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Abstract

We consider the properties of two monetary policy rules (‘strict inflation
targeting’, ‘constant money growth rule’) in an intertemporal equilibrium
model with flexible prices in which monetary policy is ‘active’, while fiscal
policy is ‘passive’. Specifically, we assume that the fiscal agent takes the
monetary policy rule as given and restricts itself to a policy which is consis-
tent with a sustainable debt burden and stable steady-state dynamics. The
paper shows that dynamic properties of the model economy may differ sig-
nificantly between the two monetary policy rules if public debt is issued in
nominal terms. Under a constant money growth rule which allows for tem-
porary deviations of inflation from target in response to shocks there is scope
for revaluations of public debt, acting as automatic stabilizers of government
debt dynamics. By contrast, a policy of strict inflation targeting implements
the target inflation rate also outside the steady state and precludes thereby
such stabilizing revaluations. Owing to this feature, additional fiscal restraint
may be needed which is not required under a constant money growth rule.
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1 Introduction

As pointed out in the seminal contribution by Sargent and Wallace (1981), monetary
policy by itself will not always be in a position to control the evolution of the price
level, unless being appropriately supported by the fiscal agent. This insight reflects
that in any macroeconomic model the government’s budget constraint entails contri-
butions of both monetary and fiscal policy. In terms of the widely used terminology
introduced by Leeper (1991), the Sargent-Wallace result says that for the mone-
tary agent to be able to control ‘actively’ inflation the fiscal agent needs to behave
‘passively’ in the sense that he accepts the residual role within the government’s
budget constraint, taking as given the behaviour of the active agent.! But how to
enforce a credible mix of active monetary and passive fiscal policy? This question is
of particular importance in the context of the European Monetary Union which is
characterized by potential coordination failures and additional incentive problems
arising from ‘one money, but many fiscal policies’ (Uhlig, 2002). Within this context,
many economists have argued that it would be desirable to subject the fiscal agent
to some kind of a rule which imposes certain limits on the government’s borrowing
behaviour (Chari and Kehoe (1998), Sims (1999)). Evidently, the requirements of
the Stability and Growth Pact prevailing in the European Monetary Union reflect
such concerns.

Woodford (2001) has recently reemphasized, however, that the interaction between
monetary and fiscal policy can never be one-way only. Specifically, regarding the
effects of monetary policy on fiscal policy, Woodford stresses the effects of monetary
policy on the real value of government debt (and the real debt service associated with
it) through its effects on the price level, given that public debt is largely issued in
nominal terms. Moreover, these fiscal effects of monetary policy can be potentially
large, even if the traditionally considered channel, the seigniorage contribution to
the government’s budget, is negligible.

This paper takes the desirability of a combination of active monetary and passive
fiscal policy rules for granted and investigates some of the implications of the reval-
uation channel of government debt for the design of such rules. The key idea is that
because of this channel different monetary policy rules are likely to be associated
with different government debt dynamics, restraining thereby the fiscal agent in dif-

! The possibility of price level adjustments which reconcile otherwise inconsistent claims of active
monetary and active fiscal policy in the government’s intertemporal budget constraint is the subject
of the ‘Fiscal Theory of the Price Level’ as advanced by Woodford (1994, 1995) and Sims (1994).
The equilibrium foundations of the theory are, however, subject to a substantial controversy (Buiter
(2002), McCallum (2001). For summary treatments of the debate on the ‘Fiscal Theory of the Price
Level’, see Carlstrom and Fuerst (2000), Christiano and Fitzgerald (2000), Bassetto (2002). In any
case, the view associated with the ‘Fiscal Theory of the Price Level’ makes the case for fiscal rules
even more compelling.



ferent ways. To illustrate the potential strength of these differences, we present a
small general equilibrium model with strong supply-side features in which the price
level is fully flexible and determined according to simple ‘monetarist’ principles. We
compare two specifications of monetary policy, both of them being consistent with
identical long-run equilibria. First, we consider a policy of a ‘constant money growth
rule’ which allows for temporary deviations of inflation from target and leaves room
for revaluations of outstanding public debt as a response to supply shocks. Inves-
tigating the dynamic properties of equilibria, we show how this channel acts as an
automatic stabilizer of government debt dynamics, relaxing thereby the constraint
of the passive fiscal agent. Second, we look at a policy of ‘strict inflation targeting’
which keeps inflation always on target and preserves the real value of outstanding
debt in response to shocks. As a result, this policy lacks the stabilization proper-
ties regarding government debt dynamics and we derive how this feature leads to a
tighter constraint of the fiscal agent, compared with a constant money growth rule.?

While the main insight of this paper is largely model-independent, we organize
our analysis, inspired by Sargent and Wallace, around an overlapping generations
economy of the Diamond-type with two interest-bearing assets (physical capital,
government bonds) and return-dominated outside money. Specifically, following the
two-stage modelling strategy of Sargent and Wallace, we start out with a simple,
fully tractable benchmark economy with backward-looking dynamics in which the
preferences of agents are specified in a highly monetarist way, yielding a demand for
real balances which is strictly proportional to contemporaneous output and displays
a constant velocity.> We assume that monetary policy has a certain inflation target,
while fiscal policy aims at a certain non-negative target value of the deficit ratio
(corresponding in long-run equilibrium one-to-one to a certain debt ratio). Given
such targets, the model gives rise to a unique steady state with positive levels of
output and real balances as well as non-negative government debt, as long as the
deficit ratio remains below a certain feasibility bound. Depending on the specific

2Svensson (1999) offers a framework with short-run rigidities in which ‘inflation targeting’ is
associated with the permanent accommodation of price level changes, while ‘price-level targeting’
is not. Svensson (2003) further distinguishes between ‘strict’ and ‘flexible’ inflation targeting
where the latter concept allows for a positive weight on output stabilization in the central bank’s
loss function. The framework presented here lacks the trade-offs considered by Svensson since it
exclusively concentrates on features of the long run, i.e. prices are fully flexible and actual output
is always identical to potential ouput. Despite the different motivation, however, the constant
money growth rule considered in this paper acts like a flexible inflation targeting rule in the sense
that it tolerates temporary deviations of inflation from target.

3Unlike the Sargent-Wallace set-up, our model accounts for variable real interest rates due to
variations in the marginal product of capital. In this respect, our model is related to contributions
by Schreft and Smith (1997, 1998), Espinosa-Vega and Russell (2001), and Bhattacharya and
Kudoh (2002). The focus of these papers, however, is on different aspects of monetary and fiscal
policy interaction.



interaction between monetary and fiscal policy, however, steady states of this type
are not necessarily stable. Defining our particular specification of a passive stance of
fiscal policy, we restrict the fiscal agent to deliver stable dynamics, taking as given
the specification of the monetary policy rule.! In order to establish the different
fiscal consequences associated with strict inflation targeting and a constant money
growth rule we consider two scenarios.

First, as a deliberately strong example, we require the fiscal agent to maintain
a constant deficit ratio not only in steady state, but in all periods. Under this
assumption, under a constant money growth rule all feasible steady states are always
stable. By contrast, under a policy of strict inflation targeting all feasible steady
states become unstable beyond a certain threshold value of the deficit ratio, implying
that the fiscal agent faces ex ante a narrower choice set than under a constant money
growth rule. This different stability behaviour results from the fact that under strict
inflation targeting, because of the absence of stabilizing revaluations of government
debt, the economy is more vulnerable to adverse debt dynamics in response to
shocks. Specifically, the severity of such dynamics depends on the initial steady-
state level of the deficit ratio which, through its correspondence to the economy’s
debt ratio, is directly linked to the pre-shock level of the real interest rate. Hence,
the lack of stabilizing revaluations of government debt is particularly harmful under
a high deficit ratio, generating the possibility of unstable dynamics. Moreover, we
also show that under strict inflation targeting the richer interaction between debt
dynamics and crowding out effects implies that off-steady state dynamics, even when
being stable, can be associated with endogenous fluctuations - a feature which cannot
occur under a constant money growth rule.

Second, we discuss how the potential instability of steady states under strict inflation
targeting can be removed by fiscal policy rules which maintain the same long-run
target value of the deficit ratio, but allow for more flexibility outside the steady
state. While upon appropriate changes in the fiscal rule all feasible steady-state
deficit ratios can be stabilized, the main result remains nevertheless unaffected,
i.e. the lack of stabilizing debt revaluations under strict inflation targeting may

4Using a Ramsey-type economy, Leeper’s contribution follows the logic that ‘a passive authority
is constrained by consumer optimization and the active authority’s actions, so it must generate
sufficient tax revenues to balance the budget.” (p.136) Moreover, combinations of one actively
and one passively behaving authority are shown to satisfy the condition for a unique saddlepath
equilibrium. In overlapping generations economies of the Diamond-type the role of the govern-
ment’s budget constraint is different, since, in principal, the government may find it optimal to
permanently roll over debt between members of different generations, without ever raising taxes.
Moreover, in the absence of Ramsey-type transversality conditions stability properties of long-
run equilibria follow a different logic. Given these structural differences between Ramsey- and
Diamond-economies, we find it natural to link the concept of passive policy to the notion of (lo-
cally) stable dynamics around a certain target steady state. Related to this, see also Woodford
(2001, Section 2) and Chalk (2000).



well require additional fiscal restraint which is not needed under a constant money
growth rule.’

Following Sargent and Wallace, we then change preferences of agents in a way that
the money demand-specification becomes forward-looking and depends as well on
future inflation. Everything else being equal, this modification leaves all the dy-
namic (in)stability properties of the benchmark economy under strict inflation tar-
geting qualitatively unaffected, since the forward-looking component remains fully
predictable. By contrast, under a constant money growth rule the forward-looking
component is now genuinely expectation driven. As a result, real balances turn into a
forward-looking jump variable and the overall dynamics now contain both backward-
looking and forward-looking elements. Despite this change, however, the stability
properties of the benchmark economy remain qualitatively unaffected. Specifically,
we establish that for all feasible deficit ratios steady states are dynamically approach-
able from fixed initial conditions in a uniquely determined and smooth manner.

The remainder of the paper is structured as follows. Section 2 introduces the bench-
mark model. Section 3 discusses the stability properties of this model under strict
inflation targeting and a constant money growth rule. Section 4 extends the bench-
mark model by allowing for a forward-looking money demand specification. Finally,
Section 5 offers some conclusions. Proofs not included in the main text and numer-
ical simulation output are delegated to the appendix.

2 The benchmark model

We consider a deterministic overlapping generations economy with production in the
tradition of Diamond (1965), in which one-period government bonds and physical
capital act as perfect substitutes in the portfolios of agents. Deviating from Dia-
mond, however, we present a monetary economy in which return-dominated money
coexists with interest-bearing assets by means of a simple cash-in-advance constraint
which applies to a certain fraction of consumption purchases.’

5The focus of this paper is not on optimal monetary and fiscal policies as investigated, for
example, by Chari, Christiano, and Kehoe (1991). Related to the mechanics of the revaluation
channel of government debt, papers in this tradition typically stress that unanticipated inflation
should play the role of a fiscal shock absorber as long as government debt is nominal and non-
state-contingent. For a careful analysis of this finding under conditions of perfect and imperfect
condition, see Schmitt-Grohé and Uribe (2001). Moreover, we do not question why government
debt is largely issued in nominal terms, as done in Bohn (1988).

6For a more detailed description of the benchmark economy established in this section, see the
companion paper by von Thadden (2002) which focuses on properties of interest-rate rules. For
papers which introduce money into Diamond-type overlapping generations economies by means of
a cash-in-advance constraint, see, in particular, Hahn and Solow (1995) and Crettez, Michel, and
Wigniolle (1999).



Let N; denote the number of identical and two-period lived young agents in a rep-
resentative period ¢, with N;/N; 1 = 1+ n > 1, i.e. the population is assumed to
grow over time at a constant rate. At the beginning of the representative period
t, the old generation owns certain predetermined levels of the aggregate stocks of
physical capital (K), nominal bonds (B) and nominal money balances (M), result-
ing from decisions undertaken in period ¢ — 1. To facilitate the discussion of asset
dynamics below, let k; 1 = Ky 1/Ny, by 1 = By 1/Ny, my_1 = M, 1/N, denote the
predetermined stocks of real capital, nominal bonds, and nominal money balances at
the beginning of period ¢, measured per period-t young agent. We assume that the
economy inherits from period ¢ — 1 some positive interest factor I;_; > 1 (relevant
for interest payments on government bonds, whenever Et_l > () and a positive price
level p;_1 > 0. In sum, using the generic index ¢ — 1 for the initial (or predetermined)
conditions of the economy, we assume:

(A 1) Predetermined variables

In the representative period ¢, the economy operates subject to predetermined vari-
ables, resulting from decisions in period ¢ — 1 :

i) ;1 >1,p1 >0,

i) kg >0,y 1 >0, b1 >0

As to be seen below, we assume that these variables are sufficiently close to a certain
target steady state such that dynamics are locally governed by the force field around
this steady state.

2.1 Production

In every period, young agents offer inelastically a labour supply of e = 1 units of
labour. Old agents have a zero labour endowment. The production process of the
economy exhibits standard features of a neoclassical growth model. Specifically, one
unit of output (Y') can be equally consumed or invested, and, when invested, it can be
transformed into one unit of physical capital to be used one period later. Aggregate
output in period ¢ is given by F'(K; 1, N;)+(1—06)K; 1, where the function F(.,.) has
constant returns to scale and ¢ € (0, 1) denotes the rate at which capital depreciates
during the production process. Let y; = f(ki—1) = F(K_1,1), where k1 = K;_1 /Ny
describes the capital-labour ratio per young agent. Input and output markets are
characterized by perfect competition. Let p, and w, denote the rental rate and the
wage rate to capital and labour in period ¢, respectively:

Py = f/(ktfl) (1)
wy = f(ki1) = (k1) - ko = w(kea) (2)



We assume that all factor incomes out of f(k) are subject to a proportional and
constant tax at rate 7 € (0, 1). Accordingly, the net of tax return factor associated
with a unit of capital, invested in period ¢ and with pay-off in period t + 1, is

Ri=1-6+1—7) f'(k) = R(ks) (3)

The function f(k) has properties which are satisfied by a Cobb-Douglas function of
the form vy, = ¢ - kf* |, where ¢ > 0 denotes a shift parameter for the productivity
level:

(A 2) Technology is described by the function y; = f(ki—1) = ¢ - kf* ; with:
i) f(k) =0, f'(k)>0, f'(k) <0 for k> 0; (ii) limp_of'(k) = hmk_@f( ) = o,
iit) limy o0 f/(k) = limy_oo 22 = 0; (iv) w(ke 1) = (1—a)- f (ke 1), with @ € (0,1).

2.2 Government

Let G; denote nominal aggregate government consumption, yielding no utility for
the private sector, and write the nominal primary deficit (DP) in period ¢ as: D} =
G, — - pt - Yz. The nominal flow budget constraint of the government in period ¢
can then be summarized as:”

Ef = Et — ]t—1§t—1 + ]\A/-ft - M—l- (4)

Equation (4) simply says that the nominal primary deficit can be funded from emit-
ting additional amounts of bonds or money, with the return differential between
these two outside assets being given by the nominal interest rate. To express (4)
in real terms on a per capita basis, we use d = DP/N, and introduce the notation

by = bt/pn my = mt/pn dt = dt /ptu yielding

&= (14m) b= Ty 2 L b+ (14n)- mt—%-mtl. (5)
t t

2.3 Problem of the representative agent

Preferences of agents are time separable and of the type

U(cl,cln) = uled) + B - ulcfy),

where u(c{) and u(c},,) denote, respectively, the utility of an agent (born in t)
from consumption in his youth and his old age, while 3 is a constant discount

"For simplicity, interest earned on governement bonds is assumed to be not taxed. However,
this assumption could be easily relaxed.



factor, # € (0,1). When making consumption and portfolio choices, young agents
take all prices and return rates as given. Let asset demands of the representative
agent be denoted by “-variables. Specifically, in addition to first-period consumption
¢/, agents choose real money balances m; (with real return factor R* = p;/pi11),
government bonds b, (with real return factor I - p;/piy1), and holdings of physical
capital k, (with real return factor R;). Since government bonds and capital are
considered to be perfect substitutes, the latter two return rates need to be identical.
For money to be valued in equilibrium, we specify the second-period flow utility
u(cf, ) as a composite index which represents the consumption of cash goods (cca)
and credit goods (cor). To keep the benchmark model particularly simple, we
assume that i) savings are a constant fraction of first-period disposable income and
ii) the elasticity of substitution between cash and credit goods is unity. As we will
show in the remainder of this section, these assumptions suffice to generate a simple
quantity theory demand for money which is strictly proportional to current income
and displays a constant velocity, similar to part one of Sargent and Wallace (1981).
To this end, preferences of the representative agent are given by:

(A 3) Preferences of the representative agent:
U=Inctp+ 8- [z-Ingg 0 +(1—2) - Ingy 1a],  2€(0,1).

Accordingly, the decision problem of a young agent in period ¢ amounts to finding
values {ctp s CER 111> Coa, 111> T4, (b + ki) } which maximize

maz : In C?é’R, Bz 1nOCR, t+1 +(1—2)- lnOCA, t+1]
+0 - (R - My + Ry (b + ki) — COR i1 — Coa, 141) (6)
+Cp - (R - Ty — COCA, t+1)

+I/t'[(1_7—)'wt_c%R,t_mt_bt_ktL

with the multipliers 9, (,;, v; being associated with the budget constraint in £41, the
additional cash constraint which applies to purchases of cash goods in
t + 1, and the budget constraint in ¢, respectively.

Cash and credit goods are assumed to be homogenous in production such that
they are sold to consumers at identical prices. However, from the perspective of
consumers, there is an opportunity cost associated with the use of money whenever
the nominal interest rate on bonds is positive, i.e. I; > 1. To restrict the analysis
of (6) to interior solutions with a strictly binding cash-in-advance constraint, we
assume from now on

I, =R, -2 S, (7)
D



implying that money holdings in period ¢ will always be identical to the expected
nominal value of cash purchases in period ¢ + 1. Under this assumption there exist
uniquely defined asset demands m; and (b; + k;) and, reflecting the assumption of
perfect substitutability, the mix between /b\t and Et is indeterminate at the individual
level. Differentiating (6) with respect to {c{.p 1 C&r 1115 Coa, 111, Mty (br +Kk¢)} and
eliminating the multipliers gives the system of equations:

1

Copt = m'(l—ﬂ'wt (8)
T B
my+ b+ ki = m'(l_'r)'wt (9)
auU 3
O%aws _ 122 Cnwm R _ (10)
603,8 RLft ™ . o B
Coa i = I -my (11)
Cop 1 = R (by + k) (12)

The feature of a constant savings rate in equations (8) and (9) follows from the log-
specification of preferences. Equation (10) shows that in an interior optimum the
marginal rate of substitution between cash and credit goods needs to be equal to the
price ratio as perceived by consumers, which in turn is naturally given by the nominal
inflation factor. Combining (10)-(12) gives a simple portfolio relationship between
real balances and interest-bearing assets, reflecting our assumption to restrict the
elasticity of substitution between cash and credit goods to unity:
. 1—2 ~

iy = - (by + ). (13)

z

2.4 Intertemporal equilibrium conditions

In a competitive equilibrium, agents take prices, return rates, and the tax rate 7
as given and choose in all periods quantities which are individually optimal and,
at the aggregate level, consistent with the economy’s resource constraint and the
government’s budget constraint. Specifically, a competitive equilibrium needs to
satisfy:

Definition Given the predetermined variables listed in (A 1), a competitive equi-
librium consists of a tax rate T and a sequence of prices {ps, I, }, nominal asset
supplies {Et, ]\Z} and quantities {ky, C%RJ, ClRr> Coap Jif such that in all periods:
i) the markets of government bonds, physical capital, money, and output clear, re-



spectively, according to:®

N B,
b, = = (1 -b 14
t N, -y ( +”) t ( )
~ K,
ke = Fi:(l—kn)-kt (15)
_ M,
= = (1 . 16
" Ne - py ( +n) i ( )
oy COCR,t + COCA,t
f(ktfl) = CCR,t + — >+ gt + (1 + TL) . kt - (1 - 6) : k‘tfla (17)

1+n

it) the budget constraint of the government (5) is satisfied,

iii) labour and capital are competitively paid according to (1) and (2),

iv) consumption plans of agents are optimal under price taking behaviour according
to (8)-(12),

v) return rates satisfy (7).

Using (14)-(16) within (1)-(13) it is possible to derive the following set of intertem-
poral equilibrium conditions which describe compactly the evolution of the economy
over time:

I = R(kt)-z%ﬂ (18)
¢
df + R(k’t_l) : bt—l = (]. + n) . bt + (]. + n) sy — % s MMe—q (19)
t
c

k by = - (ki 2

¢+ my + b 1+ n (k1) (20)

me = (1= 2) o fl), (21)

where ¢ = % (1—=7)-(1—a) € (0,1) and (21) results from substituting the
equilibrium version of (13) into (20). The dynamical system (18)-(21) has a trans-
parent structure. The inequality (18) ensures that the cash-in-advance constraint is
binding and that all three assets are valued in equilibrium. Equation (19) restates
the budget constraint of the government. Equation (20) represents a standard ac-

cumulation equation of Diamond-type overlapping generation economies. Owing to

$Equation (17) uses the notation g, = Gy/(p; - N;). Note that the labour market clears by
assumption at the full employment level according to equation (2). Moreover, one can verify that
the market clearing conditions (14)-(17) are by Walras’ Law not independent, i.e. if one assumes
within (1)-(12) that the markets for bonds, capital, and money clear, the output market needs to
be in equilibrium as well.



the assumption of a constant savings rate, (20) is fully backward-looking, similar to
the dynamics of a textbook Solow-model.” Finally, equation (21) is a simple version
of the quantity theory of money with constant velocity. In other words, by impos-
ing a unit elasticity of substitution between cash goods and credit goods we have
removed all forward-looking features of money demand and established a money
market equilibrium with strong ‘monetarist’ features in which, for a given output
level, the price level and the nominal money stock are proportional to each other.
Evidently, this leads to very tractable dynamics. As we show in a separate anal-
ysis in section 4, our main findings derived below remain qualitatively unaffected,
however, if we relax this assumption.

2.5 Long-run targets of monetary and fiscal policy

As it stands, the system (18)-(21) is not yet fully specified, since it lacks a descrip-
tion of monetary and fiscal policy. To start out with, we pin down the long-run
behaviour of the system by making two assumptions. First, monetary policy has
a constant inflation target (7). Second, to provide a long-run anchor for the evolu-
tion of government debt, fiscal policy is assumed to target a constant deficit ratio
(x), which corresponds in steady state one-to-one to a certain debt-ratio. Specifi-
cally, going back to (4), we assume that the nominal steady-state budget deficit is
a constant fraction of nominal output:

ﬁtp‘i‘(l_l)'ét—l_(j\z:_j\zt—l):Et_ét—lz)('pt'f(k)']vh (22)

1 ] (14n)-b (1+n)-b
+m)d+n)  f(k) flR)
where we use the fact that in steady state ky =k, by = b, I, = I = R(k) - (1 + =),
and B;/(p; - Ny - f(k)) = (1 +n) - b/f(k) denotes the (end-of-period) steady-state
debt ratio. Note that the particular notion of the government’s deficit maintained in
equation (22) implies that in the special situation of a balanced budget-rule (y = 0)
the sum of the nominal primary deficit and of interest payments on government
bonds, measured net of seigniorage revenue, must be equal to zero. To rationalize
this notion of the government’s deficit, it is easy to verify that it is in line with
the well-known budgetary arithmetic of the European Stability and Growth Pact.
Assuming exogenously, for example, a growth rate of n = 0.03 and an inflation
target of m = 0.02, (23) says that the debt ratio can be approximately stabilized

ex=[1- ~ (n+7)- (23)

9Under the assumption that the interest elasticity of savings is sufficiently small, (20) can be
rationalized as a short-cut to escape the technically more tedious case of a flexible, partly forward-
looking savings decision s; = s(R(k:), w(ki—1)), as studied in detail by Galor and Ryder (1989).
For related papers which also follow this short-cut, see, in particular, Schreft and Smith (1997,
1998).
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at 60% if the steady-state deficit ratio is set at 3%, as predicted by the well-known
‘Maastricht-arithmetic’.*

Within certain feasibility limits, the arithmetic in (23) is consistent with steady-state
constellations which are equally characterized by fiscal deficits or surpluses and price
inflation or deflation, and any such constellation can be used to study revaluation
effects of government debt. Since the focus of this paper is not on establishing
optimal target values of monetary and fiscal policy, no additional insights emerge in
the following analysis if one goes through all these combinations. Instead, to ease
the exposition, we find it convenient to restrict the set of monetary and fiscal target

values at the outset simply to non-negative numbers:
(A 4) Long-run targets of monetary and fiscal policy: x >0, 7 > 0

From a steady-state perspective, (23) can be used to replace (19). Define

Y:z-c-(l—(1+n)1(1+7r))€(0,1). (24)

Then substituting out for m and b, the system (18)-(21) reduces in steady state to

RE)-1+m) > 1 (25)
f(k) 1+n
Tk ze(1- X)’ (26)

with m and b being recursively determined by the steady-state versions of (20)
and (21). Invoking (A 2), (25)-(26) has at best a unique steady state, as graphed
in Figure 1. In line with the idea of active monetary policy, we assume that the
monetary agent is free to choose an inflation target (m > 0), while we restrict the
passive fiscal agent to a choice of x which, taking as given the inflation target, is
consistent with & > 0 (and, hence, y > 0). As to be seen from (26), x¥ = X(7) defines
for any particular inflation target an upper feasibility bound for the steady-state
deficit ratio, i.e. () establishes the upper bound for the amount of steady-state
debt which can be rolled over between generations. In particular, the fact that this
bound depends itself positively on steady-state inflation reflects that the fiscal agent
might have an incentive to challenge the inflation target in order to relax his own
constraint, as long as he is not disciplined by a mix of active monetary and passive
fiscal policy.!! In (26), higher steady-state deficit ratios lead to lower levels of the

10This particular type of ‘arithmetic’ depends on the appropriate book-keeping treatment of the
seigniorage term in the budget constraint of the government. In the companion paper von Thad-
den (2002), taking a ‘flow-of-funds’ perspective, the deficit ratio is not defined net of seigniorage
contributions, leading to a different budgetary arithmetic.

n steady-state comparison, a higher inflation rate leads to higher seigniorage income which in

turn provides the additional revenue to stabilize a higher debt ratio over time.

11
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Figure 1: Existence of a steady state (x > 0)

steady-state capital intensity (and of the steady-state capital stock) because of the
crowding out of physical capital through government bonds. Hence, the inequality
(25) will be satisfied for all x € [0,%), if it is satisfied at x = 0. To this end, we
evaluate R(k) at x = 0 (using from (A 2), f'(k) = af(k)/k)) and make the mild
restriction on structural parameters:

(A 5) LB a lin _ 5

From (A 5) follows directly:

Proposition 1 (Existence of a steady state)
Consider an inflation target @ > 0. Then, if x € [0,X), there exists a unique steady
state, satisfying (25) and (26), with k >0, m >0,b>0, [ > 1.

Remark: Figure 1 shows a steady state with a strictly positive deficit ratio, i.e.

€ (0,%), denoted by E. Equation (26) has at xy = 0 the solution k, which is
independent of 7. Assumption (A 5) ensures R(k) > 1, implying I(k) > 1 for any
7> 0and x € [0,).12

Steady states of this type, however, do not need to be stable, and the restriction to
deliver stable dynamics is the second key element of our definition of passive fiscal
policy to which we turn in the following section.

12 According to (A 5), R(k) > 1 will be satisfied if the structural parameters, ceteris paribus,
tend to increase the real return factor (R) by means of a low depreciation rate and a low level
of capital formation (through a low propensity (1 — «) - 3/(1 4+ ) to save out of factor income
f(k) and a low share of credit goods (z) in consumption). If (A 5) is violated, x needs to respect
X € (X, X), with x > 0 determining the minimum crowding out effect which is required to establish
I(k) > 1.
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3 Dynamic properties of the benchmark economy:
strict inflation targeting vs. constant money
growth

The long-run position of the economy summarized in Proposition 1 can be supported
by various monetary and fiscal policy rules with potentially different stability prop-
erties, depending on the off-steady state dynamics implied by these rules.!®* To
rule out the possibility of unstable dynamics, however, we assume in the following
that fiscal policy takes the specification of monetary policy as given and accepts
the residual role, whenever necessary, to stabilize the local dynamics of the steady
states established in Proposition 1. Using this particular notion of active monetary
and fiscal policy, the main purpose of this section is to show that different monetary
policy rules imply different restrictions on the behaviour of the fiscal agent, depend-
ing on whether the monetary agent follows outside the steady state a policy of strict
inflation targeting or a constant money growth rule.

To link the initial conditions summarized in (A 1) to the steady state analysis, as-
sume that the economy has been in steady state up to period t—1 and experiences at
the beginning of period ¢, before all activities with index ¢ start, a one-time tempo-
rary productivity shock, ¢, # ¢. Specifically, to illustrate the following findings, we
consider an adverse productivity shock (¢, < ¢), implying that the output in period
t is below its steady state level. Monetary policy can react to this shock according
to two different rules. First, we consider a policy of strict inflation targeting which
is characterized by the commitment to keep from period ¢ onwards the inflation rate
at its steady state level w. Alternatively, we consider a policy of a constant money
growth rule which accommodates the shock. According to this latter policy, the ag-
gregate nominal money supply grows from period ¢ onwards at the constant steady
state rate p, with 1 + p = (1 +7) - (1 +n). In sum, we compare:

(A 6) Monetary policy rules:

i) Strict inflation targeting: p;/pr—1 =1+ 7

ii) Constant money growth rule: My = (1 + p) - My 1 & my = i—z Sy

Given the realization of ¢,, ‘strict inflation targeting’ and a ‘constant money growth
rule’ are two special cases of deterministic money supply rules. In the first case
the money supply is adjusted flexibly to maintain a constant inflation rate. In the

second case the money supply follows a constant growth rate, making thereby the

13 Although our analysis is not conducted in terms of a game, we loosely use the term ‘rule’ in
order to indicate that all monetary and fiscal actions are assumed to be perfectly and costlessly
foreseen by the private sector, i.e. government behaviour does not suffer from a a discretionary
bias.
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inflation rate endogenous. Evidently, along the balanced growth path (i.e. in the
absence of the productivity shock) the realizations of p, and m; are identical under
the two rules, keeping m; = m constant over time.

Finally, to complete the description of off-steady-state behaviour, we assume, in a
first step, that the fiscal agent follows a policy which keeps the deficit ratio from ¢
onwards constant at the steady state value y :

(A 7) Fiscal policy rule:

X flkiot) = (1+n)-bt—%-bt_1. (27)
As we show in the next two subsections, the key difference between strict inflation
targeting and a constant money growth rule is the different valuation of previously
emitted nominal government debt in the government’s budget constraint, i.e. the
term p;_1 - by_1/p;. Equation (27) offers a deliberately rigid specification of the off-
steady state behaviour of fiscal policy which strongly amplifies the dynamic effects
of different valuations of public debt over time, illustrating thereby the mechanics
of the revaluation channel of government debt in a particularly strong way. Notice,
however, that we allow in Section 3.3 for a more flexible version of (27) and show
that this change leaves the qualitative nature of the following findings unaffected.

3.1 Dynamics under strict inflation targeting

Starting out from (18)-(21) and with monetary and fiscal policy being specified by
part i) of (A 6) and (A 7), dynamics of the economy are locally governed by

X'f(kt—l) - (1+n) 'bt_l—i-% 'bt—l (28)
ketmet b = o (k) (29)
my = (1-2)- 1jn - (ki) (30)

where (28) replaces (19) and the economy is assumed to be sufficiently close to the
steady state such that (18) is satisfied as a strict inequality. Importantly, one infers
from (28) that strict inflation targeting precludes revaluations of government debt,
i.e. the real value of outstanding government debt emitted in the previous period
(bi—1/(1 + m)) is stabilized at its pre-shock steady state level. To establish the
stability behaviour of (28)-(30) we substitute out for m,, yielding a two-dimensional
system in k; and b; :

1
X flhier) = (L4n) b= b (31)
zC
kt — 1 + n N f(kt—l) - bt- (32)
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Tr(J)? = 4-Det(J) Det(J) X =X

Det(J) = =1+ Tr(J) Det(J) = —1=Tr(J)

Figure 2: Dynamic behaviour of strict inflation targeting vs. constant money growth

The dynamics of (31)-(32) are entirely backward-looking since, according to (A 1),
both k; 1 and b; | are predetermined variables.

Proposition 2 (Local dynamics: stability)
There exists a unique 0 < x* <X such that for
i) x € [0,x*) dynamics are locally stable,

it) x € (x*,X) dynamics are locally unstable.

Proof: see appendix.

Proposition 2 says that local dynamics of (31)-(32) become explosive beyond a cer-
tain threshold value of the deficit ratio x*, i.e. not all feasible steady-state values
of x can be stabilized by the combination of strict inflation targeting and a rigid
fiscal rule as given by (27), restricting thereby the fiscal agent in his choice of x
beyond the requirements of Proposition 1. Moreover, as an aside, one can show that
dynamics, even when being stable, may well be subject to endogenous volatility:

Proposition 3 (Local dynamics: monotone vs. fluctuating adjustment)
There exists a pair {x1,Xa}, with 0 < x; < x* < x2 <X such that for

i) x € [0,x;) dynamics are monotone,

it) X € (X1, X2) dynamics are fluctuating,

i) x € (X2, X) dynamics are monotone.
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Proof: see appendix.

Figure 2 illustrates Propositions 2 and 3. Specifically, Figure 2 plots the determinant
and the trace of the Jacobian matrix associated with the two-dimensional system
in k; and b; as a function of x, x € [0,%). As derived in the appendix, the pairs
of the determinant and the trace resulting from this comparative statics exercise
are simply lined up along the straight line drawn in bold type, which crosses the
stability regions as summarized in Propositions 2 and 3.

Propositions 2 and 3 reveal that in (31) and (32) standard (i.e. Solow-type) ac-
cumulation dynamics interact with portfolio composition dynamics induced by the
government budget constraint (31) in a rich way. To get a better intuitive grasp of
these findings, one infers from the steady-state version of (31) that for given values
of n and 7 the steady-state level of b is subject to a ‘Laffer-type’ effect, i.e. b is
a hump-shaped function of the deficit ratio x. At x = 0, evidently b = 0. As x
rises, f(k) falls because of the crowding out of capital, implying that b has a unique
maximum and reaches zero again as x — 7\ (since k& — 0). Hence, any feasible
long-run level of b is generically associated with a low (x%) and a high (x¥) level of
the deficit ratio. The dynamic implications of this structure become transparent if
one combines (31) and (32), yielding

by 1
L+p

Figure 3 depicts the two steady-state combinations of (33) consistent with some
particular level of b > 0. To rationalize the stability findings of Proposition 2,
consider the effects of a one-time temporary productivity shock (¢, < ¢), implying
a downward shift of the production function for one period.!> At %, there is little
crowding out of capital and the marginal productivity of capital is ‘low’, leading to
‘standard’ accumulation dynamics, i.e. on impact the output and ensuing savings
losses in response to the shock are ‘small’ and over time the economy returns to
the steady state as capital formation recovers. By contrast, at the steady state
associated with x” the production function is ‘steep’ because of strong crowding
out effects (i.e. it crosses the 45°-degree line from below), leading to large output
losses on impact and destabilizing dynamics.

According to Proposition 3, as the system transits from stable to unstable dynam-
ics, there exists an interval of x where the system fluctuates. The reason for this
finding is that the composition of savings changes towards government bonds as x
rises. Depending on the particular value of y, this portfolio composition effect leads

k=X k) -

14+n (33)

14 At the maximum level of b, the two curves depicted in Figure 3 coincide and have a unique
tangency point with the line &k, = k1.

15Tn Figure 3, the RHS of equation (33) consists of two branches, since x* and x* are associated
with different slopes of the production function.
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ki1

b/(1+u)=[r

Figure 3: Stable vs. unstable dynamics under strict inflation targeting

to different adjustment speeds of k£ and b. This is illustrated, in the appendix, in
Simulations 1 — 5 which report impulse-response patterns as x moves from 0 to ).
If x = 0, dynamics are stable and entirely standard, since government bonds never
enter the picture. As y rises, deviations of k£ from the steady state become more
persistent due to the smaller share of k£ in overall savings. According to the budget
rule (31), this implies that the deficit remains for a longer time span below its steady
state level, leading in turn to a persistent decline in b. Specifically, if x € (x;, x*),
as reported in Simulation 3, the delayed recovery of k triggers a sufficiently offset-
ting, persistent decline in b and induces stable, endogenous fluctuations around the
steady state. If x € (x*, X2, ), as reported in Simulation 4, the timing is such that
these fluctuations reinforce each other over time and generate explosive dynamics.
Finally, if x € (xo,%x) the adverse impact effect on output and capital formation
is sufficiently strong to dominate the portfolio composition effect induced by the
budget constraint, leading to monotonically diverging dynamics (Simulation 5).19

3.2 Dynamics under a constant money growth rule

Under a constant money growth rule, the relationship m; = %% cmy_q = (14m)-my_4

established in part ii) of (A 6) can be used to express the government’s budget

constraint as
1 my

X flhio1) =1 +mn)- b — b1, (34)

1+7T.mt,1

16In terms of Figure 3, Y — % implies b — 0, i.e. if one rethinks the analysis in terms of
a conventional Solow-framework x — X essentially selects the zero-activity steady state with
unstable, monotone dynamics.
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implying that the real value of outstanding government debt is no longer stabi-
lized at its pre-shock steady state level, but rather depends on the realization of
my. Accordingly, local dynamics are now governed by the system (29), (30), and
(34). Again, upon substituting out for my, it is straightforward to represent these
three equations by means of a two-dimensional, fully backward-looking system in k;
and b; with initial conditions k;_1 and b;_;. As derived in the appendix, the stabil-
ity behaviour of this system, however, is different from the findings established in
Propositions 2 and 3 :

Proposition 4 (Local dynamics)
Assume x € [0,%). Then dynamics are always locally stable and display monotone
adjustment behaviour.

Proof: see appendix.

Proposition 4 says that all feasible steady-state values of x can be stabilized by
the combination of a constant money growth rule and a rigid fiscal rule as given
by (27). To see intuitively why the stability behaviour is so different under strict
inflation targeting and a constant money growth rule, consider again the experiment
that in period ¢ output is below trend because of an adverse productivity shock
(¢, < ¢). According to (30), under both i) strict inflation targeting and ii) a constant
money growth rule real balances m; will be lower on impact by an identical amount,
as one infers also from Simulations 1 — 5. Under a constant money growth rule,
however, the rise in the price level p; must be stronger because of the more generous,
non-state-contingent nominal money supply, leading to a stronger devaluation of
the outstanding nominal debt b, ;. Hence, for a given deficit ratio y fewer new
bonds need to be emitted, leading to lower liabilities of the government in the
future. To put it differently, a constant money growth rule acts like an automatic
stabilizer of the debt dynamics of the economy, since it accommodates in ‘bad’ times
a rise of the price level which triggers a devaluation of government debt.!'” This in
turn reduces the necessity to emit new bonds, thereby leading to less crowding
out and more physical capital formation. Correspondingly, if the economy’s initial
position results from a positive productivity shock (¢, > ¢), a constant money
growth rule tolerates that the price level will be temporarily below trend, implying a
revaluation of government debt and a self-stabilizing reduction of capital formation.
As a general feature, this built-in-mechanism of a constant money growth rule is
strong enough to stabilize all feasible steady-state deficit ratios. Moreover, it also

17Evidently, from a more general perspective, elements of the tax system which are not inflation-
neutral have qualitatively similar automatic stabilization properties within the government’s bud-
get, constraint.

18



precludes the possibility of endogenously arising volatility during the adjustment
towards the steady state.'®

By contrast, as derived above, a policy of strict inflation targeting lacks the stabi-
lizing effects of the revaluation channel of government debt and dynamics become
explosive if the initial debt exposure (measured by ) is sufficiently high. Note that
in the special case of y = 0 (implying by = 0) under both strict inflation target-
ing and a constant money growth rule the revaluation channel of government debt
is switched off. We establish in the appendix that in this special case the expres-
sions for the trace and the determinant are identical, implying an identical stability
behaviour (for an illustration, see Simulation 1). Under a constant money growth
rule the trace and the determinant are always given by these particular expressions
(denoted by E, in Figure 2), independently of x. By contrast, under strict inflation
targeting dynamics depend on the magnitude of y, and as the debt exposure rises
debt dynamics eventually become unstable.

3.3 Alternative specifications of fiscal policy

The strong result of potentially unstable dynamics under strict inflation targeting
as summarized in Proposition 2 results from the fact that, according to (A 7), not
only monetary but also fiscal policy attempts to maintain its long-run target outside
the steady state. We show in this section that this result can be overcome if strict
inflation targeting is combined with a fiscal policy which accepts temporary devia-
tions of y, from y with the aim to deliver stable dynamics for all x € [0,%). This
additional flexibility in the fiscal rule is needed as a substitute for the self-stabilizing
revaluation channel of government debt which is absent under strict inflation tar-
geting. Thus, this section establishes the simple insight that the stabilization of all
steady states consistent with Proposition 1 requires under strict inflation targeting
additional fiscal measures which are not needed under a constant money growth
rule.

Under the specification (A 7), fiscal policy is slightly procyclical, since, to keep the
deficit ratio x, constant when output is below trend, the deficit itself must also be
lower than in steady state.!” However, purely on stability grounds, this procyclical

18Tn terms of the experiment conducted in Figure 3, the key difference is that equation (33) now

changes to
zc— X 1 my

(k) — ——
A s wray i

kt:

cUt—-1,

implying that the considered negative productivity shock in period ¢ on impact not only reduces
the slope of the production function, but, through the relationship m; = (1 — 2) 5, - f(ki—1), also
shifts the intercept upwards.

YRemember that the tax rate 7 is assumed to be constant. Hence, adjustments in the (primary)
deficit occur in our model through variations of government spending g;.
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element is not strong enough, as shown in Proposition 2, to stabilize a steady state
with a high debt burden (x > x*) under strict inflation targeting. Alternatively, we
consider now a more strongly procyclical fiscal policy which fixes the (end-of-period)
steady-state debt ratio, to be denoted by 6, over time:

(A 7a) Fiscal policy rule:

Et =0. Pt - f(ktfl) . Nt ~ (1 + n) . bt =0. f(ktfl) (35)
Using (35), the budget constraint in period ¢ can be rewritten as
dy =06 f(ki1) — ! b (36)
t — t—1 1+ T t—1,

where d; denotes the real per capita deficit. In contrast to (A 7), a temporary
reduction in output now leads, on impact, to a below-trend deficit ratio (x, < x),
implying stronger adjustments of the primary deficit. Combining (35) and (36) with
the system (29)-(30), one obtains a fully recursive system with one-dimensional
dynamics in k; which are given by the equation

zc— 0

kt:(l—l—n

) - f(kea). (37)

Assessing the local dynamics of (37) by a linear approximation around the steady
state yields the expression dk; = - dk;_1, a € (0,1). Thus, dynamics are now stable
independently of the magnitude of y, since the role of the fiscal shock absorber is
now fully played by procyclical adjustments in the deficit.

Similar to growth models, the focus of our model is exclusively on supply-side-
features. This makes it difficult to rationalize within our model the notion of anti-
cyclical fiscal policy, as typically suggested by models which allow for short-run
frictions and Keynesian demand features. Despite this shortcoming of our model,
consider for the sake of the argument the following flexible deficit rule which has an
anticyclical component (through 1) and leaves room for autonomous actions a;.

(A 7b) Fiscal policy rule:

Y — Y
Y
In the light of (38), one can easily imagine a path of fiscal policy which accommodates
on impact a negative output shock by a temporary rise in the deficit ratio and
spreads the required fiscal adjustments out over the following periods by appropriate

contractionary choices of a;.

Xe = X — ¥( ) +ay, >0. (38)
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In any case, the ‘need’ for the additional adjustment measures implied by alterna-
tive fiscal rules like (35) or (38) originate in our model exclusively from the lack
of self-stabilizing revaluations of government debt under strict inflation targeting.
Correspondingly, purely on stability grounds, amendments as given by (35) or (38)
are not required under a constant money growth rule.

4 Extension: A forward-looking money-demand
specification

This section relaxes the simplifying assumption of a money demand with constant
velocity. To this end, we remove in (A 3) the assumption of a unit elasticity between
cash goods and credit goods. Instead, cash and credit goods are now specified as
gross substitutes to ensure that real balances depend not only on current period
output, but also on the expected path of future prices. We maintain, however,
the assumption of a constant savings rate, and, to further simplify the analysis,
we normalize the constant savings rate (s) to s = 1.2 Deviating from the log-
specification summarized in (A 3) we now assume instead:

(A 3a) Preferences of the representative agent:

1 (0] —& (o]
U= 1-2 [z - (CCR,t+1)1 + (1 —2) - (ctass1)
As derived in the companion paper von Thadden (2002), this leads to a generalized
money demand of the form

1 c

1—e

1 +z-I,= 1+n
which, owing to the gross substitutability assumption (¢ € (0,1)), implies that real
balances depend negatively on the nominal interest rate. Note that in the limiting
case of ¢ = 1, (39) turns into (21) as discussed above. We invoke again the constant
deficit rule (A 7). In sum, the system of intertemporal equilibrium conditions reads
as:

1—e

] £€(0,1), z€(0,1).

f(key),  with: 2= (z/(1 — 2))Y<, (39)

my

I, = R(k)-24>1 (40)
Dt

XSk = () b= B (41)

t

C

k’t + Ty + bt = 1 Tn . f(kt—l) (42)

1 c
m; = — < f (ke 1), (43)

1+2-,= 1+n

20With s = 1, the discount factor 8 can also be normalized to 3 = 1, without loss of generality.
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where now ¢ = (1 —7) - (1 —«) € (0, 1). Note that the only qualitative difference to
the system discussed in Section 3 is the forward-looking component of the money
demand specification in (43). Investigating (40)-(43), the purpose of this section
is to show that the inclusion of the forward-looking component in (43) leaves the
findings of Section 3 qualitatively unaffected.

As a first step, to establish an existence result for a unique steady state under either
monetary policy rule along the lines of Proposition 1, let in (43)

1
By = —— — (44)
1+ 7 [R(k) - 225

Dt

Substituting out for m and b in (40)-(43) and using (44) gives the steady-state
conditions

Rk)-(1+m) > 1 -
@ _ 14+n
Eoo el = B(k) — pm0in (46)

Owing to the relationship between real balances and the (real) interest rate, the
right-hand-side of (46), in terms of Figure 1, is now upwardsloping. Let X" denote
the upper bound for the deficit-ratio under a forward-looking money demand, with:

1

—F

=l - agaen) €O
Intuitively, X7 is larger than  established in (24) since the demand for real balances
is no longer invariant to changes in the interest rate. Thus, a rise in the real interest
rate induced by the crowding out effect of a higher deficit ratio x leads now, for any
given inflation target, to a reduction in real balances. This partly offsets the adverse
effects on capital formation and raises the maximum amount of debt the economy
can sustain over time.

Proposition 5 (Ezistence of a steady state)

Consider an inflation target = > 0. Let k denote the unique solution of (46) at
x = 0 and assume R(k) > 1. Then, if x € [0,X"), there exists a unique steady state,
satisfying (45) and (46), with k >0, m >0,b>0, I > 1.

Remark: If ¢ — 1, [1 — B(k)] — =z, as discussed above. For 0 < ¢ < 1, B(0) —
0, B(oo) — B™* € (0,1), and B'(k) > 0, implying that, in terms of Figure 1, the
RHS of (46) rises in k. The LHS of (46) falls in k, and (46) has a unique, positive
solution in & if xy € [0,%"). As in Proposition 1, R(k) > 1 ensures that (45) holds
for all 7 > 0 and x € [0,%").

We now turn to an assessment of the local dynamics of steady states of this type
under strict inflation targeting and a constant money growth rule.
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4.1 Dynamics under strict inflation targeting

Strict inflation targeting makes the forward-looking element in (43) fully predictable,
since Iy = R(kt)- (14 ). Because of this feature, local steady-state dynamics remain
two-dimensional and fully backward-looking, as in Section 3.1, and the stability
properties of Propositions 2 and 3 remain qualitatively unaffected. Specifically, the
economy still reaches all the stability regions indicated in Figure 2 upon variations
of x, x € [0,X"). The only (technically tedious) difference is that the expressions
for the trace and the determinant are no longer linked in a linear way. As derived
in the appendix, local dynamics are given by:

Proposition 6 (Local dynamics: stability)
There exists a unique 0 < x* < X' such that for
i) x € [0,x*) dynamics are locally stable,

it) x € (x*,X) dynamics are locally unstable.

Proof: see appendix.
Similarly, one obtains:

Proposition 7 (Local dynamics: monotone vs. fluctuating adjustment)
There exists a pair {x1,Xa}, with 0 < x; < x* < x2 <X such that for

i) x € [0,x1) dynamics are monotone,

it) X € (X1, X2) dynamics are fluctuating,

i11) x € (Xa,X) dynamics are monotone.

Proof: see appendix.

Propositions 6 and 7 simply generalize Propositions 2 and 3 to a more flexible
specification of the elasticity of substitution €. As we show in the next section, a
similar generalization is not possible under a constant money growth rule.

4.2 Dynamics under a constant money growth rule

Under a constant money growth rule, with [, = (1 + m) - R(k;) - my/my41, the cur-
rent interest rate depends on the realization of next period’s real balances (my1)
which is going to differ from m outside the steady state . Hence, the additional
forward-looking component is genuinely expectation driven. Because of this feature,
real balances turn into a forward-looking jump variable and the overall dynamics
now contain both backward-looking and forward-looking elements. Accordingly,
the question emerges whether the alleged ‘gains’ of a constant money growth rule in
terms of the stabilizing influence on government debt dynamics survive the inclusion
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of a forward-looking feature which might act, for example, as a source of indeter-
minacy. Algebraically, the answer to this question comes at the high cost that now
one has to analyze the three-dimensional system (41)-(43) of non-linear first-order
difference equations in which £ and b act as predetermined variables, while m acts
as a forward-looking jump variable. While in general the analytics of the dynamic
structure of this system are rather involved, we offer in this section explicit solutions
for two important special constellations. Then, in a second step, we extend these
solutions to the general case by means of appropriate numerical output. Drawing
on these two sources, we establish that the stability properties of the benchmark
economy remain qualitatively unaffected in the sense that all feasible steady-state
deficit ratios are dynamically approachable from fixed initial conditions in a smooth
manner. Moreover, irrespective of the presence of the forward-looking component in
(43), the fundamentals of the economy are strong enough to rule out indeterminate
adjustment behaviour.

First, we consider the constellation of a balanced budget (xy = 0), implying that the
initial steady state is characterized by a zero debt stock (b = 0). Under this partic-
ular assumption, government debt dynamics can never take off. Correspondingly,
the dynamics of the entire system have a recursive structure according to which the
dynamics of b are stable and independent of a subsystem in & and m. As shown in
the appendix, one can derive:

Proposition 8 (Local dynamics under a balanced budget rule)
Assume x = 0. Then, eigenvalues are given by Ay = Wl(lJrn) € (0,1), X\g €
(0,1), A3 > 1, implying that the steady state is dynamically approachable in a uniquely

determined and smooth manner.
Proof: see appendix.

Note that according to Proposition 8 the number of stable (unstable) eigenvalues
matches the number of predetermined (forward-looking) variables. Thus, the in-
clusion of the forward-looking money demand specification does not lead to inde-
terminate dynamics, generalizing thereby the ‘well-behaved’ benchmark finding of
Proposition 4. Second, one can show that the root structure as given by Proposi-
tion 8 remains qualitatively unchanged as the deficit ratio x approaches the upper
feasibility limit .

Proposition 9 (Local dynamics as x approaches the feasibility limit X*')

Assume x — XU. Then, for x sufficiently close to X', eigenvalues are given by

AL € (0,1), Ay € (0,1), A3 > 1.

Remark: As x moves towards Y, k falls because of the crowding out effect. In
the limit, & — 0. To establish Proposition 9, we approximate the dynamics of (41)-
(43) in a forward-looking manner, dz; = J ! - dxy, 1, where z; = (ky, by, m;)’. We
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proof in the appendix that, as x — X', Det(J™!) — 0. As we show, this implies
As ' 0 < A3 — 00, and by continuity of all entries of J~! in y one can establish
the pattern of eigenvalues summarized in the proposition. For the detailed proof,
see appendix.

Again, this finding generalizes Proposition 4 in the sense that the revaluation channel
of government debt, when combined with an appropriate choice of m;, is able to
smoothly stabilize the model economy even for high degrees of debt exposure, as
long as the feasibility limit is respected. Evidently, this result is in contrast to the
dynamics under strict inflation targeting established in Section 4.1.

Table 1 (reported in the appendix) indicates the continuity of the findings established
in the last two propositions for the entire interval x € [0,%"). As a benchmark, Table
la considers a model economy along the lines of Section 3 and reproduces stability
patterns for strict inflation targeting and a constant money growth rule which are
consistent with Propositions 2 — 4. In the simulations underlying Tables 16 and 1c
all parameters have been kept constant, except for the money demand parameter ¢,
which we now allow to be less than unity. Note that under a constant money growth
rule the stability pattern of eigenvalues as established in Propositions 8 and 9 holds
for all reported values of x € [0,%%).

We conclude with two observations. First, Tables 16 and 1c reveal that for a policy
of strict inflation targeting the inclusion of the forward-looking component has a
stabilizing influence in the sense that the critical instability value x* depends posi-
tively on the interest elasticity of money demand (i.e. negatively on ¢). Intuitively,
this finding reflects that a rise in the interest elasticity of money demand moderates
adverse crowding out effects on capital formation at any given level of the interest
rate, since, ceteris paribus, agents will be more willing to replace real balances by
interest-bearing assets in their portfolios. Second, from a calibration perspective,
the two-period overlapping generations model without bequest motive has the un-
pleasant feature that the steady-state capital stock needs to be reproduced every
period from savings out of wage income. For this reason, the feasibility bounds ¥
and x will be implausibly low for reasonable values of the economy’s inflation rate
7 and growth rate n. Table 1d ‘corrects’ for this feature and allows for a deliberately
high value of n. As to be expected, this change in the parametrization raises ¥
and induces a higher instability value x* under strict inflation targeting. Moreover,
this change reduces the persistence of adjustment dynamics under a constant money
growth rule, i.e. the larger of the two stable roots is less close to a unit root.
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5 Conclusion

Following the seminal paper by Sargent and Wallace (1981), there is a large literature
which stresses that the active control of inflation through the monetary agent re-
quires that the fiscal agent accepts the residual role within the government’s budget
constraint, taking passively as given the behaviour of the monetary agent. For any
particular inflation target, the fiscal implications of such a role assignment are likely
to be quite different, however, depending on the details of the monetary policy rule.
Specifically, as recently stressed by Woodford (2001), as long as government debt is
issued largely in nominal terms, different monetary policy rules are likely to imply
different government debt dynamics through rule-specific valuations of government
debt, constraining thereby the fiscal agent in different ways.

Against this background, this paper offers a simple analytical framework to study
effects of monetary policy on the valuation of outstanding government debt from
a dynamic general equilibrium perspective which takes the desirability of a mix of
active monetary and passive fiscal policy as given. The main idea of this paper is to
illustrate that monetary policy may indeed constrain fiscal policy in rather different
ways, depending on whether monetary policy accepts stabilizing revaluations of
government debt or not. More specifically, using a monetary growth model with
flexible prices, we compare the properties of two stylized monetary policy rules which
have identical steady-state properties but require different actions out of steady
state. First, we consider a policy of a constant money growth rule which allows
for temporary deviations of inflation from target. As a result, there is scope for
revaluations of public debt in response to shocks, and these revaluations are shown
to act as automatic stabilizers of government debt dynamics. Second, we consider
a policy of strict inflation targeting which implements the target inflation rate also
outside the steady state. KEssentially, such a policy fixes the value of government
debt in real terms and precludes thereby stabilizing revaluations. As we show, this
feature implies that additional fiscal restraint may be needed under strict inflation
targeting which is not required under a constant money growth rule.

As it stands, our approach suffers from the fact that we do not establish optimal
programs of monetary and fiscal policy. Similarly, our paper abstracts entirely from
credibility issues. Extensions of the model along these dimensions would be impor-
tant. Yet, given our particular assumption of overlapping generations with finite
decision horizons, such extensions raise additional questions which are beyond the
scope of this paper. Despite these shortcomings, the largely descriptive findings
established in this paper do indicate, however, that the revaluation channel of gov-
ernment debt can be of considerable importance for the dynamic properties of an
otherwise standard monetary growth model.
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Appendix

Proof of propositions 2 and 3:
Consider the system (31)-(32) derived in the main text:

1

flken) = (b mb = by (47)
zC
kt — 1 + nf(kt_l) - bt- (48)

Approximating the local dynamics of (47) and (48) around the steady state by a
first-order Taylor expansion gives

(48] g ko] L[ BRI g | [t
db, ™| db, S 1 (o B w db_y |’
Det(J,) = = S'(k)
" (1+n)(14+m)1+n’
f'(k) 1

Trth) = eI Y Arma s
where Det(.J;) and Tr(J;) denote the determinant and the trace of the Jacobian
matrix J,, respectively.
i) Using f'(k) = a% within the steady state relationship (26), one easily estab-
lishes: at x =0, f'(k) = 22 > 0; for x € [0,%), f'(k) rises continuously in x; as
X — X, f'(k) — oo. Moreover, note that (1 +n)(1+ 7) > 1 implies ¥ < zc. Hence,
Det(Jy) > 0, Tr(J,) > 0.
ii) Combining the terms describing Det(J,) and T'r(.J;) one verifies that the follow-
ing relationship holds:

Det(J;) = -1+ Tr(J;) +q,

% € (0,1), and ¢ is independent of .

i) At x = 0, Det(Jx) = qrymry € (0.1), Tr(Jr) = a+ Wl(lﬂr)’ implying

)\1 =oc (0,1), )\2: Wl(lﬂr) € (0,1)
iv) for x € [0,%), Det(J;) and Tr(.J;) rise continuously in x, where the latter claim

follows from inspecting the rearranged trace-term T'r(Jx) = o277 + ¢ L

zc(lf% 1+n)(1+m)
v) As x — X, Det(J;) — oo, Tr(J;) — oc.
Upon combining i)-v), one obtains Figure 2. In particular, raising y within the
interval [0,%) amounts in terms of Figure 2 to a continuous movement along the
line Det(J;) = —1 + Tr(J:) + ¢ in north-east direction, implying the pattern of
eigenvalues established in Propositions 2 and 3. U

where ¢ = (1 — «)
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Proof of proposition 4:

The relevant equation system is now given by (29), (30), and (34). To obtain again a
two-dimensional system of first-order difference equations in k; and b;, we substitute
(30) in (34) and (29), yielding:

1+mn ke +0b
X o (k}t + bt)(kt—l + bt—l) = (]. + n)bt(k‘t_l + bt—l) - ﬁbt_l (49)
zC
kt - 1 + ﬂ/f(ktfl) — bt. (50)

To approximate the local dynamics around the steady state we calculate

2] - o[-l (s
d b, Bl dby Co1 Cao db._1 |’

_ a4 X L
R
1 X
- _ 12
e (O S SAE
X
G = oty -2
21 1-X X(1+n)(1+m)
1 X
= 1- 2y = _
<22 (1 —|—7’L)(1 —f-ﬂ')( Y) C12a
where in deriving the (—terms we use the steady-state relationships b/(k + b) = =
and f'(k) = Ozzc%lt”é). One easily verifies:
Tr(J,) + : (51)
r = «
g (14+n)(1+m)
Det(J,) = e (52)

(1+n)(1+m)’

implying the eigenvalues \y = a € (0,1), A = Wl(l'i‘ﬁ) € (0,1). Hence, A\; and
Ao are independent of x and coincide with the eigenvalues of the m—regime in the
special case of xy = 0, as established in step iii) of the previous proof. U

Proof of propositions 6 and 7:
The proof follows closely the proof of propositions 2 and 3. Consider the equations
(41)-(44). Substituting out for m;, one now obtains the system in &, and b; :

xf(ki-1) = (L+n)b — 141—7Tbt_1
ke = (L B(k)) 7 f (ki) = b
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where we use in (44) that under the m—rule B, simplifies to
1
1+ 2 [R(k) - (L+m)] 5

B, = B(k,) =

Then, local dynamics around the steady state are approximately governed by

1-B)c
[ dk‘t :| _ JF ) [ dkt_l :| _ [ 1"('"+0ka>(3§ f/( ) _[1+1n+ch1f(k)](1+7r) ] ) [ dkt—l :|

db, by 2 (k) —— by,
1 - B)c
Det(JF) = ( '(k),
() [1—|—n—|—cB/gf(k‘)](1—|—7r)f( )
1—B)c—x 1 )
Tr(JF) — ( "(k) + , th :
) = Tt O ey
1—¢)(1— 7 Ik =  f'(k
g~ =900 EIWT pw
€ [1+7-1(k)=)2 1(k)
i) The steady state relationship (46) implies ¢(1 — B) > X% x- Hence,
Det(JE) > 0 and Tr(JEF) > 0 for x € [0,Xx7).
ii) Combining the terms describing Det(.J;) and T'r(J;) one now obtains:
Det(JE) = —1+Tr(JE)+¢"(k), with:
1+n)(1+7m)—1 1+n
Fy = HEREED e 0.1)

(I1+n)(1+mn)

implying Det(J!) > —1 + Tr(JE).
i) At x = 0, using f'(k) = ol (k) at (46), it is possible to establish Det(JF ) =

1+n 1 F 14n
A mreBr (0T () (iFm) © e (0, 1) Tr(Jy) = [1+n+chf(l€)](1+7r) + (1+n)(1+7r)7

. 14n
suring M = agg i € (001): A = W € (0. 1).

iv), v): note that the logic of the proof of Propositions 2 and 3 remains valid as long
as the term B}“,{,g;)
implying & — 0. This condition would trivially be satisfied, for example, if f”(k) is
constant. However, this condition is also satisfied in the case of a Cobb-Douglas-
function f(k) = k*, which has f”(k) # 0. To see this, note that B’“f(k) can be

(k)
rearranged to

1+n+cByf(k)

is a continuous function of y and tends towards 0 as y — X',

Bif(k) (1-o)1-71)(1—-a) z-I(k) = 1 -

f(k) £ 1+2-I(k) =1 —-T)a+ (1 -8k 7
which is a continuous function for x € [0,%") and approaches 0 as y — X . Hence,
as x — X1, Det(JE) — oo, Tr(JE) — oo, (Tr(JF) — Det(JE)) — 1 — ¢¥'(0), and
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q"(0) € (0,1). Combining i)-v) implies the pattern of eigenvalues established in
Propositions 6 and 7. Il

Preliminaries to the proofs of propositions 8 and 9:

Consider again the system (41)-(44). Using (42) in (43) and updating (41) and (42)
one obtains the three-dimensional system of first order-difference equations in k;, b;
and m; :

I my

X f(k‘t) - (1 + n) . bt+1 - 1 I My . bt (53)
c
Fepr +mygpr + b = Ton’ f(ke) (54)
my = A(kt; my, mt+1) : (kt + bt)> (55)
where
B 1 e—1
A(/{:t,mt,th) = 1 _tBt = ? . ]t €
my
I, = R(k)- (1L +m),
C = Bk (L)

with Az, > 0, Ap, = —Am,,, < 0. As discussed in the main text, the system (53)-
(55) has two predetermined variables (k, b) and one jumping variable (m). Local
dynamics can be assessed from the approximate system

d kg d k,
d bt+1 - Ji ‘ d bt
dmt+1 dmt

with the roots of the Jacobian matrix Jf to be denoted by Ai, Ay and A3. However,
it turns out that the algebraic analysis much simplifies upon inspecting instead the
forward-looking dynamics

d ky dkyyq Wil Wiz Wis d ko
db = Jf’_l | db | = | war war woes | - | dba |
dmy d M1 W31 W32 Ws3 d M
14+n
w1l = w12=w13=—cf,(k) >0
1 A+ Ag(k+b) 1 b
= —- 1-A,, (k+b))— ! —
W21 D {X( t( + )) f’(k’) 1+7m
1 A+ A (E+b) 1 b
= —- —c)(1 - A, (k+1b))— ! —
Wa2 D {(x — o) (k+1)) f/(k) 1+7m
1 c A+ A (E+b), 1 b
wos = —-{l - , ] —
D “(1+n) f'(k) 1+7mm
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X (1= A, (k+0))}

on = (- SRSy

Wy — %-{(X—C)A—A—i_‘?fgl(j—i_b)liw}

vw = T g U T T
D = et (1 Al o) <0

o x <1(i:>2(i>7? 10 —1B)c €D

pes = G205

where Jffl = (Jf)*l, with roots A\, = 1/A1, Xy = 1/Ay and s = 1/Xs.

Proof of Proposition 8 :
Consider the special case of x = 0. Then, b =0 (and m, k > 0). Hence,

wo = wog =0

Woy = (1+n)(1—|—7r)
1 A+ Auk 1

wa =~ A0 1A
1 A4 Ak 1

= —_— A t
w2 p AT w1
w . 14+n A+Aktk_ Amtk‘ >0
BT k) 1= Ak 1— Ak

1— A,k

D = ‘ <0,

—c

(1+n)(1+m)
implying that A, = (1+n)(1+ ) > 1 is a root of JI 71 Accordingly, it is possible
to factor the third-order characteristic equation associated with JI> !

N = TP X 4 g A = Det(JIY) =0,

q = W11Wa2 + W11W33 + Waolsz — WiaWa1 — W13W31 — Wa3zWs32

as

N (L +n)A+m)] [N +ph+p] =0, with:
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B 1+n <0
1 = o' (k) W33
_1+n Ak -

cf'(k) 1— Ak

0.

P2 =

Using f/(k) = 2 — a(HAC)(H") at y = 0, substituting yields

= ¢(1-B)
Ay, k
a—1— =
TPt P a(l — Ay k) ’

implying Ay > 1, A3 € (0,1). Thus, A = gty € (0,1), Ao € (0,1), Ag > 1. [

Proof of Proposition 9 :

Consider the dynamic properties of the system as x — X', implying k — 0. Let ©;;
denote w;; evaluated at x = XU, for i,5 = 1,2,3. Then, W;; = Wis = w13 = 0, and
Jf 1 ceases to be invertible. To calculate the remaining w;;—terms, we establish
the limits:

i) A= 7= =0 (using B =0);
ii) A% =1;
iii) [AZ — (1 — Ap,(k + b))] = <=4, using Ay, (k 4+ b) = <% =constant;
iv) Akjﬁ,((]gb) = 0, where we use
Ay, (k +b) el 1-B
ti pum— . I k £ .
f'(k) 61 (k) (1-0)kt*+(1—-7)
(I—e)(1—a)(l—="7)c
= > 0.
¢ e(l+n)z
A, (k4b) b (1—)(1—a)c
) kf’(k) m ea(1+n) > 0.

Inserting these expressions, it tuns out that the terms wy; and ws; are constants and

Det(Jf’fl) = 0, ensuring that one of the roots Xz — 0 as x — %!, while the other
two roots are ultimately governed by the 2x2—submatrix

T [ Ezz wa3

W32 W33

: : : . o~ 1 l-a — __ E S .
Specifically, using i)-v) one can verify: Woy = ;= + 3%, Wz = 1 — 1=, Waz - W3z =

—= = + 2] Accordingly, Tr(J) = 2+ 12 > 0, Det(J) = 1 + =2 > 1,

[Tr(J)]* — 4 - Det(J) = (1=2)? > 0. Moreover, Det(J) + 1 —Tr(J) = 0, and, upon

explicitly calculating this expression before taking limits, one can show Det(J) +

1—Tr(J) 10, as x — X' By continuity of all expressions in y this implies A\; > 1,

Ao > 1, A3 € (0,1) as x — X', or alternatively, A\; € (0,1), Ay € (0,1), A3 >1. O
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Simulation output

Table 1a: ‘Strict quantity theory of money’ (¢ = 1, i.e. log-preferences)
m=0.02,n=00471=03 a=02¢=10,2=0.5,6=0.5,s=1,x =0.016
Al @ roots under strict inflation targeting,

A roots under a constant money growth rule.

[ x [ AT A BY Y g
0 0.04 0.2 0.04 0.2
0.01 0.90 0.56 0.94 0.2
0.012 0.86+02 0.86—02i | 0.94 0.2
0.013 0.974+021i 0.97—0.21i | 0.94 0.2
0.0135 1.07+02i 1.07—02i | 0.94 0.2
0.014 1.24 1.19 0.94 0.2
0.015 2.82 1.03 0.94 0.2

Table 1b: ‘Weakly forward-looking money demand’ (¢ = 0.95)
Except for e, all parameters as in Table 1a. Y = 0.032

[x BN A7 BN Ay Ay
0 0.94 0.20 0.94 0.20 40
0.01 0.90 0.52 0.94 0.20 41
0.012 0.814+0.12 0.81 —0.1z | 0.95 0.20 43
0.013 0.89+0.2: 089—-0.2: | 0.95 0.21 45
0.0135 094+02; 094—-0.2: | 0.95 0.21 48
0.014 1.02+0.2¢ 1.02—-0.2¢ | 0.95 0.21 48
0.015 1.34 1.14 0.95 0.21 92
0.018 8.4 1.01 0.97 0.20 480
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Table 1c: ‘Strongly forward-looking money demand’ (¢ = 0.5)
Except for e, all parameters as in Table 1a. Y = 0.032

[x (AT A7 BN A Ay
0 0.94 0.20 0.94 0.22 3
0.01 0.93 0.30 0.95 0.23 4
0.02 0.83 0.69 0.98 0.23 9
0.025 0.98+4+0.2: 098 —-0.2¢ | 0.99 0.22 16
0.026 1.06 +0.2¢ 1.06 —0.2¢ | 0.99 0.21 20
0.028 1.62 1.09 0.99 0.21 31
0.03 3.36 1.02 0.99 0.20 65

Table 1d: ‘Weakly forward-looking money demand (¢ = 0.95) under high

growth (n =0.1)’
Except for n, all parameters as in Table 1b. ¥ = 0.061

| X | AT A BY A A
0 0.89 0.20 0.89 0.20 40
0.01 0.86 0.30 0.89 0.20 40
0.02 0.63 0.76 0.89 0.20 42
0.025 0.86+0.3z 0.86—0.32 | 0.90 0.20 45
0.028 1.11+0.3: 1.11—-0.32 | 0.90 0.20 51
0.03 1.89 1.10 0.91 0.20 62
0.034 7.59 1.02 0.94 0.20 386
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Impulse response patterns for varying values of yx

In simulations 1—5 reported below, all parameters as in Table 1 a, i.e. we consider a
backward-looking, ‘strict quantity theory of money’— regime as discussed in Section
3. The economy is in the first four periods in steady state. At the beginning of
period 5, the economy is hit by a one-time temporary productivity shock (¢5 =
0.98 < ¢ = 1), depressing steady-state output in period 5 by 2%.

Strict inflation targeting: solid line

Constant money growth rule: broken line
(unless outcomes coincide with strict inflation targeting)

Simulation 1 (Balanced budget, x = 0)
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Simulation 2 (x = 0.01)
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Simulation 3 (y = 0.013)

o o o
™ ™ ™
= = =
k<] B =1
o o o
TN N N
o o o
1 — —
= 3t © <r ot
— 0 < < o
o o o
spuoq eal ymolib Asuow
o o
™ ™
= =
= 1=
o o
N N
o o
— —
o
(@] <F N o
4 @ © 9o ©°
o o o
Ausuayui reydes saouefeq [eal uonepyul

36



Simulation 4 (y = 0.0135)
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Simulation 5 (x = 0.014)
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