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Abstract. The present paper contributes to literature of dynamic games with
strategic complementarities, in two interrelated ways. First, it identifies a class of fully
dynamic games in which, under the assumption of complete information, contempora-
neous and intertemporal complementarities and multiple equilibria can be fruitfully an-
alyzed. Second, it extends the analysis to an incomplete information framework, where
results from the literature on global games can be applied to identify a unique equilib-
rium.

1. Introduction
Over the last decade, it has been widely recognized that complementarities may be at the
heart of a satisfactory explanation of why there are large shifts and fluctuations in economic
activity. A variety of specific channels, such as search externalities, thick market externalities
and increasing returns to scale in specific activities or sectors, yield a tendency to cluster
and agglomerate. Models with multiple equilibria have been offered as descriptions of how
such shifts may come about, arguing e.g. that when an economy slides into recession, it is
nothing but a transition to a low activity equilibrium. While these types of explanations
clearly have merit, they leave important issues unexplained. In particular, they are silent
about the important question of how these equilibria are reached, and why there are shifts
between them.1 Partly as a response to this type of reservations about multiple equilibrium
explanations, recent years have seen an increasing interest in equilibrium selection in games
with strategic complementarities. Building on insights from Carlsson and van Damme (1993),
a fast-growing literature has evolved in which several coordination games have been analyzed
within the so-called global games framework.2 The powerful results of the global games
literature has allowed applied modelers to pin down equilibria in games that notoriously
have very rich equilibrium sets, and extending the success to dynamic settings is now an
active research field.

The present paper contributes to literature of dynamic games with strategic comple-
mentarities, in two interrelated ways. First, it identifies a class of fully dynamic games in
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which, under the assumption of complete information, contemporaneous and intertemporal
complementarities and multiple equilibria can be fruitfully analyzed. Second, it extends the
analysis to an incomplete information framework, where results from the literature on global
games can be applied to identify a unique equilibrium. The analysis is carried out based on
a model in which a continuum of players choose actions simultaneously over a finite number
of periods. We show that under certain assumptions on payoff functions and the evolution of
the stochastic variable, expected (current and future) payoffs are characterized by strategic
complementarities. This approach allows us invoke the technology of the static global games
literature to each stage of the dynamic game. It has the advantage that the relation to the
static global games methodology become very transparent.

The class of games we analyze are characterized by two distinct types of complementari-
ties, contemporaneous and intertemporal. Higher actions of other players make higher action
for the remaining player more desirable. Furthermore, intertemporal complementarities are
achieved by the introduction of state variables, one characterizing the players idiosyncrati-
cally and one characterizing a quantity common to all players. Assuming complementarities
between these state variables and assuming that the transitions of these are monotone in
players’ actions and aggregate play, we show that these intertemporal links reinforce the
contemporaneous complementarities. It is worth noting that while most models of dynamic
complementarities circumvent the dynamic nature of the problem by assuming myopic behav-
ior, we explicitly deal with the problem of how actions at both the individual and aggregate
level influence the future evolution of aggregate and individual play. A notable feature of
the model is that it can capture two polar cases of strategic complementarities (as well as
hybrid cases in between). At one extreme is an economy in which complementarities are
direct and contemporaneous, for e.g. through a product market, but where there are no in-
tertemporal links. At the other extreme, firms do not interact directly within any period, and
complementarities are purely intertemporal, working through lags of state variables. These
two types of complementarities are interesting because they can produce multiple equilibria.
Furthermore, contemporaneous complementarities can magnify shocks to the economy while
intertemporal complementarities can propagate them. Specifically, within an infinite horizon
version of the model, we show a momentum theorem which implies that at under certain
conditions, growth in the economy can be self-sustaining, making future growth more likely.
After an unexpectedly low realization of the economic shocks, this momentum is broken,
and the economy may shift to a path with self-enforcing decline. Thus the model predicts
paths of the economy where growth is followed by decline and so on, even when shocks to
the underlying economy are small in magnitude.

As noted above, strategic complementarities can create multiple equilibria, even in static
settings. Not surprisingly, dynamics do nothing but add to this multiplicity. If one assumes,
as we do in our model, that a player’s action in any given period influences this player’s
future prospects in a non-trivial way, multiplicity of equilibria may be increased because
optimal play in a given period will depend on future play. Thus multiplicity in future stages
of the game may create multiplicity now if there is not consensus about which equilibrium
will be played in the future. To address this problem, we extend results from the literature
on global games and find conditions under which there is a unique Markov perfect Bayesian
equilibrium. We do this by employing a specific, but reasonable, information technology. In
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particular, we assume that common knowledge of fundamentals occurs only with a lag, and
that in each period there is asymmetric information on the current realization.3

Our paper relates closely to two strands of literature. First, the basic model of complete
information in which complementarities are analyzed shares features with an existing litera-
ture on supermodular games. Most closely related is work by Curtat (1996) which considers
stochastic games with strategic complementarities. In his setup, there are a finite set of play-
ers who can influence the evolution of a state variable probabilistically. In contrast, we will
work within a continuum player setup, and thus our result do not follow from his analysis.
Moreover, our analysis has similarities with the work of Milgrom, Qian and Roberts (1991).
They consider an up-stream down-stream model in which knowledge in the two industries is
accumulated over time, and where actions in each period are complementary with the state
of knowledge. They prove a momentum theorem which shows that when knowledge accumu-
lation is increasing in actions, and actions are complementary with the state of knowledge,
the system may enter a self-enforcing dynamic path where actions and knowledge increase
over time.

Second, the analysis of the model of incomplete information is directly related to the
literature of dynamic global games. Four somewhat different approaches to dynamic ‘global’
equilibrium selection have previously been developed. The first, exemplified by the work
of Burdzy, Frankel and Pauzner (2001) is to consider players that are randomly matched
over a sequence of periods to play a 2× 2 coordination game, but where the payoff matrix
is parametrized by a stochastically evolving economic fundamental. The second approach,
exemplified by Frankel and Pauzner (2000), is to consider continuous time games in which
the stochastic economic fundamental is governed by a Brownian motion and where players
receive revision opportunities according to a Poisson process. The third approach is that of
Levin (2001) and Oyama (2001). These authors consider players who only live for a single
period, but whose payoffs may depend on actions of players living before or after them. The
fourth approach is that of Toxvaerd (2002) who considers a timing game in which players
decide when to move, and where players at each point in time trade off current payoffs with
expected future payoffs. Although formally not a supermodular game, the recursive payoff
structure allows for the static global games techniques to be employed at each stage of the
game, and thus the full dynamic game can be analyzed as a sequence of (interrelated) static
games. The present analysis is most closely related to this fourth approach.

Throughout the paper, we have based the analysis on first principles, in order to present
the results in a self-contained and accessible way. For this reason, Section 2 provides all the
definitions and relevant results from lattice programming which we will be using. In most
cases, these can be generalized to sets other than Rn and we refer the interested reader to
Topkis (1998) for a thorough exposition. Section 3 provides the setup of the class of models
that can be studied with our approach and analysis, under the assumption of complete
information. Section 4 analyzes the incomplete information case. Finally, Section 5 offers
some concluding remarks.

3While this assumption effectively sidesteps issues of learning from the observation of past behavior,
learning is not within the scope of this paper.
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2. Mathematical Preliminaries
In this first section, we present definitions and known results that will be used throughout
the rest of the paper. For more general definitions and results see Topkis (1998).

Throughout the paper, we endow Rn with the element-wise order, i.e. for x1 =
¡
x11, ..., x

1
n

¢
and x2 =

¡
x21, ..., x

2
n

¢
we write x1 ≤ x2 if x1i ≤ x2i for all i = 1, ..., n. Let

x1 ∧ x2 = (min(x11, x
2
1), ...,min(x

1
n, x

2
n))

x1 ∨ x2 = (max(x11, x
2
1), ...,max(x

1
n, x

2
n))

Definition 1. A set X ⊆ Rn is called a sublattice of Rn, if x1 ∧ x2 ∈ X and x1 ∨ x2 ∈ X
for all x1, x2 ∈ X.

Consider a vector x = (x1, ..., xn) ∈ X. Let bx = (xm1 , ..., xmr), where {m1, ...,mr} ⊆
{1, ..., n} and xc = (xn1 , ..., xnq), where {n1, ..., nq} = {1, ..., n}\{m1, ...,mr}. I.e., the no-
tation bx is used to denote a tuple of x constructed by picking out specific coordinates of
interest from x. With this notation and by treating the rest of the coordinates of x as con-
stant (fixed), we can write x = (bx;xc). The following gives the definition of supermodularity
of a function in all its arguments, or specific tuples of its arguments.

Definition 2. Let X ⊆ Rn be a sublattice of Rn.

(a) A function f : X ⊆ Rn → R is supermodular on X, if for all x1, x2 ∈ X

f(x1) + f(x2) ≤ f(x1 ∧ x2) + f(x1 ∨ x2)

(b) A function f : X ⊆ Rn → R is supermodular in bx, if for all x1 = (bx1;xc) and
x2 = (bx2;xc)

f(bx1;xc) + f(bx2;xc) ≤ f(bx1 ∧ bx2;xc) + f(bx1 ∨ bx2;xc)
for fixed xc.

(c) A function f : X ⊆ Rn → R is strictly supermodular on X, if for all unordered
x1, x2 ∈ X

f(x1) + f(x2) < f(x1 ∧ x2) + f(x1 ∨ x2)

(d) A function f : X ⊆ Rn → R is strictly supermodular in bx, if for all x1 = (bx1;xc)
and x2 = (bx2;xc), such that bx1and bx2 are unordered

f(bx1;xc) + f(bx2;xc) < f(bx1 ∧ bx2;xc) + f(bx1 ∨ bx2;xc)
for fixed xc.

Given these definitions, it follows trivially that a function f : X ⊆ Rn → R is (strictly)
supermodular on X, if it is (strictly) supermodular in x ∈ X. Also trivially, if f is strictly
supermodular then it is supermodular as well. Furthermore, if f and g are (strictly) su-
permodular and δ > 0, then f + δg is (strictly) supermodular. Moreover, if f is (strictly)
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supermodular, then taking the max of f over one of its arguments yields a (strictly) super-
modular function. Next, the limit of a sequence of supermodular functions (if it exists) is
also supermodular.4 Finally, the following holds:

Lemma 3. Let X ⊆ Rn be a sublattice of Rn. If f : X ⊆ Rn → R is strictly supermodular
in bx and g : X ⊆ Rn → R is supermodular in bx, then the sum f + g is strictly supermodular
in bx.
Proof. See Appendix A. ¥

Next we give the definition of increasing differences and a result that relates it to super-
modularity.

Definition 4. Let X ⊆ Rn be a sublattice of Rn.

(a) Consider a vector x = (x1, ..., xn). A function f : X ⊆ Rn → R has increasing
differences in (xi, xj) if for all x0i ≤ x00i and x0j ≤ x00j

f((x1, ..., x
00
i , ..., x

00
j , ..., xn))− f((x1, ..., x

00
i , ..., x

0
j , ..., xn) ≥

f((x1, ..., x
0
i, ..., x

00
j , ..., xn))− f((x1, ..., x

0
i, ..., x

0
j , ..., xn))

(b) Consider a vector x = (x1, ..., xn). A function f : X ⊆ Rn → R has increasing
differences on X, if it has increasing differences in (xi, xj) for all i 6= j, i, j = 1, ..., n.

(c) Consider a vector x = (x1, ..., xn). A function f : X ⊆ Rn → R has strictly increasing
differences in (xi, xj) if for all x0i < x00i and x0j < x00j

f((x1, ..., x
00
i , ..., x

00
j , ..., xn))− f((x1, ..., x

00
i , ..., x

0
j , ..., xn) >

f((x1, ..., x
0
i, ..., x

00
j , ..., xn))− f((x1, ..., x

0
i, ..., x

0
j , ..., xn))

(d) Consider a vector x = (x1, ..., xn). A function f : X ⊆ Rn → R has strictly increasing
differences on X, if it has strictly increasing differences in (xi, xj) for all i 6= j,
i, j = 1, ..., n.

Proposition 5. Let X ⊆ Rn be a sublattice of Rn. If a function f : X ⊆ Rn → R is
(strictly) supermodular in bx = (xm1 , ..., xmr) then it has (strictly) increasing differences in
(xmi , xmj ), for all mi 6= mj , mi,mj ∈ {m1, ...,mr} ⊆ {1, ..., n}.

Proof. See Appendix B. ¥

Finally, let {F (x; θ), θ ∈ R} be a family of distribution functions on Rn, parametrized by
θ and let

R
S dF (x; θ) be the probability measure of S ⊆ Rn with respect to the distribution

F (x; θ). The following introduces the concept of stochastically increasing distribution and is
followed by a necessary and sufficient condition for it to hold.

4For detailed statements, proofs and discussion of these results, see Topkis (1998), sections 2.6.2 and 2.7.2.
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Definition 6. F (x; θ) is stochastically increasing in θ if
R
S dF (x; θ) is an increasing

function of θ for each increasing set S ⊆ Rn.

Proposition 7. F (x; θ) is stochastically increasing in θ if and only if the expectationZ
h(x)dF (x; θ)

is an increasing function of θ, for all increasing real valued functions h(x) on Rn.

Proof. For a proof of this last proposition, see Topkis (1998), section 3.9.1. ¥

3. Complete Information
3.1. Framework. Assume that time is discrete and that there is a finite horizon, so
t = 1, ..., T . In each period, a continuum of players of measure one simultaneously choose an
action from a binary action set. Denote by i an arbitrary player, and by I the set of players.
To make the dynamics interesting, we assume that there are intertemporal links such that
play at each point in time will be influenced by past play and will influence the game to be
played subsequently. Specifically, we introduce three such links as follows. First, we assume
that a randomly evolving economic fundamental θ influences players’ payoffs directly. This
variable is exogenous. Second, we assume that there exists a state variable x which depends
on past aggregate play, but not on the actions of any individual player. Last, we assume
that each player is characterized by a personal state variable τ which is only influenced by
the specific player’s past play, and thus independent of aggregate play. Let z denote that
measure of players choosing high action in a given period. Let x denote the aggregate state.
Last, we shall refer to a player’s personal state τ as the player’s type. A strategy for a player
is a mapping from the state space into the action space (i.e. the strategy is a mapping
that yields, for every triple τ , x, θ, an action a), while a strategy profile is a collection of
strategies, one for each player. A policy for a player is a sequence of strategies, one for
each period, while a policy profile is a collection of such policies, again one for each player.
In what follows, we shall restrict attention to Markov policies. This restriction is crucial,
since strategic complementarities are difficult to obtain in dynamic games when fully history
dependent strategies are allowed. But recall that equilibria in Markov strategies remain
equilibria when a larger space of non-Markov strategies is considered.

In what follows, we shall begin by analyzing the decision problem of a representative
player under the assumption of a fixed profile of policies of all other players, and common
knowledge of both the current realization of the economic fundamental θ, the current value of
the state x and the distribution of player types τ . Given such a policy profile, the remaining
player essentially solves a Markov decision process, in which other players’ actions, the
distribution of player types and the endogenous common state can all be treated as elements
of an exogenous state vector. Specifically, fix a policy profile. With this knowledge, a player
can perfectly forecast the future evolution of aggregate actions, the endogenous state variable
and the distribution of player types. Thus the player may view all these as state variables.5

5For a discussion of the relationship between stochastic games and Markov decision problems, see e.g.
Heyman and Sobel (1984).
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To summarize the above, let χ = (z, τ , x, θ)0 and a denote the state and action respectively
in any given period, where in any period z ∈ [0, 1] is the measure of players choosing action
1, τ ∈ {1, 2, ..., k} is the personal state variable for the player (his type), x ∈ R is the
common state variable and θ ∈ R is the exogenous economic fundamental. The collection of
all possible states in any period is X = [0, 1]×{1, 2, ..., k}×R×R ⊆ R4, and a ∈ A = {0, 1}.
For later use, note that the set X ×A is a sublattice of R5.

We assume that the evolution of types and common states is determined by the following
relations:

τ 0 = φ(τ , a, θ), x0 = ψ(x, z, θ)

where primes denote next period’s variables. These formulations mean that the type of
a player depends on his type and action in the previous period, and on the last period’s
exogenous shock θ, and that the common state variable depends on the common state and
aggregate play in the previous period, and on the last period’s exogenous shock θ. Moreover,
θ evolves according to a First Order Markov process. Finally we assume that the only source
of uncertainty is θ (i.e. θ is the only stochastic variable).

Denote by rt(a, z, τ , x, θ) the one-stage return for an arbitrary player choosing action a ∈
A = {0, 1} in period t given a vector of state variables χ = (z, τ , x, θ). Let 0 < δ < 1 denote
the common discount factor and assume that rt(a, z, τ , x, θ) is bounded in all arguments.
Next, define the following recursion:

Wt(a, z, τ , x, θ) = rt(a, z, τ , x, θ) + δ

Z
Vt+1(z

0, τ 0, x0, θ0)dFt(θ0|θ)
Vt(z, τ , x, θ) = max

a
Wt(a, z, τ , x, θ)

WT (a, z, τ , x, θ) = rT (a, z, τ , x, θ)

where the expectation is taken with respect to the distribution function Ft(θ
0|θ) of next

period’s θ0 conditional on θ. The interpretation of these expressions is as follows. The
function Wt denotes the expected discounted future payoffs from playing action a in period
t and then playing optimally thereafter. The function Vt simply expresses the maximum
possible expected discounted future payoffs from periods t through T . By definition, last
period’s Wt is just the one period return, as there is no further play thereafter.

Next we summarize the assumptions required for the proceeding results. Let Ω denote
all pairs of variables that can be formed by combining elements of (a, z, τ , x, θ), i.e.

Ω = {(a, z), (a, τ), (a, x), (a, θ), (z, τ), (z, x), (z, θ), (τ , x), (τ , θ), (x, θ)}
(A1) The functions φ and ψ are increasing in all their arguments.
(A2) For a fixed policy profile, and for all t = 1, ..., T , rt(a, z, τ , x, θ) is strictly super-

modular in all the elements of Ω.
(A3) Ft(θ0|θ) is stochastically increasing in θ.

3.2. Complementarities. With these assumptions in place, we can state the first main
result of the paper. Roughly, the result is that under the maintained assumptions, com-
plemenarities between players’ actions, between actions and the economic fundamental and
between the endogenous state variable and players’ types, are all reinforced from one period
to the next.
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Theorem 8. Under (A1) - (A3), Wt(a, z, τ , x, θ) is strictly supermodular in all the elements
of Ω for each t = 1, ..., T .

Proof. The proof is by induction. At the last period t = T ,WT (a, z, τ , x, θ) = rT (a, z, τ , x, θ)
thus the result holds by (A2). Next, assume that at period t = k + 1 the result holds, i.e.
that Wk+1(a

0, z0, τ 0, x0, θ0) is strictly supermodular in all elements of

Ω0 =
©
(a0, z0), (a0, τ 0), (a0, x0), (a0, θ0), (z0, τ 0), (z0, x0), (z0, θ0), (τ 0, x0), (τ 0, θ0), (x0, θ0)

ª
Under this assumption consider the function in period t = k

Wk(a, z, τ , x, θ) = rk(a, z, τ , x, θ) + δ

Z
Vk+1(z

0, τ 0, x0, θ0)dFk(θ0|θ)

First note that rk(a, z, τ , x, θ) is strictly supermodular in all elements of Ω by (A2).
Next, let

hk(a, z, τ , x, θ) ≡
Z

Vk+1(z
0, τ 0, x0, θ0)dFk(θ0|θ) =

Z
Vk+1(z

0, φ(τ , a, θ), ψ(x, z, θ), θ0)dFk(θ0|θ)

Recall that
Vk+1(z

0, τ 0, x0, θ0) = max
a0

Wk+1(a
0, z0, τ 0, x0, θ0)

Since Wk+1(a
0, z0, τ 0, x0, θ0) is strictly supermodular in all elements of Ω0, it follows that it is

also supermodular, and therefore Vk+1(z0, τ 0, x0, θ0) is supermodular in (z0, τ 0), (τ 0, θ0), (τ 0, x0),
(τ 0, θ0), (x0, θ0). Using this, it is possible to show that hk(a, z, τ , x, θ) is supermodular in all
elements of Ω. For a detailed proof, see Appendix C. Thus, since rk is strictly supermodular
and hk is supermodular in all elements of Ω, and δ > 0, from Lemma 3 it follows that
Wk(a, z, τ , x, θ) is strictly supermodular in all elements of Ω. This concludes the induction.
¥

An immediate consequence of Theorem 8 is the following:

Corollary 9. Under (A1) - (A3), Wt(a, z, τ , x, θ) has strictly increasing differences in (a, z)
and (a, θ).

Proof. Follows immediately from Theorem 8 and Proposition 5. ¥

Note that by relaxing (A2) so that rt is supermodular in all elements of Ω, we can obtain
an analogous result to Theorem 8 stating that Wt is supermodular in all elements of Ω, and
thus restate Corollary 9 so thatWt has increasing differences in (a, z) and (a, θ). Nevertheless,
we state the theorem in terms of strict supermodularity so that we can apply results by
Frankel, Morris and Pauzner (2002), henceforth FMP, in the incomplete information case.

Next, consider the role of the horizon T . The above analysis was carried out for arbitrary,
but finite horizon. As one may be interested in extending the analysis to infinite horizon,
the following result is useful. Let WT

t denote the value of W at period t, when the length of
the horizon is T .
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Proposition 10. Under (A1) - (A3), if the limit W̄t = limT→∞WT
t (a, z, τ , x, θ) exists for

all time periods t, then it is strictly supermodular in all the elements of Ω.

Proof. Consider the constituent parts of the function WT
t (a, z, τ , x, θ). The first part,

namely rt(a, z, τ , x, θ) is independent of the horizon length and thus remains strictly super-
modular when the limit is taken, i.e. as T →∞. The second part, δ R Vt+1(z0, τ 0, x0, θ0)dFt(θ0|θ),
is supermodular in all elements of Ω for all t, for each horizon length T (as shown in Theorem
8). But since supermodularity is preserved when taking limits, WT

t (a, z, τ , x, θ) converges to
the sum of a strictly supermodular function and a supermodular function, and this limit is
thus itself strictly supermodular by Lemma 3. ¥

Next, assume that the horizon is infinite, that the limit W̄t = limT→∞WT
t (a, z, τ , x, θ)

exists for all time periods t and suppose that the players use stationary Markov policies.
Then, the limiting W̄ is time invariant. The following result is a momentum theorem, for
the infinite horizon case.

Theorem 11. Momentum. Suppose that

(θt, xt, τ t) ≥ (θt−1, xt−1, τ t−1)
for some period t. Furthermore, assume that the representative player conjectures that
zt ≥ zt−1. Then

(i) at ≥ at−1.

(ii) the conjecture that zt ≥ zt−1 is confirmed.

(iii) τ t+1 ≥ τ t and xt+1 ≥ xt

Proof. Part (i) follows from Theorem 8 and Topkis’ monotonicity theorem. To see this, let
S(χ) be the set of maximizers of W̄ with respect to a, i.e.

S(χ) = argmax
a
[W̄ (a, χ), a ∈ {0, 1}]

Then, by Theorem 8, a is complementary with each component of χ = (τ , z, x, θ). Therefore,
from Theorems 2.8.1 and 2.6.1, and Corollary 2.6.1 of Topkis (1998), the set of maximizers
S(χ) is increasing in χ. Thus, since (θt, xt, τ t) ≥ (θt−1, xt−1, τ t−1) and the player believes
that zt ≥ zt−1, it follows that

S(χt) ≥ S(χt−1)

If the set of maximizers consists of a unique element, then a = S(χ) and it follows that
at ≥ at−1. If there is more than one maximizer, we can assume that players use a consistent
way of choosing among those maximizers in order to take their action, e.g. at = minS(χt),
in which case again the result holds.

To show part (ii), since at ≥ at−1 for the representative player, it follows trivially that
zt ≥ zt−1. Last, to show for part (iii), we use parts (i) and (ii) and A1:

τ t+1 = φ(τ t, at, θt) ≥ φ(τ t−1, at−1, θt−1) = τ t

xt+1 = ψ(xt, zt, θt) ≥ ψ(xt−1, zt−1, θt−1) = xt

¥
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3.3. Discussion. The results derived so far merit some further comments. Under the
maintained assumptions, an increase in aggregate activity z induces any agent to increase
his own action a, for two separate reasons. First, there is a direct contemporaneous effect,
captured by the notion of complementarity in the pair (a, z). Second, there is an intertem-
poral effect through the state variables. An increase in aggregate activity today increases
the level of tomorrow’s common state variable x0. But since there is complementarity in the
pair (τ , x), a player may want to increase the level of his type the next period, which in turn
is achieved by increasing the current action. Similar reasoning can be applied to the pair
(a, θ). An increase in the economic fundamental induces an increase in the current action
through the contemporaneous complementarity. But because an increase in θ causes and
upward shift in the distribution of tomorrow’s realization, and there are complementarities
in the pair (τ , θ), the agent has a further incentive to increase the current action to benefit
from a higher future realization of θ by having a higher type.

As for the momentum theorem, it shows the possibility of multiple self-confirming equi-
libria, in that an initial conjecture about high activity may indeed bring about high activity
as an equilibrium outcome. This momentum theorem comes with more qualifications than
do those of Milgrom, Qian and Roberts (1991) and Topkis (1998), and for good reasons.
First, their results are derived within deterministic frameworks, allowing them to predict
perpetual growth in the state variables. For example, Milgrom, Qian and Roberts (1991)
state that ‘[...] once the system begins along a path of growth of the core variables, it will
continue forever along that path or, more realistically, until unmodeled forces disturb the
system’. Apart from our conditions on the distribution of types and the common state vari-
able, which closely mirrors those in Milgrom, Qian and Roberts (1991) and Topkis (1998),
our result hinges on the fact that the economic fundamental does not decrease from one
period to the next. In a sense, this is an instance of the unmodeled forces mentioned in the
quote. A second, and more crucial difference is that we, in contrast to their result, derive a
momentum theorem with a game and not in a decision theoretic framework. Thus, in our
setup a player cannot determine (or even influence) some of the key variables of the model.
Thus we are forced to state our result under the conjecture that all players believe that
aggregate activity will be high, a conjecture which is indeed confirmed in equilibrium.

Before turning to the incomplete case, consider the following special case of the model.
Assume that τ 0 = φ(τ , a, θ) = τ for all a. That is, a model in which players’ types are
exogenous. Under this assumption, the statement of Corollary 9 holds under assumptions
(A1)-(A2) alone, i.e. also for distributions Ft(θ0|θ) that are not stochastically increasing. In
this case, since the players cannot influence their own future prospects by changing current
actions, the future plays no role in current decisions. A model with such features is that of
Morris and Shin (1999) in which speculators can attack a currency in each period, but where
neither the speculators’ ability to attack, nor the monetary authority’s ability to defend the
peg is influenced by past play.

4. Incomplete Information Framework
We now extend the model to one of incomplete information in order to invoke the global
games methodology. The basic idea is as follows. In FMP, a very general but static game
is considered in which there are strategic complementarities, each player is characterized
by a specific type and where higher levels of the economic fundamental raises the relative
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desirability of higher actions. What we will do is to reinterpret their results so that instead
of receiving a level of utility once and for all, the players receive expected discounted payoffs.
FMP’s results cannot be applied directly though, for the following reason. In FMP, the
payoffs are uniquely determined, given a strategy profile and a realization of the economic
fundamental. But recall that in the present paper, all the analysis has been carried out
given a fixed profile of policies. Thus, even if a player knows what other players will do in
the current period, there may still be multiple equilibria in any future period. In turn, this
implies that the expected future payoffs (i.e. the value functions) are not well defined. But
if players do not agree on the continuation values, equilibrium in the current period cannot
be unique. The uniqueness proof below shows by an inductive argument that FMP’s results
yield well defined value functions, and so their results may be invoked at each stage of the
game.

Assume that all assumptions and definitions of the complete information framework are
maintained, but consider the following change in the informational structure. In each period,
rather than observing the economic fundamental directly, a player obtains a noisy signal s
where s = θ+ση with σ > 0 and where η is distributed according to G with density g (signals
may vary across types and across individuals within the same type, and the realizations of
the noise terms η will be independent across players). We also assume that the noise η is
independent of the economic fundamental θ. Last period’s realization is common knowledge,
and provides a prior Ft(θ0|θ) over the current period’s realization. After a signal is received
the player forms a posterior of θ. Define

∆t(a1, a2, z, τ , x, θ) ≡Wt(a1, z, τ , x, θ)−Wt(a2, z, τ , x, θ)

where Wt is defined as in the previous section. In addition to (A1) - (A3), we make the
following assumptions.

(A4) For all τ , x, z, there exist realizations θ, θ ∈ R with θ < θ such that∆(a1, a2, z, τ , x, θ) >
0 for θ > θ and ∆(a1, a2, z, τ , x, θ) < 0 for θ < θ.

(A5) The return function rt(a, z, τ , x, θ) is continuous in z, x and θ.

4.1. Uniqueness of Equilibrium. With assumptions (A1) - (A5), the present setup
satisfies the conditions in FMP in each period. We can thus state the following result:

Theorem 12. Under (A1) - (A5), as σ → 0 the game in any period t ≤ T has an essentially
unique strategy profile surviving iterative strict dominance.

Proof. We prove the statement by induction, using Theorem 5 of FMP. First note that, to
apply this theorem, we need to ensure that the required assumptions of FMP are satisfied.6

FMP1 (strategic complementarities) is satisfied by Corollary 9, under (A1) - (A3). FMP2
(dominance regions), is assumption (A4). FMP3 (state monotonicity) is ensured by Corollary
9, under (A1) - (A3). FMP4 is assumption (A5). Finally, we do not need to check FMP5,
because the action space is finite.

At t = T , uniqueness follows trivially from Theorem 5 of FMP. Now assume that for
some period k + 1 < T there is a unique equilibrium, and consider the problem in period k.

6 In what follows, we denote assumptions A1 - A5 in FMP, by FMP1 - FMP5 correspondingly, in order to
avoid confusion with the assumptions (A1) - (A5) we make here.
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Since the continuation values are well defined as a function of the current period’s data by
the inductive hypothesis that there is a unique equilibrium in period k + 1, uniqueness in
period k follows. ¥

4.2. Discussion. As the analysis above has shown, it is possible to identify a unique
equilibrium for any finite horizon version of the model. It is interesting to know if uniqueness
carries over to the case of an infinite horizon. As shown in the section on the complete
information model, strict supermodularity at each stage continues to hold when the horizon
recedes. Whether uniqueness also obtains for the infinite horizon is not a straightforward
question, and we are still working on that. Our strategy is to employ the techniques of
Fudenberg and Levine (1983, 1986) and Harris (1985). This literature studies the behavior
of the equilibrium set of games when taking limits of simpler truncated versions of the games.

5. Conclusion
In this paper we have set out a fully dynamic model in which a continuum of players simulta-
neously choose actions in an uncertain environment. By assuming complementarity between
players’ actions and components of a state vector, we have shown that complementarities at
each point in time spill over across periods. Using these results, methodology from the static
global games literature has been shown to yield a unique equilibrium.

While still at an early stage, this approach to dynamic global games seems promising, in
particular from an applied perspective. There are also a number of interesting features of
the model that remain to be studied. For example, empirical studies have shown convinc-
ing evidence of dynamic complementarities, whereby higher activity in a given period raises
productivity in subsequent periods. Such evidence may be rationalized through models like
the one presented here. Last, there are a plethora of intertemporal links in the industrial
organization literature that merit further study within a dynamic framework of strategic
complementarities. For example, time to build, learning by doing, irreversibility of invest-
ment decisions, consumer switching costs, capital accumulation and contractual obligations
spanning several periods are but some of the many features that may link a firm’s cur-
rent decisions and future prospects, and influence the strategic interaction between industry
participants.

Appendices

A. Proof of Lemma 3
Consider x1 = (bx1;xc) ∈ X and x2 = (bx2;xc) ∈ X, such that bx1and bx2 are unordered and
let h(x) = f(x) + g(x). Then

h(bx1;xc) + h(bx2;xc) = f(bx1;xc) + f(bx2;xc) + g(bx1;xc) + g(bx2;xc)
≤ f(bx1;xc) + f(bx2;xc) + g(bx1 ∧ bx2;xc) + g(bx1 ∨ bx2;xc)
< f(bx1 ∧ bx2;xc) + f(bx1 ∨ bx2;xc) + g(bx1 ∧ bx2;xc) + g(bx1 ∨ bx2;xc)
= h(bx1 ∧ bx2;xc) + h(bx1 ∨ bx2;xc)

where the first inequality follows from supermodularity of f in bx and the second inequality
follows from strict supermodularity of g in bx. Thus, h is strictly supermodular in bx. ¥
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B. Proof of Proposition 5
We first show that supermodularity implies increasing differences. Consider two arbitrary
mi 6= mj and suppose x0mi

≤ x00mi
and x0mj

≤ x00mj
. Let

bx1 = (xm1 , ..., x
00
mi
, ..., x0mj

, ..., xmr)bx2 = (xm1 , ..., x
0
mi
, ..., x00mj

, ..., xmr)

Then

bx1 ∨ bx2 = (xm1 , ..., x
00
mi
, ..., x00mj

, ..., xmr)bx1 ∧ bx2 = (xm1 , ..., x
0
mi
, ..., x0mj

, ..., xmr)

Since f is supermodular in bx, it follows from the definition of supermodularity that

f(bx1;xc) + f(bx2;xc) ≤ f(bx1 ∧ bx2;xc) + f(bx1 ∨ bx2;xc) =⇒
f((xm1 , ..., x

00
mi
, ..., x0mj

, ..., xmr ;x
c) + f(xm1 , ..., x

0
mi
, ..., x00mj

, ..., xmr ;x
c) ≤

f((xm1 , ..., x
00
mi
, ..., x00mj

, ..., xmr ;x
c)) + f(xm1 , ..., x

0
mi
, ..., x0mj

, ..., xmr ;x
c)

Therefore

f((xm1 , ..., x
00
mi
, ..., x00mj

, ..., xmr ;x
c))− f((xm1 , ..., x

00
mi
, ..., x0mj

, ..., xmr ;x
c) ≥

f(xm1 , ..., x
0
mi
, ..., x00mj

, ..., xmr ;x
c)− f(xm1 , ..., x

0
mi
, ..., x0mj

, ..., xmr ;x
c)

which means that f has increasing differences in (xmi , xmj ), for all mi 6= mj .
To show that strict supermodularity implies strict increasing differences, consider two

arbitrary mi 6= mj and suppose now that x0mi
< x00mi

and x0mj
< x00mj

and notice that the two
vectors

bx1 = (xm1 , ..., x
00
mi
, ..., x0mj

, ..., xmr)bx2 = (xm1 , ..., x
0
mi
, ..., x00mj

, ..., xmr)

are unordered. By the definition of strict supermodularity it follows that

f(bx1;xc) + f(bx2;xc) < f(bx1 ∧ bx2;xc) + f(bx1 ∨ bx2;xc)
thus

f((xm1 , ..., x
00
mi
, ..., x00mj

, ..., xmr ;x
c))− f((xm1 , ..., x

00
mi
, ..., x0mj

, ..., xmr ;x
c) >

f(xm1 , ..., x
0
mi
, ..., x00mj

, ..., xmr ;x
c)− f(xm1 , ..., x

0
mi
, ..., x0mj

, ..., xmr ;x
c)

i.e. f has strictly increasing differences in (xmi , xmj ), for all mi 6= mj . ¥
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C. Remaining Part of the Proof for Theorem 8
We want to show that under (A1) - (A3), if Vk+1(z0, τ 0, x0, θ0) is supermodular in (z0, τ 0),
(τ 0, θ0), (τ 0, x0), (τ 0, θ0), (x0, θ) then hk(a, z, τ , x, θ) is supermodular in all elements of Ω.

We first introduce some convenient notation and state some auxiliary results. For any
two ω1, ω2 ∈ Rk let ω̄ = max(ω1, ω2) and ω = min(ω1, ω2). It is trivial to show the following
two results:

Lemma 13.

(i) For any ω1, ω2 ∈ Rn, max(ωi, ω̄) = ω̄ and min(ωi, ω̄) = ωi, i = 1, 2.

(ii) If ξ : Rn→ R is increasing in all its arguments, then

min
i

ξ(ω̂i;ωc) = ξ(ω;ωc) and max
i

ξ(ω̂i;ωc) = ξ(ω̄;ωc)

(a) Supermodularity in (a, z). Consider (a1, z1) and (a2, z2). Then

hk(a1, z1, τ , x, θ) + hk(a2, z2, τ , x, θ)

=

Z £
Vk+1(z

0, φ(τ , a1, θ), ψ(x, z1, θ), θ0) + Vk+1(z
0, φ(τ , a2, θ), ψ(x, z2, θ), θ0)

¤
dFk(θ

0|θ)

≤
Z £

Vk+1(z
0, φ(τ , ā, θ), ψ(x, z̄, θ), θ0) + Vk+1(z

0, φ(τ , a, θ), ψ(x, z, θ), θ0)
¤
dFk(θ

0|θ)
= hk(ā, z̄, τ , x, θ) + hk(a, z, τ , x, θ)

where the inequality follows from (i) the fact that Vk+1(z0, τ 0, x0, θ0) is supermodular in (τ 0, x0),
(ii) (A1) and (iii) Lemma 13.

(b) Supermodularity in (a, τ). Consider (a1, τ1) and (a2, τ2). Then

hk(a1, z, τ1, x, θ) + hk(a2, z, τ2, x, θ)

=

Z £
Vk+1(z

0, φ(τ1, a1, θ), ψ(x, z, θ), θ0) + Vk+1(z
0, φ(τ2, a2, θ), ψ(x, z, θ), θ0)

¤
dFk(θ

0|θ)

≤
Z £

Vk+1(z
0, φ(τ̄ , ā, θ), ψ(x, z), θ0) + Vk+1(z

0, φ(τ , a, θ), ψ(x, z, θ), θ0)
¤
dFk(θ

0|θ)
= hk(ā, z, τ̄ , x, θ) + hk(a, z, τ , x, θ)

where the inequality follows from (i) the fact that Vk+1(z0, τ 0, x0, θ0) is trivially supermodular
in τ 0 (in fact this holds with equality), (ii) (A1) and (iii) Lemma 13.

(c) Supermodularity in (a, x), (z, τ), (τ , x) follows repeating similar steps as in (a).
(d) Supermodularity in (x, z) follows repeating similar steps as in (b).
(e) Supermodularity in (a, θ). Consider (a1, θ1) and (a2, θ2), and assume without loss of
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generality that θ1 ≤ θ2 i.e. that θ̄ = θ2 and θ = θ1. Then

hk(a1, z, τ , x, θ1)− hk(a, z, τ , x, θ)

=

Z £
Vk+1(z

0, φ(τ , a1, θ1), ψ(x, z, θ1), θ0)− Vk+1(z
0, φ(τ , a, θ), ψ(x, z, θ), θ0)

¤
dFk(θ

0|θ1)

≤
Z £

Vk+1(z
0, φ(τ , ā, θ̄), ψ(x, z, θ̄), θ0)− Vk+1(z

0, φ(τ , a2, θ2), ψ(x, z, θ2), θ0)
¤
dFk(θ

0|θ1)

≤
Z £

Vk+1(z
0, φ(τ , ā, θ̄), ψ(x, z, θ̄), θ0)− Vk+1(z

0, φ(τ , a2, θ2), ψ(x, z, θ2), θ0)
¤
dFk(θ

0|θ2)

=

Z
Vk+1(z

0, φ(τ , ā), ψ(x, z), θ0)dFk(θ0|θ̄)−
Z

Vk+1(z
0, φ(τ , a2), ψ(x, z), θ0)dFk(θ0|θ2)

= hk(ā, z, τ , x, θ̄)− hk(a2, z, τ , x, θ2) =⇒
hk(a1, z, τ , x, θ1) + hk(a2, z, τ , x, θ2) ≤ hk(ā, z, τ , x, θ̄) + hk(a, z2, τ , x, θ)

The first inequality follows from A1 and from the fact that Vk+1 is supermodular in (τ 0, x0).
The second inequality follows from the fact that the function

p(θ0) ≡ Vk+1(z
0, φ(τ , ā, θ̄), ψ(x, z, θ̄), θ0)− Vk+1(z

0, φ(τ , a2, θ2), ψ(x, z, θ2), θ0)

is increasing in θ0 and Proposition 7. To see why p is increasing, consider θ01 ≤ θ02. Also, let

τ 01 = φ(τ , ā, θ̄), τ 02 = φ(τ , a2, θ2)

x01 = ψ(x, z, θ̄), x02 = ψ(x, z, θ2)

Then, by A1 and lemma 13 we have that

τ̄ = max(τ 01, τ
0
2) = τ 01, τ = min(τ 01, τ

0
2) = τ 02

x̄ = max(x01, x
0
2) = x01, x = min(x01, x

0
2) = x02

θ̄
0
= max(θ01, θ

0
2) = θ02, θ = min(θ01, θ

0
2) = θ01

Next, we use the above and the supermodularity of Vk+1 in (τ 0, θ0) and in (x0, θ0) to get

Vk+1
¡
z0, τ 01, x

0
1, θ

0
1

¢
+ Vk+1

¡
z0, τ 02, x

0
1, θ

0
2

¢
≤ Vk+1

¡
z0, τ 01, x

0
1, θ

0
2

¢
+ Vk+1

¡
z0, τ 02, x

0
1, θ

0
1

¢
≤ Vk+1

¡
z0, τ 01, x

0
1, θ

0
2

¢
+ Vk+1

¡
z0, τ 02, x

0
1, θ

0
2

¢
+ Vk+1

¡
z0, τ 02, x

0
2, θ

0
1

¢− Vk+1
¡
z0, τ 02, x

0
2, θ

0
2

¢
Therefore

Vk+1
¡
z0, τ 01, x

0
1, θ

0
1

¢− Vk+1
¡
z0, τ 02, x

0
2, θ

0
1

¢ ≤ Vk+1
¡
z0, τ 01, x

0
1, θ

0
2

¢− Vk+1
¡
z0, τ 02, x

0
2, θ

0
2

¢
Thus

p(θ01) ≡ Vk+1(z
0, φ(τ , ā, θ̄), ψ(x, z, θ̄), θ01)− Vk+1(z

0, φ(τ , a2, θ2), ψ(x, z, θ2), θ01)
= Vk+1

¡
z0, τ 01, x

0
1, θ

0
1

¢− Vk+1
¡
z0, τ 02, x

0
2, θ

0
1

¢
≤ Vk+1

¡
z0, τ 01, x

0
1, θ

0
2

¢− Vk+1
¡
z0, τ 02, x

0
2, θ

0
2

¢
≤ Vk+1(z

0, φ(τ , ā), ψ(x, z), θ02)− Vk+1(z
0, φ(τ , a2), ψ(x, z), θ02)

= p(θ02)
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(f) Supermodularity in (τ , θ), (z, θ), (x, θ) follows by repeating similar steps as in (e).
This concludes the proof. ¥
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