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1 Introduction

In a seminal paper, Campbell and Shiller(1987) investigate the existence of
linear cointegration between aggregate US stock prices and US dividends, as
predicted by a simple equilibrium model of constant expected asset returns.
Their results were ambiguous. A null hypothesis of no linear cointegration
was marginally rejected in their data but the implied estimates of long run
asset returns was implausible. Imposing a more credible long run return
caused non rejection of the null of no cointegration. Subsequent literature
has met with similar mixed results.
In this paper we test for cointegration of asset prices and dividends for

eleven stock portfolios allowing for smooth but nonlinear adjustement to
equilibrium. The motivation for nonlinearity is the existence of transactions
costs via a time varying bid ask spread.
The idea that the bid-ask spread in particular and transactions costs in

general will affect the equilibrium expected returns on assets is now well es-
tablished. Existing literature has focused on either the assets’ liquidity costs
(see in particular, Amihud and Mendelson, henceforth, AM, JFE, Dec.1986,
pp223-249) or the possible adverse selection effects in its market arising from
asymmetric information about its fundamental value (Merton, 1987, JOF,
pp483-510) rather than transactions costs per se. AM emphasise the role of
liquidity costs arising through randomly drawn holding periods of individual
agents. Their model predicts that expected returns are an increasing but
concave function of spreads. Once incoroporated in an empirical model, they
find that allowing for concave effects of the spread drives out the size effect of
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Banz(1981). Subsequent papers have given further support to this empirical
result (see for example Shen, 1993, Federal Reserve Board of Kansas City
mimeo).
In a slightly different vein, Jouini (Journal of Mathematical Economics,

December 2000) examines the impact of fixed transaction costs and vari-
able adverse selection costs on the mapping of the no arbitrage condition to
the price functional. They find that the no arbitrage condition implies that
the price functional (effectively, fundamental prices) will lie within the bid
ask spread.1. In this paper we examine the extent to which spreads affect
the dynamic adjustment of asset prices to equilibrium. We draw on stan-
dard theoretical models of the spread arising from adverse selection (notably,
Glosten and Milgrom, JFE, 1985 and Kyle, Econometrica, 1985) to guide an
empirical specification that allows nonlinear adjustment of asset prices to an
equilibrium. We discuss how the introduction of additional fixed transaction
costs may lead to equilibrium mispricing (where here, equilibrium could be
defined by say a no arbitrage condition or by optimal trading rules)..
In order to carry out our empirical investigation of the nonlinear ad-

justment of asset prices to equilibrium we must first develop the necessary
econometric theory to analyse the properties of the relevant models and test
statistics. The econometric model we adopt, called the ESTAR model (Ex-
ponential Smooth Transition Autoregression), and its corresponding test sta-
tistics are developed in the next section. Section 3 outlines a model of asym-
metric information in a dealer market in which the bid ask spread adjusts
in a nonlinear fashion over time following an information shock. Whilst we
cannot derive the exact ESTAR econometric specification from this theory,
we argue that the key features of the ESTAR model fit the theory well.
Section 4 tests for cointegration against nonlinear ESTAR alternatives for
11 major stock price indices using monthly data since 1974..We find that
whilst standard linear Engel Granger tests fail on the whole to reject the null
of no cointegration, the nonlinear tests give broad support to the cointegra-
tion hypothesis. Impulse response functions estimated under the alternative
ESTAR model indicate a very rapid adjustment towards equilibrium (typ-
ically <6 months half life) when the shocks are large (i.e. shocks of four

1This is in contrast to Eeckhoudt (European Financial Management v5, n3 November
1999 pp323-40) who finds that a monopolistic risk averse market maker may sometimes set
a spread that deliberately does not contain his best forecast of the fundamental. However,
Eeckhouldt’s model is not a full equilibrium model and takes no account of the other side
ofthe market.
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standard deviations in size) but an extremely slow adjustment rate (typi-
cally >5 years half life) when shocks are small.(i.e. one standard deviation
in size).

2 Econometric Theory and Tests

Before moving to the theory of transactions costs and nonlinear adjustment
to equilibrium in assets markets, we develop the econometric theory that we
shall use in the empirical work below.
We are interested in developing tests of cointegration under the alterna-

tive of nonlinear adjustment to the linear cointegrating vector. Crucially, we
take into account the estimation of the cointegration vector in the testing
procedure. We consider the general model

∆yt = F (zt−1) + ηt (1)

∆xt = ut (2)

where where zt = yt−βxt, and where ηt and ut are respectively a scalar and
a kx1 vector of stationary variables whose exact properties will be defined
subsequently. We now suggest particular functional forms for the function
F (.). We suggest a functional form corresponding to the exponential smooth
transition autoregressive (ESTAR) models. This functional form is discussed
in detail in [?] and [?]. It is given by

F (zt−1) = λ(1− e−θz2t−1)zt−1
We define the null of no cointegration as

H02 : θ = 0

If β were known then the test could be carried out straightforwardly along
the lines suggested by [?] and [?]. But β is neither known nor identified
under the null (the Davies problem).Furthermore the null is defined in terms
of paremeters that are likewise not identified when it is true ( θ for the
ESTAR model). We will deal with this manifestation of the Davies problem
by constructing an auxiliary regression which will be used for testing the
null hypothesis H02. This follows the tradition of testing for linearity versus
ESTAR behaviour using an LM test of the significance of the second or third
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power of the variable contained in F (.) in an auxiliary regression. Because
an LM test evaluates the statistic at the null, nuisance parameters that are
only present under the alternative vanish and a grid search is not required.
Explicitly we use a two stage procedure where in the first stage we estimate
β and in the second stage we carry out the test using this estimate. Of
course, under the null hypothesis, β is hard to interpret and its estimate will
not tend to a constant but to a random distribution. As we state below and
prove in Kapetanios, Shin and Snell (2003) the asymptotic distribution of
the test statistic which is in part a function of the asymptotically random
elements of β is free of nuisance parameters

2.1 STAR Model

For the STAR mechanism we adopt the model

∆yt =
∞

i=0

α
00
i∆xt−i +

∞

i=1

γi∆yt−i + γzt−1 1− exp −θz2t−1 + ²t (3)

∆xt =
∞

i=1

Ai∆xt−i +
∞

i=1

Γi∆yt−i + εt (4)

where αi,Ai,Γi and γi are kx1, kxk, kx1 and 1x1 parameter arrays, where
²t and εt are (a scalar and a kx1 vector respectively) of serially independent
errors with finite eighth moments and zt−1 is as defined above.We assume
that under the null, the VAR defined in (3) and (4) is invertible. We further
assume that all processes have zero mean but relax this later to allow for
the existence of the usual deterministic elements.Our test directly focuses on
a specific parameter, θ, which is zero under the null and positive under the
alternative. Hence we test

H0 : θ = 0, (5)

against the alternative
H1 : θ > 0. (6)

Obviously, testing the null hypothesis (5) directly is not feasible, since γ is not
identified under the null. See for example Davies (1987). To overcome this
problem we follow Luukkonen et al. (1988), and derive a t-type test statistic.
If we compute a first-order Talyor series approximation to the ESTARmodel
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under the null we get the auxiliary regression

∆yt = δz3t−1 +
∞

i=0

α
00
i∆xt−i +

∞

i=1

γi∆yt−i + ²t (7)

In their test for linear cointegration, Engle and Granger use the residuals
from a first stage regression of yt on xt as an “estimate” of zt. We follow
this tradition and estimate (7) by replacing zt−1 with ẑ3t−1where ẑt−1 is the

lagged residual yt−1 − β0xt−1. Our test is then just the t-statistic of δ = 0
against δ < 0 2 To simplify matters, assume for now that the lag polynomials
in (3) are finite and that all the relevant lags are included in the auxiliary
regression (7). Extension to the infinite order case is discussed below. Our
test statistic is then

tNL = δ/s.e. δ , (8)

where δ is the OLS estimate of δ and s.e. δ is the standard error of δ.
Our test is motivated by the fact that the auxiliary regression is testing
the significance of the score vector of the quasi-likelihood function of the
ESTAR model, evaluated at θ = 0. Unlike the case of testing linearity
against nonlinearity for the stationary process, the tNL test does not have an
asymptotic standard normal distribution.

Theorem 1 Under the null of a unit root (5) the tNL statistic defined by (8)
has the following asymptotic distribution:

tNL ⇒
1

0
B(r)3dW (r)dr

B(r)6dr
, (9)

where B(r) = W (r) −W0(r) 1

0
W(r)W0(r)dr

−1
1

0
W(r)W (r)dr and

W (r) andW(r) are respectively scalar and vector standard Brownian motion
variates defined on r ∈ [0, 1]. Under the alternative hypothesis (6) with the
ESTAR model (??), the tNL statistic is consistent.

2An LM-type test statistic may be obtained via a similar route. See Granger and
Teräsvirta (1993) and Teräsvirta (1994) for more details. The advantage of the t-test over
the LM-test is that the t-test deals with one sided alternatives of stationarity explicitly,
and thus is expected to be more powerful.
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In keeping with the tradition in linear cointegration, we propose a com-
panion test to tNL namely a test which is the analogue to the Engle Granger
statistic for linear cointegration. Denoting the t ratio of z3t−1 from the OLS
regression

∆ẑt = δẑ3t−1 +
p(T )

i=1

ϕi∆ẑt−i + error (10)

as tNLEG, where p(T ) = O(T
1
3 ) then

Theorem 2 Under the null of a unit root (5) tNLEG has the distribution

For a proof of the above theorems, see Kapetanios, Shin and Snell (2003).
Critical values for the raw data, demeaned data and demeaned and de-

trended data cases for the two tests are given in Table 1.

3 Application to Asset Pricing in the Pres-
ence of Transactions Costs

In this section we overview a simple extension of Kyle’s(1985) model of mar-
ket making in the presence of asymmetric information as a means of illus-
trating how transaction prices may return to equilibrium following a shock
in a nonlinear way. We do not argue that our theory is the most realistic
or that it captures all of the markets’ features in the context of the actual
empirical application. Like all theories it is an abstraction and in our case
merely serves to underline the argument that nonlinear rather than llinear
adjustment to equilibrium is the mechanism that is likely to be generically
relevant in asset markets..

3.1 Adverse selection models of the spread and an
ECM for asset prices

Kyle (Econometrica, 1985) and Glosten and Milgrom (JFE, 1985) develop
models of the bid ask spread arising purely from adverse selection. Both
Glosten and Milgrom (GM) and Kyle assume a risk neutral competitive
market maker (and hence one that sets fair prices) facing insiders and noise
traders. GM specify unitary buys/sells each time period with a time and
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state dependent probability that the buy/sell is from an informed trader
whilst Kyle characterises the properties of a supply/demand function In both
models, the spread (depth of market in the case of Kyle) converges to zero as
private information is slowly and optimally ”released” via the sequential trad-
ing of insiders. In a sequential equilibrium, the models lead to the following
predictions/market characteristics3 a) Transaction prices have a martingale
property b) The (variance of the) price minus fundamental gap, (pt − v),
declines exponentially to zero c) Trades are uncorrelated d) Insiders act on
their inside information in a prolonged ”optimal” fashion and the (pt − v)
gap is only closed slowly over time.
To get an explicit ECM for prices, consider Kyle’s sequential dealership.

Here, the market meets n times within a fixed period and n is allowed to
go to infinity. The (forcing) noise trade terms become continuous Brownian
motion. In the tth market, prices satisfy

pt − v = 1

2
(pt−1 − v) + λtut (11)

where λt =
1
2

σ2
v|t−1
σ2u

is the depth of market which declines to zero as

pt− > v .
In addition to its ECM implications, Kyle’s sequential market,also pre-

dicts that the measured rate of return (there is no dividend payment) is
predicted to be random with an error that has ARCH properties.
In order to implement Kyle’s model empirically, we must replace the

assumption of a ”once and for all draw” of v with a stochastic process (a
random walk, say) for v. Under this new scheme, the main features of Kyle’s
model are little changed. Explicitly we now have that

vt = vt−1 + ξt

where ξt is a privately observed shock.The formula in (11) may now be written
as

pt − vt = 1

2
(pt−1 − vt−1) + εt where εt = λtut + ξt (12)

3Note that here and henceforth we assume for notational simplicity that the mean
of the fundamental is zero. Of course literally this would imply negative fundamental
prices with a non-zero probability, which is impossible because of limited liability. A
proper interpretation is thererfore that prices and fundamentals are implicitly measured
as deviations from a (large) unconditional mean. This will make the probability of negative
prices close to zero if the unconditional mean is set sufficiently large.
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It is easy to show that the composite error in (12) is heteroscedastic with

variance 1
4
σ2v|t−1 +σ

2
ξ where σ2v|t−1 =

1+σ2ξ
2+σ2ξ

t−1
σ20. Clearly, unless the pri-

vate information shock is heteroscedastic, the error term converges to being
homoscedastic.
So far we have derived a standad ECM with fixed coefficients. However

the fixed coefficients aspects of the results are non generic in these types of
model. As an example, consider the model by Snell and Tonks(Economic
Journal 2003) who extend the simple Kyle model to allow for competing but
identical traders who suffer liquidity shocks. In their model it is assumed
that the insiders’ objective in the tth market is

Ut = (vt − pt)xt + ϕ(xt − ut)2 (13)

where xt is the trade.of the typical insider and where vt follows the same
random walk process as above 4. The (Cournot Nash) equilibrium of the
model is symmetric with respect to the n traders who submit identical de-
mands and prices satisfy

pt − vt = λtβt(pt−1 − vt−1) + λtut (14)

where λt =
ϕσ2t−1

ϕ2σ2u−σ2t−1 and βt =
n[ϕ2σ2u−σ2t−1]
ϕ[ϕ2σ2u+nσ

2
t−1]

so that the ECM coefficien

λtβt{= nϕσ2t−1
ϕ[ϕ2σ2u+nσ

2
t−1]
} is time varying and increases in the conditional variance

of the price-fundamentals gap. It is this sort of scheme that motivates the
application of an empirical ECM with nonlinear endogenous adjustment but
in order to make any such scheme implementable we require an empirical
model for fundamental prices.

4We should note that objective is somewhat myopic and inconsistent with trading over
time. Firstly, traders may wait for the tth market in the prospect of higher gains. Second
if we take the interpretation of u as a liquidity shock literally then following a trade in the
tth market, the insider should carry forward unsatisfied liquidity demand (xt − ut) to the
next period to augment ut+1 A model with intertemporal dynamic behaviour such as this
would be hard to formulate and solve and is beyond the scope of the current paper.
An alternative rationalisation comes from Madhavan who sees the liquiity shock arising

from a desire to rebalance portfolios in response to wealth shocks. We could interpret
inclusion of the second term in the objective therefore as a simple attempt to model risk
aversion and the portfolio rebalancing that it requires rather than as pure noise trade
costs. These issues are discussed further in ST.
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3.1.1 A Model of the fundamental value of the security

We follow Campbell and Shiller (JPE, 1981) and adopt a net present value
relationship to determine the fundamental value of the security. We assume
that the fundamental for asset i satisfies the following expected return rela-
tionship in long run equilibrium

E(rit|t) = ri (15)

(15) is consistent with Campbell (AER, 1992) who, by loglinearising the
representative consumer’s budget constraint is able to derive a CAPM-type
relationship for securities with constant expected equilibrium returns. It is
(obviously) also consistent with a one period APT type of framework.5

Using the definition of returns we may develop (15) to get a NPV rela-
tionship for prices. Writing the definition of returns explicitly in terms of
prices and dividends and then solving forwards (ignoring for the moment the
possibility of bubbles by invoking the usual transversality condition) gives

E(rt) = E(
pt+1 − pt + dt+1

pt
) = r => pt =

∞

i=1

δiE(dt+i|t) = vt (16)

where δ = 1
1+r

,dt+1 are dividends paid at the end of time t+1 (the stock
at time t is assumed to be “ex dividend”) and where we have dropped the
asset index (i) for simplicity. In keeping with much of the literature and with
the balance of empirical evidence, we assume that dividends are an exogenous
I(1) process. To give an illustration, suppose that dividends follow a random
walk with drift τ , then the long run relationship becomes

pt =
τ

r
+
1

r
dt (17)

For more general linear I(1) processes for dividends, we would have to
add a stationary error term to (17) in which case it would become a standard
linear cointegration relationship.

5The CAPM ,APT and other pricing models would appear to be inconsistent with the
risk neutrality of the previous section. However if we assume that the inside information in
Kyle’s model is idiosyncratic and that portfolios are initially well diversified (e.g. the mar-
ket maker operates in several stocks) then the risk associated with the inside information
would not effect the objectives of the agents.in the model.
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In general however prices move as a result of dealers’ pro-active inventory
control as well as a result of adverse selection so that this simple specification
above excludes a multitude of market microstructure effects. For example
Snell and Tonks(1996,1998) and Madhavan and Smidt (1993) develop and
estimate structural models which imply that price quotes are autocorrelated
as an optimal response to the existence of both inventory control and asym-
metric information. These effects could be thought of as inducing a pricing
error that is non zero and possibly autocorrelated for all t of the form.

εt = pt − vt (18)

Finally it would be natural to add fixed dealership costs per trade. Such
costs would be impossible to incorporate in a rigorous fashion in our model.
Nonetheless we note that on their own, they would lead to a fixed spread
within which there would be no arbitrage pressure on prices to return to
equilibrium at all. Insensitivity to equilibrium in a fixed range around equi-
librium describes threshold stationary behaviour or TAR for short rather
than the ESTAR stationarity that we adopt. Interestingly, Taylor(2002)
has shown via numerical simulations that when one aggregates over sev-
eral TAR processes each with different thresholds the resulting process looks
much more like a smooth transition AR process than a TAR. This gives
yet further justification for our adoptrion of the ESTAR model for testing
stationarity.
Below we apply the nonlinear adjustment model to monthly data on large

diversified stock market portfolios and some discussion about this is in or-
der.It may at first seem implausible that market microstructure effects asso-
ciated with adverse selection should be drawn out over a number of months.
Most models of market microstructure deal with hourly rather than monthly
data. Clearly the sort of trade-revealed information that moves prices on
an hour by hour basis is not the sort we have in mind here. We give two
examples of the kinds of process we have in mind. One such process could
arise when large financial institutions take controlling or at least influential
stakes in the firms whose shares they own. Once acquired, a large stake gives
incentives to both monitor and improve the performance of such firms over
quite a period of time. The success of such a scheme could well be captured
by a large permanent rise in (say) the monthly mean of the dividend process.
If the share price falls sufficiently far below the fundamental value in terms of
the NPV of dividends, then the institution will attempt to offload its stock.
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Given that its stake however, it would be unable to make large sales without
severely depressing the selling price - this is particularly true for sales outside
the normal market size for which quoted prices in dealership markets are no
longer valid. The optimal rate of trade may well be described by the model
given above. A second example could arise from the process whereby an an-
alyst undertakes extensive research into companies. The analyst purchases
shares in those firms it discovers are undervalued at a sufficiently slow rate to
maximise its return. Again the model above could well describe this process
which could be drawn out over a series of months. Finally it may be that
analysis of a portfolio rather than a single stock may mask any nonlinear
adjustment that is occuring in individual stocks via the averaging process.
We fully intend to extend the current empirical work to several individual
stocks within a single stock market.in future work.

3.2 Empirical application of the ESTARmodel to prices
and dividends from eleven major world stock mar-
kets.

We collected monthly data from January 1974 to November 2002 on end
period prices and within period dividend yields for value weighted market
portfolio indices of stocks traded on the main exchanges of the following
eleven countries:- Germany,Belgium,Canada, Denmark, France,Ireland, Italy,
Japan, Netherlands, UK and the US. A dividend series was constructed as
the product of dividend yield and prices. As alluded to above we test for the
existence of a linear cointegrating relationship between dividends and prices
of the form

pt = βdt + ut (19)

The adverse selection models of the spread discussed above motivate
the specification of a nonlinear dynamic adjustment mechanism such as the
ESTAR model giving the nonlinear ECM model

∆pt = λ(1− e−θz2t−1)zt−1 + ηt (20)

zt−1 = pt−1 − βdt−1 (21)

∆dt = ut (22)
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where ηt is a (possibly autocorrelated) error term which captures other mi-
crostructure effects such as specific kinds of noise trading (e.g. index trading)
and dealer inventory control mechanisms (whereby the adjustment of prices
to elicit inventry-correcting trades generates autocorrelated price movements
- see for example Madhavan and Schmidt, 1992 and Snell and Tonks, 1998).
Although not presented here, simple ADF tests from an initial data analysis
give broad support to the hypothesis that all variates are I(1).

3.2.1 Cointegration tests against the ESTAR alternatives

In this section we test for cointegration of asset prices and dividends for
eleven stock portfolios allowing for nonlinear adjustment to equilibrium of
the ESTAR variety. The motivation for nonlinearity is the existence of
transactions costs via a bid ask spread that varies over stocks. At first we
might expect that transactions costs which arise from a fixed spread might
motivate the consideration of price adjustment mechanism of the SETAR
variety. However our data consists of prices and dividends averaged over
a widely diversified portfolio of stocks and it has been shown in numerical
simulations that this aggregation process leads to a specification that is better
approximated by an ESTAR rather than a SETAR model (see for example
Taylor and Sarno, 2003).
We collected monthly data from January 1974 to November 2002 on end

period real prices and within period real dividend yields for value weighted
market portfolio indices of stocks traded on the main exchanges of the follow-
ing eleven countries: Germany, Belgium, Canada, Denmark, France, Ireland,
Italy, Japan, Netherlands, UK and US. A dividend series was constructed
as the product of dividend yield and prices. Although not presented here,
simple ADF tests from an initial data analysis give overwhelming support to
the hypothesis that all variates are I(1).
As alluded to above we test for the existence of a linear cointegrating

relationship between dividends and prices of the form,

pt = βdt + ut. (23)

The existence of bid ask spreads discussed above motivate the specification
of a nonlinear dynamic adjustment mechanism such as the ESTAR model
giving the following nonlinear STAR-ECM model:

∆pt = γ 1− e−θu2t−1 ut−1 + α∆xt + εt, (24)
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where ut−1 = pt−1 − βdt−1 and εt is a (possibly autocorrelated) error term
which captures other microstructure effects such as specific kinds of noise
trading (e.g. index trading) and dealer inventory control mechanisms whereby
the adjustment of prices to elicit inventory-correcting trades generates auto-
correlated price movements, see for example Snell and Tonks (1998).
We computed three tests. The first two, tEG and tNLEG are the linear

Engel-Granger test and its nonlinear counterpart. The third, tNLECM is the
t-ratio on û3t−1 in the STAR-ECM formulation where ût−1 is the residual
from the first stage (spurious under the null) regression of pt on dt. The
price and dividend series appeared to have an upward trend so that all series
were demeaned and detrended before use.6 We estimated the appropriate
auxiliary regressions for p = 12 and then dropped all insignificant lags in a
single round of general to specific modelling.7

The results for the tests are in columns 2 to 4 in Table 4 .Looking at
the results we see that viewed through the “eyes” of linear cointegration
tests there is little support for the hypothesis that dividends and prices move
together in the long run with only 2 of the tEG tests rejecting the null,
albeit at the 1% level. Furthermore, none of the remaining 9 tEG statistics
are significant even at the 10% level. By contrast the nonlinear tNLEG test
rejects in 7 out of 11 stock markets with four of these rejections occurring
at the 1% level. A further three statistics are quite close to the 10% critical
value. The success in rejecting the null of no cointegration is less marked for
tNLECM with only 5 rejections at standard significance levels although three
of these reject also at the 1%. A further two tNLECM statistics are quite close
to the 10% critical value.8

Table 4 about here
6The issue of whether or not stock prices and dividends contain a deterministic time

trend in the long run is contentious (see for example Shiller, 2000). However there is a
clearly discernible trend in both dividends and prices in our data hence we detrend and
demean. It is comforting to note that if we do not detrend but only demean, the results
are qualitatively almost identical.

7We should note that although further exploration revealed some significant lags beyond
12th order, the test statistics were not in general very sensitive to the choice of lag length.

8If the alternative is really true then we could interpret this finding as being somewhat
at odds with the Monte Carlo evidence, which generally shows that tNLECM has more
power than tNLEGDF . However, there is good prior reason to believe that dividends are
weakly exogenous in the system. If true, a bivariate ECM would lack parsimony compared
with the univariate specification and this may have lead to a loss in power.
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Given the strength of evidence against the null and support for the alter-
native we could obtain estimates of adjustment parameters under the alter-
native. Focusing on the univariate model we obtained nonlinear least squares
estimates of θ from the alternative ESTAR model,

∆ût = − 1− exp −θû2t−1 ût−1 +
12

i=1

ϕi∆ût−i + ξt. (25)

The model has been specialised compared with the general ESTAR consid-
ered above by imposing a unit coefficient on γ. Early attempts to estimate γ
jointly with θ foundered on severe identification problems and our nonlinear
algorithm failed to converge in most cases - hence the specialisation. Under
the alternative (and estimation of (25) only makes sense if the alternative
is true), θ is scale dependent. To clarify its interpretation and to facilitate
numerical convergence, we normalised the ût series to have unit sample vari-
ance (a procedure which only makes sense under the alternative). We also
used demeaned rather than demeaned and detrended data which is an ap-
propriate procedure, asymptotically, under the alternative. The results for
θ̂ and its t-statistic are given in Table 4. Although we cannot interpret the
t-statistic as a significance from zero test (for obvious reasons) we refer to it
as “significant” if an asymptotic 95% confidence interval around the estimate
excludes zero. We see that θ̂ is “significant” in all cases and varies between
.007 and .017.
To get a feel for what such values imply, Figure 1 below plots impulse

response functions (irfs) for the error correction term for initial impulses of
1, 2, 3, 4 standard deviation shocks, respectively. For completeness and
comparison we compare the corresponding irf with that obtained from the
estimated linear models. The striking thing about the graphs is the length
of time taken to recover from small shocks. In particular the time taken to
recover one half of a one standard deviation shock varies between five and
twenty years. By contrast, the time taken to recover one half of a large
shock (such as 3 or 4 standard deviations) is comparable to that of the linear
case and varies between just 4 to 18 months. This implies that data periods
dominated by extreme volatility may display substantial reversion of prices
towards their NPV relationship but in “calmer” times, where the error in
the NPV relationship takes on smaller values, the process driving it may well
look like a unit root. This suggests that in practice the ESTAR and SETAR
models may not be too dissimilar in terms of overall inference in any given
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(finite) sample.

Figure 1. Impulse Response Functions for the Disequilibrium Error

Table1. Asymptotic Critical Values of the tNLEGDF and tNLECM Statistics

tNLEGDF
Case 1 Case 2 Case 3

k 90% 95% 99% 90% 95% 99% 90% 95% 99%
1 -2.59 -2.85 -3.38 -2.98 -3.28 -3.84 -3.41 -3.71 -4.26
2 -3.01 -3.30 -3.89 -3.36 -3.67 -4.23 -3.64 -3.99 -4.53
3 -3.34 -3.66 -4.23 -3.63 -3.93 -4.50 -3.90 -4.18 -4.76
4 -3.65 -3.95 -4.56 -3.90 -4.19 -4.68 -4.09 -4.39 -4.95
5 -3.88 -4.13 -4.75 -4.10 -4.42 -4.97 -4.36 -4.67 -5.23

tNLECM
Case 1 Case 2 Case 3

k 90% 95% 99% 90% 95% 99% 90% 95% 99%
1 -2.38 -2.66 -3.35 -2.92 -3.22 -3.78 -3.30 -3.59 -4.17
2 -2.67 -3.01 -3.59 -3.12 -3.43 -4.00 -3.46 -3.79 -4.40
3 -2.95 -3.28 -3.93 -3.32 -3.61 -4.19 -3.62 -3.96 -4.54
4 -3.15 -3.47 -4.14 -3.46 -3.77 -4.38 -3.75 -4.07 -4.70
5 -3.33 -3.67 -4.31 -3.58 -3.92 -4.53 -3.87 -4.20 -4.85
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Germany
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Belgium
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Canada
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- UK
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- US
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Denmark
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- France
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Ireland
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Italy
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Japan
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Netherlands
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Figure 1:
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