regression

Country Country
GM −1.8274

(0.71046)†
FR −1.3781

(0.64268)

UK −2.6152
(1.1619)

IT 0.17877
(0.45116)

† The numbers in the parentheses are
the Newey-West consistent estimates of
standard errors.

Table 11. Sample Estimated Serial Correlation of UIP Deviations

lags GM FR UK IT
1 0.152∗∗ 0.323∗∗ 0.096 0.374∗∗
2 0.062 0.072 0.015 0.059
3 0.030 0.121∗ 0.009 0.079
4 0.013 0.026 0.038 0.052
5 0.022 0.051 0.024 0.062
* significant at ten percent
** significant at five percent

Table 12. UIP regression

Countries conditional bias γ1 weights of contribution (%)
GM -9.20171 0.000
UK -4.97988 0.063
FR -12.8279 0.000
IT -2.97444 0.131
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Table 13. Serial Correlation of UIP Deviations Conditional on the U.S.
Monetary Shocks

lags GM FR UK IT
1 0.0116 0.0112 0.0108 0.0047
2 0.0109 0.0107 0.0108 0.0052
3 0.0101 0.0101 0.0099 0.0050
4 0.0090 0.0091 0.0087 0.0045
5 0.0079 0.0079 0.0074 0.0039
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Figure 1. Cointegrating Vector Space and the Long-Run Effect of Money:
A Bivariate Example
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Figure 2. Cointegrating Vector Space and the Long-Run Effect of Money:
A Trivariate Example
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Figu re 3. Long-Run Prop osition Restriction on Cointegrating Vector
Space: A Bivariate Example

Figure 4. Long-Run Proposition Restriction on Cointegrating Vector
Space: A Trivariate Example
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Figure 5. Long-Run Proposition Test on the Annual Data: Friedman and
Schwartz Method
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Figure 6. The Geometry Relations Between Restricted and Unrestricted
Estimates of the Cointegrating Vectors: Trivariate Case
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Figure 7. The Geometry Relations Between Restricted and Unrestricted
Estimates of the Cointegrating Vectors: Four-variable Case
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Figure 8. Long-Run Proposition Test on the Quarterly Data: Friedman
and Schwartz Method
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Figure 9. The Impulse Response Functions
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Figure 10. The Impulse Response Functions of UIP Deviations
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Appendices to Chapter 1

1. Solution to a Simple Macro Model

yt = θ(pt −Et−1pt) + uyt(1.1)

pt = gmt − yt + udt(1.2)

mt = αmt−1 + umt(1.3)

First, replace p in (1.1) with (1.2); replace all m with (1.3). Output is then determined

by

yt = θ
h³
gαmt−1 + gumt − yt + udt

´
− (gαmt−1 −Et−1yt +Et−1udt )

i
+ uyt

= π(Et−1yt + gumt + u
d
t −Et−1udt ) + uyt

where π = θ/(1 + θ). Taking condition expectation Et−1 on both sides, we find Et−1yt =

(1 + θ)Et−1uyt . Therefore,

yt = πgumt + π(udt −Et−1udt )− θ(uyt −Et−1uyt ) + (1 + θ)uyt .(1.4)

With recursive iteration, the motion of mt is:

mt = αtm0 +Σ
t
i=1α

t−iumi .(1.5)

Combined with (1.4) and (1.5), the motion of pt is:

pt = gαtm0 + gΣ
t
i=1α

t−iumi

−πgumt − π(udt −Et−1udt ) + θ(uyt −Et−1uyt )− (1 + θ)uyt + u
d
t .
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2. Solution to the Simple Macro Model in Section 3.3.4

yt = φ(mt −Et−1mt) + uyt(2.1)

mt = yt + u
m
t(2.2)

uyt = uyt−1 + u
r
t(2.3)

Replace mt in (2.1) with (2.2), then yt = φ(yt+umt −Et−1yt)+uyt . Taking the expectation
Et−1 on both sides, we get Et−1yt = Et−1uyt = uyt−1. Hence yt = ηumt + ηurt + u

y
t where

η = φ/(1−φ). If we take the first difference for both sides, then ∆yt = η∆umt + η∆urt +u
r
t .

∆umt can be replaced with ∆mt −∆yt according to (2.2). Also (2.2) can be expressed as
∆mt = ∆yt + yt−1 −mt−1 + umt . Hence 1 + η −η

−1 1


 ∆yt
∆mt

 =
 0
1

 · 1 −1 ¸
 yt−1

mt−1

+
 ũrt

umt


where ũrt = η∆urt + u

r
t . Inverting the matrix associated with (∆yt,∆mt), we obtain ∆yt
∆mt

 =
 η

1 + η

· 1 −1 ¸
 yt−1

mt−1

+
 εyt

εmt


where  εyt

εmt

 =
 1 η

1 1 + η


 ũrt

umt

 .

3. Algorithm for the Maximum Likelihood Value of Lemma 2

1. Estimate β unrestricted. And solve the following eigenvalue problem, given the

unrestricted estimates β̂,¯̄̄
λβ̂

0
β̂ − β̂

0
H⊥(H0

⊥H⊥)
−1H0

⊥β̂
¯̄̄
= 0(3.1)

for eigenvectors (v1, · · · , vr−s+1) corresponding to the largest r − s + 1 eigenvalues.
Let β̂2 = β̂ [v1, · · · , vr−s+1]
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2. Fix β2 = β̂2; estimate β1 with β̂1 = [b1, · · · , bs−1] where b1, · · · , bs−1 are the eigenvec-
tors associated with the s−1 largest eigenvalues to the following eigenvalue problem.¯̄̄

ρS11.β2 − S10.β2S−100.β2S01.β2
¯̄̄
= 0.

3. Fix β1 = β̂1; estimate ϕ with ϕ̂ =
£
ϕ1, · · · ,ϕr−s+1

¤
where ϕ1, · · · ,ϕr−s+1 are the

eigenvectors associated with the r−s+1 largest eigenvalues to the following eigenvalue
problem ¯̄̄

λH0
⊥S11.β1H⊥ −H0

⊥S10.β1S
−1
00.β1

S01.β1H⊥
¯̄̄
= 0.

This gives an updated estimate β̂2 = H⊥ϕ̂2.

4. Continue with 2 and 3 until convergence. Then compute the log-likelihood function

value under the converged β1 and β2 estimates. This gives the Lmax value of Lemma

2.

Two steps—steps 1 and 4—are worth explained here. The first step is to find a reasonable

initial β2 value for further iterations. Given unrestricted estimates β̂, step one finds an initial

value β(0)2 whose vectors are linear combinations of β̂ and are as close to sp(H⊥) as possible.

The solutions to the eigenvalue problem(3.1) solve for the problem. The fourth step requires

researchers to set up some convergence criteria for the algorithm to stop in a finite step.

The criteria we used in this chapter is to stop the program when the likelihood function

value is still climbing but its incremental magnitude is small. Therefore the Q values we

get in practice are approximates. A user-friendly Matlab program can be received from the

author upon request. In this program, users can ignore all econometric problems stated in

this subsection, and only need to specify the H matrix for the program to compute Q value.

4. Unrestricted Maximum Likelihood Estimation

This is excerpted from Theorem 6.1 of Johansen(1995). The maximized value Lumax of

the likelihood function of the VEC model—whose cointegrating rank is equal to r—without
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any restriction is given by

(Lumax)
−2/T = |S00|Πri=1(1− λi)

where 1 > λ1 > · · · > λr are defined as the largest r solutions to the eigenvalue problem:

|λS11 − S10S−100 S01| = 0.

5. R-Fold Replications

Given the estimates B̂(L) of B(L) in (6.1) and the estimated variance covariance ma-

trix Ω̂ of the error terms, we use the following data generating process to generate each

replication sample.

B̂(L)

 ∆Xt
∆mt

 = εt

with εt ∼ N(0, Ω̂). Let p be the number of lags in the system.

1. Using first p observations of (∆Xt,∆mt) as initial values

2. Sampling T observations of error terms from N(0, Ω̂)

3. Generate T observations of (∆Xt,∆mt)

4. Compute estimated fm→X(0), call it f̂ im→X(0).

Repeat 2 to 4 for R times (R=200 here). Let f̄m→X(0) = ΣRi=1f̂
i
m→X(0)/R. We compute

the percentage bias bR of the fm→X(0) estimate. bR = f̂m→X(0)/ f̄m→X(0) where f̂m→X(0)

is the estimate from the true sample. The percentage-bias adjusted estimate of fm→X(0)

is then bRf̂m→X(0) which is the number we reported in the table. Let l = [αR/2] and

u = R − [αR/2], and f̂ (i)m→X(0) denote a typical order statistic. The 100(1 − α) percent

confidence interval is (bR f̂ (l)m→X(0), b
R f̂

(u)
m→X(0)).

6. Data Source: Friedman and Schwartz Data

All series are from Friedman and Schwartz (1982) from 1940 to 1975 , Table 4.8.
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MNY=Money Stock (Billion $)

NI=Nominal Income (Billion $)

RI=Real Income (Billion 1929 $)

PRICE=Implicit Price Deflator 1929=100

POP=Populations (Millions)

INT=Short-Term Commercial Paper Rate (Annual Percentage)

1. Time series in the FS test:

m = log(MNY)

y = log(RI)

Y = log(NI)

2. Time series in the Geweke test16:

m = log(MNY/POP)

y = log(RI/POP)

Y = log(NI/POP)

3. Time series in the cointegration test

m, y, and Y are the same as in the Geweke test.

R = INT.

7. Data Source: Post-WWII Quarterly Data

Sample period: 1959:1 to 2002:2

MNY=M1 (Billion $), seasonally adjusted, Federal Reserve Board of Governors: H.6

Release

16FS series are not divided by the population to be consistent with Fisher and Seater
(1993).
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NI=Gross Domestic Product (Billion $), seasonally adjusted, U.S. Department of Com-

merce, Bureau of Economic Analysis

RI=Real Gross Domestic Product (Billion of chained 1996 $), seasonally adjusted, U.S.

Department of Commerce, Bureau of Economic Analysis

PRICE=Implicit Price Deflator 1996=100, seasonally adjusted, U.S. Department of

Commerce, Bureau of Economic Analysis

POP=Civilian Noninstitutional Population, end of month (Thousands), U.S. Depart-

ment of Labor, Bureau of Labor Statistics

INT=3-Month Treasury Bill Secondary Market Rate, (Annual Percentage), Federal Re-

serve Board of Governors: H.15 Release

1. Time series in the FS test:

m = log(MNY)

y = log(RI)

Y = log(NI)

2. Time series in the Geweke test:

m = log(MNY/POP)

y = log(RI/POP)

Y = log(NI/POP)

3. Time series in the cointegration test

m, y, and Y are the same as in the Geweke test.

R = INT/400.



Appendices to Chapter 2

1. Computation of the β Conditional on Monetary Shocks

SupposeE(ξt+1|(Rt−R∗t )/1200) = γ0+γ1(Rt−R∗t )/1200, thenE(∆s+1|(Rt−R∗t )/1200) =
(α+ γ0) + (1 + γ1)(Rt −R∗t )/1200. By definition,

γ1 = cov(ξt+1, (Rt −R∗t )/1200)/var((Rt −R∗t )/1200).

If we compute the UIP regression conditional on the monetary shocks only, then the condi-

tional UIP regression is

E(∆s+1|(Rt −R∗t )/1200, um) = (α+ γ0) + (1 + γ̃1)(Rt −R∗t )/1200

where γ̃1 = cov(ξt+1, (Rt−R∗t )/1200|um)/var((Rt−R∗t )/1200|um). An easy way to compute
γ̃1 is to use the impulse response functions of UIP deviations and interest rate differentials.

Suppose

ξt|um = ψ0u
m
t + ψ1u

m
t−1 + ψ2u

m
t−2 + · · ·

(Rt −R∗t )/100|um = φ0u
m
t + φ1u

m
t−1 + φ2u

m
t−2 + · · ·

then

γ̃1 =
¡
Σ∞j=0φjψj+1

¢
/Σ∞j=0φ

2
j .

2. Computation of the Persistence of UIP Deviations

The impulse response function of the ξt to the forecast errors in (2.1) can be expressed

as

ξt = εt +B1εt−1 +B2εt−1 + · · · .
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Given the identified πm, the impulse response functions of ξt conditional on monetary shocks

is

ξt|umj for j ≤ t = ψ0u
m
t + ψ1u

m
t−1 + ψ2u

m
t−2 + · · ·

with ψi = Biπm where B0 = I. Therefore,

cov(ξt+k, ξt|umj , j ≤ t+ k) =
¡
Σ∞j=0ψk+jψj

¢
σ2m

var(ξt+k|umj , j ≤ t+ k) =
¡
Σ∞j=0ψ

2
j

¢
σ2m

var(ξt|umj , j ≤ t+ k) =
¡
Σ∞j=0ψ

2
j

¢
σ2m.

It follows that

ρk =
¡
Σ∞j=0ψk+jψj

¢
/
¡
Σ∞j=0ψ

2
j

¢
.

3. Data Source

All data are from IFS, September 2002, disk unless otherwise specified. Data are

monthly data. The sample period is from 1979:01 to 2001:05.

INDP = U.S. industrial production, data series number is 11166..IZF.

MM = U.S. money aggregate (billion $). Data series number is 11159MACZF.

CPI =U.S. CPI. Data series number is 11164...ZF.

R =U.S. nominal interest rates (annual percentage). Data series number is 11160LD-

CZF.

R∗ =Foreign nominal interest rates (annual percentage). Data series numbers are

11260EA.ZF for UK; 13260C..ZF for FR; 13460B..ZF for GM; and 13660B..ZF for IT.

FOREX =Foreign exchange rate (US $ / Foreign Currency). Data are from the Federal

Reserve Bank of St. Louis.

y = log(INDP )
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m = log(MM)

p = log(CPI)

s = log(FOREX)

To take into account the structural change due to the reunification of West and East

Germany on July 1, 1990, R∗ and s series for GM have been transformed to be orthogonal

to the dummies {dt, dt−1, . . . , dt−6} where dt = 1 if t =1990:07; and dt = 0 otherwise.
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