Investments, Financial Structure and Insiders' Control of the Cash-Flow: An Intertemporal Discrete-Time Framework and a Qualitative Analysis

Marco Mazzoli*

March 30, 2003

Abstract. This paper deals with the problem of simultaneity between the firm's investments and financial structure in a context of dynamic optimization where the process of information spreading that associates the profitability of the firm to its share price only takes part gradually, due to market imperfections and diverging incentives between shareholders and managers. In particular, the latter are assumed to hold the control of the firm and decide upon the allocation of its cash-flow. This establishes a link between cash-flow and rate of discount of future profits and generates a "financial channel of transmission" of the real shocks.

Keywords: investment, intertemporal firm choice, capital structure, financing policy

JEL Classification: D92, G32

* Department of Economic and Social Sciences, Catholic University, Via Emilia Parmense 84, Piacenza, 29100, Italy, e-mail: mazzoli62@interfree.it. I am very grateful to Marzio Galeotti for his extremely helpful comments and criticism. Previous versions of this paper have benefited, at different stages, from discussions and comments by Vela Velupillai, Steve Fazzari, Annalisa Cristini, Sergio Pastorello, Daniele Ritelli, Geo Harcourt, Pino Marotta, Mimmo Marino and the participants into various seminars at the Universities of Bergamo, Urbino and Nottingham Trent. Obviously I alone am responsible for any mistakes or shortcomings.
1 Introduction

The behaviour of the stock markets at the end of the 1990's has been the object of a long and lively debate. High volatility and abnormal capital gains, specially in hi-tech sectors, have successfully attracted for a few years an increasing number of financial investors. The assumption of market efficiency has been questioned by many empirical studies, following, in particular, the literature on “excess volatility” (Shiller, 1989), while other empirical contributions, concerned with the interaction between managers and shareholders, provide evidence on the fact that firms tend to accumulate cash windfalls without distributing them to shareholders (Blanchard et al., 1994) showing that the . Along these lines, the data reported in Blanchard (1993) showed that the dividend-price ratio had fallen constantly and substantially since the late 1970’s, independently on the interest rate on bonds; Shiller’s (2000) best-seller, named after the famous statement by Alan Greenspan, after showing data on the complete absence of correlation between the increasing trend of the U.S. stock market at the end of the 1990’s and the profits of the firms in the same period, provides a number of explanation based on “non-economic” factors affecting the “irrational” investment choices of millions of individuals. Miller et al. (2002) provide a sophisticated explanation of the incredible value reached by the U.S. stock at the end of 1998 (over 13 billion dollars, i.e. twice the U.S. GDP and half of the world GDP) based on moral hazard induced into the financial investors by “jumps” in the expected attitude of the U.S. Central Banker.

Leaving aside the well-known controversies on how to interpret the behaviour of the highly volatile stock market indices of the last decade, two issues are taken into account in this paper. First, how to provide a rational explanation to the question of why do firms tend to accumulate cash windfalls. In particular, is there a connection between the allocation of cash windfalls, stock price, dividend policy and real investment decisions? Second, how
could we modify our standard investment model in order to account for the empirical evidence of a large part of developed economies (for instance in Continental Europe) are still characterized by “bank-oriented” financial systems (see, in this regard, Deutsche Bundesbank, 1999, Schmidt, 1999, Allen and Gale, 2000) where hostile takeovers are rather rare, the control of large firms is often sold through private negotiations among controlling groups and, as a consequence, the market for shares is not necessarily associate to the market for firms’ control?

Of course, any view in this regard depends on what are one’s opinion about market efficiency, in particular, whether or not share prices reflect the net present value of dividends, whether or not dividend payments adjust completely to changes in the flow of profits. Any hypothesis on the relation between stock prices and profits should (at least implicitly) rely on some assumptions concerning the diffusion of information about the profits and the profitability of the firm.

Kurz’s (1994a, 1994b) “rational belief” theory provides an alternative notion of rationality vis-à-vis the conventional rational expectations approach. His theory is based on the consideration that individuals cannot possibly have structural knowledge of the data generating processes because a relevant part of uncertainty about the future is determined by the joint actions of other individuals: in this sense Kurz criticizes the conventional way of formalizing uncertainty by means of exogenous random shocks, since most of the uncertainty is actually endogenously determined by agents’ future behaviour. Kurz (1994a) contains a theorem showing that when agents do not have structural knowledge and one uses only statistical regularity as a foundation for a rational theory of belief, the objective rationality criteria can only provide some asymptotic restrictions on the possibly “true” model consistent with observable data. This means that there is a whole set of significantly different theories completely consistent with the data, even if one put no restrictions whatsoever on the agents’ ability to collect and process
data. The selection by each agent of a particular theory among all those consistent with the data must necessarily be based on subjective criteria (in Kurz’s terminology, individual theories about the environment). In Kurz’s views, one could identify a society by the “distribution of beliefs” and such distributions can be as important as the distributions of preferences for the explanation of economic performance.

Beltratti and Kurz (1996) show that the rational belief theory can explain (both theoretically and empirically) the so-called equity premium puzzle, by taking into account the endogenous propagation of expectations, in a mathematical formalization of Keynes’ beauty context.

In this paper, we take the “critical” view on stock market efficiency expressed in the above-mentioned contributions and assume that the behaviour of the firm’s share prices may substantially diverge, at least in the short run, from that implied by the net present value of future dividends. This affects the dividend policy and the financial decisions of the firm in a context where the firm chooses its investments and financial structure simultaneously and the managers hold the control of the firm and decide upon the allocation of the internally generated cash-flow.

The relevance of the firm’s financial structure for investments has been the object of a great deal of contributions in macroeconomics and monetary economics (after the seminal contribution by Fazzari et al., 1988), industrial economics (for instance, within the literature on the “deep pocket argument”, by Telser, 1966, Benoit, 1984, and Poitervin, 1989a and within the literature on the “limited liability effect”, by Brander and Lewis, 1985 and Poitervin 1989b) and, obviously, financial economics. However, modelling simultaneous decisions of investment and financial structure in an intertemporal context is still controversial. In the conventional “principal-agent” problem between managers and shareholders it is common to assume that the managers enjoy some discretionary power in allocating the internally generated cash-flow; if we further admit that in an imperfectly competitive framework a firm might
have incentive not to reveal the amount of pro...ts associated to with a certain level of physical capital, we might turn out to have some difficulty in defining the concept of expected pro...ts generated by the newly installed capital1.

In a world of financial market imperfections, where, due to information asymmetries, the internally generated cash...ow constitutes a cheaper source of finance than borrowing and issuing new shares, the behaviour of the share price and capital gains may affect the dividend policy of the management, which, again, affects the rm's financial structure by determining the rate of pro...ts retention, which, in its turn, determines the volume of investments financed by internal finance. All that may have relevant implications for the standard intertemporal investment decision. If the rm's financial structure is affected by pro...ts retention and if the cost of financial capital is affected by the rm's financial structure, then for the intertemporal rm's investment decision, to the extent that the (rm specific) discount factor is affected by the cost of financial capital, a causal link is established between the rm's pro...ts, financial structure and discount rate for the future pro...ts. Timing in the coordination process between financial and investment decisions is essential for the definition of...ow variables. For this reason we introduce here a discrete-time optimal control model with a recursive structure, with financial markets imperfections and diverging incentives between the management and the external shareholders.

The next section contains the description of the model, section 3 contains a solution approach and the last section contains a few concluding remarks.

1 Several examples on how different individuals might attribute different value and profitability to capital goods are provided by the literature on contracts and rm's financial structure à la Grossman, Hart and Moore. In this regard, see, for instance, Hart (1995).
2 The model

In this model financial and real investment decisions take place simultaneously. The goods market is assumed to be imperfectly competitive, although perfect competition can be a particular case. On the basis of the assumptions summarized in the previous section, the management is assumed to be able to decide how to allocate the firm's cash flow, once the creditors are repaid and the shareholders have been remunerated consistently with a yield which depends on the average market yield on shares. The average market yield on shares will, of course, influence the remuneration that the owners expect from their financial investments, but, given that the managers are assumed to fully control the firm and the allocation of its cash-flow, the actual amount of dividends paid out to the shareholders is the result of an implicit negotiation between management and external shareholders: it can be affected by a number of factors, in general related to the existing relation between management and external shareholders. In particular, the management may or may not have incentive to reveal information on the firm's profitability. If so, the stock price might not react (at least in the short run) to changes in the firm's profitability. On the other hand, if we allow for the possibility (at least in the short run) of speculative bubbles, and if we admit that in the short run the share price might overshoot with respect to its theoretical level implied by the net present value of the future profits, we must include this fact in the rational financial choice of the management.

We therefore assume, more generically, that the management pay out an amount of dividends consistent with a share remuneration assumed to be a function of the (exogenously given) market yield on shares, which, in the short run, as we said, is to be affected by a number of factors not necessarily correlated to the actual profits of the firm and, therefore, is not under the direct control of the managers. For instance, if the firm's shares experience a positive bubble characterized by persistent abnormal capital gains, the man-
agement probably needs to pay less dividends in order to keep the external shareholders happy and remunerate them at a satisfactory yield. Having assumed that the financial and real investment decisions take place simultaneously, the point is: in which way (given imperfect financial markets and diverging incentives between managers and external shareholders) does the share price affect dividend policy, profit retention, risk premium on external finance and hence real investments?

The model is formalized with the optimal control approach, in order to explicitly refer to the standard investment model and emphasize how different can be the results by simply introducing some common assumptions of financial market imperfections, diverging incentives between managers and shareholders, when the share market is not necessarily associated to the market for control. In order to take into account the relevance of timing in real and financial decisions (which cannot really be fully captured in detail within an optimal control model in continuous time) we introduce here a recursive structure in the intertemporal problem of the firm's investments.

The capital is installed at time \(t \), and is financed with the financial sources raised by the firm at time \(t-1 \) with a contract establishing also the debt remuneration at time \(t \). The investment decisions, the production process (generating the profits \(\pi_t \)) as well as the payment of the interests on borrowed capital and the dividends on the own capital take place at time \(t \).

\(\beta_{t+1} \) is the weighted average of the cost of own capital and borrower capital, established at time \(t+1 \) and paid at time \(t \).

We assume that the time horizon of the decision makers (the management) corresponds to their expected residual time \(m \) in power at the company. \(^2\)

\(^3\) This assumption is actually as arbitrary as assuming that the time horizon is infinite.
The problem of the firm may be represented in the following way.

\[V_t = \left(\prod_{t=1}^{X} \left(\frac{1}{i} k_{t-1} \right)^{\phi; \Pi^d} \right) \left(\frac{1}{1 + \frac{\phi}{\Pi^d} k_{t-1}} \right) \]

(1)

where \(\phi; k_{t-1} \) is defined as the (strictly concave) maximum value function, conditional on the parameter \(\phi \) (describing the market structure and the competitive environment) and on the labour costs \(\Pi^d \). In what follows we assume \(\phi \) and \(\Pi^d \) to be given and will omit them in the rest of the paper.\(^4\)

\(k_{t-1} \) is the capital installed at time \(t-1 \), \(I_t \) is the amount of investments (decided at time \(t \) that will contribute to determine the stock of capital at time \(t+1 \)).

The maximand 1 is subject to the following constraints 2, 3, 4:

\[I_t = k_t - (1 - \alpha) k_{t-1} \]

(2)

\[\frac{1}{i} (k_{t-1}) + \sigma^e_{t+1} k_{t-1} + \xi B_t + \xi E_t = I_t \]

(3)

with \(0 < \alpha < 1 \) and where

- \(B_t \) represents the borrowed funds (and, of course, \(\xi B_t = B_t k_{t-1} \))
- \(E_t \) represents the existing stock of the firm's shares, valued at their issue price

\(\alpha \) is the rate of capital depreciation.

The non-distributed profits can be interpreted - loosely speaking - as financial reserves accumulated inside the firm and are defined as follows:

\(^4\)To justify this sort of "ceteri paribus" assumption we can think of a labour market characterized by a simplified "efficiency wages" mechanism, where wages and employment are fixed in the short run and are mainly affected by macroeconomic factors.
\[
\frac{1}{t} (k_{t-1}) \cdot \frac{k}{t-1} = W_t:
\]

We define the newly borrowed finance as \(B_t = B_{t-1} - B_{t-1} \cdot X_t \).

3 is a flow-of-funds condition saying that the new investments \(I_t \) can be financed either by issuing new shares, or by borrowing money or with the residual cash flow which is left after remunerating the financial capital employed to finance the physical capital \(k_t \).

The latter is defined as the weighted average of borrowing and non-distributed profits (i.e. profits in excess of the dividends that the firm pays out to remunerate the shareholders at the exogenously determined yield \(r^s_t \)).

For the purpose of our model we rule out the case of new shares issue, i.e. we consider the case where the time path and (exogenously given) variation of the share price and dividends is such that \(C E_0 = 0 \).

Therefore, we rewrite 3 as follows:

5Introducing the possibility for the firm to issue new shares would not have modified the qualitative meaning of our analysis. For instance, if we define \(r^s_{t, t} \) as the yield on the firm's share at time \(t \); \(p_{s, t} \) the share price, \(C p_{s, t} \) its variation with respect to time \(t_{i-1} \); \(N_t \) the number of existing shares, we could interpret the situation where the firm issues new shares as the case where, given \(D = r^s_{t, t} \cdot C p_{s, t} \cdot C N_t \), \(C p_{s, t} \cdot C N_t \), we have \(C p_{s, t} \cdot C N_t > r^s_{t, t} \cdot C p_{s, t} \cdot C N_t \), i.e. a case of "negative dividends (like in Greenwald and Stiglitz, 1988, 1990) generated by an extremely favorable valuation of the firm by the market, which makes extremely convenient for the management to raise risk capital."
\[
\frac{1}{k_t} (k_{t-1} - 1) C^u_{t} + X_t = I_t
\]

Furthermore, \(C^u_t\) is defined in the following way:

\[
C^u_t = \min_{i_t} \left(1 + (1 - i_t) r_t^f + \А^{(1_t)}(1) \right)
\]

where \(r_t^f\) is the risk-free interest rate, \(\А^{(1_t)}\) is the risk premium on the interest rate on the firm's borrowing, which is assumed to be a monotonically increasing function of the gearing ratio \(1_t = B_t/k_t\).

\(C^u_t\) represents here the minimum value function of the firm's financial cost minimization problem.

At every time \(t\), the firm is optimizing its financial structure by choosing the optimal gearing ratio \(1_t = B_t/k_t\) that minimizes the cost of financial capital, defined as the weighted average between the borrowed and the internally generated finance. \(C^u_t\) obviously represents the rate at which the firm can raise external finance for its investments and transfers resources from time \(t\) to time \(t+1\).

The optimized financial structure determines the rate of discount appearing in the intertemporal problem, which is conditional on the flow of non-distributed profits of the previous period. In this way the "firm-specific" rate of discount is recursively determined as a function of the lagged stock of physical capital and lagged cost of financial capital\(^6\).

\(^6\)The idea of simultaneous optimization of the firm's financial structure (determining the rate of discount of future profits) was first introduced by Bernstein and Nadiri (1986) within a continuous time optimal control model, and in a different context from the one analyzed here, since they assumed no agency problem between the shareholders and the management and no distinction between the controlling group and the external shareholders which implies that the management is maximizing the expected wealth of the general shareholders.
In 4, \(i_t \) represents the cost of the internally generated own capital, defined as follows:

\[
i_t = \frac{D}{E_0 + R_t}
\]
(5)

where

\[
E_0 = p_{s0} N_t
\]

and

\[
D = r_{s,t} p_{s,t} N_t i \cdot p_{s,t} N_t
\]
(6)

where

\(r_{s,t} \) is the yield on the firm's shares at time \(t \),
\(p_{s,t} \) is the share price, \(\Delta p_{s,t} \) its variation with respect to time \(t \) \(\Delta t \),
\(N_t \) is the number of existing shares.

In other words, given the share price, the short run capital gain and the (exogenous) yield \(r_{s,t} \) that the management allow for the shareholders, we determine the amount of dividends paid out. In this regard, we could have two possible situations: the first (and extreme) one is the standard neoclassical investment model; the second one corresponds to the situation where the management strictly pays out an amount of dividends consistent with the market yield on shares and the share price might not always reflect (in the short run) the net present value of the future profits.

In order to have the standard neoclassical investment model with efficient financial markets:

a) share prices adjust perfectly and instantaneously to the value implied by the profits;

b) cash flow (net of adjustment costs of investments) are entirely exhausted into interests and dividends payments (i.e., no agency problem and
no incentive for the managers to keep the cash flow - as far as possible given the yield on shares - inside the rm).

In all the other cases, the stock price may diverge, in the short run, from the value implied by the net present value of the future pro.ts. This is what we are assuming in the rest of the paper.

If stock prices were to be affected by the endogenous propagation of expectations (like, for instance, in Kurz’s “Rational Beliefs” theory), then the share price would be subject to a number of shocks and show a path apparently uncorrelated (or only very weakly correlated) in the short run to the actual pro.ts.

In order to explain the “irrational exuberance” of some years ago, many mainstream authors (like, for instance, Miller, Weller and Zhang, 2002) had to invoke some sort of long lasting bubble in order to justify the puzzle of the Nasdaq index in 1996-2001: in this context again stock prices would be - in the “short run” - exogenous with respect to the “real” pro.ts, although the “short run” would be in this case, as short as a decade.

As we said, we take Kurz’s skeptical view on financial markets efficiency and admit that stock prices may diverge (although under very particular conditions, such as those witnessed by the Nasdaq index in the last decade) from the value implied by the rm pro.ts. In particular, it is possible that the share price in the short run is potentially affected by persistent bubbles or even affected by the incentives of the managers to keep the cash-flow as much as possible inside the rm. The managers might not have incentives to fully reveal all the information on the rm’s profitability and they tend not to exhaust pro.ts into dividends and interest payments.

Under these assumptions, we can allow ourselves to think of the share price as exogenously determined in the short run. Given the share price and its short run capital gain, the management of the rm choose a yield r_{st}^m which determine the amount of dividends they want to pay to the shareholders. r_{st}^m could be interpreted as a financial market constraint on the behaviour of...
the management: it represents the remuneration that keeps the shareholders happy. It could be interpreted as the result of an implicit negotiation between the shareholders and the management, with asymmetric information.

Note that for the shareholder the yield on shares is given by \(r_{st} = \frac{D_{st}}{p_{st}} N_t + \frac{d_{st}}{p_{st}} P_{st} \); while for the management the cost of capital is affected by the (exogenous) book value \(p_{0t} \) of the shares. However, for a given (and exogenous) value of \(\frac{d_{st}}{p_{st}} \), it is easy to verify that if it were subject to shocks, these shocks would have an impact on the dividend policy and, as a consequence, on the firm’s financial structure and investment decisions. Note that, due to the assumptions made here about the insiders’ control of the cash-flow, once the shares have been issued, their market value is relevant to the managers only to the extent that it contributes to the determination of their dividend policy. For this reason, the notation \(E_t \) and \(E_t \) is different from the notation employed to indicate the value of the newly issued shares.

The above assumptions generate not only a recursive structure in the problem but also a certain persistence of the past profits influence on the discount rate. The extent of this persistence is implicitly limited by the rate of capital depreciation \(\delta \).

Since the internally generated finance is predetermined (by the non-distributed profits at time "t - 1"), by choosing the value \(X_t \) of the newly borrowed finance, the firm also determine the maximum amount of feasible new investments at time "t" and the gearing ratio at time "t", which will be incorporated in the new debt contracts that the firm issues in order to finance part of its investments.

Let us now analyse the minimum value function \(c_t^* \): Assuming that the second order conditions be satisfied, the first order conditions are the following:

\[
\frac{dc_t^*}{dt} = r_t^f + \frac{1}{t} (1_t^i t + 1_t A_1 t^i t) i_t = 0
\]

The above equation (stating that in equilibrium the marginal cost of
borrowing equals the marginal cost of the internally generated finance) can be simplified by assuming that
\[\pi(t) = \hat{\pi}(\tau_t) + \tau_t \hat{\pi}^0(\tau_t) \]
can be rearranged into a monotonically increasing and invertible function of \(\tau_t \). One can easily verify that this would be always true if \(\hat{\pi}(\tau_t) \) is convex \(^7\) in \(\tau_t \), as we are actually assuming in this model.

In this case we get

\[\tau_t = \pi^i(i_t \mid r_t^f) \] \hspace{1cm} (7)

This means, in other words, that the gearing ratio is an increasing function of the difference between the cost of own capital \(i_t \) and the interest rate on risk-free assets \(r_t^f \), since, for a given \(r_t^f \), the higher is the cost of own capital, the higher is the incentive for the firm to borrow by increasing the gearing ratio. At each time the managers, by choosing the level of debt, simultaneously affect the investments (i.e. the control variable), the financial structure and the cost of finance.

By looking at the constraints 2 and 3', one immediately sees that they both are dynamic equations putting into relation two flow variables (\(I_t \) and \(X_t \)) with the state variable \(k \) at two different moments in time (\(t-1 \) and \(t \)).

In particular, while \(I_t \) relates the state variables \(k_{t-1} \) and \(k_t \) for a given rate of discount \(\delta_t \), \(X_t \) does the same job and in addition determines (together with \(k_t \)) the optimal rate of discount. In other words, differently from the

\(^7\) This would be true also if \(\hat{\pi}(\tau_t) \) were concave but with a second derivative sufficiently small in absolute value, i.e. if its curvature is “relatively flat”. However the assumption of convexity for \(\hat{\pi}(\tau_t) \) is rather general, since it could capture the situation where highly indebted firms would have to pay an extremely high risk premium on borrowed capital. Furthermore, if the analytical form of \(\hat{\pi}(\tau_t) \) were such that it tended asymptotically to infinity when \(\tau_t \) approaches 1, one could reproduce the case of credit rationing by introducing appropriate analytical form and parameters for the function \(\hat{\pi}(\tau_t) \):
conventional neoclassical intertemporal investment models, it is not I_t but X_t that acts as a control variable in this context.

Since we know from 3' that $\frac{1}{4}(k_{t+1})_i I_t = \frac{\partial f}{\partial t} k_{t+1} X_t$, we may express I_t in terms of the control variable X_t and the state variable k_{t+1}, while by putting together the two constraints 3' and 2 we can eliminate I_t and express the intertemporal constraints too in terms of X_t. Therefore the firm's problem can be redefined as follows:

$$V_t = (\frac{\partial f}{\partial t} k_{t+1} X_t) + \frac{X_t^{\frac{1}{2}} (\frac{\partial f}{\partial t} X_{t+1})}{(1 + \frac{\partial f}{\partial t})^{\frac{3}{4}}}$$

s.t.

$$k_t = (1 \pm k_{t+1} + \frac{1}{4}(k_{t+1})_i \partial^{\mu} k_{t+1} X_t$$

if one allowed for shocks in the profit function $\frac{1}{4}$, for instance, by letting Φ be subject to shocks, these shocks would be transferred to the rate of discount of the future profits from the next period on. In addition, as we can see again from 5, 7 and 4, the firm's discount rate is affected by the share price and in its variations. In other words, a financial shock modifying the optimal dividend policy of the firm's managers would also modify the cost of own capital, the optimal gearing ratio, and, as a consequence, the discount rate. Of course, the specific nature of these causal links would depend on the nature of the connections between $\frac{1}{4}$ and p, i.e. how efficient is the financial market and how fast does the information process go.

3 A slightly unconventional result

We are now enabled to write down the discrete Hamiltonian as follows:
\[
H_t = (\sum_{i=1}^{\infty} c_k t_i \cdot X_t) + \sum_{i=1}^{\infty} \frac{\frac{1}{2} c_k t_i X_{i+1}^{1/2}}{(1 + c_t)^i} + \\
+ \sum_{i=1}^{\infty} c_{t_i} c_k t_i \cdot k_t + \left(1 - \sum_{i=1}^{\infty} \frac{1}{2} k_{t_i} + \frac{1}{4} (k_{t_i})^2 \right) \cdot \sum_{i=1}^{\infty} c_{t_i} c_k t_i
\]

where \(c_{t_i} = c_{t_i}(1, r_t^f)\) and

\[
i_t = \frac{r_{st}^s \cdot \phi_{st} \cdot c_{N_t} \cdot \xi \cdot p_{st} \cdot c_{N_t}}{E_0 + \sum_{t=0}^{\infty} \frac{1}{4} (k_{t_i})^2 \cdot \sum_{i=1}^{\infty} c_{t_i} c_k t_i}
\]

The definition for \(i_t\) allows us to clarify the link between profits, information spreading, share price and dividend policy. For instance, if the managers do not have incentives to reveal information on the profitability of the firm, the share price might not react (at least in the short run) to increases in the profits. Therefore the numerator of \(i_t\) would not change and the denominator would increase. This means that an increase in \(\frac{1}{4} (k_{t_i})^2\) would be associated to a reduction in the cost of the own capital and, hence, on the average cost of capital.

On the other hand, if an increase in the firm’s profitability determine an increasing and persistent capital gain, the numerator of \(i_t\) would be small again: in other words, the own capital would become relatively cheap (as long as \(p_{st}\) increases) since, due to the capital gains, the management needs to pay less dividends to the external shareholders in order to keep them happy.

Given the assumptions we made on the cost of the own capital and dividends determination, any shock to the exogenous share price would be transferred to the dividends and hence to \(i_t\) and the optimal financial structure, which determines (through 7) the rate of discount of future profits. In other words, by substituting 5, 6 and 7 into 4, \(c_t\) could be defined as the following general function:

\[
c_{t} = c_{t} \cdot \sum_{t=1}^{\infty} (r_t^f; r_{st}; \frac{1}{4}; p_{st}; \xi \cdot p_{st})
\]
Assuming now that the regularity conditions for \(H_t \) are satisfied, an easy and straightforward application of TU (1991, pp. 261-264) definition of the "Discrete Maximum Principle" yields the following results:

\[
\frac{\partial H_t}{\partial X_t} = 0 = \frac{\partial H_t}{\partial k_t} = \tau_t
\]

(9)

which imply

\[
\frac{\partial^4}{\partial k_{t+1}} = \tau_t = \frac{\mu}{\partial W_t} \frac{\partial^4}{\partial k_t \partial k_t} + \frac{\mu}{(1 + \partial^4)^2} \frac{\mu}{\partial W_t} \frac{\partial^4}{\partial k_t \partial k_t} \frac{X_{t+1}}{\partial k_t} + \frac{1}{\partial W_t} \frac{\partial^4}{\partial k_t \partial k_t} \frac{X_t}{\partial k_t} + \frac{\mu}{(1 + \partial^4)^2} \frac{\mu}{\partial W_t} \frac{\partial^4}{\partial k_t \partial k_t} \frac{X_{i+1}}{\partial k_t} + \frac{1}{\partial W_t} \frac{\partial^4}{\partial k_t \partial k_t} \frac{X_i}{\partial k_t} + \frac{\mu}{(1 + \partial^4)^2} \frac{\mu}{\partial W_t} \frac{\partial^4}{\partial k_t \partial k_t} \frac{X_{i+1}}{\partial k_t} + \frac{1}{\partial W_t} \frac{\partial^4}{\partial k_t \partial k_t} \frac{X_i}{\partial k_t}
\]

(10)

The left-hand side of 10 is, of course, the marginal profitability of capital, net of the rate of depreciation of \(k_t \). The right-hand side of 10 is composed of three addends, one for each row. The first one can be thought of as the effect of how the modifications in the discount rate generated by a change in the state variable affect the way the future values of the financial flows \((\partial^4 k_t \partial k_t) \) are discounted.

The second addend (second row) describes how again the same modifications in the discount rate modify the flow of dividends and interest rates that have to be paid on the future capital \(k_t \) (which, given the balance sheet constraint of the firm, is equal to the financial capital \(B_t + R_t \)).
The third addend (third row) jointly represents the two above-mentioned effects for the remaining future periods.

The intuitive interpretation of all that goes as follows: first, any shock to the profit function on the left-hand side of the above equation (i.e. any shock affecting the functional link between profits and capital, such as technology shocks, but also shocks in the market structure or in the degree of competition among firms) is propagated to the cost of financial capital, and, therefore, to the rate of discount of future profits, the first addend on the right-hand side of the above equation. This happens because in imperfect financial markets, the cost at which the management is able to raise funds is bound to be affected by the risk premium and by the cash-flow. The conventional neoclassical investment models, where the discount rate is fixed and exogenous, miss the potential causal link between cash-flow, risk premium cost of finance and rate of discount of future profits. In this sense they might not be the more appropriate tool to analyse investment decisions with financial market imperfections where the managers control the firm's cash-flow and have incentive not to disclose all the information on cash-flow.

In addition, the converse is also true: any (exogenous in this framework) shock to the discount rate (caused, for instance, by a speculative bubble increasing the share price) affects the cost of external finance (since the manager need to pay less dividends to the shareholders in order to keep them happy) and hence the rate of discount, by increasing the right-hand side of the above equation. All this brings about a movement along the optimal point in the firm's profit function, i.e. a modification in the marginal profitability of capital, in the left-hand side of the above equation.

Equation 10 can be written more compactly in the following way:

\[
\frac{\partial}{\partial x_i} \mu \frac{\partial}{\partial k_i} \frac{1}{(1+\beta i)^{1/2}} \sum_{i=1}^{n} \frac{X_i^{1/2}}{1 + \beta i} X_i \frac{1}{(1+\beta i)} \sum_{i=1}^{n} \frac{X_i}{1 + \beta i} k_i
\]
Equation 10 can be rearranged as follows:

\[
\frac{\partial}{\partial k_t} \mid \frac{\partial}{\partial t} \left(I_t + (1 + \gamma t) k_t \right) \mid + \frac{1}{(1 + \gamma t)^{\frac{1}{2}}} \frac{\partial}{\partial W_t} \mid \frac{\partial}{\partial t} \left(I_t + (1 + \gamma t) k_t \right) \mid + (11)
\]

The expression \(I_t + (1 + \gamma t) k_t \) might be interpreted as the total capital absorption (i.e. capital stock plus investments) plus capital remuneration at time \(t \). Since the marginal profitability of capital associates a change in profits to a change in the stock of capital, the first line of 11 contains the difference between profits and capital absorption and remuneration \(\frac{1}{2} \left(I_t + (1 + \gamma t) k_t \right) \mid + (11) \)

The term \(\frac{\partial}{\partial W_t} \mid \frac{\partial}{\partial t} \left(I_t + (1 + \gamma t) k_t \right) \mid + (11) \)

is the impact of the firm's wealth on the risk premium and hence on the capital cost. Therefore the marginal profitability of capital (net of depreciation) may be decomposed into \(\frac{\partial}{\partial W_t} \mid \frac{\partial}{\partial t} \left(I_t + (1 + \gamma t) k_t \right) \mid + (11) \)

as well as their future net present discounted values.

Loosely speaking, 11 could be interpreted as a link between the marginal profitability of the capital and the financial value of the firm. In other words

MARGINAL PROFITABILITY OF CAPITAL (NET OF THE RATE OF DEPRECIATION)
FUTURE DISCOUNTED VALUE OF THE FOLLOWING:

IMPACT OF CHANGES IN THE FIRM’S FINANCIAL RESERVES ON CAPITAL COST

times

CHANGES IN THE FIRM’S RESERVES FINANCIAL, i.e. DIFERENCE BETWEEN CASH FLOW AND CAPITAL ABSORPTION AND REMUNERATION

times

SPREAD BETWEEN MAGINAL PROFITABILITY OF CAPITAL AND AVERAGE COST OF EXTERNAL CAPITAL

This means that the part of marginal profitability of capital which is not paid out by the management as remuneration for the shares and debt, has an impact on the firm’s financial reserves, and hence on the discount rate of future profits and on the value of the firm.

The approach and results presented here slightly diverge from the conventional neoclassical optimal control investment model because the assumptions made on the control of the cash-flow by the managers, the fact that market for shares is not necessarily associated with the market for the firm’s control, and, finally, financial market imperfections (and imperfect adjustment of the share price to the value implied by the discounted future profits) introduce a causal link between the flow of profits, the firm’s financial structure and the rate of discount of the future flows of profit. This can be interpreted as an “inside the firm” channel of transmission of financial shocks to the real investments. This link between the real and the financial side of the economy and its underlying idea is broadly consistent with the “excess sensitivity” empirical literature à la Fazzari, Hubbard and Petersen (1988).
This framework could also help to explain some recent empirical results claiming that including appropriate measures for stock market yields and capital gains would make internal cash flow statistically non-significant in investments regressions based on firm panel data (for instance, Gomes, 2001). In fact, to the extent that both current profits and stock prices simultaneously contribute to determine the (endogenous) rate of discount of future profits, they could turn out to be statistically co-determined and simultaneously correlated with the investments through the firm specific rate of discount of future profits. If the firm enjoys a long period of high profits and its stock price overshoots (like in the excess volatility case à la Shiller) with respect to the value implied by the profits, so that the firm experiences a persistent long period of increasing capital gains (like in the "irrational exuberance" case) the results gets even stronger. In other words, an increasingly overvalued share price makes the internally generated finance cheaper because it allows the managers to pay out less dividends (and keep the shareholders satisfied, since they are remunerated by the capital gain). This could contribute to explain why some recent empirical analyses (like Gomes, 2001) find out that introducing in an investment regression appropriate measures for the stock market prices seem to reduce the statistical significance of the internally generated cash-flow.

4 Concluding remarks

The simple qualitative framework considered here describes the simultaneous decisions of the firm's investments and financial structure, in a context of discrete-time dynamic optimization with imperfect financial markets where management hold the control of the firm, decide upon the allocation of the firm's cash-flow, and the stock price (due to imperfect information and incentive of the manager not to fully reveal their private information on the
..rm’s pro..tability) may deviate, in the short run, from the value implied by the discounted future dividends. The simultaneous optimization of the ..rm investment and ..nancial structure determines a link between the cash-‡ow and the rate of discount of future pro..ts in the intertemporal optimization problem. All this carries two implications: rst, any shock in the pro..ts or in the ..rm’s pro..tability has an e¤ect on the ..nancial structure of the ..rm and hence on the rate of discount of the future pro..ts; second, an exogenous shock to the stock market a¤ects the dividend policy, the pro..t retention, hence the cost of external ..nance and the real investments.

Bibliography

Beltratti, A., Kurz, M., (1996), The Equity Premium is no Puzzle, Banca d’italia, Temi di discusione del Servizio Studi, No. 282, October 1996

