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Abstract

This paper provides a new approach of measuring the effects of money in both the long-
run and the short-run horizons. The key identifying assumptions used to identify and
measure the effect of money are long-run neutrality and long-run homogeneity.

The first chapter shows that both long-run propositions imply certain linear restrictions to
be imposed on the cointegrating space. By testing the validness of such linear restrictions,
both long-run propositions are tested. Compared with the previous long-run tests, the
cointegration test in this paper does not depend heavily on the auxiliary assumptions,
including identification restrictions and the correct selection of macroeconomic variables
to be included in the empirical work.

The second chapter shows that the linear restrictions imposed by the long-run
propositions can be used to identify the monetary shocks when the long-run proposition
is overidentifying. In such a case, it is proved that the monetary shocks can be identified
with the following three identifying assumptions: (1) a monetary shock is long-run
neutral and homogeneous; (2) monetary shocks are not correlated with other structural
shocks; and (3) the long-run effect of money is linearly independent from the long-run
effects of other structural shocks.

* Email: mtlin@bu.edu. This paper is the first two chapters of my dissertation in Boston University. I am
indebted to Robert G. King, Pierre Perron and Simon Gilchrist for their advice throughout the writing of
this paper, to John Chao for his assistance in PIC programming, and to Christopher Otrok for his data
provision. I also wish to thank Zhongjun Qu and Ferhan Salman for helpful comments and discussion. The
usual disclaimer applies.
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CHAPTER 1

New Tests of Long-Run Monetary Neutrality and
Homogeneity

1. Introduction

The effect of money on real activity is one of the central research topics in macroeco-
nomics. Standard macroeconomic models suggest short-run effects of money on both real
output and the price level, with the longer-run effects on nominal variables but not on real
variables. The research reported in this chapter devises new tests of long-run propositions
about the effect of money on economic activity, in particular the long-run neutrality (LRN)
and the long-run homogeneity (LRH). In this chapter, as in much prior work, long-run neu-
trality is defined as the implication that a once-for-all change in the level of money should
not have a long-run impact on real variables. Similarly, long-run homogeneity is defined
as the implication that such a permanent change in the level of money should affect all

nominal variables proportionately in the long run.

There is a lengthy history of efforts to test LRN and LRH. One notable early strand of
research on these two issues was at the Federal Reserve Bank of St. Louis during the 1970s.
The St. Louis researchers ran regressions of the first difference of log output on the current
and lagged values of money growth and then computed a long-run multiplier of money —
the sum of the regression coefficients — as the basis for LRN and LRH tests. These tests
were part of a larger effort by the St. Louis researchers to characterize the empirical effects
of monetary and fiscal policy on macroeconomic activity, which was heavily criticized for
its reduced form nature and its lack of concern about the direction of causality (see, e.g.

Ando and Mogiliani (1990)). In the context of LRN and LRH, the force of this criticism is



that a long-run multiplier which differs from its theoretical value — of zero for LRN and of
one for LRH — may be a reflection of central bank policy response to economic conditions
rather than a rejection of the long-run proposition. Later, in the early 1970s, Sargent
and Lucas pointed out another important difficulty with LRN tests based on an estimated
long-run multiplier: when the economy does not embody any long-run variation in money,
the estimated long-run multiplier does not accurately capture the long-run effect of money.
Their argument was a forerunner of the critique that Lucas subsequently made: if long-run
variation in money is not a part of the environment that shapes the behavioral responses of
economic agents, then a reduced form analysis — such as regressions or vector autoregressions

— can never provide an answer about the effect of a long-run change in money.

Concern about causality and the Lucas critique cast a shadow over applied research
on long-run (LR) tests for nearly two decades. However, Fisher and Seater (1993) pointed
out that the pessimism was not necessarily justified if economists are concerned about
whether a LR hypothesis held in a particular history and the historical data contained
long-run variation in money. In the situation where money was nonstationary (integrated
of order one), they showed how LRN can be tested via a long-run regression with proper
identifying assumptions made to disentangle the causality between output and money. For
convenience in the discussion below, we call tests based on these two ideas — integration

1 These second generation

and identification— second generation tests of LR propositions.
studies principally concerned bivariate relations between variables: they look at relations
between money and output to test LRN and between money and the price level (or nominal

income) to test LRH.

Two drawbacks of the long-run neutrality tests along second generation lines have been
pointed out in the literature. One is that the results of the test are heavily dependent on
identifying assumptions. More formally, identification involves making the correct mapping

between the forecast errors and structural shocks, particularly the monetary shock. The

'Other related research is contained in Geweke (1986), who uses frequency domain methods, and King
and Watson (1997), who use vector autoregression (VAR) methods.



importance of this set of assumptions (and the fragility of neutrality tests with respect
to them) is most apparent in the VAR analysis of King and Watson (1997), where the
sensitivity of the long-run neutrality tests to various identifying assumptions is graphically
displayed. Yet, while such a VAR approach to neutrality testing has become popular?, its
application also requires that the researcher select the list of variables properly. This is
because the vector of variables used in a second generation study must reveal the shocks in
the economy correctly to the researcher. More formally, it must be possible to map between
the forecast errors and the true structural shocks. If the researcher is studying a subvector
of economic activity, then there are many reasons that this mapping may be infeasible.
So accurate specification of the data vector is an essential part of second generation tests.
Thus, any rejection of LRN or LRH in a VAR context can signal that the theory is wrong

or that the identification and/or variable selection assumptions are incorrect.

In this chapter, I develop a LR test based on cointegration concepts which depends on
a basic identifying assumption shared with the second generation tests: there must be an
independent source of nonstationary variation in the monetary time series. But my test
does not require either of the other maintained assumptions of the second generation tests:
it can evaluate LRN and LRH without a parametric identifying assumption and without

correct specification of the macroeconomic data vector.

Turning to the details, I follow the approach of second generation tests in working with a
vector autoregression that is nonstationary in levels, so that there can be the stochastic trend
in money that these studies and my approach both rely on. But, in contrast to these earlier
studies, I suppose that there may be cointegration among the macroeconomic variables and
study a system with three or more variables so as to test LRN and LRH. To be precise,
I employ a vector error correction (VEC, henceforth) model of a form that is standard in

cointegration analysis. With an application of the Granger representation theorem?, I prove

2e.g. Bernanke and Mihov (1998), Serletis and Koustas (1998), and Bae and Ratti
(2000).
3Please refer to Chapter 4 of Johansen(1995).



that any LR hypothesis can be interpreted as a set of linear constraints on the orthogonal
cointegrating space, which in turn imposes restrictions on the cointegrating space. This
orthogonality condition is independent of the conventional identifying assumptions employed

in the second generation LR tests.

The LRN and LRH hypothesis constrain the cointegrating vector space, with a sacri-
fice in degrees of freedom which is dictated by the particular hypothesis. Exploiting this
property, I show how to construct a likelihood ratio test for a particular LR hypothesis.
When the degrees of freedom sacrificed is larger, the LR hypothesis is stronger, i.e., more
constraining on the estimated model. Hence, the LR hypothesis that I derive in this chap-
ter can be used to test LRN against LRH since, as I formulate these hypotheses, LRH is a

stronger hypothesis involving a greater sacrifice in degrees of freedom.

I apply my LR tests to two different data sets for real output, nominal interest rate,
the price level and nominal money stock: one is an annual data set based on the monetary
history of Friedman and Schwartz (1982), which covers 1940-1975, and the other is a post
WWII quarterly data set which covers 1959:1-2002:2. For the latter period, I split the data
into two subsamples: one is a pre-Volcker sample and the other is a post-1983 sample. For
all samples, I did not reject long-run neutrality (LRN). Long-run homogeneity was rejected

in the pre-Volcker sample of quarterly data, but not in the other two samples.

2. An Overview of Long-Run Tests

There has long been interest in testing propositions about the long-run link between
money and real or nominal variables, which are at the heart of classical macroeconomics.
In this section, the history of such tests is reviewed and the alternative approach taken in

this chapter is highlighted.

To begin, it is useful to review the two basic long-run propositions considered in this

chapter. In the long run, a permanent change in the level of the money stock is assumed



to affect nominal variables proportionately and not to affect real variables. In this chapter,
these are called the long-run homogeneity (LRH) and long-run neutrality (LRN) propo-
sitions. For example, if the nominal variable is nominal income then the homogeneity

proposition could be investigated via the regression
Y, = bmy + cxy + ey,

where Y; is log nominal income, m; is log money stock, x; are other variables that affect
nominal income and e; is an error term. In this regression setting, the LRH hypothesis is

that b = 1 since this implies that

o

=b=1.
8mt b

A comparable regression for the LRN hypothesis is
Yt = dmy + gy + €y,

where y; is log real income and the other variables are as above, The neutrality hypothesis
is that d = 0, since that implies

Oye

=d=0.
Gmt

2.1. The beginning. In the 1960s, researchers at the Federal Reserve Bank of St.
Louis began the empirical study of the relationship between nominal income and the money

stock in a dynamic regression framework,

where B(L) = X7 B;L' and C(L) = %{_,C; L are polynomials in the lag operator L and

A =1 — L indicates a first difference here and below.

The St. Louis researchers were motivated to study such distributed lag models by
Friedman’s (1969) argument that there was a lag in the effect of monetary actions on the
macro economy. In the well-known work of Anderson and Jordan (1968), the main focus
of the regression analysis was two-fold. First, they sought to determine the nature of the

lags in the effects of monetary policy in estimating the B coefficients. Anderson and Jordan



found that there was a less than one-for-one short-run effect of money on nominal income,
i.e., By < 1. To calculate the effect of a sustained change in the level of money on the
path of nominal income, they calculated dynamic multipliers. Given that the regression is
in first-difference form, they calculated the effect of a sustained change, beginning at ¢, on
nominal income at date ¢+ s as 0Y;ys/0my = ;?:(]Bi.‘1 Second, they sought to test whether
a specific set of z’s, measures of fiscal policy, affected nominal variables as suggested by the

prominent brand of Keynesian macroeconomics.

Later St. Louis analysis—Andersen and Karnosky (1972)—used this regression frame-
work to test LRH as follows. They imagined a permanent change in the level of money
beginning at date t. They calculated that the long-run multiplier attached to this change

was

. ay;ers s
Jn o = HimoBi = B(1),
so that they tested LRH by testing whether the sum of coefficients was equal to unity. They
also implemented the comparable test for LRN, investigating whether limg_, o Oyi4s/0my =

¥¢ Bi = B(1) was zero.

2.1.1. Simultaneity. The St. Louis approach was controversial. Notably, Ando and
Modigliani (1990) criticized the St. Louis regression for not recognizing that nominal income

and the money stock were simultaneously determined.

However, Sims (1972) provided some support in a bivariate context for the St. Louis
regression, building on Granger’s (1969) earlier work on testing for causality. Theoretically,

Sims established that it was only legitimate to run the regression

A(L)i/t = B(L)mt + 6y7t,

*To understand this, we ignore C(L)x; and &¢ in (2.1). It follows that Y15 = (Yigs —
Yio1) = EjZOAYHj = EjZOEﬁOBiAmHj_i. Conditional on time ¢ money variation, i.e.
setting Amyy;—; = 0 for all ¢ # j, the long-run multiplier 0Y;4s/0my = 0Yiys|Amy =
X5 oBi.



for the purposes of the St. Louis researchers if the reverse regression
C(L)my = D(L)Y; + emt,

displayed D coefficients that were zero. Looking at nominal income and money empirically,

he found evidence that the D coefficients were statistically insignificant.

However, subsequent studies produced a more ambiguous result in terms of Sims-
Granger causality of money for real and nominal income, with causality being found in
some data sets and for some variable lists. These ambiguous findings are the motivation for
development of tests of LRH and LRN which can be employed in settings where there is a

dynamic endogeneity.

2.1.2. The rational expectation critique. The interpretation of the St. Louis regressions
was also called into question by the analyses of Sargent (1971) and Lucas (1972). Studying
an economy in which only unanticipated monetary changes had real effects and which oth-
erwise displayed the LRH and LRN properties, Lucas (1972) showed that restrictions on
sums of coefficients did not provide a way of testing the classical propositions.®? To illustrate
Lucas’s point, consider an economy in which the behavior of real and nominal income is

given by

yo = o(my— Eimy) + ey

Y, = my—¢0(my — Ei_1my) +eyy
where ¢ is a positive parameter and 0 < § < 1. That is: unanticipated monetary expansions
raise real income and raise nominal income less than one-for-one. If the money supply is
given by the first-order autoregression m; = pmi—1 + ey ¢, it then follows that the rational
expectations solutions for real and nominal output are
(2.2) Yo = QMg — Qpmy_1 + ey

(2.3) i = (1—¢0)my + pdbmy_q1 + ey

*Sargent (1971) made a similar point in a Phillips curve framework.



Under Lucas’s assumption that the money supply process is stationary(|p| < 1), the sum of
coefficients in the real output equation is inconsistent with neutrality(¢(1 — p) > 0). These
implications occur despite the fact that the model is one with a strong form of neutrality

and homogeneity.

On the basis of this finding, Lucas and Sargent argued against evaluating the long-run
effects of monetary policy on the basis of relatively unrestricted distributed lag models. Fur-
ther, Lucas and Sargent argued that testing of the classical propositions required specifica-
tion and estimation of a detailed structural model, so that the expectational and behavioral

lags could be separated.

2.2. Second Generation LR Tests. A second generation of long-run tests was devel-
oped by Geweke (1986), Fisher and Seater (1992) and King and Watson (1997). Although
these studies differ in the details, each was based on the core idea that long-run propositions
are testable if there is suitable long-run variation in money. As an example, suppose that
the money stock is assumed to be a random walk (p = 1) in the Lucas model just consid-
ered. This assumption means that all changes in money are unanticipated and permanent.
Evaluating the expressions above at p = 1, it then follows that the sum of coefficients on
the monetary variables in (2.2) is zero as suggested by prior neutrality tests and the sum

in (2.3) is one as suggested by prior homogeneity tests.

Working from the assumption that there is exogenous long-run variation in money, the
second generation LR tests all seek to determine how real or nominal variables respond to
these variations in the long-run variation in money. If the study concerns real income, so
that LRN is the hypothesis of interest, then the long-run effect should be zero. By contrast,
if the study concerns nominal income or the price level, then this long-run effect should be
unity. One way of determining these long-run effects is via considering the comovement of

long-run variations in money and other variables.



2.2.1. Long-run variations. The long-run variation As.x;_1 of a variable x is defined as
limg— o0 (T¢4k — T¢—1), which is equal to limg_, o Z§:0A$t+i. The second generation LR tests
concern long-run variation conditional on a one-time shock, or, equivalently, the long-run
response to a one-time shock. In our case, it would be the long-run response to a one-time

monetary shock.

If 24 is I(1) stationary, then its long-run variation can be modeled by the following

approximate autoregressive process of its first difference,
C(L)A(Et = &t.

If we invert the process, Az; = C(L)™e;. Letting C(L)~! = E;‘;Oijj, it then follows that
limg o0 Ef:OAxHi = limg_,o EfZOE?‘;OsztH_j. Accordingly, the long-run response of x
to a one-time shock at time ¢ can be calculated by setting all €;4;_; = 0 except ¢ = j, which

is

Avory1ler = JHm SE 05200 j€ttimjlettiog =0 for all i — j # 0
= (E5Zo¥y)et

= 0(1)716,5.

2.2.2. Neutrality of long-run variations. Within the Lucas model studied in the last

section, the money supply process is m; = pmy_1 + e+ where |p| < 1.

Amy = pAmy_1+ (1 — L)ep

= (11— pL) "' (1= L)emy.

In this case, C(L)™! = (1 — pL)~(1 — L). Long-run variations in money will exist only if
C(1)~! # 0. This happens only when p = 1. In that case, the long-run response of m to

one-time shock e, ¢ is €m ¢ itself.
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From (2.2), it follows that the output response is

Ayr = (1 = L)Amy + (1 = Ley,

= (1—-L)(¢emt+eyt).

The long-run response Asy;—1 conditional on e, ; shock is zero, which is obtained by
replacing 1 for L in the expression above. That is, in the Lucas model, there is neutrality
of long-run variations in money: the shock ey, ; has a long-run effect on m but not on y.
As discussed above, when p = 1, e,,; produces the long-run variation in money, which the

second generation tests require.

2.2.3. VAR-based second generation methods. Neutrality tests based on vector autore-
gressions are more complicated than the simple Lucas example on three dimensions. First,
they allow real output to be potentially affected by real shocks in the long-run. Second, they
allow for money growth to respond to its own lags and to lags of output growth. Third, they
allow for short-run interactions of real and nominal variables. All of these considerations

are reflected in the following structural vector autoregression,

(2.4) TryAYyy = TrmAmy + Zleayy,iAytfi + EleozymiAmt,i + u

TomAMy = Ty Ayp + X7 0y i AYe—i + X7y Qo i Ay + g

In this structural VAR, there are two structural shocks " and u™. The former refers to real
productivity shocks. The latter refers to monetary shocks. In addition, both variables are
treated endogenously, which mitigates the causality problems previously discussed in the
context of the St. Louis regression. Short-run interactions of Ay, and Am; are governed

by the 7 coefficients, while the dynamic interactions are governed by the « coefficients



11

The long-run responses of y;—1 and my_1 to u; shocks, i.e. Agoyi—1|us and Aqomy—_1|uy

respectively, are the solutions to the following system:

(2.5) Try — Z?:lo‘yw — (T + Z?ﬂaym,i) Acoyt—1|u up
p p
_(me + Ei:lamy,i) Tmm — Ei:lamm,i A0077115—1‘“15 u;n
Inverting (2.5),
A Tmm — Y Qnmi Trm + Sb_1 Qym i ul
colYt—1 mm i=1%mm,i ™m i=1%ym,i t
(2.6) lug = ¢
P p
Acomni—1 Ty + Yim 1 Qmy,i ey — Uiy Qyyi ug”

where ¢ = 1/((mry — X1 yy,i) (Tram — B7_1 Omm,i) — (Timy + 271 Q1) (Trm + 371 Qym,i))-
The long-run effect of a monetary shock u™ is
Aooyt—l Trm + Z]leafym,i m

m __
luf* = ¢ . Uy .
Asomi—1 Ty — Zizlayy,i

This expression is at the heart of second-generation tests. Using it, the implication of
LRN is that (7 + X8 aym) / (mry — 28 ayy) = 0. If we replace real income (y) with
nominal income (Y'), the implication of LRH is that (7, + 30_ cymi) / (Try — Eb_ 1 0yyi) =
1. That is: the second generation LR tests focused on the statistical behavior of the ratio
(Trm + X2 aymi) [ (Try — P i), which Fisher and Seater (1993) called the long-run

derivative (LRD) of y (or Y') with respect to m.

2.2.4. Identification and Second-Generation LR tests. By its nature, the LRD is a struc-
tural parameter, which requires identifying assumptions to estimate it. These identifying
assumptions are most easily discussed if we follow the actual practice used in some of the

prior literature. To begin, suppose that we estimate a reduced form VAR as

(2.7) Ayy = B ayyiAyi—i + S aymiAmy; + g/

_ g P m
Amy = Ei:lamy,iAyt—i + Eizlamm,iﬁmpi + &
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Comparing this expression with (2.4), we note a structural relationship between reduced

form shocks (forecast errors, ;) and structural shocks u; that takes the form

T Y
Uy Ty —Trm €

m m
Uy —Tmy Tmm Et

To compute the LRD, second generation LR tests imposed different identifying assumptions

regarding m parameters.

Geweke assumed 7., = 0, which implies that real output does not respond to money
aggregate within the current period, according to the first equation in (2.4). Using this
approach, he found an evidence supporting LRN for real output. However, when he studied
real balances, the test result did not support LRN, since the estimated long-run effect of

money on real balances was not zero.

Fisher and Seater assumed that money is long-run exogenous by imposing —(mp, +
P umy,i) = 0. That is: the real shock u} is assumed not to affect the variation in money
in the long-run. (Formally, given this assumption, the second equation of (2.5) governing
the long-run response of money implies that: the long-run response Ay m;_1|u; of money
does not depend on the long-run response Ay y;—1|us of output). Using this assumption,
FS found an evidence against LRN for the U.S. real income, and the German real balance.

But they did not reject LRH for the U.S. price level and nominal income.

King and Watson explored the relation between test results and identifying assumptions
within the bivariate VAR setting. Varying m,.,, they found that the LRD tends to reject
LRN when the assumed 7, value is small, but does not when it is large. Varying 7,
they found that the LRD tends to reject LRN when the assumed value is large, but not

when it is small.

Taken together, the results of these studies indicate that tests of LRN and LRH are

quite sensitive to the identifying assumptions used by different researchers.
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3. Why cointegration is a valuable basis for New LR Tests

The key insight of this chapter is that cointegration is a valuable basis for constructing
new long-run tests. In this section, I provide a series of examples illustrating why this is so,
working to generalize the examples of the last section. Then, in section 3.3 below, I provide

formal proofs that show how to exploit the ideas that are exemplified in the current section.

In the discussion of second-generation tests that we just completed, we saw that the
LR tests based on the LRD rely heavily on two sets of maintained assumptions. First, it
is clear that these tests depend on explicit identifying assumptions. Following Sims’s(1980)
discussion of the subtlety of identifying assumptions, we know that making right identifying
assumptions is difficult. Second, the second-generation procedures rely importantly on the
correct specification of the vector autoregression system: the analyst needs to be able to
map between forecast errors and structural shocks. But, suppose that the macroeconomic
data is really generated by a VAR in three variables, while the second generation researchers
studied a system with only two variables. Then, it is quite likely that there is no way to
map between structural shocks and forecast errors in the way that is required for the LRD

tests.

A good econometric testing methodology should require the weakest possible auxiliary
assumptions. My belief is that cointegration provides a valuable basis for weakening these
maintained assumptions and I begin by displaying a series of examples that show why this

1S so.

3.1. The simplest example. To begin with the simplest example, we use the Lucas

example of (y¢, m;) to demonstrate our cointegration test. The model is

v = o(my — E_ymy) + ui’

me = my—1+uy'.
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Recall that the solution to this model is:

vy = OAmy+uf
Amy = ui".

With recursive iteration, it follows that m; = mg + E’;Zlum

7', so that the solution can be

expressed as
(3.1) ye = oup" +uf
(3.2) my = mo+ X_jul

From this solution, it is not difficult to tell that y; is stationary and m; is I(1) stationary;

and there is an I(1) component in m; that is 3¢_;u".

To implement a neutrality test empirically, we need to think of describing the behavior
of output under the alternative of nonneutrality. In this case, we would need to append a

term so that (3.1) becomes
(3.3) ye = oy + uf + b(mo + i)

In this case, both y; and m; are I(1) stationary, but they are cointegrated. It is clear that
the cointegrating vector is (1, —b), i.e., that y; — bm; is stationary within this extended

model.

To provide some further understanding of the content of the cointegrating vector, con-
sider the long-run variation (Asoyt—1, Acomi—1) of (y,m) to a one-time monetary shock at
time ¢

AocoYi—1 b
> | = uy

Asommi—q 1
in line with our previous discussion in Section 2.2.1. The long-run response vector (b,1)
captures the contribution of the I(1) component coming from monetary shocks to each
variable.® Hence, estimation of the cointegrating vector provides one way of isolating the

SThe contributions of the I(1) component from monetary shocks to y; is bXf_;ul™ as in
(3.3), and to my is X! u!™ as in (3.2).
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long-run effect of monetary shocks in this example. First, one determines that cointegrating
vector. Second, one calculates the long run response vector, (b, 1), which is orthogonal to

the estimated cointegrating vector.

Importantly, though, this same strategy can be used to test long-run neutrality. LRN

is a hypothesis about the long-run response of (y;, m;) to monetary shock, which says that

Ascyt-1
b = ||
Asemy_1 g
where we can always normalize g to one. Then, if LRN is true, the cointegrating vector of

(yt, m¢) should be orthogonal to (0, 1).

The geometry behind this testing strategy is illustrated in Figure 1. The long-run
response vector that is implied by LRN is (0,1). Under long-run neutrality, the cointegrat-
ing vector is 3; = (1,0) which is orthogonal to the LRN long-run response vector (0,1).
Other potential cointegrating vectors can be written in the form (5 = (b1, b2) and are not

compatible with LRN because (3, x (0,1)" = by is non-zero.

This example highlights the general point that LRN imposes orthogonality restrictions
on a cointegrating vector or, more generally, on the space of cointegrating vectors as we
will see later in this chapter. If the orthogonality condition is violated, then LRN can be
rejected. This example also illustrates that a LRN test based on cointegration does not
require the identifying assumption imposed in second-generation LRN: it is not necessary
to take a stand on the 7 coefficients in order to extract monetary shocks. We will see
that this property extends to other LR tests, such as long-run homogeneity, and to larger

systems.

3.2. Subtleties of LR tests based on cointegration. In the two variable example
that we just studied, there is only one permanent shock, which is a monetary shock. For a
bivariate model with one permanent shock, the cointegrating rank is one. However, when

we investigate models with three or more variables, there can be other permanent shocks



16

in addition to the monetary shock even if there is cointegration. This section accordingly
studies a series of three variable examples, in which the variables are real output (y), the
price level (p;) and the money stock (m;). We use this example to illustrate the subtleties

encountered in LR tests when multiple permanent shocks are present.

Extending the earlier example, suppose that our three variables are governed by the

following equations:

(3.4) ye = 0(p — Eripe) +uf
(3.5) pe o= gmy—y+uf
(3.6) my = amp_1+uy"

where u is a supply or productivity shock; uf is a money demand shock; and uj* is money

supply shock. The economic interpretation of our three equations is that (3.4) represents a
Lucas supply curve; that (3.5) is money demand equation; and that (3.6) is money supply
equation. We assume that u}, uf, and uf* mutually independent. It is apparent that this
simple model embeds LRN as a result of the Lucas supply curve and rational expectations.

It also embeds LRH if g = 1.7 These properties are reflected in the solution®:

yw = mgu +m(uf — Bquf) — 0(uf — Eequ) + (14 0)uf
my = almy+ S ol
pe = galmg+gSi_jalt

—mguy® — W(uf - Et,luf) + 0 — E_qul) — (1+ 0)uf + uff

where 7 =6/(1+0).

In particular, given this solution, we can explore three different cases, which differ in

terms of the permanent structural shocks. In all three cases, we assume o = 1. That is, in

"Though LRN and LRH certaintly do not necessarily require the Lucas supply curve and
rational expectations, this simple model will help make more transparent the cointegration
implications of LRN and LRH.

8Please refer to the appendix.
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common with the second generation tests, we require that at least one of the permanent

shocks is a monetary shock u}*. Hence the solution can be reduced to

(3.7) ye = mgul +r(ul — B qul) — 0w — By qu?) + (14 0)u
(3.8) my = mo+ Si_jul
pe = gmo+g¥i_qul’
(3.9) —mgul® — w(ul — By_1ud) + 0(u! — By 1u?) — (14 0)u? + ul

We now explore a series of cases.

3.2.1. One permanent shock. When there is only one permanent shock and it is a mone-
tary shock, both productivity shock and money demand shock are stationary. For simplicity
in the algebra, but without loss of generality, we assume both u¥ and u? are iid mean zero.
Then Et,luf = Et,luf = 0. Consider the difference yyx—y¢—1, My+r—m—1 and Py —pe—1.

From (3.7) to (3.9),

Yerk — Y1 = mg(ugyy —uitq) + W(UchlJrk - Ug—l) + (U?Jrk —uj_y)
My —Mt—1 = Efif ug”
Pt+k —Pt—1 = gZﬁifuzm - Wg(“ﬁk —uty) — (u?tlJrk - Ufﬂ) +(1— w)(uf+k - U?—l)
Therefore, the long-run responses of y, m and p are:
Acoli—1 0 00 4
(3.10) Asmzy |lwe=10 0 1 ud
Asopt—1 00g ug”

As discussed above, this confirms that uf® produces a long-run effect but not the other

two structural shocks. But, more importantly, it shows that the long-run effect of uj* on

(y,m,p) is (0,1, 9).

Since there is only one permanent shock, the cointegrating rank should be two for this
three variable system. That is: there are two cointegration vectors, which we now work

to determine. From the solution, there is no I(1) component in y; under LRN, just as
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in the example that we explored earlier. Accordingly, one of the cointegrating vectors is
(1,0,0). Yet, m; has the I(1) component X!_,u and p; has the I(1) component gXt_ u.

If (By, B, Bp) is a cointegrating vector, then B,y + 3,,m: + B,p: should not contain any

I(1) components. That is

By X 0+ B Siquf + 8,9t uf) = 0.

It is easily verified that vector (0, g, —1) satisfies this restriction, as well as (1,0, 0).

Hence, in this example, the origin of the I(1) components in y;, m; and p; is the perma-
nent monetary shock. The contribution of this I(1) component to each variable is (0,1, g)
which is exactly the long-run response of (y,m,p) to a one-time monetary shock as in
(3.10). A cointegrating vector gives a weight of linear combination of (y,m,p) such that

the long-run response of this linear combination is zero to any one-time permanent shock.

In conclusion, both of the cointegrating vectors must be orthogonal to the (non-zero)
long-run response vector in (3.10). It follows that the other way of finding cointegrating
vectors is to find the vectors that are orthogonal to the long-run response matrix in (3.10).
From this representation, we can easily see that (1,0,0) and (0,1, —g) are one version of

the cointegrating vectors.

Figure 2 shows the orthogonality conditions in this case. The cointegrating space con-
sistent with long-run neutrality and long-run homogeneity is space Bj. It is comprised of all
vectors that are orthogonal to the long-run response (0,1, 1). By contrast, the cointegrating
space Bj is orthogonal to the long-run response vector (1,1,2), which is inconsistent with

both LRN and LRH.

While we have worked out the cointegration implications of LRN and LRH for a specific
model above, let’s now suppose we do not know the detailed structure of the economy.
Under LRN, the I(1) component from money, i.e. X¢_;u!", enters m; and p;, but not y;.

7

Let the weights it contribute to the nonstationarity of (y, my, pr) be (0,1, g) which is the
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long-run response of (y¢,m¢,p;) to a one-time permanent monetary shock. If (3, 8,,, 6,)
is a cointegrating vector, by definition, 3,y: + B,,m+ + B,pt can not have I(1) component
from money, i.e. 8, X 0+ B, x 1+ 3, x g = 0 that is the cointegrating vector should
be orthogonal to (0,1, g). This orthogonality condition must be true under LRN without
knowing the entire economic structure. The cointegration test of LRN is to test whether
the cointegrating vector of (y, m, p) is orthogonal to (0,1, g) for some g. A test of LRH is a
test of whether the cointegrating vector of (y, m,p) is orthogonal to (0,1, 1), i.e. the special

case of g = 1. Once the orthogonality property is rejected, LR hypotheses are rejected.

3.2.2. Two permanent shocks. While the previous example is a helpful one, it is more
realistic to assume that there are multiple permanent shocks. Hence, we consider two cases:
(i) where there is a stochastic trend in real output; and (ii) where there is a stochastic trend

in money demand.

uf shock is I(1) stationary:

Let uf = u}_; + u} where u] is an iid mean zero shock. Therefore, uj = uf + Xf_ uf,

Eiquf =) | and E;_jul = 0. The solution to (3.4) to (3.6) is then:

ye = mgui +muf — up + (14 0)(uf + i uf)
my = mo+ Si_jul
pe = gmo+ gSi_ut — wgup®

—mgul — mud 4 Ouf — (14 0)(uf + Zi_jul) + uf.

The long-run response of (y,m,p) is:

Aol 1 1+6 0 0 uy
Asmi_q | |ue = 0 01 uf
Acopi—1 —(1+0) 0 ¢ (e

From the solution, the I(1) components in y, m; and p; are X¢_jul, ¥!_ u and

gt u™ =3t ul respectively. If (Bys B, Bp) is a cointegrating vector, then 3, y; + 3,,,m; +
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B,pe should have no I(1) component left. That is

B, (1 + 0)Si_juf + B Sioquit + 6p(gz]§=1uzrn — (1+0)Si_yuf) =0.

It is easily verified that vector (—1, g, —1) satisfies this property. The solution (83,, 3,,, 5,)
must be able to remove both nonstationary components X!_ u! and ¥!_;u!™. The coin-
tegrating vector can also be found through the space that is orthogonal to the long-run

response matrix.

Now suppose we do not know the structure of the economy. Under LRN, the long-run
response of (y¢, my, pt) to a one-time monetary shock is (0, 1, g) which shows the contribution
of monetary shock to the I(1) component embedded in each variable. If (8, 8,,, 8,) is a
cointegrating vector, by definition, 8,y; + B,,m¢ + B,p; must remove all I(1) components,
including the I(1) component from monetary shock. Therefore, 3, x 0+ 3,, x 143, x g = 0.
The cointegrating vector should be orthogonal to (0, 1, g). This orthogonality condition must
be true under LRN. Of course, it is apparent that if the economy behaves according to (3.4)
to (3.6), the estimated cointegrating vector will converge to (—1, g, —1) which is orthogonal
to (0,1,g). Data series generated from this process will satisfy the LRN orthogonality

condition.

It is important to note that the additional shock changes the cointegrating rank from two
to one, but it does not change the essence of the cointegration test for LRN or LRH. LRN
requires the cointegrating vector to be orthogonal to vector (0, 1, g), while LRH requires it

to be orthogonal to (0,1,1). This is the same as the case of one permanent shock.

uf is I(1) stationary:

Similar to the previous case, let uf = uf | +u?. Then F;_jul = v | and E;_ju) = 0.

This can be interpreted as the income velocity of money being nonstationary. The model
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solution will be:

vy = wguyt + Tup + uf
my = mo+ Si_qul"
pe = gmo+gSiul

(%

—mgul® — mul —ud 4 ud + B b,

The long-run response of (y,m,p) is:

Asolt—1 0 0O uf
Asory—1 |lue=10 0 1 uy
Acopt—1 01 g uy”

The cointegrating rank is one with cointegrating vector being (1,0,0) up to a scale
adjustment. Apparently this vector is orthogonal to (0,1, g). For LRH, it should be orthog-
onal to (0,1,1). That is: the orthogonality properties are the same irrespective of which

permanent shock is added.

The contribution of the I(1) component from monetary shock is still (0,1, g). For any
cointegrating vector (8, B,,,8,), Byyt + Byt + B,pr must remove all I(1) components
including the component from monetary shock. Therefore, 8, x 0+ 3, x 1+ 3, x g = 0.
This orthogonality condition is the same as before. Even though the additional permanent
shock is now from money demand shock and it creates different I(1) component than the

real shock example, the orthogonality condition imposed by LRN or LRH is still the same.

3.2.3. Three permanent shocks. This means that both uY and u{ are nonstationary. We

maintain the assumptions that their stochastic processes are uf = u! ;| + u} and uf =
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ul | +uY as before. The model solution will be:

ye = mgup +muy — Ouy + (1+0)(uf + Xi_quj)
my = mo+ Si_jul
p = gmo+gSi_jul®

—mgu]’ — wuf + 0u — (1 + 0)(uf + Xi_jul)
Hud + 5 b,

)

The long-run response of (y,m,p) is:

Acoli—1 140 0 O uy
Asomy_q | lue= 0 0 1 uf
Aoopi—1 -(1+60) 1 g u”

When there are three permanent shocks, the cointegrating rank is zero. The only
possible cointegrating vector is zero vector which is orthogonal to (0,1, ¢g) under LRN, and
orthogonal to (0,1,1) under LRH. The orthogonality properties are still the same as before
even now we have two extra permanent shocks than monetary shock. However, in this case,
the orthogonality properties are not informative in testing LRN or LRH since zero vector is
orthogonal to any vector. Thus, there is a limitation of the cointegration test in that there
must be a proper cointegrating rank. However, in practice, this has not turned out to be
important: we can use a larger vector system to avoid this problem. We will return to this

issue later in our analysis as well.

The conclusion from our examples so far is that: no matter how many different perma-
nent shocks are present in the system, cointegrating vectors give linear combinations that
remove all I(1) components from each different shock, including the monetary shock. The
reason that they can remove all I(1) components is that they are orthogonal to the long-run
response of the variables in the system. LRN and LRH impose certain restrictions on the
long-run responses to the monetary shock. That is: cointegrating vectors must be orthog-

onal to the long-run response of a monetary shock that is constrained by LRN or LRH.
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These constrained orthogonality conditions imposed by LRN and LRH can be used to test
LRN and LRH. Because the entire test relies on cointegration, the cointegrating rank must

be greater than zero.

3.3. General Approach. We now turn to discussing the general approach which is
taken in this chapter, displaying two important points alluded to in the introduction. First,
we show that the long-run implications of hypotheses like LRN and LRH are unaffected by
identification restrictions like those used in the second generation tests. Second, we show
that our LRN and LRH tests may be executed even if it is not possible to make a structural
interpretation of errors because the researcher has chosen a data vector that contains only

a portion of the relevant data.

3.3.1. VECM background. If a vector of series Xy is I(1) stationary and is cointegrated
with cointegrating vectors 3, so that 8’ X; is I1(0), then the Granger representation theorem
(e.g., Hamilton (1994), page 582) indicates that a vector error correction model is a suitable
empirical specification for capturing the dynamics of nonstationary variables. The VEC

model then takes the form
(311) AXt =D+ 045/Xt_1 + EleriAXt_i + &¢.

For our current purposes, it is important to recognize that the Granger representation
theorem does not guarantee a structural interpretation of the €;: these are just the one-

step-ahead forecast errors for AX; given the variables ' X;_1 and AX;_;.
An additional consequence of Granger’s theorem is
LEMMA 1. The vector moving average solution of (3.11) is
Xy =C(Dt+3_1&;) + C(L)(D + &) + P3, Xo

where

1. C=p3,(\T3,) | and T =1-%F_Ty;
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2. P, is a projection matriz projecting vectors into sp(B1);

3. O(L) = ¥2,CiL! is a matriz polynomial with C; matrices absolutely summable.”

This solution makes clear that the long-run response of X to &; shock is:
AooXt—l‘Et = C€t

which is orthogonal to sp(83). This corresponds to our previous discussion about cointegrat-
ing vectors; they give linear combinations that eliminate all I(1) components from different

shocks.

3.3.2. Irrelevance of traditional identification assumptions. Now, following the practice
in second-generation tests, let us assume that there is a possible structural interpretation
of the VECM and its associated vector moving average solution. For this purpose, we
assume that the forecast errors ¢; are linearly related to the structural shocks u; according

to & = Iuy,
AooXt,1|ut = CHUt

The long-run response to structural shocks is simply a projection from II to the range space
of C which by nature falls in sp(3, ), and is orthogonal to sp(3) regardless the structural

relation II. Therefore we have the following lemma:

ProPOSITION 1. The long-run response to structural shocks must be orthogonal to coin-

tegrating vector space regardless of identifying structure II.

LRN and LRH are hypotheses about certain columns of CII. In the (y, m,p) example,
LRN implies that one column of CTI looks like (0, 1, g) with ¢ unknown!® and LRH implies
that one column of CTI looks like (0,1,1). According to Proposition 2, LRN imposes the
restriction that (0,1,¢9) € sp(6, ), and LRH imposes the restriction that (0,1,1) € sp(3,).
~ 9The exact expression of C; is complex, and out of the purpose of this paper. For details,
please refer to Chapter 4 of Johansen(1995).

1°This is equivalent to saying that one column of C1TI looks like (0, g, gp) with both gy,
and g, unknown but normalizing g, to one.
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Therefore, regardless of any identifying structure II, § in (3.11) should be either orthogonal
to some vector like (0,1, g) under LRN or orthogonal to (0,1,1) under LRH.

The orthogonality between long-run hypothesis and cointegrating vectors is always true
regardless of the identifying assumption II. Due to this property, we are able to construct a
likelihood ratio test to evaluate whether data support the orthogonality conditions implied

by LRN or LRH without imposing conventional identifying assumptions.

3.3.3. Irrelevance of accurate specification of the data vector. The other advantage of
a cointegration approach for constructing LR tests is that the researcher does not need to
accurately specify the data vector. To see this, suppose that the true data vector in the
economy is Z;, which contains X; as its first m of n elements, with the remaining elements
being W;. Suppose further that all of the elements of Z; are I(1) stationary and that the

cointegration restrictions take the form

ﬁ,zw 0 Xt
v Buww | | We

Given Lemma 1 and the Granger representation theorem, Z; can be modeled as

X LG U~ u™ -
7, = t _ m T m Et
t — =1
Wi VYim Ywm u;™
where Zj is a projection of initial values, «™ and u ™ are monetary and non-monetary

shocks respectively. Without loss of generality, we have ignored the transitory components

for convenience and simplicity in the discussion.

Consider a partial system consisting of X; only. Orthogonality between cointegrating

vectors and the long-run response matrix implies that
(3.12) ' Vaem = 0.

Therefore, (3., which serves as a cointegrating matrix for the partial system still maintains
the orthogonality property imposed by the long-run response function. The restrictions

imposed by LRN or LRH on ¥, still impose restrictions on the cointegrating matrix (3.,
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of X; according to the orthogonality condition (3.12). In addition, the X; nonstationary
process with cointegrating matrix (3., can be approximated by a VEC model according to
the Granger representation theorem. Hence, a researcher following my methodology can
still test LRN and LRH even though the system does not include the complete list of macro

variables. Accurate specification of the data vector is not necessary.

By contrast, for the second generation LR tests, there is an even greater problem if the
researcher studies only a partial system. The Wold decomposition theorem guarantees only
that the forecast errors are uncorrelated with lagged AX’s. But some forecast errors are
typically weighted averages of the innovations to Z at date t and prior dates. Therefore,
any shocks identified from these forecast errors are unlikely to include an accurate monetary
shock. My method does not have this problem since I do not have to extract the monetary

shock from the model forecast errors.

3.3.4. Permanent Monetary Shocks and Identifying Assumptions. The LR tests, both
cointegration test and the second generation test, require the assumption of the existence of
permanent monetary shocks. If monetary shocks are transitory as the discussion of Lucas
and Sargent studies, then the only way to test LRN and LRH is to specify the deep structure

of the economy.

In this section, I want to alert the reader that an important identifying assumptions
regarding the long-run variation of money is being made in doing a LR cointegration test.

To illustrate this point, take the Lucas supply curve from Section 2.1.2 as an example,

Y = o(my — Ep_ymy) + U?

If my = my—1 + u*, then the solution to this model is

y = ¢Amy+u

my = mu—1+uy'.
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The solution is also expressible in terms of a structural VEC model as (3.11), which is

Ay, 1 Y1 el
= -1 0 +
Amy 0 mi—1 ey
with
el 1 ¢ 4
ey 0 1 uy”
In this model, the adjustment coefficient o = (1,0)" and the cointegrating vector § =

(—1,0). The identifying assumption 7, regarding monetary shocks is (¢, 1)". According to
Lemma 1, the long-run response of (y,m) to monetary shocks is equal to 8, (o, 3, )7/, 7
which is (0,1). Thus, the long-run variation in money creates evidence of LRN. More
generally, the LR approach presumes that there is exogenous long-run variation in m. But
a virtue of this approach is that LR propositions can be tested without uncovering this

trend in money.

To make this point more dramatically, suppose we consider another money supply rule.
In particular, monetary authority targets real income with the rule m; = y: + v and the
productivity shock u is I(1) stationary with u} = u?_; +uj.!* The structural VEC solution

to this model is?

Ay, n Y1 ey
= 1 -1 +
Amy (1+n) my—_1 e
with
el L iy
et 1 (1+4mn) uy®

where n = ¢/(1—¢) and @ = nAu} +u}.'3 In this model, o = (1, (1+7))" and 8 = (1, —1)".
The identifying structure ,, regarding the monetary shocks is 7, = (1, (1 + n))’. Notice

"In this example, monetary shock u;* is a transitory shock. To highlight the identifi-
cation issue, I maintain one permanent shock which is the productivity shock u here.

2Please refer to the appendix.

3Note that the structural error i, is serially correlated. In practice, we can put in lags
of (Ayg, Amy) into the model to correct the serial correlation. The forecast errors, (e, €l)’s,

can be consistently estimated.
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that 7, € sp(a) in this case. Therefore, the long-run response of (y, m) to monetary shocks
is 8, (/) B,) 7'/, = 0. Thus, the monetary shocks are transitory shocks and LR tests

do not work under this policy rule.

In a more general setting, the cointegration LR test rules out the identifying structure
that the contribution 7, of monetary shocks to the system errors belong to sp(«). According
to Lemma 1, if 7, € sp(«), then the monetary shock is transitory. Therefore, by requiring
the existence of permanent monetary shocks, certain monetary policy rules have been ruled

out.

In summary, the cointegration (LR) tests require the existence of permanent monetary
shocks, just as the second generation tests did. Hence, they are based on the crucial as-
sumption that observed trends in m partly reflect autonomous variation in the monetary
authority’s behavior rather than solely monetary response to trends originating elsewhere in
the macroeconomy. However, given that maintained assumption, the LR tests can be con-
ducted under weaker auxiliary assumptions concerning details of identification and accurate

specification of the data vector.

4. Estimation with Long-Run Neutrality Restrictions

LR hypotheses impose restrictions on the cointegrating space through an orthogonality
property between the cointegrating space and the long-run response functions. Based on
this observation, I want to construct a likelihood ratio statistic to test both LRN and
LRH. In order to do this, I need to compute the maximal likelihood values with these LR

restrictions.

4.1. Hypothesis Setting. The nature of a likelihood ratio test requires us to compute
the likelihood value of a VEC model with constraints implied by a specific LR hypothesis.
LRN and LRH hypotheses concern the long-run response of variables to a monetary shock.

As discussed above, LRN imposes zero restrictions on the long-run response of real variables;
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LRH imposes further restrictions on the long-run response for all nominal variables. Con-
sider the three variable(y, p, m) example in Section 2. Under LRN, the long-run response
of (y,p, m) to a monetary shock should be (0, gm,gp). Under LRH, g, = g, in addition to
the zero restriction. Let us call the long-run response vector to monetary shock ~. Since
v € sp(B)), a restricted VEC model that accommodates LRN must have the estimated
cointegrating vector (3 orthogonal to y—that is 73 = 0. This looks like a standard linear
restriction on (3, the estimation of which could be dealt with easily. However, the value of

v is unknown when testing LRN.

Since the v is unknown, the maximum likelihood estimation of a VEC model accommo-
dating LRN needs to find the MLE of both v and ( with (i) some elements of ~ satisfying
zero restrictions; and (ii) v and (3 orthogonal to each other. Instead of estimating both
~v and @ with restrictions, we propose a method that transforms all restrictions on ~ into
restrictions on (. By doing so, the estimation problem will be converted into a problem of
estimating a restricted 5. We will show also that the restrictions on 3 look like standard
linear restrictions and can be dealt with traditional estimation methods. In addition, given

an estimated (3, the MLE of v can be obtained by solving a linear equation system.

First, notice that most long-run effects v can be written in the following form:

with H pre-specified and full rank and with 1 unknown. In the example above, for LRN,

v = [0, gp, gm)" which can be expressed as
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For LRH, v = [0, g, gm]’ Which can be expressed as

A VEC model satisfying LRN or LRH should be able to admit the long-run response as
above in its orthogonal cointegrating space sp(3,). We can describe these LR hypotheses

in terms of the following:

Hy : The VEC model admits long-run effect v with v = Hy and H(n x s) being

prespecified and full rank.

In this expression, s is the number of free parameters to be estimated in the long-run
response vector that is implied by the specific LR hypothesis. Let ©(Hj) be the set of
parameters—consisting of {a, 3, D, T';,the variance covariance matrix Q of ¢} following the
notation of (3.11)-that are admissible under the null hypothesis Hy. For any 3 admissible
to ©(Hp) , there must exist at least one solution 1 such that ' Ht = 0. It is clear that if
we can estimate § properly, then the MLE of 1 is simply the solution to the orthogonality
condition, i.e. 3'H1 = 0. Therefore, to find the MLE of the VEC model within the ©(Hy)

parameter space, we do not have to estimate G and ~ jointly.

We are going to show that the parameter set ©(H})) generated by the following hypoth-

esis,
HY : There are at least 7 — s + 1 cointegrating vectors lying in the space sp(H_),

is equivalent to ©(Hp). That is: {a, 5, D,T;,Q} in O(H))) must insure the existence of at
least one solution 1 such that 8'Hvy = 0. Under H{, the cointegrating matrix 3(n x r) can
be decomposed into two parts: G;(n x s — 1) and [y(n X r — s+ 1) with no restriction on

/81 and H/BQ =0.

If we interpret the hypothesis in this way, then all restrictions are imposed on 3 and are

linear. Given that (§ is estimated, the MLE of 4 can be obtained from the orthogonality
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condition, 3’Hv = 0. One potential problem is that: given any (3 satisfying HY, it is possible
to find the other base 3 of sp(B) such that (3 is a linear transformation of 3 but it does not
satisfy H|. However, what important is the vector space itself, not the base we choose to
represent the cointegrating matrix. Therefore we have to define admissibility properly to
ensure that 3 is also admissible to ©(H}) . Notice that two VEC models, say {a, 8, D, T, Q}
and {@&, 3, D,T;,Q}, are observationally equivalent if there is a nonsingular matrix R such
that @ = aR'~! and 3 = BR. If this is true, then the products of the adjustment coefficients

and cointegrating vectors are the same for both models—that is &B, =af.

DEFINITION 1. The cointegrating matrix B is admissible with respect to the hypothesis

HY, if one of its observationally equivalent versions satisfies the hypothesis.

4.1.1. The Hypothesis Equivalence Theorem and Its Proof. Now we are ready to prove

the following Hypothesis Equivalence Theorem.

THEOREM 1. Given that the cointegrating rank of the VEC model is equal to r, the

following two hypotheses are equivalent:
Hy : The VEC model admits a long-run effect v(n x 1) with v = Hy
and H(n x s) prespecified and full rank.

H{ : There are at least r — s + 1 cointegrating vectors lying in the space sp(H).

PRrOOF. The proof is done in two parts. First, we prove that O(Hy) 2 O(H(). Then,
that ©(Hy) C ©(H)).

If (o, B) € O(H}),  then 3 can be divided into two groups $;(nx s—1) and By(nxr—s+1)
such that 0 = [3;,3,] and By € sp(H ). To prove that 5 € ©(Hy), it is sufficient to show
that there exists ¢ such that 3 L v given v = H1. By the definition of 3,, 85 L ~ regardless

14The parameters in the model include not only the error correction coefficients («, (3),
but also other short run parameters, I';. Since these other parameters will not be constrained
under either form of our null hypotheses, to keep the expressions terse, we treat (o, 3) as
the only parameters in our model for notation at simplicity.
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of any choice of 1) so we only need to check the orthogonality condition for ;. To ensure the
existence of a nonzero 1, 3} H must have rank less than s. Since (3; has dimension n x s —1,

rank('H) <s—1<s.

If (o, B) € ©(Hp), then there exists a nonzero v such that given v = Ht, 5 L ~. This means
that 4'H has rank less than s. Because [H, H, ] form a base for ", 3 can be decomposed
into 3 = Hpy + H | ¢y. Since rank(¢)H'H) < s and H'H is invertible, rank(¢,) < s; there
exists a nonsingular square matrix R such that ¢; R = [¢1,(n X s —1),0(n x r —s+1)] and
$oR = [oa(nx 5—1), dop(nx 7 —s+1)]. Define 3 = BR, then 5 = [Hey,+ Hibog, Hido);
at least 7 — s + 1 cointegrating vectors in {3 lie in sp(H). Let & = aR'~!. Tt follows that
a3 and &B/ are observationally equivalent. (&, B) € ©(H/)) by definition 1 this implies that
(o, B) € ©(Hp)- 1

Hypothesis H|, shows the constraints of the LR hypothesis imposed on cointegrating
space in terms of the sacrifice of the degrees of freedom for the choice of cointegrating space.
To under this point clearly, we use the bivariate (y,m) and trivariate (y,m,p) models as

examples to demonstrate the loss of degrees of freedom in the choice of cointegrating space.

For the bivariate model with LRN, the long-run response of (y,m) to the monetary

shock is

S = | gl

JANSK o7 PI) 1
Therefore, the matrix H is equal to the vector (0,1)’. Suppose the cointegrating rank is
one. Hypothesis H{, says that at least one cointegrating vector should belong to sp(H )
where H, = (1,0)' in this example. A cointegrating vector that satisfies LRN is like (3,
in Figure 3, which should be orthogonal to the long-run response vector to the monetary
shock that is H. Without imposing LRN, no orthogonality condition is imposed on the

cointegrating vector space. Therefore, the choice of cointegrating vector is free in the (y, m)

plane. In addition, any other cointegrating vector in this plane, such as (4, is a rotation
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of the cointegrating vector 3;. Therefore, by imposing LRN, the researcher sacrifices one
degree of freedom in choosing cointegrating space. In Figure 3, it means that Rotation 1 is

prohibited.

For the trivariate model with LRH, the long-run response of (y,m,p) to the monetary

shock is
Aooyt—l 0

(4.1) Aoomy—y | [u =] 1 | [gm]-
Aooptfl 1

Therefore, the matrix H is equal to the vector (0,1,1)" and s = 1. Suppose the cointegrating
rank r is two in this example. Then the possible cointegrating space allowed to choose is
the cointegrating space B in Figure 4, which is orthogonal to H. However, if there is no
LR restriction imposed, then it is free to choose the cointegrating space from the (y,m,p)
space. From the Figure, any cointegrating vector space can be represented as a combination
of Rotation 1 and Rotation 2 of the cointegrating space B;. By imposing LRH, these two
rotations are prohibited. This is exactly equal to » — s + 1 in this example. Also, from
the Figure, both cointegrating vectors are in sp(H ). This is exactly what hypothesis Hj)

suggests, sincer —s+1=2-14+1=2.

Now, continue with the previous example, but impose LRN instead. Then the long-run

response of (y,m,p) to the monetary shock is

Asoyt—1 00
m 9m
(4-2) Aoomyi_1 |Ut = 1 0
9p
Aooptfl 01
It follows that
00
H=]10
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and s = 2. In this case, any rotation of the B; cointegrating space in the direction of
Rotation 1 around y-axis will produce a cointegrating space that satisfies LRN. Therefore,
by imposing LRN, the researcher sacrifices only Rotation 2. There is only one degree of
freedom in choosing cointegrating vector space is sacrificed. Again, this is consistent with
hypothesis H{), since r —s+1=2—2+1 = 1. In addition, hypothesis H|, requires that one
cointegrating vector lie in sp(H) where H; = (1,0,0)" in this example. The reader can
verify from Figure 4 that the vector (1,0,0) is always contained in the cointegrating space

that satisfies LRN, which is also implied by hypothesis HJ.

The reader might ask: what happens if r < s—1? Consider rank(3' H). When r < s—1,
rank(3 H) < s regardless of any choice of the cointegrating matrix. There always exists
a nonzero 1 such that v = Ht and v L sp(3): the long-run effect hypothesis does not
impose any restriction on the VEC model. Using the bivariate and trivariate examples as
before, r < s—1 implies zero cointegrating rank (r = 0) for the bivariate example with LRN
(s = 1) and for the trivariate example with LRH (s = 1). In both cases, the only possible
cointegrating vector is zero vector which is orthogonal to any vector. Therefore it can not
provide an informative cointegration test. For the trivariate example with LRN (s = 2),
r < s — 1 implies r < 1. There are two possible situations: One is » = 0, the other is
r = 1. r = 0 implies zero cointegrating vector. Therefore it does not provide an informative
cointegration test. r = 1 is more subtle. Let (ﬁy,ﬁm,ﬂp) be the cointegrating vector.
Under LRN, the long-run response of (y, m,p) to the monetary shock can be normalized as
(0,1, gp). Orthogonality condition implies that 3,, + 3,9, = 0 which actually imposes no
restriction on the cointegrating vector at all since g, is also a free parameter. Therefore,

r = 1 does not provide formative cointegration test either.

4.2. Estimation. The estimation procedure we use here follows section 7.2.3 in Jo-
hansen (1995) with slight modifications to fit our specific requirements. We are dealing with

a maximum likelihood estimation of the following VEC model,
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(43) AXt = D+ &,BlXt_l + E?eriAXt_i + &

e 4 N(0,Q)
with restrictions that S(n x r) = [6;(n x s — 1), H) ba] where H, (n X n — s) is pre-specified
and ba(n — s x r — s+ 1) is to be estimated.

According to the Frisch-Waugh-Lovell theorem, we can concentrate (4.3) into

Rot = 181 Ryt + abyH! Ry + &4

with
Ry = the orthogonal projection error of AX; on a constant and AX;_1,... ,AX;_,
Ri; = the orthogonal projection error of X;_1 on a constant and AX;_1,... ,AX;_,.

Let 8y = H | by and define
Rz.ﬁj.t = the orthogonal projection error of R; on ﬁ;th
Sijs, = YiRig tRjp +/T
Sii = YiRuRj/T.

The following lemma excerpted from Theorem 7.4 in section 7.2.3 of Johansen (1995) gives

necessary conditions to solve for the MLE of § with restrictions.

LEMMA 2. The mazimized value L.y of the likelihood function is given by

LotlT = [Soo| T (1 — p) T2 (1= A)

max

where 1 > Ay > -+ > A\o_ypy, are defined as the largest r — my solutions to the eigenvalue
problem:
(4.4) IAH' 116, Hi — H' S10.8, 5503 So1.6, Hi| =0,

and 1> py > ---> p,, are defined as the largest my solutions to the eigenvalue problem.:

(4.5) |p511./32 — 510./325&):_[52501”32| =0.
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The eigenvectors corresponding to A1, ... , A\p—m, constitute the MLE 32 of by; the MLE Bz

of By is then 32 = H by. The ergenvectors corresponding to py, ... , P, constitute the MLE
of By

Equations (4.4) and (4.5) give necessary conditions to solve for the MLE of 8; and
B9. However, both eigenvalue problems are mutually dependent. Johansen proposed an
iterative method to compute the estimators, which is summarized in the appendix and is

used in my applied work.

5. Test Statistic

5.1. Computation of the Likelihood Ratio Test Statistic. Let LY . and L] .. be

max max

the maximal likelihood values with and without LR restrictions respectively. The likelihood

ratio test statistic () defined as
Q = 2(10g Lﬁlax - IOg L:nax)

is the likelihood ratio test statistic for the LR hypothesis. The computation of L] .. is

u

o> Which is more standard, the reader

reviewed in Section 3.2. As to the computation of L

is referred to the appendix.

5.2. The Asymptotic Distributions. For both restricted and unrestricted models,
we maintain the same cointegrating rank and number of lags. Therefore the distribution of
the likelihood ratio statistics Q will be x? asymptotically.'®> The only work we have to do

here is to compute the correct degrees of freedom for our test statistic.

The LR hypothesis imposes restrictions on the cointegrating vector space only, but not
on other short-run parameters in the VEC model. The degrees of freedom of the statistic
is thus determined by the difference of the dimensions of the tangent space of the o3’ term

in both VEC models—one without restrictions and one with restrictions.

For the detail of the asymptotic distribution, please refer to Chapter 13 of
Johansen(1995).
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THEOREM 2. Consider the long-run effect hypothesis
Hy : The model admits a long-run effects with each effect

expressible as Hiy with H(n x s) prespecified and full rank.

Given the cointegrating rank of r, the likelihood ratio test statistic QQ of the model with long-
run effect restrictions Hy against the model without restrictions follows a x? asymptotic

distribution with degrees of freedom equal to r — s + 1.

PROOF. According to Theorem 1, Hy imposes on the cointegrating matrix 3(n x r) the
restrictions that r» — s+ 1 cointegrating vectors should be in sp(H ). According to Theorem

3 in Johansen and Juselius (1992), the degree of freedom is 7 — s+ 1. I

According to the discussion following the Hypothesis Equivalence Theorem in Section 4.1.1,
the degrees of freedom here is exactly the sacrifice of the degrees of freedom in choosing

cointegrating space.
By the properties of likelihood ratio tests, our test can be easily extended to test two
forms of the LR hypothesis if one is nested in the other. Consider the following hypotheses
Hy : The VEC model admits a long-run effects with each effect
expressible as Hq1 4 with H4(n x s4) prespecified and full rank.
H; : The VEC model admits a long-run effects with each effect
expressible as Hpt g with Hp(n x sp) prespecified and full rank.
with H4 being n X s4 and Hp being n x sg. The following proposition ensures that Hy is

nested in Hy.
PROPOSITION 2. If sp(Ha) C sp(Hp), then Hy is nested in H;.
PROOF. For 3 € ©(Hy), there exists a nonzero 1)(sa x 1) such that 3 H41 = 0. Since

sp(Hy) C sp(Hp), there exists a nonzero I' such that H4 = Hgl'. Therefore, 3'Hg(T'y)) =

0. It is evident that 8 € ©(H;). Hence Hy is nested in Hy. I
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Suppose @ 4 is the @ statistic of testing H 4 with degrees of freedom df 4; and () p is the
@ statistic of testing Hp with degrees of freedom dfp. Then the likelihood ratio test of H 4
against Hp has @ statistics equal to Q4 — @p with degrees of freedom df 4 — dfp. Hence

we have the following proposition.

PRrROPOSITION 3. For the nested hypothesis testing

Hy : The VEC model admits a long-run effects with each effect ~y
expressable as Haw 4 with Hy(n X s4) prespecified and full rank.
H; : The VEC model admits a long-run effects with each effect ~

expressable as Hpvp with Hg(n x sp) prespecified and full rank

with Ha beingnxss, Hp being n x sg and sp(Ha) C sp(Hp). Then, the Q-statistic Q acp
is computed as Qacp = Qp — Q4 and has a x* distribution asymptotically with degrees of

freedom, sp — s4.

PRrROOF. We only need to prove its degrees of freedom. According to Theorem 2, the
degrees of freedom for Q4 is r —sa + 1. The degrees of freedom for Qg is r — sp+ 1. Their

difference is sp — s4 with sp > s4 since sp(Ha) C sp(Hp). 1

This proposition is important for testing LRH since LRH is a special case of LRN. Hence
it is nested in LRN. With this proposition, the LRH test can be easily conducted. Taking
(y, m, p) trivariate model as an example, the LRH in (4.1) has an H matrix, say H4, equal

to
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and LRN in (4.2) has an H matrix, say Hp, equal to

00
10
01

According to Proposition 2, the LRH hypothesis is nested in LRN hypothesis.

6. Empirical Application

In this section, we apply our cointegration test for LRN and LRH'6 to two different
U.S. macro data sets: annual data from Friedman and Schwartz (1982) and post-WWII
quarterly data. In addition to the test results for our method, we also provide results of the

FS test and the Geweke test.

The Friedman and Schwartz data set spans 1869 to 1975. However, we focus only on
the post-1939 period, i.e. the years after the Great Depression. The reason for this sample
selection is the previous evidence of structural breaks provided by Boschen and Otrok (1994)
and Haug and Lucas (1997). For the post-WWII data set, we split it into three subsamples:
one is from 1959:1 to 1978:4 (the pre-Volcker period), the other is post-1983 period (which
will be referred to post-Volcker experiment period), and another is the sample between
these two periods. We drop the last subsample due to its small sample size (only twenty

observations.)

Before we test LRN and LRH, we need to test whether money stock has a unit root,
which is required for any LR test. Our unit root tests we used are based on three different
test statistics proposed by Ng and Perron (2001). Test results are in Table 1. For the
Friedman and Schwartz data, we rejected a unit root for money at the 10 percent level,
but not at the 5 percent level. Given that F'S and Geweke both regarded money to be I(1)

stationary in their LR tests and that the unit root is not strongly rejected, we maintain the

LRN refers to long-run neutrality but allows non-homogeneity. LRH refers to both
long-run neutrality and homogeneity. Therefore LRH is a special case of LRN
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unit root assumption of money. For both post-WWII quarterly data sets, we did not reject

a unit root for money at both 5 percent and 10 percent testing sizes.

6.1. Friedman and Schwartz Data. To begin, we further describe the econometric
methods of FS and Geweke. This discussion concentrates on the essence of each test and

highlights the identification assumptions in these two second generation LR tests.
6.1.1. The LR test of Fisher and Seater. Consider the reduced form VAR

AXt Ext
(6.1) B(L) =

Amy Emit

Then, the long-run responses of X and m with respect to time ¢ forecast errors will be

Ao Xi1 — B)! Ey,t

Asomi—q Em,t
where, as above, Aso X¢—1 = limg—, 00 (Xppr — Xe—1) and Asomy—1 = limg—, o0 (Mygr — mp—1).

The identifying assumptions considered are

Ext Upt

(6.2) =1I ,
Em,t um,t
where u,, is the monetary shock and wu, is the real shock. The long-run responses of X and

m with respect to structural shocks are then

Ao Xy Uy
(6.3) Tl =pa)tm|

Asomi—q Um,t
To consider alternative identifying assumptions, it is convenient to partition the matrix
B(1)~1 into four blocks,

(6.4) B(1)™'I = Tor TYwm

’Ym,r 'Ym,m
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As an identifying assumption, FS imposed the long-run exogeneity of money, which is that
long-run response of m does not depend on the long-run response of X. This means that

Yy = 0.17 They also assumed that w,; and w,,; are not correlated.

The consequences of these identifying assumptions was that FS could produce regres-
sion tests of LRN and LRH. The regression coefficient 3 of A, X; on A,my is equal to
cov(Doo X, Asomiy) [var(Doemy) = 72 1/ Vi m for a bivariate VAR. Following FS, some au-
thors also call 3 the long-run derivative LRD,,,, of X with respect to m. If X is a nominal
variable, then the monetary shock should move X and m proportionately in the long-run
under LRH, i.e. 7, = Vym so that 3 = 1. If X is a real variable, then the monetary

shock has no impact on X in the long-run under LRN, i.e. 7, ,, = 0 so that 5 = 0.

In principle, the estimation of # can be done through the following regression
Ao Xt = a+ bAsemy + ¢4

In practice, it is impossible to take an infinite long-horizon difference. FS therefore took a

finite long-horizon difference instead, using the regression model
(65) AkXt =a+ bAk-mt + €t

where Ap Xy = Xy, — Xy and Agmy = my g, — my. In theory, if k increases with sample

size at a proper speed, then the estimator b converges to the true value.

Replicating the F'S results, we run the regression (6.5) for k& from one to thirty. Figure 5

displays the estimates of b for different k and their 95 percent confident intervals'®. When

"In a bivariate VAR, we can invert B(1)~!II in (6.3) into the following representation

1 |: Tmm " Vzm :| |: AN, ¢} :| _ |: Up,t :|
(Vz,rf}/m,m - Wm,rfy:c,m) “Tm,r Va,r Acomy Um,t

If the long-run response Ay, X; does not enter the the long-run response function of Ao my,
it means 7, , = 0.

®The confidence intervals are constructed with consistent estimates of the variance-
covariance matrix using the approach of Newey and West(1987). The Bartlett window is
used with truncation lags determined by the criterion of Newey and West(1994). The t-
statistic of b estimator follows a t distribution with degrees of freedom [T'/k] where T is the
sample size and | ] rounds T'/k to the nearest interger.
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k approaches thirty, the 95 percent confident interval includes 1 when X is nominal income
and when X is the price level. Hence, LRH is not rejected. When X is replaced with real

income, the confidence interval for large k includes zero. Hence, LRN is not rejected, either.

6.1.2. The LR test of Geweke. Consider the reduced form VAR (6.1) and the identifying

framework (6.2). Given a block diagonal variance-covariance matrix of structural shocks u,

the matrix spectral density s(w) of [X;, my]" at frequency w = 0 is equal to

1 X 0
(6.6) s(0) = —=B(1)~'I Ir’'B(1)~Y.
Em

Following (6.4), this spectral density can be expressed as

o i ’YT,TETV;“,T + ’YT,mEm’Y;ﬂ,m VT,TET’Y;n,T + fYT,mmeY;n,m
o7

s(0)

Vm,rzrv;,r + Vm,mzmv;,m PYm,rETPY;n,r + me,mEmPY;n,m
Note that the upper left block of s(0) is the long-run variance of X; or the variance of A X;

equivalently.

Studying LRN, Geweke tested if the following parameter, called f,,—x(0), is equal to

Zero.

fm—>X (O) = 10g(|7r,r27“7;’,r + Wr,mzmv;,m‘ / "71",1"27“7;"77’|)'

Three aspects of this approach need to be discussed. First, to estimate f,—x(0), the II
matrix must be identified. Geweke adopted a recursive identifying scheme, assuming that
the ordering of the vector [Xy, m;]" was from the most endogenous to the most exogenous.
This assumption makes II an upper triangular matrix. In addition, Geweke assumed that
all diagonal elements of II were normalized to one. With these assumptions, f,—x(0)
measures the long-run feedback from m to X. If money is neutral in the long-run, its long-

run feedback to X should be zero. Second, the statistic f,,,—.x by nature is always greater
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than zero. Therefore, whether LRN is confirmed depends on whether the confidence interval

of the estimated f,,—x(0) close to zero or not.

The estimate of f,,—.x(0) can be constructed with the estimates of B(1), II, ¥, and
Y m which can be obtained through traditional ordinary least squares regression of the VAR
(6.1). However, Geweke alternatively used the extended Yule-Walker algorithm following

Whittle (1963) and our replication adopts his practice.!®

The estimation results are shown in Table 2. Eighty percent confidence intervals?® are
constructed by the R-fold replication method, the details of which are contained in an
appendix to this chapter. The estimated long-run feedback from money to the real income
and to the income velocity of money is close to zero. Their confidence intervals are close
to zero, too. Real income and the income velocity of money gave support for LRN.2! If
we combine these two results together, it also shows the support for LRH. However, when
we replace the X variables with real money balance, or both real income and real money
balance together, the estimated long-run feedbacks are not close to zero. Their confidence

intervals are not close to zero either. LRN is not strongly supported in this case.

6.1.3. Cointegration test. In this section, we report results of our cointegration test for
two different VEC models. The first uses real income(y), money stock(m), and the price
level(p) so as to make for ready comparability with the results of Fisher-Seater and Geweke.
All variables are in logarithms. The second augments this basic system with the nominal

interest rate, so as to produce a model similar to that studied in many VAR analyses.

9Geweke opted for this approach in order to ensure the invertibility of the estimated
matrix polynomial B(L).

20The small confidence intervals are used because of the replication method typically
gives wide confidence intervals. We follow Geweke in using the eighty percent confidence
interval.

#1By construction, the parameter f,,,—x(0) is always greater than zero. The lower bound
of the confidence interval will be greater than zero, too. Therefore the conclusion regarding
LRN and LRH is based on whether the confidence interval is close to zero enough.
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6.1.4. Results for three variable system. Let X; = [y;, my, ] and assume that it is

described by a VEC model,

AXt =C+ GfﬁlXt_l + E?:j[AXt—i + &

To apply our LR test, we have to determine the number of lags k and the proper cointegrat-
ing rank. We use the Posterior Information Criterion(PIC, hereafter) proposed by Phillips
and Ploberger (1996) to select model lags and cointegrating rank simultaneously.?? The
VEC model selected by PIC involves a cointegrating rank of one and indicates that it is

necessary to include only one lag of AX, i.e., that k = 1.

First, consider the LRH hypothesis under which the long-run response of (y,m,p) to

monetary shocks should be

Aooyt—l 0
(6.7) Acomy—1 | lug* =] 1 | lgm]
Aooptfl 1

in the v = Ht form. The H matrix is equal to the vector (0,1, 1) here. Without imposing
any restriction, we find that the estimated cointegrating vector is (16,4466, —11, 6244, 5, 9478)’
which is not orthogonal to the H vector. Now we imposed LRH restrictions on the
MLE of the cointegrating vector. The restricted estimate of the cointegrating vector is
(8.7955, —14.4571,14.4571) which is orthogonal to H through the orthogonality restriction
imposed by LRH. This might be interpreted as a long-run money demand function with
an income elasticity of 8.8/14.5 ~ 0.6, since it would imply m — p — 0.6y is stationary.
The geometry relations between restricted and unrestricted estimates of the cointegrating
vectors are shown in Figure 6. In Figure 6, (3, is the unrestricted estimate, and 3, is the

restricted one. (35 is orthogonal to H vector, but not ;. The likelihood ratio test result

22The conventional approach is to use a model selection criterion—such as BIC or AIC-
to select lags first, and then to choose cointegrating rank, for example by the likelihood
ratio test of Johansen (1995) or the multivariate unit root test of Stock and Watson (1988).
However, as pointed out by Johansen (1992), such a sequential model selection may be
inconsistent. Chao and Phillips (1999) compared AIC, BIC and PIC; and found some finite
sample evidence in favor of PIC.
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of LRH is reported in Table 4(a). The @ statistic is 1.5688 which is smaller than both 5

percent and 10 percent critical values. Therefore, we do not reject LRH.

However, in this trivariate VECM, the LRN hypothesis is not testable. Recall that
the definition of LRN is that the long-run response of (y, m,p) to monetary shocks can be

expressed as

Asolt—1 0 0
m m

Agmi1 | 0" =11 0
9p

Aoopt—l 0 1

for some nonzero gm,. Let 81 = (B1y, B1m, B1p)- To satisfy LRN, 81,,9m+B1,9p = 0 for some
(9m» gp). When there is only one cointegrating vector, given any (3y,,,31,) value we can
always find a (gm, gp) value to fulfill the 8y,,9m + B1,9p = 0 condition.?> Therefore, LRN
does not impose any restriction on the cointegrating space. Refer back to the discussion on
page 33. It is not testable because r < s — 1 with » = 1 and s = 2 in line with discussion

above.

6.1.5. Results for a four-variable system. In order to test LRH against LRN, we need
cointegrating rank larger than the rank of H matrix minus one as discussed in Section 3.1.
Therefore, we expand the system. Many studies of nominal and real interactions using VAR
methods concern systems that augment the basic three variable model with the nominal
interest rate, as we do in this system. The cointegrating rank and the number of lags in
this four variable VEC model selected by PIC are two and one respectively, so that we have

a enriched set of testing possibilities.

There are two types of LR test we are interested. One is that monetary shock is long-run

neutral, but may not be long-run homogeneous, which implies a long-run effect of money

#In our trivariate model, the unrestricted estimated (; is orthogonal to the long-run
response function under LRN with g,, = 5.9478 and g, = 11.6244.
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like:
AsolYi-1 00
Aso Ry 1 0 0 Im
(68) |Um,t =
Ao<:o7nt—1 10 9p
Aooptfl 0 1

The other is that monetary shock is both long-run neutral and homogenous, which implies

a long-run effect like:

Aooyt—1 0
Ao Ri—1 0
(6.9) |t = [9m] -
Aoomt_l 1
| Aooptfl i | 1 ]

The test of (6.8) is LRN test; the test of (6.9) is LRH test. Both of them are testable since

the cointegrating rank in this system is larger than the rank of H matrix minus one.

One thing worth mentioning is the long-run effect on the nominal interest rate. In a
system where money is I(1), it should be zero under LRN. That is: the change in money
level affects only the long-run price level but not the inflation rate and the real interest rate

should not be affected under LRN, the long-run response of nominal rate should be zero.

Before we go to the test results, it is useful to investigate the geometric relations be-
tween cointegrating space and long-run hypotheses. Let 3, = (834,,81g; B1pm, 51p)" and
By = (Ba2ys B2rs> Bams B2p)’ be two linear independent cointegrating vectors in this four-
variable VECM. If the model admits LRH, then both of them should be orthogonal to the
vector (0,0,1,1). This orthogonality condition is equivalent to the requirement that the
space spanned by (81, 81, B1p)" and (B, B, Bap)" is orthogonal to the vector (0,1, 1),

and the space spanned by (81g, B1m, 81,) and (Bag, Bam, Ba,)’ is orthogonal to the vector
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(0,1,1)'. In Figure 7(a) and 7(b)?4, the space B{ is spanned by the unrestricted esti-
mates of (31, B1m, B1,) and (Bay, Bam, B2p)’; the space B{ is spanned by the unrestricted
estimates of (81g, 81, 01,) and (Bap, Bom: Bap)-2° Both of them do not satisfy the or-
thogonality condition for LRH. Therefore, the unrestricted estimated VECM can not admit
LRH. In Figure 7(c) and 7(d), the space B} is spanned by the LRN-restricted estimates
of (B1y, BimsB1p) and (Bay, Baoy, B2p)'s the space B is spanned by the LRN-testricted es-
timates of (81, B1m» B1p)" and (Bog, Bam, B2p)'-2° As the reader can tell, both of them are
very close to the spaces that admit LRH. This aspect will show in the test result below

that: when we test LRH against LRN, LRH is not rejected.

The test results are in Table 4(b). Both LRN and LRH are not rejected under 5 percent
and 10 percent testing size. Then we further test LRH against LRN. The testing Q-statistic
value is simply the difference of the test values of LRN and LRH, and its degrees of freedom
are also the difference of the degrees of freedom of LRN and LRH tests. The Q-statistics
value is 1.1946 with one degree of freedom, which is not significant under both 5 percent

and 10 percent size. That is: the long-term Friedman-Schwartz data support LRH.

6.2. post-WWII Quarterly Data. In this section, we use post-WWII quarterly data
from 1959:1 to 2002:2. The sample is split into three subsamples: one is the pre-Volcker pe-
riod (from 1959:1 to 1978:4), the other is post-1983 period(refer to post-Volcker experiment
period), another is the sample between these two periods. We drop the last subsample due

to its small sample size (only twenty observations.)

6.2.1. LR test of Fisher and Seater. The long regression results are in Figure 6. For

the pre-Volcker sample, the long horizon estimate(refers to large k) of the LRD is close to

24In Figure 7, the space with normal vector (0,1, 1) is graphed. This space is the space
that can admit LRH. It provides contrast to visualize the difference between unrestriced
estimates and restricted estimates.

*The unrestricted estimate of §; = (—20.1803,0.3418,13.1949, —6.2688) and (3, =
(19.6202, —1.8818, —4.7390, 5.9697).

26The LRN-restricted estimate of 5; = (—0.0074, —0.0740,0.8110, —0.5803) and [y =
(—0.9951,0.0991, 0, 0)
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one for nominal income and price, so that LRH is not rejected. It is close to zero for real
income, so that LRN is not rejected. Note that this finding is consistent with my earlier

results using the Friedman and Schwartz annual data.?”

When we move the sample period from pre-Volcker to post-1983, the results using the
FS method change dramatically. Though the long horizon estimate of LRD is close to zero
for real income, it is far from one for nominal income and price. Thus: LRN is not rejected,

but LRH is rejected.

The change of the F'S testing results can be rationalized from two possible angles: one
is that money is not LRH after 1983, the other is that the monetary policy changed after

1983, which changed the identifying structure.

6.2.2. LR test of Geweke. The estimate of the long-run feedback f,,—x(0) for the post-
WWII quarterly data is reported in Table 5, which displays more mixed results than the F'S
test. For the pre-Volcker data, the estimate is close to zero for real balances. Thus, LRH is
not rejected. However, the estimate is far from zero for real income or the joint test of real
income and real balances. Hence, LRN is rejected. These results are not consistent with
each other, since if LRN is rejected, LRH can not be true. For the post-1983 data, LRN is
rejected for real income, real balance, or the joint test of both. But it is not rejected for

the income velocity of money.

6.2.3. Cointegration test. The VEC model employs the same four variables as previously
used for the Friedman and Schwartz data. After PIC model selection, we select a zero lag
and a cointegrating rank equal to two for pre-Volcker sample; we select one lag and a

cointegrating rank equal to two for post-1983 sample.

The test results for the pre-Volcker data are reported in Table 6(a). When testing LRN,

we do not reject LRN at 5 percent and 10 percent testing size. However, when testing LRH,

2"This is no surprise, since the pre-Volcker period is covered in the annual data we used.
The only difference is its data frequency.
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it was significantly rejected at both testing sizes. Given the test results, if we believe in
LRN, we can test LRH against LRN. We found that LRH is rejected. Therefore money is
long-run neutral but not homogenous in this period. This is different from the test results

of the annual data from Friedman and Schwartz. In the annual data, LRH is not rejected.

For the pre-Volcker data, since LRH is not significantly supported, the long-run response
of price may not be proportionate to the long-run response of money to LRN monetary
shock. It would be interesting to know the long-run response of price to monetary shock—
that is the estimate of g, in (6.8). We normalized gy, to one, and found the estimated g, to
be 2.8489. Therefore, in this period, for a one-time increase of LRN permanent monetary
shock that increases money stock by one percent in the long-run, price level will increase
by 2.85 percent in the long-run. This implies that permanent monetary shock has long-run
impact on the income velocity of money, which will increase by a 1.85 percent response in

the long run.

The testing results for the post-1983 data are reported in Table 6(b). Both LRN and
LRH are not rejected at 10 percent size. When testing LRH against LRN, we do not reject
LRH under 10 percent size. In this period, long-run proportional movement of nominal

variables in response to LRN monetary shock is supported.

In summary: LRN is not rejected for both pre-Volcker and post-1983 data. Asto LRH, it
is not strongly supported in pre-Volcker period, but is strongly supported in post-1983 data.
We found that for the pre-Volcker data, a one-time increase of permanent LRN monetary
shock that increases money stock by one percent in the long-run, price level increases by
2.85 percent in the long-run. The long-run increase of the income velocity of money is then

1.85 percent.
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7. Conclusion

Previous tests of long-run monetary propositions concerning neutrality and homogeneity
based on vector autoregressions require estimating the effects of permanent monetary shocks
on real and nominal variables. If the estimated monetary effect on a real variable is not
significantly different from zero, then long-run neutrality is not rejected. If the estimated
effect on a nominal variable is not different from one, then long-run homogeneity is not

rejected.

These tests have a serious drawback: their measures of the long-run effects of money are
heavily dependent on identifying assumptions and other maintained assumptions including
the choice of variables included in the VAR. Thus, for example, any rejection of long-run
neutrality or homogeneity can signal that the theory is incorrect or that the identifying

assumptions are wrong.

This chapter uses different approach to test long-run neutrality and homogeneity. I show
that these propositions can be cast in terms of linear restrictions on cointegrating space,
which is independent of any traditional identifying assumption. Based on this argument, the
likelihood ratio test of linear restrictions on cointegrating vectors can be applied to testing
long-run neutrality and homogeneity. The test is then applied to three different data sets:
the post Great Depression annual data set from Friedman and Schwartz; the post-WWII
pre-Volcker quarterly data set; and the post-1983 quarterly data set of the U.S. The test

results do not reject long-run neutrality for all three data sets.

Besides long-run neutrality, I also tested long-run homogeneity which is not rejected in
the annual data set and the post-1983 quarterly data set, but is rejected in the pre-Volcker
quarterly data set. Given that long-run homogeneity is rejected in the pre-Volcker period,
I estimated the long-run response of price to a one-time permanent monetary shock. The
estimated results is: for a one-time increase of permanent long-run neutral monetary shock

that increases money stock by one percent in the long-run, price level increases by 2.85
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percent in the long-run. Long-run increase of the income velocity of money is then 1.85

percent.



CHAPTER 2

Long-Run Identification When the Long-Run Proposition is
Over-Identifying

1. Introduction

Since the work of Sims in 1980, vector autoregressions have been widely used in economic
profession to study the dynamic effects of structural shocks in the economy. Researchers
first estimate a reduced form vector autoregression (VAR), then try to recover its structural
form through some identifying assumptions. There are two types of identification methods

generally employed: one is long-run identification; and the other is short-run identification.

Short-run identification orders variables in the system according to the assumptions
regarding their degree of contemporaneous exogeneity. The identifying assumptions allow
the researcher to transform a structural VAR estimation into a sequence of recursive re-
gressions. Take money and output as an example. If the researcher believes that money
reacts to output contemporaneously but not vice versa, then money is more endogenous
than output. Some examples of structural VAR study using short-run identification are
Christiano, Eichenbaum and Evans (1994), Eichenbaum and Evans (1995), and Bernanke
and Mihov (1998). Short-run identification, though easy to use, has a problem of choosing
proper ordering. It usually relies on the researcher’s subjective belief. Cochrane (1994) crit-
icizes short-run identification for the analysis of monetary shocks, arguing that, ”empirical
researchers typically fish for VAR specifications to produce impulse-responses that capture

2

qualitative monetary dynamics, ....” Beside the subjective ordering criticism, if all vari-
ables in the system are allowed to react to each other contemporaneously, then short-run

identification can not be used.
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The other type of identification identifies structural shocks using assumptions regarding
the shocks’ long-run effects. For an example, if the researcher believes that money is long-
run neutral, then the idea of long-run identification is to use this long-run proposition to
identify monetary shocks. The long-run neutrality of money is a widely accepted proposition
among economists and can be tested without strong assumptions.! Therefore, using long-
run identification to identify monetary shocks is attractive for many researchers. Some
papers falling in this category are Blanchard and Quah (1989); King, Plosser, Stock and
Watson (1991); and Jang and Ogaki (2001). However, such works on long-run identification
has a problem: without choosing variables carefully, the unrestricted estimate of a VAR
may not be able to accommodate the long-run proposition. That is, there may not exist
any identifying structure that produces an identified structural shock consistent with the

long-run proposition. In other words, the long-run proposition may be over-identifying.

When the long-run proposition is over-identifying, long-run identification requires proper
restrictions on model estimation. In my previous chapter, I developed a restricted estima-
tion approach that ensures the estimated system will admit long-run proposition. With the
tool developed in chapter one, I show that the long-run proposition combined with two more
identifying assumptions provides necessary and sufficient conditions to identify the perma-
nent structural shock up to a scale adjustment. These two extra identifying assumptions
are: (i) the structural shock to be identified must be uncorrelated with other structural
shocks; and (ii) the long-run effect of the structural shock to be identified must be linearly

independent from the long-run effects of other structural shocks.

This chapter uses an open economy VAR model to demonstrate the application of
the method and then identifies U.S. monetary shocks. Because the model includes two
countries’ interest rates and exchange rates, I can discuss one issue in the International
Finance literature: the uncovered interest parity(UIP) puzzle. UIP says that a one percent

increase in the interest rate differential between home and foreign countries should predict

'See chapter one.
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a one-percent home currency depreciation. However, many empirical studies — such as
Fama(1984) and Froot and Frankel(1989) — widely reject this parity. These authors find
currency depreciation is not one-percent. But, more strikingly, for most foreign currencies,
exchange rates even respond with the wrong sign. In addition, they show that the excess
returns of the foreign investment tend to be serially correlated, which also violates the
implication of UIP. In this chapter, I use a structural VAR based on long-run identification

to examine whether U.S. monetary shocks are important in accounting for UIP deviations.

2. An Overview of Long-run Identification

There has long been interest in identifying structural shocks based on the assumption
regarding their long-run effect. For instance, to identify monetary shock based on the
assumption that its long-run effect is neutral to all real variables. In this section, the
history of such an identifying approach is reviewed and the alternative approach taken in

this chapter is highlighted.

2.1. The Blanchard and Quah Approach. The frontier work in long-run identi-
fication was done by Blanchard and Quah in 1989. They used a bivariate VAR model to
identify demand shocks based on the assumption that such shocks do not produce a long-run
effect on real output.? To be more clear, they model the stochastic process of real output

growth rate (Ay) and unemployment rate (u) with a VAR as follows:
C (L)Xt = &t
where X; = [Ay, u¢] and C(0) = I. This is a reduced form unless structurally both Ay and

u do not respond to each other contemporaneously. Since these two variables are stationary,

C(L) is invertible. The effect of the forecast errors e, on X; is simply
Xt == C(L)_lgt.

2There are two more identifying assumptions needed to be imposed: the structural
shocks are not correlated; and the variance of demand shocks is equal to one.
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Now, assume that there is a linear structural relation between the forecast errors ¢; and
the structural shocks u; which can be expressed as e; = IIu;. Then the effect of structural

shocks on X; are

X, = C(L) luy.

Let u; = [uf, uf]’ where u? represents the demand shock and u* represents the supply shock.

Given that Ay, involves the first difference of real output, the upper left corner of C(1)~ I
presents the long-run effect of a demand shock on real output level. BQ impose a long-run
restriction on the upper left value, requiring it to be zero. This implies that demand shocks
have no long-run effect on the real output level.? The long-run restriction that they impose
can help the researcher to identify the first column of the identifying structure II, which

identifies demand shocks.

2.2. The King, Plosser, Stock and Watson Approach. The long-run identifica-
tion proposed by Blanchard and Quah, though simple to apply, has some major problems
or limits. First it is limited to a specific type of bivariate model: one variable must be first
difference stationary, the other must be level stationary. This makes the interpretation of
the identified shock difficult. In most macro models, there are more than two structural
shocks. Second, the model does not allow the cointegration of nonstationary variables to

present. In a more general stochastic model, cointegration appears frequently.

King, Plosser, Stock and Watson (KPSW, hereafter) in 1991 developed another long-
run identification method. They use some structural cointegration relations — that are
agreed by many economists — within a vector error correction model (VECM) to identify
those shocks that have long-run effect on the system. These shocks are called permanent
shocks. Mathematically, the core of their idea lies in the observation that the long-run effect

of permanent shocks must be in the orthogonal cointegrating space. To understand this,

3In this model, both structural shocks have no long-run effect on the unemployment
rate since by nature it is stationary.
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consider the following VECM.
(2.1) AXy =D+ af X1 + B TiAX— + &

According to an auxiliary lemma to Granger Representation Theorem stated below, the
stochastic process of X; as in (2.1) can be expressed in terms of a vector moving average

process with initial values.

LEMMA 3. The vector moving average solution of (2.1) is
X, =C(Dt+3%_15) + C(L)(D + &) + Ps, Xo

where

1. C=p6,(/,TB,) ), andT =1-%L_Ty;
2. Pg, is a projection matriz projecting vectors into sp(B1);

3. C(L) = ¥2,Ci Lt is a matriz polynomial with C; matrices absolutely summable.*

Given this moving average representation, the forecast error in time ¢ has a long-run effect on
X with the magnitude C, the space spanned by which lies in the orthogonal cointegrating
space sp((3;). Suppose the structural relationship between the forecast errors and the
structural shocks is €; = Ilu;. Then the long-run effect of structural shocks is CTlu;. Each
column in CII presents the long-run effect of a unit increase of a specific structural shock.

Apparently, it must lie in sp(3 ).

KPSW exploit the fact that since the long-run effect vector of a permanent structural
shock must lie in sp( ). They can estimate sp((3 ;) and then choose a specific base, each
vector of which has some economic interpretation. If they can identify the shocks that
produce long-run effect like the vectors they choose for the base, then they can give the
identified shocks structural meanings according to the economic interpretation to the base

vector. For example, if one column vector of the base has long-run neutrality property

“The exact expression of C; is complex, and not relevant to the purpose of this paper.
For details, please refer to Chapter 4 of Johansen(1995).
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which would be the property of the long-run effect of money under long-run neutrality
proposition, then an identified shock that produces long-run effect as that column vector
is called monetary shock. For example, consider the six-variable VECM they used: the
variables are real output (y), real consumption (c), real investment (i), real money balance
(m — p), nominal interest rate (R) and inflation rate (Ap). Based on economic reasoning,
three cointegration relations are imposed: (¢ —y) = ¢; (R — Ap), (i —y) = ¢o (R — Ap),
and m —p = B,y — BrR. The first two cointegration relations describe the effects
on the consumption share and investment share of a change in real interest rate. The
third relation is a money demand equation. There are three stochastic trends. Let X; =
(y,c,i,m —p, R, Ap)'. KPSW then select a base, say fl, that is orthogonal to these three
cointegrating vectors so as to represent the long-run effects of three different permanent

structural shocks.

10 o |

10 ¢

(2.2) a-| b 0@
By —Br —Br

11
0 10|

The permanent shocks that produce the long-run effect corresponding to each column of
A respectively are called the balanced-growth shock, the neutral inflation shock and the
real-interest-rate shock. The naming of these three shocks is based on the property of each
column of A. The shock that produces long-run effect as the first column of A leads to a
unit of long-run increase in y, ¢ and i. That is why it is called the real-balance-growth shock.
The shock that produces the second column of A is called the neutral inflation shock since
it produces no long-run effect on y, ¢ and ¢ but moves nominal interest rate R and inflation
rate Ap proportionately in the long-run. The third column corresponds to real-interest-rate

shock since the shock produces a long-run effect on real interest rate.
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If the contemporaneous impact of these three permanent shocks on X; is IIp, then the
long-run effects of these three permanent shocks should be equal to Cllp. Ideally, CTIp
should be equal to A in order to preserve the economic interpretations of these three shocks.
However, in general CTIp = A is over-identifying as in the KPSW paper. Instead of imposing
restriction on the VECM estimation, KPSW supplement more structural parameters to be
identified in order to make the system just-identifying. These extra structural parameters
are contained in a square matrix denoted as m which is assumed to be lower triangular with
the diagonal elements being normalized to one. They then impose the identifying restriction

that CTIp = A instead. The long-run effects of three permanent shocks will be

1 0 0
L0 ¢
1 0O O
i 10 ¢
(23) AW: 12 1 0
ﬂy 761% 761%
m31 T3z 1
0 1 1
0 1 0

2.3. The Jang and Ogaki Approach. By throwing in more structural parameters
in 7, the KPSW approach creates a major problem: since the shocks they identified produce
long-run effects as Ar instead of A, those identified structural shocks no longer carry the
properties that determine the interpretation of each shock. For example, the second shock —
if producing the long-run effect like the second column of A — is called the neutral inflation
shock. However, its long-run effect under the CTIp = An identifying assumption is not
equal to the second column of A but to A times the second column of 7, which is a linear
combination of the second and third columns of A. Consequently, the second shock no
longer maintains the long-run neutral property unless the identified 739 fortuitously takes

on a value of zero.
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Jang and Ogaki (JO, hereafter) investigate (2.3) further and find an improvement on

the KPSW approach. To understand the JO variation, notice that
Am = [;171-(1.2)7121(3)}

where (1 9) denotes the first and second columns of 7 and A(g) is the third column of
A. The identified shock corresponding to the third column of IIp will always produce the
long-run effect equal to A(g). It maintains the economic interpretation from A(g). They
show that the researcher can just-identify the third shock if the following three identifying
assumptions are used: (i) the long-run effect of the shock, which is 121(3) here, should comply
with some long-run proposition; (ii) the long-run proposition imposes zero restrictions but
no other types of restrictions on A(g); and (iii) given the estimated sp(3, ), the vector in

sp (B ) that can be chosen to represent fl(g,) is unique up to a scale adjustment.

JO use the federal funds rate (Rs¢), the nonborrowed reserve ratio (NBRX), U.S. real
output (yus), U.S. price (pys), foreign real output (ysor), foreign interest rate (Ryor), and
the real exchange rate (e, dollar/foreign) in a VECM to identify monetary shocks. In this
seven variable system, they first conclude that the cointegrating rank is equal to three,
which implies four permanent shocks — and monetary shocks are one of them. Therefore,
sp(B 1) has the dimension equal to four. Let X; = (Yus, Yfors€, Rff, Rfor, NBRX, pus, )’
JO try to identify U.S. monetary shocks, assuming that the long-run effect of the shocks
should be long-run neutral to yus, yfor and e. Since the dimension of sp(3,) is four, the

unrestricted estimate of it will be able to admit a base A generically as below

x x x 0
x x x 0
X x x 0

N
I
X
X
X
—_
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Notice that the last column of it is uniquely determined and satisfies the long-run neu-
tral assumption regardless of the researcher’s choice for the first three linear independent

columns.

2.4. The Admissibility Problem. Both the KPSW and JO approaches have a prob-
lem in choosing a vector to represent the long-run effect of a structural shock: though the
long-run proposition suggests a reasonable vector to be chosen, without imposing proper
restrictions on 3 estimation, the researcher may not be able to choose that vector since it
may not be in sp(3,). When this happens, sp(3,) does not admit the long-run proposi-
tion. KPSW realize this problem: that is why they impose restrictions on § estimation,
even though with these restrictions, CIIp = A is still over-identifying. For the JO approach,
it looks like there is no restriction on [ estimation needed since the long-run proposition
they use imposes only zero restriction on the long-run effect vector but not other types of

restrictions. However, even zero restriction can cause an admissibility problem.

The admissibility problem in the JO paper can be highlighted once we notice that
the long-run neutrality proposition they impose is not truly long-run neutral. First, the
monetary shocks they identify will affect the money level in the long-run but not its growth
rate. Therefore, its long-run impact on inflation rate should be zero. Since nominal rate is
the sum of the expected real rate and the expected inflation rate, and the long-run effect
of a monetary shock on inflation rate is zero, the long-run effect of a monetary shock on
interest rates (R,s and RfOT) should be zero under the long-run neutrality assumption.
Therefore, if the last column 121(4) of A represents the long-run effect of monetary shocks

which is long-run neutral, then it should be (0,0,0,0,0,1, x)". Generically the base of an
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unrestricted estimated sp(3, ) can be normalized as the following echelon form

1 0 0 O
x 1 0 0
x x 1 0

b
I
X
X
X
—

X X X X

which unfortunately can not admit a vector like (0,0,0,0,0,1, x)". Thus, the JO method
will fail whenever the number of zero restriction imposed by the long-run neutrality is larger

than or equal to the number of stochastic trends.

Due to the limited number of stochastic trends found in most macro empirical studies,
it is very likely that long-run neutrality will impose more zero restrictions than the num-
ber of stochastic trends. In this case, the long-run proposition requires some restrictions
to be imposed on sp(f, ) estimation. When this happens, long-run identification is over-
identifying. Besides, if the researcher believes in long-run homogeneity, then all nominal
variables should have a proportional long-run response to a monetary shock. Therefore,
there are more restrictions on the choice of vector to represent the long-run effect of mon-
etary shocks, which in turn implies more restrictions to be imposed on sp((3 ) estimation.
This chapter is designed to resolve this problem, and to bring long-run identification and

estimation into a more compact framework.

3. Long-Run Identification When the Long-Run Proposition is

Over-Identifying

This chapter provides a new long-run identification method to partially identify one

permanent structural shock based on three identifying assumptions. The first is that the
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permanent structural shock to be identified satisfies some long-run proposition that is over-
identifying; the second is that the shock to be identified is uncorrelated with other structural
shocks; the third is that there is no linear combination of other structural shocks which can

produce the same long-run effect as the shock to be identified.

3.1. Over-identifying Long-run Proposition. One novelty of this chapter is to
extend the long-run identification method to the case that the long-run proposition is over-
identifying. I will first show in this section the conditions under which a long-run proposition
is over-identifying. I will then determine what kind of restrictions on estimation should be

imposed in this situation.

3.1.1. When is the long-run proposition over-identifying? In section 2.4, I briefly dis-
cussed the situation in which a long-run proposition that imposes zero restrictions is over-
identifying. Here, I want to extend the discussion to a more general type of long-run propo-
sition: the type that imposes linear restrictions on the long-run effect. Let us call this type

of long-run proposition a linear long-run proposition(a linear LR proposition, hereafter).

Consider a VECM as in (2.1) with n variables and 7 the long-run effect vector of
some permanent shock that we want to identify. A linear LR proposition imposes linear
restrictions on the long-run effect vector v, which can be expressed as that this vector must
lie in some subspace of R"™. To understand the form of a linear LR proposition, take the
example of a four-variable VECM in real output (y), the nominal interest rate (R), the price
level (p), and a money aggregate (m). Suppose we are interested in identifying permanent
monetary shocks " which are the autonomous unexpected movement from the central bank
that has long-run impact on at least m. Let X; = (y, R, m,p)’; and v = (gy, gr, gm, gp)’ be
the vector representing the long-run effect of uj* on these four variables. Without imposing
any long-run proposition on v, v can be any vector in R*. Suppose the researcher believes

that monetary shocks must be long-run neutral, then uj* has no long-run effect on y and
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R,i.e. gy = gr = 0. The long-run effect  that is long-run neutral can be expressed as

v=Hy
with
00
0 0 dm
(3.1) H = and ¢ =
10 9p
0 1

Apparently v € sp(H) C R*. It is true that any linear restriction on v can be expressed as
limiting the choice of v to some subspace of R* since these restrictions can be expressed in
~v = H1 form with H being some known matrix and 1 being some vector denoting the free
parameters in vy that are not constrained by the linear LR proposition.® For later discussion

convenience, I define a linear long-run proposition as follows:

DEFINITION 2. Given X; being n x 1, a linear long-run proposition on a long-run effect

vector v (n x 1) can be expressed as

(3.2) y=Hy

where H is n X s and full rank and ¢ is s x 1 for some s < n.

In line with the discussion in section 2.2, any long-run effect must be orthogonal to the
cointegrating vector space, that is 3’y = 0. Suppose the cointegrating rank is 7. Therefore
G is (nxr). If the long-run identified permanent shock can produce a long-run effect
expressible as (3.2), then ' Hv = 0, then this implies that 3’ H with dimension (r x s) must
have a rank less than s. Otherwise, 3’ Hv = 0 has no solution®: there is no way to identify
a permanent shock that can produce a long-run effect expressible as Hi. Apparently, the
rank of 3 H is related to whether the estimated sp(3) can admit a linear LR proposition.

*Linear LR proposition imposes restrictions on v like B’y = 0 which is equivalent to
v = Hvy where H = B .

We do not consider zero vector as a solution since the shock to be identified is a

permanent shock which should produce long-run effect. The shocks that have long-run
effect expressible as H1p with ¢) = 0 are not permanent shocks by definition.
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PROPOSITION 4. Given the cointegrating matriz f(n xr) and the H(n x s) implied by a
linear LR proposition, if both of them are full rank, then sp(B) (or sp(8,)) can admit this

linear LR proposition if and only if rank(8'H) < s.

The proof is rather straightforward. If rank(3 H) < s, then the dimension of the null
space of 3'H is at least one. There exists non-zero 1 such that 3’ Ht = 0. This means that
it is possible to choose some long-run effect vector v from sp(f3,) that is consistent with

the linear LR proposition characterized by the H matrix.

3.1.2. A restricted estimation when the long-run proposition is over-identifying. Macroe-
conomic empirical studies frequently detect a fairly small number of stochastic trends.
Therefore, when the VECM system is large or the long-run proposition imposes strong
restrictions expressible as a small dimension of sp(H), it is very likely that r > s. Generi-
cally an unrestricted estimate of 3 will produce the case that 8'H has full rank. Under the
r > s situation, rank(8 H) = s which by Proposition 4 implies that sp(8) can not admit a

linear LR proposition. Therefore, a linear LR proposition will be over-identifying.

In terms of the literature discussed above — the KPSW and the JO paper, each provides
over-identifying examples. In the KPSW paper, X; = (y,¢,i,m — p, R, Ap)’ as mentioned
in section 2.2. The long-run effect of a neutral inflation shock is v = (0, 0,0, gm—p, 9r, 9ap)’

with gr = gap 7 can be expressed as

(3.3) 5

Hip

"gr = gap = 1 in KPSW paper. This can be interpretted as some normalization. Here
9m—p Tepresents —Bp.
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with

0 0
0 0
0 0 .

H= and = | "7
1 0 IR
0 1
0 1

Since there are three stochastic trends, the cointegrating matrix 3 is (6 x 3). The cointe-
grating rank r is 3 and the dimension s of sp(H) is 2. Generically, an unrestricted estimate
of #'H will have a rank equal to 2 which is not less than s. According to Proposition
4, an unrestricted estimate of sp(() can not admit a neutral inflation shock unless some

restrictions are imposed on (3 estimation.

In the JO paper, X; = (Yus, Yfor, €, Rff, Rfor, NBRX, pys, ). As argued in section 2.4, a
long-run neutral monetary shock should produce long-run effect v = (0,0,0,0,0, gNBRX, Jpus)’

which can be expressed as (3.3) with

0 0

0 0

0 0
H=10 0 and ¥ — gNBRX
Gpus

0 0

1 0

01

The dimension s of sp(H) is 2. In their paper, the cointegrating rank r = 3. Without
imposing restrictions on 3 estimation, generically 3’ H would have rank equal to 2. Since

this is not less than s, long-run neutrality of money is an over-identifying proposition.
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If the unrestricted estimate of 8 can not admit the long-run proposition, then some
restrictions must be imposed on the VECM estimation. As proved in chapter one, the

following Hypothesis Equivalence Theorem holds.

THEOREM 3. Given that the cointegrating rank of the VECM is equal to r, the following

two hypotheses are equivalent:

Hy : The VECM admits a long-run effect v(n x 1) with v = Hz)
and H(n x s) prespecified and full rank.

H|, : There are at least r — s + 1 cointegrating vectors lying in the space sp(H).

This means that in KPSW empirical model, the restriction which needs to be imposed to
ensure the admissibility of a neutral inflation shock is that two cointegrating vectors must
be in sp(H ). In the JO empirical model, the restriction to ensure the admissibility of a
long-run neutral monetary shock is that two cointegrating vectors must lie in sp(H ). The
restricted estimation algorithm to ensure the admissibility is stated in chapter one, section

4.2.

4. Identifying Permanent Structural Shocks

A linear LR proposition requires that the long-run effect « of the shock to be identified
must be expressible as v = H1), where H is known. In other words, it requires vy € sp(H).
When the unrestricted estimate of 3 does not admit the linear LR proposition, applying
the restricted estimation described in section 3.1.2 will ensure the existence of a long-run
effect vector v which complies with the proposition. To locate the v that is consistent with
the long-run proposition, we can solve the linear problem 3 Ht = 0 for . Any such Hv
— belonging to sp(H) and orthogonal to sp() — can serve as a candidate to represent the

long-run effect of the shock to be identified.
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In this section, I will show that given the estimated sp(f) admitting the linear LR
proposition, the researcher can identify a permanent structural shock by choosing one vec-
tor in sp(H) to represent its long-run effect with the help of the following two additional
identifying assumptions: (i) the shock to be identified is not correlated with other structural
shocks; and (ii) there is no linear combination of other structural shocks which produces

the same long-run effect as the shock to be identified.

4.1. Choosing a long-run effect vector. First, we have to choose one vector to rep-
resent the long-run effect of the shock to be identified. A reasonable candidate to represent
the long-run effect of the shock should belong to sp(H) and be orthogonal to sp(3). As
discussed before, it must be expressible as H1) where 1 is some solution to 8'H = 0. If
the dimension of the null space of 'H is one, then the choice of 9 is unique up to a scale
adjustment. Given 3, we can solve for the estimate 9 of ¥ by solving B/H 1 = 0 with one
of the parameters in ¢ being normalized to one. Then the estimated long-run effect of
the permanent structural shock to be identified is 4 = H @ZJ I will use 4 to represent the

long-run effect of the shock to be identified.

Given the estimated long-run effect of the shock to be identified, the identifying assump-
tions (i) and (ii) can identify the shock. For illustrative purpose, I call the shock monetary
shocks, u™, which I want to identify from a VECM as of (2.1). Suppose there is some
linear identifying structure II between the structural shocks u; and the forecast errors &,
taking the form as ¢; = [luy. Then the long-run response of X; to the structural shocks wuy
is AooXi—1|ur = CTluy = B, (o, TS )L/, Ty, Partition u; into two different shocks: one

is a permanent monetary shock u!™ and the rest are u,™. That is

Ut =
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Accordingly, I can partition the identifying structure II into two blocks corresponding to

uf™ and u,™, respectively, such that
IT = [Ty, ™) -

The goal of the entire identification is to identify ,, and the variance o2, of u}*. Let n be
the number of variables in the VECM. Then I have n parameters from 7,,(n x 1) and one

from o2, to be identified. The next job is to count the number of identifying equations.

4.2. Identifying equations from the long-run proposition: n—r equations. Let
v be the long-run effect vector we choose to represent the long-run response A, Xy_1|uj".

According to Lemma 1, we know Ax X;—1|uf® = 3, (o/, T3, )7/, mm. Therefore,

(4.1) B\ TB1) e m = 7.

Though there are n equations in (4.1), 7 of them are not linear independent from the rest
of the equations. This is because by nature, v € sp(3 | ) which can be expressed as v = 3, h
with h being n — r x 1. Therefore, there are only n — r linear independent equations that

can be used to solve for 7, which is

(4.2) (o, T8, 7 = .

4.3. Identifying equations from the linear independent long-run effect as-
sumption: 7 equations. Let us partition the long-run response of X; to structural
shocks u; into two blocks: one is v, the long-run response of X; to the monetary shock uj";

the other is A-,,, the long-run response matrix of X; to other shocks. Therefore
Ao Xi—i|luy = ~yui* + A~mu;m

[ aele
Given the identifying structure e; = ITuy;, we have u; = II7'e;. Therefore, Ago X; 1|us =
[ v A } Up = [ v Ay ] IT-'e;. According to Lemma 1, the long-run response of X; to

the time ¢ forecast errors &, is Ao Xy—1]er = 3, (o/, T3, )~ c/, &;. Hence, [ v A ] ' =
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B (e/,TB,) /| and consequently [ v A ] IT~'a = 0. Let us partition TT~! into [g},, G~ .
Then, [ v A } O 'a = ygna + A, G-pa = 0. If the long-run effect + is linearly inde-
pendent from the long-run effects A-,, of other structural shocks, then ygna+A-G-pa =0

if and only if gn,a = 0.

There are two things worth mentioning. First, given the partition of II™!, the contem-
poraneous relation between a monetary shock u* and the forecast error ¢; is u® = gmer,
which can be interpreted as the within-period reaction function of the monetary authority
to the unexpected change to the VAR variables. The orthogonality condition between g,
and « thus implies that, if the long-run effect of money is linearly independent from the
long-run effects of other structural shocks, then the within-period reaction function g, must
be orthogonal to the adjustment coefficient « that is associated to the deviations from the
long-run equilibrium cointegrating relations. Second, the structural shocks do not have to
be divided into transitory shocks and permanent shocks as in the KPSW and JO papers.
It is possible for all shocks to have permanent effects as long as that there are no linear

combination of other shocks which produce the same long-run effect as wuj".

Now I want to use the orthogonality condition between g,, and « to produce r extra
identifying equations. Since ; = Iluy, the relation between the variance covariance matrix
Y. of &; and the variance covariance matrix ¥, of w; is ¥, = IIX,IT, ie. II7'%8, = £,IT'.

2
m

Therefore, g,,%. = oz, since u}* is assumed to be uncorrelated with other structural
shocks. Hence g = 0 implies 02,7, Y- 1a = 0, i.e. 71,5 o = 0 since 02, > 0. We have

r extra identifying equations as below:

(4.3) oY, = 0.

4.4. Identifying equation from the II"'II = I: one equation. Notice that (4.2)
and (4.3) give exactly n equations to identify 7, for monetary shocks, which is independent

of identifying the volatility o2, of monetary shocks. To identify o2,, we can use the nature
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that II"'II = I which implies that g,,m,, = 1. According to the previous discussion, we

know g, = 02,7, Y- 1. Therefore

(4.4) o2 =1/(x, 5 ).

2
m
Through the discussions of section 4.2 to 4.4, we have the following proposition regarding

identifying permanent monetary shocks.

PROPOSITION 5. Given that the estimated sp(3) can admit a unique normalized y which
represents the long-run effect of the shock to be identified, we can partially identify this shock

through restrictions (4.2) to (4.4) if the following two identifying assumptions are made:

1. The shock to be identified is not correlated with other structural shocks.
2. The long-run effect of the shock is linearly independent from the long-run effects of

other structural shocks.

5. VAR Model of International Monetary Transmission: An Application

In this section, I apply my method to identify U.S. monetary shock and study its
international transmission to four different foreign countries: Germany (GM), France (FR),
Italy (IT) and the United Kingdom (UK). There are four separate VAR models: always
one foreign country v.s. U.S. For notational simplicity, I always use the European country

name to denote each panel without referring to the U.S.

The selection of variables in a VAR is a subtle issue. The variables selected should permit
us to extract the structural shock that we are interested in. In this chapter, I am interested
in the U.S. monetary shock. In order to extract it, the reduced form VAR should be compact
enough to include variables about which the monetary authority is concerned and therefore
builds into its monetary policy rule. Here, I choose the U.S. real income (y), the price level
(p), the nominal interest rate (R) and a money aggregate (m), since these four variables

are the essential variables in most small-scale macro models. An objective of this chapter
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is to analyze the importance of U.S. monetary shocks in explaining uncovered interest rate
parity deviations. Therefore, two more foreign variables, foreign nominal interest rates (R*)

and nominal exchange rates (s)8, are included.

The VAR model in this chapter is
(5.1) AXy =o' X1 + 30 TiAX i + ¢

where Xy = (yt, pt, Re, my, RY, s¢)’. This is a VECM. The forecast error e; is assume to be
iid normally distributed with mean zero and Ee e} = €. To estimate this model, I need to
determine the number of lags p and the proper cointegrating rank r. I use the Posterior
Information Criterion(PIC, hereafter) proposed by Phillips and Ploberger (1996) to select
model lags and cointegrating rank simultaneously.® The selection results are in Table 7.10
All country panels have their cointegrating rank equal to two, which means that there are

four stochastic trends in each system.

5.1. Identification of U.S. monetary shocks. I use the long-run identification
method in this chapter to identify U.S. monetary shocks, based on three assumptions: first,
monetary shocks should be long-run neutral and long-run homogeneous; second, monetary
shocks are not correlated with other structural shocks; and third, the long-run effect of

money is linearly independent from the long-run effects of other structural shocks.

5.1.1. Long-run neutrality and homogeneity of money. Let ui® be the U.S. monetary

shocks, and define Ao Xy 1|uf = limg oo (Xe1x — Xi—1)|u}™ to be the long-run response

8Nominal exchange rates are defined as the U.S. dollar against the foreign currency. For
the detail of the source of data, please refer to the appendix.

°The conventional approach is to use a model selection criterion, such as BIC or AIC,
to select lags first, and then to choose cointegrating rank, for example, by the likelihood
ratio test of Johansen (1995) or the multivariate unit root test of Stock and Watson (1988).
However, as pointed out by Johansen (1992), such a sequential model selection may be
inconsistent. Chao and Phillips (1999) compared AIC, BIC and PIC; and found some finite
sample evidence in favor of PIC.

The minimal cointegrating rank and lag are set to be zero. The maximal lag is set to
be four.
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of X to the time ¢t monetary shock u}*. If money is long-run neutral(LRN) and homoge-

neous(LRH), then

Aooytfl 0
Aoopt—l 9m
m Aoofztfl m 0
(5.2) Y = Ao Xi—1]ug" = ug" =
Asomi—1 9m
AR} 4 0
i Asosi—1 ] i s i

There are several aspects of the long-run proposition formalized in (5.2) that are worth
mentioning. First, the long-run response of the U.S. price is equal to the response of money
because of LRH. Second, the long-run response of nominal interest rates is zero. This is
because that nominal interest rate is the sum of the expected real interest rate and the
expected inflation rate. Long-run neutrality requires the long-run response of real interest
rates to be zero. In addition, the shock identified in this model produces a long-run effect
only on the price level but not on its first difference (the inflation rate). Therefore, the
long-run response of inflation rates should be zero too. Consequently, the long-run response
of the nominal interest rate to a monetary shock is zero. Third, there is no restriction on
the long-run response of the nominal exchange rate since it also depends on the long-run
response of foreign money and the model does not include a foreign money variable. Fourth,

the long-run proposition is over-identifying. If we write v in the H1 format, then

00

10

0 0 gm
H= and ¢ =

10 Js

00

01
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The rank of 8'H is equal to two which is not less that the dimension of sp(H). According
to Proposition 4, the long-run proposition is over-identifying. Fifth, the long-run propo-
sition is testable. From chapter one, we know that a long-run proposition is testable if
the cointegrating rank(r) is larger than the number(k) of free parameter in 1) minus one.
This condition holds here. Table 8 shows that the test results do not reject the long-run

proposition (5.2) for all countries at both five and ten percent levels.

5.2. The Effects of U.S. Monetary Shocks. Estimating the VECM via the ap-
proach of section 3.1.2 and following the identifying approach in section 4, I can identify
both 7, (the short-run impact of U.S. monetary shock) and o, (the variance of U.S. mon-
etary shock). With the identified shocks, I can study the impulse response functions of all
variables, including foreign interest rates and exchange rates. Then I examine whether U.S.
monetary shock itself can generate the exchange rate dynamics which are consistent with

the UIP deviations observed in the data.

5.2.1. The impulse response functions. In this section, I study the short-run and the

intermediate-run effects of U.S. monetary shocks.

The impulse response functions to a U.S. monetary shock are shown in Figure 9. The
graph is based on the normalized monetary shock which moves up the U.S. nominal interest
rate by one percent in the short-run. The qualitative responses of U.S. variables are the
same across all country panels. When there is an increase in the nominal interest rate,
the price level and output will be contractionary. This fits the story of a contractionary
monetary shock. The response of money is expansionary in the short-run, except the GM
panel, which seems to be abnormal. However, the abnormality disappears (the response
of money becomes contractionary) immediately after one month for all country panels.
Therefore, 1 refer to the impulse responses given here as the impulse responses to a U.S.

contractionary monetary shock.
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The effects of a contractionary U.S. monetary shock are: (i) the U.S. nominal interest
rate increases in the short-run, then falls back to its long-run level gradually; (ii) the
price level decreases monotonically through time; and (iii) the money aggregate — though
increases immediately when the shock happens — decreases through time and reaches a
long-run contractionary level gradually. As to the output impulse response, I found that
the contractionary effect reaches its maximum after ten months, with output going back to

its long-run level gradually because of long-run neutrality of money.

The exchange rate response is similar across all country panels. Foreign currencies are
depreciating over time, which is consistent with the steady decreasing pattern of U.S. money
aggregate. Foreign nominal interest rates responses are different across countries in the
short-run. For UK, the nominal interest rate decreases in the short-run, which can occur if
the UK monetary authority responds to a U.S. contractionary monetary shock by expanding
money supply. For GM, FR and IT, the nominal interest rate increases in the short-run,
which can occur if their authorities respond with a contractionary money supply. However,
in the intermediate-run, all foreign countries’s nominal interest rates are above their long-
run levels. If the adjustment of interest rates reflects the money supply pattern, this means
that in the intermediate-run all foreign countries’s money supply is contractionary. Put in
the language of modern macroeconomics, they are strategically complementary to the U.S.

money supply.

Given long-run neutrality and homogeneity of money, monetary shocks have a long-run
impact only on money level and foreign exchange rates, with the long-run response of price
being proportional to the long-run response of money. Since the two long-run propositions I
use do not require foreign money to move proportionately to the U.S. money in the long-run,
exchange rate response does not have to be proportional to the US money in the long-run
either. The estimated long-run responses of foreign exchange rates are shown in Table

9. A U.S. monetary shock that increases U.S. money by one percent in the long-run will
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appreciate all foreign currencies in the long-run. This means that the long-run responses of

these four foreign money supplies are less than that of the U.S. money supply.'!

5.2.2. Uncovered Interest Parity. In this chapter, I also study the dynamics of exchange
rates and interest rates in order to re-examine a classical proposition called uncovered

interest parity (UIP). UIP implies
(5.3) Ei(Asi1) = (B — Ry) /1200.

The interest rate differentials are dividend by 1200 is because the interest rate data I use is
in annual percentage. The division will convert the data series into monthly rates. If UIP

holds — and taking into account of risk premium, then

A8t+1 =+ (Rt - R;")/lZOO + £t+1.

Here the constant term « is the risk premium, and &, can be interpreted as the excess

returns of foreign asset investment.

UIP implies two different time-series properties of exchange rates. First, interest rate
differentials should not predict the excess returns. Thus, if we consider the following re-

gression.

(5.4) Asppn = o+ B(Ry — Ry)/1200 + 44,

Then the § regression estimate should be equal to one. Otherwise, interest rate differentials
are correlated with the excess returns. Using the data set in this chapter, the estimated
B values are not consistent with this implication. Table 10 shows the estimated results.
Except IT, all 8 estimates are significantly different from one and of the wrong sign, which

is a standard finding discussed earlier in this chapter.

"The impulse response functions in Figure 9 are based on the normalization that the
U.S. nominal interest rate increases by one percent in the short-run. The effects on the
U.S. money level is however long-run contractionary. Table 9, however, is based on the
normalization that the U.S. money level is long-run expansionary.
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Second, if UIP holds, then the excess returns should not be serially correlated. This

implies that the ex post UIP deviation 7, where

N1 = Aserr — (Re — RY) /1200,

should not be serially correlated. The sample estimated autocorrelation of the 7,,, are in
Table 11. Except UK, all other foreign countries violate the non-serial-correlation implica-

tion of UIP.

There is also another implication of UIP if UIP holds. Dornbusch (1976) points out that
a once-for-all unexpected change in money level should create exchange rate overshooting
in the short-run. That is the domestic currency over-depreciates compared to its long-
run equilibrium level. Though there are works such as Eichenbaum and Evans (1995)
using VAR to study the exchange rate overshooting, to legitimately examine whether the
exchange rate dynamics are consistent with Dornbusch’s story, the monetary shocks we
identify must create a once-for-all effect on the money level. In most VAR studies, unless
the money supply equation is a first difference equation with no lag and does not depend on
other variables, the identified monetary shocks generate feedback within the system. The
movement of money level will be a gradual adjustment process instead of a once-for-all level
change. Therefore, it is impossible to use the VAR system in this chapter to talk about
exchange rate overshooting directly. However, the failure of the data compliance with the
previous two implications of UIP is an evidence against the effectiveness of overshooting

claim.

5.2.3. How Important Are U.S. Monetary Shocks in Accounting for the UIP Regression
Puzzle. To understand the importance of U.S. monetary shocks in accounting for the UIP
regression puzzle, we need to understand the regression implication and its relationship with

structural shocks. Given the regression model (5.4), the UIP regression is a conditional
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expectation of As;,q on interest rate differentials, that is'?
EAspa|(Re — RY) = a+ (B — Ry) + E& 4| (R — RY).

If 0 deviates from one, it implies that the current interest rate differential has predictive
power for the future excess return. Consider only linear prediction, we will have E¢; |(R;—
R}) = 7o + v1(Re — Rf) + viq1, where v = cov(§41, Rt — R})/var(R; — Ry). Therefore,
the UIP regression coeflicient 3 can be expressed as 3 = 1+ ;, where 7, measures the bias
of regression coefficient due to the predictability of interest rate differentials to the future
excess returns. Since both §;,; and R; — R} can be expressed as a moving average process
of past structural shocks in a structural VAR system, ; can be decomposed into different

structural shocks. Suppose there are n structural shocks, i.e. u},... ,u}, then

Y1 = cov(§pi, R — RY)/var(Ry — Ry)
= Xiqcov(§pqq, Be — Rﬂui)/U(LT(Rt — R})

s var(Re — Ri|ut) cov(&qq, Ry — Rf|uY)
= war(Ry — RY)  wvar(Ry — Rf|uf)

Therefore the contribution to the UIP regression deviation from U.S. monetary shocks
can be decomposed into two parts: one is its contribution to the volatility of interest
rate differentials, i.e. var(R; — Rf|u™)/var(Ry — R});'3 the other is the UIP regression

coefficient conditional on a world with only the presence of the U.S. monetary shocks, i.e.

cov(§;y1, By — Rf[u™) fvar (Ry — Ry|u™). 1

The estimated results of the conditional bias and the U.S. monetary shocks contributions
are in Table 12. The results show that U.S. monetary shocks cause a downward bias in the
UIP regression coefficient. However, their contribution is negligible. None of them is larger

than one percent.

2For notation simplicity, interest rates here are referred to monthly rate already. There-
fore, I omit the division of 1200.

13This part is the variance-covariance decompostion for interest rate differentials. The
symbol ”|u™” does not mean that it is conditional on the information of 4™, but conditional
on the information that other shocks are zero all the time.

“The computation of this conditional regression coefficients is in the appendix to this

paper.
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5.2.4. How Important Are U.S. Monetary Shocks in Accounting for UIP Deviation Per-
sistence. Figure 10 shows the impulse responses of the UIP deviations. For all four countries,
a U.S. monetary shock that increases U.S. interest rate by one percent in annual rate will
decrease the future excess return of foreign asset investment. However, this excess return —

in favor of U.S. investment — will disappear gradually through time.

The estimated conditional serial correlation of the excess returns for four countries are
in Table 13.15 Though they are consistent with the positive autocorrelation we saw in Table
11, the one-period lagged autocorrelations are too small. U.S. monetary shocks themselves

do not generate the extent of serial correlation that we see in the data.

6. Conclusion

In this chapter, I construct a long-run identification method that can partially identify
the permanent structural shock, when — as is commonly the case — we believe in a long-run
proposition regarding its effect which is over-identifying. Isolating this structural shock
requires two other assumptions: (i) the shock to be identified is uncorrelated with other
structural shocks; and (ii) there is no linear combination of other structural shocks that

produces the same long-run effect as the shock to be identified.

I applied my method to identify U.S. monetary shocks based on long-run neutrality
and homogeneity. The application is used to study not only the internal effects of U.S.
monetary shocks but also the international transmission of U.S. monetary shocks to four

different foreign countries: Germany, France, Italy and the United Kingdom.

The structural VAR study in this chapter is also used to study the uncovered interest rate
parity(UIP) puzzle. I analyze whether U.S. monetary shocks can account for two different
aspects of deviations from UIP. One is the predictability of the interest rate differentials

for the future excess returns of foreign investment; the other is the serial correlation of the

5The computation of the conditional serial correlation of excess return can be obtained
through its impulse response function. For detail, please refer to the appendix.
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excess returns. I found that though U.S. monetary shocks generate these UIP deviations
with the right sign in each case, the contributions of monetary shocks to accounting for the

general deviations are small.
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TABLE 1. Unit root test for money stock

Ng-Perron test statistics MZ, MZ, MSB

Friedman and Schwartz data: —15.0378* —2.7243* 0.1812*
post Great Depression

post WWII data: pre-Volcker —0.9696  —0.4369 0.4506
period

post WWII data: post-1983 —1.7246  —0.7655 0.4439
period

Asymptotic critical values: 5% —17.3000 —2.9100 0.1680

10% —14.2000 —2.6200 0.1850

* significant at 10 percent level

1 Null hypothesis is that the series has a unit root.

I All test statistics are constructed under spectral GLS-detrended (including constant,
and linear trend) autoregression with regression lags determined by the Modified
Schwartz Information Criterion. The maximal lag allowed is 6.

TABLE 2. Friedman and Schwartz data: Geweke test

X variables f,,—x(0) 80% C.I. Lags in VARs*
Y 0.00013  (0.00000,0.00030) 4
m—7p 0.18871  (0.00204,0.43581) 4
Yy, m—p 0.15790  (0.02022,0.35669) 1
of 0.00215  (0.00046,0.00464) 4

T v =p-+y—m is the income velocity of money.
* lags are selected by BIC with maximal lags allowed to be 5.



TABLE 3. Friedmand and Schwartz data: Unrestricted Estimation of the
VECM

(a) Cointegrating vectors (3
Y m p
B 16.4466 —11.6244 5.9478
(b) Adjustment coefficients «
Y m p
a —0.0024 -0.0156 —0.0034

TABLE 4. Friedmand and Schwartz data: Cointegration test

(a) Three Variable Case

Hy H; Q statistic d.f
LRN as (6.7) not Hy 1.5688 1
(b) Four Variable Case

Hyp Hy Q statistic d.f
LRN as (6.8) not Hy 2.216 1
LRH as (6.9) not Hy 3.4106 2
LRH LRN 1.1946 1

* significant at 10 percent level
** gignificant at 5 percent level
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TABLE 5. Post-WWII Quarterly data: Geweke test

(a) Pre-Volcker Data

X variables f,x(0) 80% C.I. Lags in VARs*
Y 0.50099 (0.09926,0.90873) 1
m—p 0.00322 (0.00003,0.00775) 1
Y, M —p 2.64590 (0.83660,4.76890) 1
v 0 N.A ** 0

(b) Post-1983 Data

X variables f,,—x(0) 80% C.L Lags in VARs*
v 0.39254  (0.04648, 0.84426) 2
m-—p 0.57986  (0.02868,1.31810) 1
Yy, m—p 0.53938  (0.17882,0.94721) 1
v 0.12082  (0.00406,0.28649) 2

* lags are selected by BIC with maximal lags allowed to be 6.
** when there is no lag selected, f,,,—x(0) is always zero
under the recursive identifying assumptions.

TABLE 6. Post-WWII Quarterly data: Cointegration test

(a) Pre-Volcker Data

Hp Hy Q statistic  d.f
LRN as (6.8) not Hy 0.8657 1
LRH as (6.9) not Hy 8.9192** 2
LRH LRN  8.0535"* 1
(b) Post-1983 Data
Hy Hy Q statistics d.f
LRN as (6.8) not Hy 0.7159 1
LRH as (6.9) not Hy 0.8176 2
LRH LRN  0.1017 1

* significant at 10 percent level
** gignificant at 5 percent level



TABLE 7. VECM Selections

lags p cointegrating rank r

GM 1 2
UK 1 2
FR 1 2
IT 1 2

TABLE 8. Long-run neutrality test

Countries Q statistics' d.f. Countries Q statistics d.f.
GM 0.6161 1 FR 0.0249 1
UK 0.5404 1 IT 0.0254 1

T The Q statistic follows a x? distribution asympotically
with 7 — (k — 1) degrees of freedom.

* significantly reject (5.2) at ten percent size.

** significantly reject (5.2) at five percent size.

TABLE 9. The estimated long-run responses of foreign exchange rates

Country (%) Country (%)

GM 411747 FR 5.1599

UK 4.4238 IT 2.1253

1 The estimations are based on the normalization
of the long-run response of the U.S. money

to one percent increase.
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TABLE 10. The UIP Regression

Country Country
GM —1.8274 FR —1.3781
(0.71046) 1 (0.64268)
UK —2.6152 IT 0.17877
(1.1619) (0.45116)

1 The numbers in the parentheses are
the Newey-West consistent estimates of
standard errors.

TABLE 11. Sample Estimated Serial Correlation of UIP Deviations

lags GM FR UK IT

1 0.152** 0.323** 0.096 0.374**
2 0.062 0.072 0.015 0.059
3 0.030  0.121* 0.009 0.079
4 0.013 0.026  0.038 0.052
) 0.022  0.051 0.024 0.062
* significant at ten percent

** gignificant at five percent

TABLE 12. UIP regression

Countries conditional bias 7y; weights of contribution (%)

GM -9.20171 0.000
UK -4.97988 0.063
FR -12.8279 0.000

IT -2.97444 0.131




TABLE 13. Serial Correlation of UIP Deviations Conditional on the U.S.

Monetary Shocks

lags

GM

FR

UK

IT

U W N~

0.0116
0.0109
0.0101
0.0090
0.0079

0.0112
0.0107
0.0101
0.0091
0.0079

0.0108
0.0108
0.0099
0.0087
0.0074

0.0047
0.0052
0.0050
0.0045
0.0039
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F1GURE 2. Cointegrating Vector Space and the Long-Run Effect of Money:
A Trivariate Example
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F1GURE 5. Long-Run Proposition Test on the Annual Data: Friedman and
Schwartz Method
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FIGURE 6. The Geometry Relations Between Restricted and Unrestricted
Estimates of the Cointegrating Vectors: Trivariate Case
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F1GURE 7. The Geometry Relations Between Restricted and Unrestricted
Estimates of the Cointegrating Vectors: Four-variable Case
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F1GURE 8. Long-Run Proposition Test on the Quarterly Data: Friedman

and Schwartz Method
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Appendices to Chapter 1

1. Solution to a Simple Macro Model

(L.1) ye = O(pr— Er1pr) +uf
(1.2) pe = gmi—y+uf
(1.3) my = ami_1 +u

First, replace p in (1.1) with (1.2); replace all m with (1.3). Output is then determined

vy = 0 [(gamt,l + guy® — y + uf) — (gamy—1 — By + Ez%l“f)] + uf
_ m d d Y
= W(Etflyt + guy +uy — Etflut) + uj

where m = /(1 + ). Taking condition expectation F;_; on both sides, we find Fy_1y; =
(1+ 0)E;_1u!. Therefore,

(1.4) ye = mgul + m(ud — Er_qud) — 0(ud — Er_qud) 4+ (1 + 0)u?.
With recursive iteration, the motion of my is:

(1.5) my = almg + Sl

Combined with (1.4) and (1.5), the motion of p; is:

m = galmo+ goi ol

—rgu — w(uf — Byyu) + 0(ul — By — (14 0 + uf.
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2. Solution to the Simple Macro Model in Section 3.3.4

(2.1) ye = o(my — Erimy) +uf
(2.2) my = Y+ u;”
(2.3) w = ul | +uf

Replace my in (2.1) with (2.2), then y; = ¢(ys +u)® — E¢r—1y:) +uf. Taking the expectation
E;_1 on both sides, we get Ei_1y = Ey_juf = u}_;. Hence y, = nul™® + nuj + uf where
n=¢/(1—¢). If we take the first difference for both sides, then Ay, = nAuj" + nAuj + uj.
Auf" can be replaced with Am; — Ay according to (2.2). Also (2.2) can be expressed as
Amy = Ays + yp—1 — my—1 + uj*. Hence
L+n —n Ayq 0 Y1 Uy
1 -1 +
-1 1 Amy 1

m

where @y = nAuj + uj. Inverting the matrix associated with (Ay;, Amy), we obtain

Ay n Yt—1 8%/
= 1 -1 +
Amy 1+n m—1 ey
where
ef L n iy
eyt 1 1+n uy®

3. Algorithm for the Maximum Likelihood Value of Lemma 2

1. Estimate 3 unrestricted. And solve the following eigenvalue problem, given the

unrestricted estimates B,
Al A N >
(3.1) AB B~ BHL(H HL) "' H, 3| =0

for eigenvectors (vy,--- ,vp—s41) corresponding to the largest » — s + 1 eigenvalues.

Let 32 =0 (U1, Up—sy1]
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2. Fix 8y = Bz; estimate [3; with Bl = [b1,- -+ ,bs—1] where by, -+, bs_1 are the eigenvec-

tors associated with the s — 1 largest eigenvalues to the following eigenvalue problem.

= 0.

PS11.8, = 510.5,500.5,501.5,

3. Fix f; = Bl; estimate ¢ with @ = [cpl,--- ,cpT,sH} where ¢q,--+, ¢, 41 are the
eigenvectors associated with the r—s+1 largest eigenvalues to the following eigenvalue

problem
)\Hlj_Sll.ﬁlHJ_ — Hﬁ_Slo_ﬁls&fmS()lﬂlHJ_‘ = 0.

This gives an updated estimate BQ =H,) .
4. Continue with 2 and 3 until convergence. Then compute the log-likelihood function

value under the converged 3, and 35 estimates. This gives the Lpyax value of Lemma

2.

Two steps—steps 1 and 4—are worth explained here. The first step is to find a reasonable
initial (35 value for further iterations. Given unrestricted estimates ﬁ, step one finds an initial
value ﬂéo) whose vectors are linear combinations of B and are as close to sp(H ) as possible.
The solutions to the eigenvalue problem(3.1) solve for the problem. The fourth step requires
researchers to set up some convergence criteria for the algorithm to stop in a finite step.
The criteria we used in this chapter is to stop the program when the likelihood function
value is still climbing but its incremental magnitude is small. Therefore the ) values we
get in practice are approximates. A user-friendly Matlab program can be received from the
author upon request. In this program, users can ignore all econometric problems stated in

this subsection, and only need to specify the H matrix for the program to compute () value.

4. Unrestricted Maximum Likelihood Estimation

This is excerpted from Theorem 6.1 of Johansen(1995). The maximized value LY. of

max

the likelihood function of the VEC model-whose cointegrating rank is equal to r—without
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any restriction is given by
(Lina) " = [Soo| Ty (1 = Xi)

where 1 > A; > --- > )\, are defined as the largest r solutions to the eigenvalue problem:

|AS11 — 51050_01501‘ =0.

5. R-Fold Replications

Given the estimates B(L) of B(L) in (6.1) and the estimated variance covariance ma-
trix Q) of the error terms, we use the following data generating process to generate each

replication sample.

with e, ~ N (0, Q) Let p be the number of lags in the system.

1. Using first p observations of (A Xy, Am;) as initial values
2. Sampling T observations of error terms from N (0, )
3. Generate T observations of (AXy, Amy)

4. Compute estimated f,,—x(0), call it f;’;n_)X(O).

Repeat 2 to 4 for R times (R=200 here). Let f,,,x(0) = X& Aﬁn_)X(O)/R. We compute
the percentage bias b of the f, . x(0) estimate. b% = f, . x(0)/ finx(0) where fn,_x(0)
is the estimate from the true sample. The percentage-bias adjusted estimate of f,,—x(0)
is then b% me x(0) which is the number we reported in the table. Let | = [aR/2] and
u = R — [aR/2], and fr(rz)_)X(O) denote a typical order statistic. The 100(1 — «) percent

confidence interval is (b® fy(rlLL +(0),0f fy(;i +(0)).

6. Data Source: Friedman and Schwartz Data

All series are from Friedman and Schwartz (1982) from 1940 to 1975 , Table 4.8.
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MNY=Money Stock (Billion $)
NI=Nominal Income (Billion $)
RI=Real Income (Billion 1929 $)
PRICE=Implicit Price Deflator 1929=100
POP=Populations (Millions)

INT=Short-Term Commercial Paper Rate (Annual Percentage)

1. Time series in the F'S test:

m = log(MNY)
y = log(RI)
Y = log(NI)

2. Time series in the Geweke test!6:
m = log(MNY/POP)
y = log(RI/POP)
Y = log(NI/POP)
3. Time series in the cointegration test

m, y, and Y are the same as in the Geweke test.

R =1INT.

7. Data Source: Post-WWII Quarterly Data

Sample period: 1959:1 to 2002:2

MNY=M1 (Billion $), seasonally adjusted, Federal Reserve Board of Governors: H.6

Release

16FS series are not divided by the population to be consistent with Fisher and Seater
(1993).
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NI=Gross Domestic Product (Billion $), seasonally adjusted, U.S. Department of Com-

merce, Bureau of Economic Analysis

RI=Real Gross Domestic Product (Billion of chained 1996 $), seasonally adjusted, U.S.

Department of Commerce, Bureau of Economic Analysis

PRICE=Implicit Price Deflator 1996=100, seasonally adjusted, U.S. Department of

Commerce, Bureau of Economic Analysis

POP=Civilian Noninstitutional Population, end of month (Thousands), U.S. Depart-

ment of Labor, Bureau of Labor Statistics

INT=3-Month Treasury Bill Secondary Market Rate, (Annual Percentage), Federal Re-

serve Board of Governors: H.15 Release

1. Time series in the F'S test:

m = log(MNY)
y = log(RI)
Y = log(NI)

2. Time series in the Geweke test:
m = log(MNY/POP)
y = log(RI/POP)
Y = log(NI/POP)
3. Time series in the cointegration test

m, y, and Y are the same as in the Geweke test.

R = INT/400.



Appendices to Chapter 2

1. Computation of the § Conditional on Monetary Shocks

Suppose E(&; 1| (Ri—R;)/1200) = ~o+71 (Re—R;) /1200, then E(Asq|(R:—Rf)/1200) =
(v +79) + (1 +71) (R — Rf)/1200. By definition,
M1 = cov(§ep, (B — Ry)/1200) /fvar((R; — Ry)/1200).
If we compute the UIP regression conditional on the monetary shocks only, then the condi-

tional UIP regression is
E(Asy1|(Ry — Rf)/1200,u™) = (e + 70) + (1 + 1) (B — Ry) /1200

where ¥; = cov(§;, 1, (R¢—Ry)/1200/u™) /var((R;— Rf)/1200|u™). An easy way to compute
4, is to use the impulse response functions of UIP deviations and interest rate differentials.

Suppose
lu™ = bou +Yyu g+ oup o + -
(Re — R{)/100[u™ = ¢ou” + dyui™y + pou” o + - -
then

"= (Ego'ioﬁbjwjﬂ) /Z}?io@b]z-
2. Computation of the Persistence of UIP Deviations

The impulse response function of the &, to the forecast errors in (2.1) can be expressed

as

&=+ Bieg—1+Bogg1 + -+
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Given the identified 7,,, the impulse response functions of &, conditional on monetary shocks
is
Eeluj® for j <t = oui" +hyui"y +Pouiy + -+
with ¢; = Bjm,, where By = I. Therefore,
cov(Eppp, §uf, G < t+ k) = (B20¢ks ;) o2,
var(§plui’, j < t+k)= (E?iolbf) o2,
Uar(§t|u;-”,j < t+k)= (EJO-';O@ZJJQ-) afn.
It follows that

Pr = (Z;.;Owarjwj) / (Eﬁﬂd’?) :
3. Data Source

All data are from IFS, September 2002, disk unless otherwise specified. Data are

monthly data. The sample period is from 1979:01 to 2001:05.
INDP = U.S. industrial production, data series number is 11166..1ZF.
MM = U.S. money aggregate (billion $). Data series number is 11159MACZF.
CPI =U.S. CPIL Data series number is 11164...ZF.

R =U.S. nominal interest rates (annual percentage). Data series number is 11160LD-

CZF.

R* =Foreign nominal interest rates (annual percentage). Data series numbers are

11260EA.ZF for UK; 13260C..ZF for FR; 13460B..ZF for GM; and 13660B..ZF for IT.

FOREX =Foreign exchange rate (US § / Foreign Currency). Data are from the Federal

Reserve Bank of St. Louis.

y =log(INDP)
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m = log(M M)
p = log(CPI)
s =log(FOREX)

To take into account the structural change due to the reunification of West and East
Germany on July 1, 1990, R* and s series for GM have been transformed to be orthogonal

to the dummies {d;, d;—1,... ,di—¢} where d, = 1 if t =1990:07; and d; = 0 otherwise.
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