
“Deep Pockets”, Research and
Development Persistence and Economic

Growth

Bruno Amable∗ Jean-Bernard Chatelain† Kirsten Ralf‡

October 10, 2004

Abstract

This paper studies endogenous growth driven by an expanding variety of
product where lenders limit credit up to the collateralizable value of existing
patents. Due to R&D investment risk, there is a composition effect between
innovative firms currently contrained and innovative firms anticipating future
contraints (hence accumulating current profit and decreasing current debt). Re-
sults are: (i) patent behaviour is lumpy and show some persistence; (ii) the
steady state aggregate debt/patent ratio is below the leverage ceiling due to the
composition of current versus future financial constraints; (iii) this debt/patent
ratio determines a leverage driven steady state growth of the economy.
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1. Introduction

The financing of investment and the financing of R&D investment in particular may
affect economic growth1, since innovation is viewed as a major factor of growth when
monopoly rents provide incentives to entrepreneurs2. There is now considerable em-
pirical evidence that variables related to financing constraints such as leverage and/or
cash flow availability are correlated with R&D investment in several countries (see
recent surveys by Bechetti and Sierra [2001] and Hall [2002]3). Blundell, Griffith and
Van Reenen [1999] provide a “deep pocket” argument stating that: “A more tra-
ditional interpretation of the innovation-market power correlation is that failures in
financial markets force firms to rely on their own supra-normal profits to finance the
search for innovation. The availability of internal sources of funding (‘deep pockets’)
are useful for all forms of investment, but may be particularly important for R&D”.
Causality between cash flow and R&D investment goes both ways in the sense that
pre-innovation rents as well as post innovation rents are related to R&D investment
(Hall, Mairesse, Branstetter and Crepon [1999]). Patents, innovations and cash-flow
are correlated, and patents and innovations show strong history dependence (Geroski,
Van Reenen, Walters [2001]). However, most firms are not able to innovate every
year so that R&D investment is often lumpy (Geroski, Van Reenen, Walters [1997]),
a feature observed to a lesser extent for tangible investment at the plant level (Doms
and Dunne [1998]).
Econometric evidence emphasizes the particular importance of adverse selection

and moral hazard problems faced by providers of external finance for intangible and
R&D investment which are fostered by several factors. R&D investment is riskier
than physical investment and keeping private information may generate high returns.
Knowledge of the specific research area is required for efficient ex ante selection and
ex post control, which involves a costly investment for providers of external finance,
such as venture capitalists (Keuschnigg [2004]). Banks often take tangible assets with
an efficient second hand market as ex ante guarantees for loans. With incomplete debt
contracts, collateral may limit credit, but R&D investment is mostly intangible.
This paper studies endogenous growth driven by an expanding variety of products

(Romer [1990], Grossmann and Helpman [1991]) where R&D investment opportunities
are stochastic and where lenders limit credit up to the collateralizable value of existing

1See Greenwood and Jovanovic [1990], Bencivenga and Smith [1991, 1993], King and Levine [1993],
Saint-Paul [1993], Bose and Cothren [1996], De la Fuente and Marin [1996], Levine [1997], Blackburn
and Hung [1998], Benhabib and Spiegel [2001], Tressel [2003], Keuschnigg [2004].

2See Schumpeter [1911], Aghion and Howitt [1992], Romer [1990], Grossman and Helpmann [1991].
3e.g. studies by Himmelberg and Petersen [1994], Blundell, Griffith and Van Reenen [1999], Hall,

Mairesse, Branstetter and Crepon [1999], Geroski, Van Reenen and Walters [2001], Aghion, Bloom,
Blundell, Griffith and Howitt [2002].
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patents. Some features of capital market imperfections emphasized in business cycle
theory (Kiyotaki and Moore [1997]) are applied to R&D driven growth. Innovative
firms which are not currently constrained are expecting to be constrained in the future.
Current and past profits finance R&D investment due to a debt ceiling constraint. In
particular, profits are accumulated, ”digging deep pockets” over periods where the in-
novator has no profitable ideas for R&D investment. The model departs from Kiyotaki
and Moore [1997] small open economy credit cycle model in various ways: it is based
on a closed economy with endogenous interest rate, the size of the aggregate capital
stock is no longer fixed, but may grow over time, and, finally, expected monopoly rents
on existing patents are used as the main collateral, so that they increase the value of
collateral, the available amount of loans and economic growth.4

The paper serves three purposes: first, to provide a micro-economic underpinning
which investigates into details how the dependance of innovations on past innovations
increases with innovative rents relatively more than in standard expanding variety
models of R&D; secondly, to model the joint consequences of R&D investment lumpi-
ness and financial constraints on individual firms savings (”deep pockets”), on the
aggregate leverage (or debt/patent ratio), and on financially constrained economic
growth; and, finally, to model a growing economy where the rate of return of innova-
tion is higher than its user cost, as generally observed, and where the growth of patents
is a decreasing function of the interest rate, which is not the case in the standard R&D
endogenous growth models.
Policy recommendations are in favour of the enforcement of patent protection

and of longer patent duration, which may foster financially constrained growth, first,
because they increase the flow of internal finance for innovators, and, secondly, because
they increase the collateral ceiling of the stock of external funds. Another institutional
policy, which has been much less advocated by economists than by lawyers, is related
to improving bankruptcy laws and regulations so that efficient transfers of property
rights over the income of patents could be possible for lenders at low cost: this is a
way to rise the collateral ceiling constraint and then financially constrained growth.5

With respect to the effects of more traditional R&D policy over time, an investment
tax credit conditional to an effective R&D investment would have an immediate effect
on innovation, whereas a decline of corporate income tax will exhibit delayed effects
on R&D investment, due to the fact that a proportion of firms do not invest in R&D
during the year of the tax downfall and may use these additional funds for future
opportunities which may occur far ahead in time.
The paper is organized as follows. The microeconomic behaviors of agents are

4The collateral constraint effects on patent growth are likely to be even stronger in ”Creative
Destruction” models (Aghion and Howitt [1992]), see section 3.3.

5PatentRatings is a US service which provides ratings for patents as collateral information. The
practice of lenders receiving a collateral assignment of a patent conditional upon the occurrence
of continuing default is well known by law firms. For U.S. law, it requires to follow a number of
practical tips to limit potential legal risks and legal costs (Schavey Ruff [2003]). See Murphy [2002]
for proposals of law improvements for security interests in intellectual property.
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described in section 2. Section 3 provides the conditions for steady state aggregate
growth. Section 4 concludes the paper with a discussion of the results and related
research.

2. The model

2.1. Households

A continuum of wage-earners, distributed on [0, L], maximizes a constant intertem-
poral elasticity of substitution utility function discounted over an infinite horizon:
Ut =

P+∞
τ=0 u(ct+τ) (1 + ρ)−τ with u(ct) = (c1−σt − 1)/(1 − σ) for σ > 0 and σ 6= 1 or

with u(ct) = ln (ct) for σ = 1. Consumption at time t is ct, the rate of time preference
is ρ, the discount rate is denoted β0 = 1/(1 + ρ), and the elasticity of substitution
is 1/σ. Households supply inelastically one unit of labor which is used in the final
goods industry and a real wage rate wt is paid. They have no disutility of labor.
They lend to entrepreneurs and earn a rate of return r (the interest factor is denoted
R = 1 + r) on their individual wealth bht−1 so that their wealth dynamics is given by
bht = (1+r)b

h
t−1+wt−ct. The initial wealth bh0 is given and identical for all households.

Then, optimal consumption growth gc is given by 1+gc = ct+1/ct = Ct+1/Ct = (β0R)
1
σ ,

where Ct = ctL denotes aggregate consumption. The growth rate of consumption in-
creases with the return on savings and decreases with the rate of time preference
and the elasticity of substitution. Optimal consumption is Ct = C0(1 + gc)

t and
U0 is bounded if (1 + r)

1−σ < 1 + ρ (gc < r). For σ ≥ 1 this condition is always
fulfilled. For 0 < σ < 1, the interest rate has to remain in the following range:
R ∈]1 + ρ, (1 + ρ)1/(1−σ)[=]1 + rcmin, 1 + r

c
max[.

2.2. Production of the final good

As in other ”increasing product variety” models (Romer [1990], Grossman and Help-
mann [1991]), the economy has three sectors of production: a final goods sector, whose
price is taken as numeraire, an intermediate goods sector, whose output is used in the
production of the final good and an R&D sector which discovers blue-prints allowing
the creation of new intermediate goods. Producers of the final good operate in perfect
competition. The final good Yt is produced from labor and intermediate inputs, which
are fully used up within the period and have to be bought again the next period.
Intermediate goods are defined on a set {X(i), i ∈ [0, Nt]}. The quantity X(i) is the
amount of intermediate good i used in the production process of the final good. The
value Nt represents the most recently invented intermediate good, so that the inter-
val [0, Nt] is the variety of intermediate goods available in the economy. Technical
progress is described as the invention of new intermediate goods which adds to the
range of intermediate goods already invented, and implies an increase of Nt over time.
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Then, the constant return to scale production function of the final good is given by:

Yt = AL
1−α

Z Nt

0
X(i)αdi with 0 < α < 1. (2.1)

The representative producer of final goods buys intermediate goods at given prices
pi. Producers can buy patents from innovators. The subscript t will not be precised
when the period considered is not ambiguous. The representative producer of the final
good demands a quantity of each intermediate input i, denoted X(i). He maximizes
profit taking the production function into account:

(X(i), L) ∈ ArgMax
Ã
Y − wL−

Z Nt

0
piX(i)di

!
, (2.2)

which gives the first order conditions that marginal product has to equal the price
for each input:

αAL1−αX(i)α−1 = pi for i ∈ [0, Nt] (2.3)

(1− α)
Y

L
= w. (2.4)

The first equation leads to the following demand function for intermediate inputs:

X(i) =

Ã
αA

pi

!1/(1−α)
L for i ∈ [0, Nt]. (2.5)

2.3. Production of intermediate goods

Producers of intermediate goods act as monopolists, selling their goods to the produc-
ers of final commodities at a price which adds a mark-up to marginal costs. They have
to pay a rent to the innovator for using his blueprints at each date t (an innovative
firm has previously discovered Nt blueprints). Production of intermediate goods takes
place at constant costs, which is assumed to be equal to the price of final output Yt.
Then the monopoly price is:

pi =
1

α
> 1. (2.6)

The price is identical for all intermediate goods and the monopoly profit per in-
termediate good sold is:

π =
µ
1− α

α

¶
A1/(1−α)α2/(1−α)L. (2.7)
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2.4. R&D Sector

Every period, a continuum of risk neutral entrepreneurs indexed by j (when necessary)
distributed over the interval [0, 1] are engaged in the R&D activity. They maximize
the present value V0 of non-negative consumption given by their dividends dt ≥ 0
discounted by the interest factor R = 1+ r, where r is the interest rate at which they
can borrow or lend:

V0 =
+∞X
t=0

dtR
−t (2.8)

They hold an initial endowment of a number of blueprints n0 and they receive
an initial endowment of consumption d0. Like households, entrepreneurs are able to
supply inelastically one unit of human capital (ht = 1) in their own firm and they
have no disutility of labor. They face a linearized cost function of R&D investment,
∼
1it>0 ·

∼
1ht=1 ·q ·

µ
nt+1 −

µ
1− ∼

δt

¶
nt

¶
, where q is a technological cost parameter and

∼
1ht=1 is a dichotomous variable equal to zero when the entrepreneur withdraws her
specific human capital and else equal to one. Once the R&D activity has started,
only the entrepreneur possesses the skills necessary to invent new designs from this
input. There is multiplicative uncertainty on R&D investment returns π described by

a random variable
∼
1it>0 known by the entrepreneur at the beginning of the period t.

With probability θ (0 < θ ≤ 1), the inventor find a number of positive net present
value ideas leading to a number of patents during period t (

∼
1it>0= 1, and such that∼

1it>0 π = π).6 She is able to invest an amount it in R&D provided the rate of return
of R&D investment π is at least equal to the user cost of R&D investment. With
probability 1 − θ, the inventor has no positive net present value ideas for inventing

new intermediate goods during this period (
∼
1it>0= 0, so that the marginal product

of R&D is zero and always lower than the R&D user cost:
∼
1it>0 π = 0). This

captures the empirical observation that R&D investment is often lumpy (Geroski, Van
Reenen, Walters [1997]). Finally, the innovative firm faces the threat of obsolescence
and/or opposition and litigation due to a ”close” prior innovation and/or imitation

of a random proportion
∼
δt of their stock of their existing patents (0 ≤

∼
δt< 1) which

reflects failures in the enforcement of patent protection and which is independently

and identically distributed across inventors with Et−1
∼
δt= δ (because there is a large

number of inventors, there is no aggregate uncertainty).7 Then the entrepreneur does
not invest in R&D. This leads to the following equation of motion of the stock of
blueprints:

6See Hall and Ziedonis [2001] for the case of a sector with cumulative innovation (the semi-
conductor industry) with an increasing average rate of patents per firm, which followed a strength-
ening of patent rights.

7See Barney for 1996 U.S. patents mortality rates computed over a large sample: patent life
expectancy varies from 7.6 years to 18 years.
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nt+1 =
∼
1it>0 ·

∼
1ht=1 ·it +

µ
1− ∼

δt

¶
nt (2.9)

where it is the number of new blueprints obtained in a period. An entrepreneur
has always the ability to threaten its creditors by withdrawing her human capital
input, consume the credit and its interest payments Rbt (where bt is the stock of
debt), repudiate its debt contract and find other creditors for next periods (Hart and

Moore [1994], Kiyotaki and Moore [1997]). Under the assumption that observing
∼
1it>0

and
∼
1ht=1is too expensive for creditors, new lenders are not able to state ex-post if

no investment at last period was due to the lack of investment opportunity or to the
withdrawing of specific human capital. Creditors (households) protect themselves by
collateralizing the stock of existing blueprints over which the firm has a monopoly rent
and take care never to let the size of the debt repayment to exceed the liquidation value
of the stock of patent next period after depreciation. The innovative firm receives a
rent on each period on each of the blueprints it has discovered on previous periods.
The rents received at date t are summed over his stock of blueprints at date t − 1
and amount to πnt−1. The market value of the blueprint is equal to the discounted
flow of profits gained on the production of an intermediate good.8 Lenders take into

account that an expected proportion δ = Et

µ∼
δt

¶
of the patents income is lost at each

period depending on the enforcement of patent protection, so that the discount rate
is increased by a factor δ (they can diversify the obsolescence risk by lending to many
entrepreneurs).9 The credit constraint is then expressed as:

Rbt ≤ (1−µ)
Ã
πnt +

π (1− δ)nt
R

+ ...

!
= (1−µ)πnt

+∞X
τ=0

Ã
1− δ

R

!τ

= (1−µ) π

r + δ
Rnt

(2.10)
Lenders may loose a proportion (1− µ), with 0 ≤ µ < 1, of collateral because of

legal or bankruptcy costs related to the change of property rights over the patents.10

This credit constraint eliminates the incentive for entrepreneurs to withdraw human

capital in order to gain the income Rbt from lenders, so that
∼
1ht=1= 1, in the innovators

optimization program. The credit constraint may also be written as a ”leverage” or
debt/patent ratio xt bounded by an endogenous ceiling x

c (for homogeneity, the unit
cost of R&D investment q multiplies patents):

xt =
bt
qnt
≤ xc = (1− µ)

Ã
π

q (r + δ)

!
. (2.11)

8See Hall, Jaffe and Trajtenberg [2005] for a recent econometric evaluation of the link between
market value and the quality of patents.

9See Barney [2002] table 3 for the practical effects of Patents life expectancy on U.S. Patents
average expected value and Patent Ratings.
10For understanding what represents µ in the practice of U.S. law, see Schavey Ruff [2002] presen-

tation of the legal costs for lenders receiving a collateral assignment of a patent.
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In the remaining part of the paper, assumption A1 and A2 hold:
Assumption A1: r > (1− µ) π

q
−δ. The interest rate has to be sufficiently high so

that the debt/patent ceiling is strictly below unity (xc < 1) and the credit constraint
may be binding.
Households savings may or may not be collected by a large number of financial

intermediaries facing perfect competition (zero profit), whose function is then lim-
ited to enforce the collateral constraint for each borrower. If there is no financial
intermediaries, it is assumed that households perform this task.
On date t, entrepreneurs consumes at least a strictly positive amount of income

dmnt−1 from the profits generated by previous patents πnt−1. This assumption pre-
vents the situation in which firms’ owners continually postpone strictly positive con-
sumption leading to a zero utility, that is entrepreneurs indifference between producing
or not:

dt ≥ dmnt−1 > 0 . (2.12)

Assumption A2: 0 < dm < (1− µ) π < π. The upper limit of minimal con-
sumption of entrepreneurs is equal to net patents return net of bankruptcy costs
dm < (1− µ)π. Proposition 1 will show that, when that innovators do not consume
”too much” of their profits, then, when an innovator does not have a profitable idea,
its firm leverage will decrease below the leverage ceiling xc.
The innovative firm’s flow of funds constraint states that dividends should be

equal to the profits at date t earned from previously discovered blueprints, to which
are added new debt net of interest repayment and substracted the cost investment in
R&D:

dt = πnt−1 + bt −Rbt−1−
∼
1it>0 q

µ
nt −

µ
1− ∼

δ

¶
nt−1

¶
(2.13)

Appendix one provides the details of the computations of first order conditions of
the entrepreneurs utility maximization. The first order condition with respect to debt
is:

λdt = λbt +Et
³
λdt+1

´
= λbt +

k=TX
k=1

Et
³
λbt+k

´
+Et+1

³
λdt+T+1

´
(2.14)

where λbt is the Lagrange multiplier related to the debt/patent ceiling constraint
and where λdt is the Lagrange multiplier of the miniminal consumption level constraint.
The minimal consumption constraint is binding (λdt > 0) when the firms faces currently
of credit constraint (λbt > 0) or when it expects to face a credit constraint in the future

(Et
³
λbt+k

´
> 0 with k a strictly positive integer). The first order condition with respect

to the stock of patents is:

π

q
− (r + δ) = (1− xc)

Pτ=+∞
τ=0 βτEt

³
λdt+τ − λdt+τ+1

´
Pτ=+∞

τ=0 βτ
³
1 +Etλdt+τ+1

´ +
dm
qR

Pτ=+∞
τ=0 βτEtλ

d
t+τ+1Pτ=+∞

τ=0 βτ
³
1 +Etλdt+τ+1

´
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with β = (1− θ) (1− δ) /R. One may remark that when λdt+τ = 0 for any integer
τ , the corrected discount rate β as well as the probability of investment opportunities
θ do not affect the first order conditions. The rate of return and the user cost of R&D
investment are not affected by θ > 0 measuring ”lumpiness” because the entrepreneur
discounts expected incomes from investment opportunities for all future dates in the
infinite horizon, when she does not have an opportunity to invest now (see appendix
1). By contrast, when the Lagrange multiplier related to financial constraint binds
(λdt+τ > 0), lumpiness matters. The first order conditions leads to the following
proposition:

Proposition 1. Optimal R&D Investment, Saving and Borrowing at the
Entrepreneur Level.
In each period, innovating firms can be in one of three regimes, depending on the

aggregate equilibrium interest rate r:
(i) A perfect capital market regime is obtained when λdt+τ = 0 for any integer τ . In

this case, the marginal gain of R&D investment is equal to its user cost: π = q (r + δ)
so that r = π

q
− δ, the debt ceiling is never binding and debt policy is indeterminate

and does not affect the investment outcome.
Regimes (ii) and (iii) are possible under the condition that the marginal gain of

R&D investment is higher than its user costs π > q (r + δ), that is (1− µ) π
q
−δ < r <

π
q
−δ, taking also into account the fact that the leverage ceiling has to be below unity,

cf. assumption A1. Parameter conditions for these regimes to occur will be derived
later on when determining the aggregate steady state growth rate.
(ii) Currently binding credit constraint regime (λdt > 0): Innovators having an

opportunity to invest at date t will choose a binding debt ceiling and consume no
more than its current (private) output of nontradable good (dt = dmnt−1). Patents
are determined by the flow of funds and the debt ceiling ratio leads to an equation of
motion of patents for firms investing in R&D on period t which describes how leverage
(bt/nt) amplifies the dependance of last period stock of innovation (it amplifies the
level of persistence of innovation, when the firm has an opportunity to invest):

bt = (1− µ)
µ

π

r + δ

¶
nt (2.15)

nt =

µ
1 + π−dm

q
− ∼

δ

¶
nt−1 −R bt−1

q

1− (1− µ)
³

1
r+δ

´
π
q

(2.16)

(iii) Anticipated credit constraint regime (λdt+τ > 0 with at least one strictly pos-
itive integer τ): Innovators which have no opportunity for profitable investment now
will also consume dt = dmnt−1 as they expect to find new profitable ideas and to face
a financial constraint in the future. Patents are determined by the low of motion.
The flow of funds equations determines the law of motion of debt: retained earn-
ings are used to reduce their current debt and they are accumulated for future R&D
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investment.

nt =
µ
1− ∼

δ

¶
nt−1 (2.17)

bt = Rbt−1 − (π − dm)nt−1 (2.18)

It is easy to check that assumption A2 guarantees that leverage is below the lever-
age ceiling in this regime: xt < x

c.

Proof. See appendix 1.

In the financially constrained regime, if an entrepreneur has a long history of no
opportunity to invest in R&D, he may eventually become a net creditor and earn an
interest paymentR associated to loans to other entrepreneurs having an opportunity to
invest (even before becoming a net creditor, the reward of one unit her savings is indeed
the interest R that she avoided to pay by decreasing her debt by one unit). His debt bt
may be negative whereas his stock of patents nt is always positive and may decline each

period due to hazard of obsolescence
∼
δ (see appendix 3 for a simulation) As described

in the following section, the aggregate debt Bt is restricted to be positive, so that both
households and entrepreneurs which are net creditor are all able to invest their savings
in entrepreneurs projects. A positive aggregate debt Bt implies that the proportion of
investing entrepreneurs θ is above a given floor. The aggregate adjustment of savings
is such that, in the steady state, the lower the number of investing entrepreneurs θ,
the higher the overall savings of non-investing entrepreneurs and the lower the growth
rate of households savings.
Conversely, when an entrepreneur which has built ”deep pockets” over an history of

no opportunity to invest in R&D faces an opportunity to invest, she will invest as much
as possible due to the combination of her linear cost function and the gap between the
marginal return of R&D investment and the user cost. This lumpy R&D investment
is then only limited by available internal funds and the collateral constraint on the
stock of debt. It provides a micro-economic underpinning for Geroski, Van Reenen and
Walters [1997] empirical findings. The dependance of the new stock of patents on the
former stock of patent (persistence) is then higher when entrepreneurs enjoys a higher
markup π rewarding their innovations. This result is found in Blundell, Griffith and
Van Reenen [1999] when estimating R&D investment using a reduced form R&D cost
function. However, the important point of this micro-economic underpinning is not the
numerator of the persistence effect, because this effect is found in standard expanding
variety models of endogenous growth (Romer [1990], Grossmann and Helpman [1991])

:
1+π−dm

q
−∼δ

1−(1−µ)( 1
r+δ )

π
q

. It is the denominator, which amplifies the overall sensitivity of the

persistence effect with respect to the innovative rents π. More precisely, the collateral
constraint implies that the higher the gap between the marginal profit of R&D and
its user cost π

q(r+δ)
, (that is: the ”deeper” the financial constraint) the higher the

persistence of the stock of innovations. In other words, pre innovation rents enters the
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numerator of the right hand side of the patent relationship, provide a flow of internal
funds, increase patents nt and its sensitivity to the last period stock of innovations
nt−1, in a backward looking fashion. In a forward looking fashion, post innovation rents
determine the stock of external finance (appearing at the denominator of the right
hand side of the patent relationship) and amplifies the persistence effect through a
leverage multiplier effect. The distinction between stocks and flows of internal funds
and external funds when dealing with financial constraints turns to be particularly
important.

3. R&D Persistence and Economic Growth

3.1. Aggregate Patent and Debt Dynamics

Given the optimal investment behavior and credit policy of firms described by propo-
sition 1, one derives the equations of motion for the entrepreneurs aggregate patent
and debt. Debt and patents equations are linear in patent and debt in both cases. One
can appeal to the law of large number for the hazard of finding profitable ideas and
the hazard of obsolescence and aggregate across entrepreneurs to derive the equations
of motions of patents and debt without having to keep track of the distribution of the
individual entrepreneurs patents and debt (Aggregate patents and debt are denoted
by capital letters Nt and Bt). Since the population of entrepreneurs is unity, the
equation of motion of the aggregate number of patents is:

Nt = (1− θ) (1− δ)Nt−1 + θ


³
1 + π−dm

q
− δ

´
Nt−1 −RBt−1

q

1− (1− µ)
³

π
q(r+δ)

´
 . (3.1)

The agregation smoothes the lumpiness effects of R&D investment, which is then
reflected by the proportion of investing firms θ. The flow of funds equality leads to
the equation of motion of aggregate debt:

Bt = qNt − q (1− δ)Nt−1 +RBt−1 − (π − dm)Nt−1. (3.2)

There are two aggregate consequences of lumpy investment at the individual level in
financially constrained regimes, whereas there is no consequences in the perfect capital
market case where the debt/patent ratio is indeterminate. First, the sensitivities of the
aggregate stock of patent with respect to the innovative rents and with respect to the
components of their user cost decline by a factor θ with respect to the case of investing
individual entrepreneurs (see proposition 1). Second, the debt dynamics differs from
the patent dynamics because profits are used either to decrease debt temporarily or
to finance R&D investment. When θ = 1, all firms do invest, debt is proportional to
patents according to the debt ceiling constraint, so that debt dynamics is identical to
patents dynamics by a proportionality factor.

11



The aggregate model is closed by the households consumption (or savings) growth

rate Ct = (β0R)
1
σ Ct−1, where the interest rate corrects savings imbalances. As house-

holds consumption Ct does not show up in entrepreneurs patents and debt dynamics,
it is natural to proceed in two steps to investigate the steady state regimes: first find
R&D sector steady state aggregate debt/patent ratio (so that debt and patent grow
as the same rate), then find the equilibrium interest rate such that consumption grows
at the same rate as patents and debt. Let us proceed to the first step. The equation
of motion of patents can be written as a patent growth factor GN as a function of the
debt/patent ratio xt−1:

GN =
Nt
Nt−1

= 1− δ + θ

1 + π−dm
q
− δ −Rxt−1
1− xc − (1− δ)

 .
The patent growth factor increases with the monopoly profits rewarding innovation

net of entrepreneurs consumption π−dm and the proportion of investing entrepeneurs
θ (as 1/(1− xc) > 1) and decreases with the costs of R&D investment variables (debt
service Rxt−1, technological cost q, expected rate of obsolescence δ) and with the
transaction cost µ on patent future royalties. Define the profit factor net of innovators
consumption and net of depreciation:

Πm = 1 +
π − dm
q

− δ (3.3)

The equation of motion of aggregate debt can be written as a debt growth factor
GB:

GB =
Bt
Bt−1

= R+
qNt
Bt

Bt
Bt−1

−Πm
qNt−1
Bt−1

=
R−Πm

qNt−1
Bt−1

1− qNt
Bt

=
R−Πm

1
xt−1

1− 1
xt

. (3.4)

This debt growth factor can be written as a patent growth factor GNB:

GNB =
xt
xt−1

GB =
Nt
Nt−1

=
Πm −Rxt−1
1− xt . (3.5)

The patent growth factor GNB is similar to the one of investing firms except that
the leverage during the period is not necessarily maximal. It is equal to the growth
factor of internal funds, with wealth net of debt at the denominator and retained
earnings at the numerator. Because the equation of motion of debt and patent are
valid at any date, the equality GNB = GB holds at any date, which is an implicit
aggregate debt patent dynamics:

(1− θ) (1− δ) + θ
µ
Πm −Rt−1xt−1

1− xc
¶
=

Πm −Rt−1xt−1
1− xt . (3.6)

It may be written as an explicit aggregate debt/patent dynamics:
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xt =M (xt−1) = 1− 1− x
c

θ
+
1

θ

(1− xc)2 (1− θ) (1− δ)

(1− xc) (1− θ) (1− δ) + θΠm − θRt−1xt−1
(3.7)

At the steady state, xt = xt−1 = x for x ∈]0, xc] with 0 ≤ xc < 1, as aggregate
date has to be positive to avoid negative (savings) growth rate equilibria (whereas
debt may turn to be negative for some entrepreneurs). Appendix 2 shows that under
assumption A3, there is a unique steady state debt/patent ratio strictly positive.

Assumption A3: θ > θxmin =
(1−xc)π−dm

q

xc(1−δ)+π−dm
q

: The proportion of investing innova-

tors at a given date is above a minimal threshold.
Figure 1 provides a graphical solution for the steady state debt/patent ratio when

r = 3%, π
q
= 13%, dm

q
= 1%, δ = 8%, µ = 0.5 for three values of the proportion of

entrepreneurs investing in R&D: θ = 100%, or 30%, or θxmin ≈ 7, 4% . The horizontal
and vertical axis represents the debt/patent ratio.

x 0.60.50.40.30.20.10

0.6

0.5

0.4

0.3

0.2

0.1

0

The curve y = x intersects the function M (x, θ = 1) which is an horizontal line
leading to a steady state debt/patent ratio equal to the debt ceiling as all entrepreneurs
invest in R&D; x∗ = xc = 59%. It intersects the increasing curve M (x, θ = 0.3) for
an aggregate steady state debt/patent ratio x∗ = 47% when 30% of entrepreneurs
invest in R&D. It intersects the increasing curve M (x, θ = θxmin) for an aggregate
steady state debt/patent ratio equal to zero when only 7.4% of entrepreneurs invest in
R&D. Solving the steady state debt/patent ratio equation x =M (x) and computing
the growth rate of patent for this steady state debt patent ratio GN (x

∗) leads to
Proposition 2:

Proposition 2: R&D Sector Financially Constrained Steady State.

• Under assumptions A1 (xc < 1), A2 (upper limit on dm) and A3 (lower limit on
θ) and the condition for a financial constraint, (1− µ) π

q
− δ < r < π

q
− δ,

• a unique steady state patent and debt growth exist, with a constant strictly
positive aggregate debt/patent ratio 0 < x∗ ≤ xc:

x∗ =
1

2θR

n
θ (R+Πm) + (1− xc)

h
(1− θ) (1− δ)−R−

√
∆
io
with:
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∆ = {[(1− θ) (1− δ)−R] (1− xc) + θ (Πm −R)}2 + 4θ (1− xc) (Πm −R)R(3.8)

This steady state debt/patent ratio rises to the individual debt/patent ceiling
if all innovators found profitable ideas and invested (θ = 1) and increases with
increases of the endogenous debt/patent ceiling xc. The steady state aggregate
debt/patent ratio increases with the proportion of investing firms θ and decreases
with bankruptcy costs µ. It increases with monopoly rents rewarding innovation
π and decreases with the unit R&D investment cost q, expected obsolescence rate
δ and the marginal cost of debt r.

• (ii) The steady state growth of patents for a given interest rate, is then:

GN (R, x
∗) =

1

2

R+ (1− θ) (1− δ) +
θ (Πm −R)
1− xc (R) +

q
∆ (R)

1− xc (R)

 (3.9)

As it increases with the aggregate debt/patent ratio, the sensitivities described in
(i) are qualitatively similar on the aggregate growth rate of patents. The steady
state patent growth rate increases with the proportion of investing firms θ and
decreases unambiguously with bankruptcy costs µ. It increases with monopoly
rents rewarding innovation π and decreases with the unit R&D investment cost
q, expected obsolescence rate δ and the marginal cost of debt r.

Proof. See appendix 2.

Remark: partial derivatives of the aggregate debt/patent ratio with respect to
monopoly rents, obsolescence rate and the marginal cost of debt allow the possibility
that below different thresholds of the proportion of investing firms, the signs may
change because of the composition effect between firms. However, the condition of
a positive steady state aggregate debt/patent ratio (x∗ > 0 and θ > θxmin) is rather
strict and eliminated all the cases where slope reversals were found using simulations
for standard values for rate of return and interest rates. As a consequence, partial
derivatives of the aggregate growth rate of patents with respect to monopoly rents,
obsolescence rate and the marginal cost of debt were changing signs only for highly
negative growth rate values and values of θ below θxmin when computing systematic
simulations.
A final remark is that the curve GN (R) has a unique vertical asymptote defined

r = (1− µ) π
q
− δ (for xc = 1) and that it is locally decreasing with the interest rate

when the interest rate is higher but closed to the asymptote.

3.2. Steady State Growth Rate of the Economy

Steady state equilibria are given by equality of the growth rate of consumptionGC (R),
of new goodsGN (R, x, θ) and of debtGB (R, x). This amounts to the equality between
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GC (R) and GN (R, x
∗, θ) = GB (R, x∗) which allows to compute the equilibrium real

interest rate R∗ related to a strictly positive growth rate (r > ρ) with bounded utility
(G < R) under assumption A1 (xc < 1) and the financially constrained condition:
(1− µ) π

q
− δ < r < π

q
− δ, under assumptions A2 (upper limit on dm) and A3 (lower

limit on θ), knowing that when the marginal gain on R&D is not larger than the user
costs, a perfect capital market equilibrium occurs for r = π

q
− δ. That is:

H (R) =
Πm −Rx∗ (R)
1− x∗ (R) −

Ã
R

1 + ρ

!1/σ
= 0.

As H is a continuous function of the interest rate for (1− µ) π
q
− δ < r, there

exist at least one strictly positive equilibrium interest rate leading to a financially
constrained equilibrium when the two following conditions are fulfilled:

H

Ã
1 + max

Ã
ρ, (1− µ) π

q
− δ

!!
> 0 > H

Ã
1 +

π

q
− δ

!
. (3.10)

The second inequality (financially constrained equilibrium) leads to:

1 +
π

q
− δ −

dm
q

1− x∗
³
dm
q

´ −Gc
Ã
1 +

π

q
− δ

!
< 0. (3.11)

Gc
³
1 + π

q
− δ

´
corresponds to the perfect capital market endogenous growth equi-

librium. To have a financially constrained equilibrium, the marginal gain from R&D
investment is higher than its user costs when the minimal consumption level of inno-
vators is sufficiently high:
Assumption A4: A financially constrained steady state growth requires a min-

imal level on entrepreneurs consumption sufficiently high. This threshold on dm de-
clines when the transaction cost on the tranfer of property rights over patents income
µ is higher and/or when the proportion of investing firms θ is lower and/or when the
rate of time preference is lower ρ and/or when the elasticity of substitution σ is lower:

dm
q

1− x∗
³
dm
q
, µ, θ

´ > 1 + π

q
− δ −Gc

Ã
1 +

π

q
− δ

!
(3.12)

The first inequality (strictly positive growth) is necessarily fulfilled when ρ <
(1− µ) π

q
−δ, because GN (r) has a unique vertical asymptote defined r = (1− µ) π

q
−δ

(corresponding to xc = 1) and it is locally decreasing from infinity with the interest
rate when the interest rate is higher and closed to this asymptote.
Assumption A5: When ρ < (1− µ) π

q
− δ, a positive steady state growth rate

requires an upper condition on dm (the consumption of innovators should not be too
high, else the growth rate of innovation will be negative due to negative retained
earnings):
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π
q
− dm

q
− δ − ρx∗

³
dm
q

´
1− x∗

³
dm
q

´ < 0 (3.13)

Proposition 3: Steady State Growth Regimes

• Under the above conditions A1 to A5, there exist at least one financially con-
strained equilibrium with an equilibrium interest rate R∗ and a steady state
growth rate G∗ which is strictly positive and lower than the perfect capital mar-
ket case. This growth rate decreases with the constant elasticity of substitution
σ and the rate of time preference ρ and a rise of entrepreneurs consumption dm.

• When the condition of higher gains than user costs is not fulfilled (A4), there
exist a unique steady state growth rateGc

³
π
q
− δ

´
of endogenous growth which is

not financially constrained (provided the standard condition for bounded utility
is achieved).

Figure 2 below presents a graphical example. Parameters are set as follows: δ =
8%, π

q
= 13%, dm

q
= 0.1%, µ = 0.3, θ = 0.8, ρ = 1%, σ = 1 or σ = 0.5.

r 0.050.040.030.020.01

0.05

0.04

0.03

0.02

0.01

0

On figure 2, the horizontal axis represents the interest rate and the vertical axis
represents the growth rate. The financially constrained steady state has to be found
for the interest rate values: max

³
ρ, (1− µ) π

q
− δ

´
= 1% < r < π

q
− δ = 5%. The

two increasing curves represents two consumption growth curves (≈ (r − ρ) /σ), the
higher one correponding to an intertemporal elasticity of substitution equal to unity
σ = 1, the lower one to σ = 2. The decreasing curve is a patent growth curve. When
the two curves intersects for an interest rate below the profit rate net of depreciation:
r < π

q
− δ, there exists a financially constrained steady state growth. Else, the growth

rate is given by the intersection of the growth rate of consumption with the vertical
curve r = π

q
− δ and corresponds to the steady state growth rate in Romer’s model.

The perfect capital market interest rate is equal to π
q
− δ = 5% and corresponds to

a Romer’s growth rate g = 1.05
1.01
− 1 = 3.96% for the consumption growth curve with
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σ = 1, whereas it corresponds to a Romer’s growth rate g = 1.96% when σ = 2.
When σ = 2, the growth of consumption and savings is relatively low so that the
perfect capital market steady state growth regime prevails. When σ = 1, the growth
of consumption and savings is relatively high and the financially constrained steady
state growth regime prevails (cf. condition A4). The financially constrained steady
state interest rate is r = 4.5% and the financially constrained growth rate is given by
gFC = 3.46%. In any regimes, g < r so that households and entrepreneurs utilities are
bounded.

3.3. Transitory Dynamics and Extensions

In the perfect capital market case or in the financially constrained case without lumpi-
ness effects, there are no transitory dynamics on aggregate variables following a shock
on exogenous parameters from the former steady state to the next steady state (the
markup reward on innovations π, the marginal cost of innovation q, the expected
hazard of obsolescence δ, the proportion of investing firms θ, the transaction cost on
the shift of intellectual property on patents to lenders µ, the minimal consumption of
entrepreneurs dm, households’ rate of time preference ρ, and the households elasticity
of intertemporal substitution σ). Hence, the economy jumps from the old to the new
steady state when there is a change of exogenous parameters of the model.
The fact that some firms are not able to invest (θ < 1) and save instead of investing

introduces some sand in the aggregate debt dynamics, which is the origin of transi-
tory dynamics. The aggregate model consists of three dynamical equations related
to the debt/asset ratio, the growth of patents (or the growth of debt) and house-
holds consumption growth. The first equation provides the value of the debt/patent
ratio t, which is then used to determine entrepreneurs’ aggregate debt on date t. En-
trepreneurs aggregate debt has to be equal to households savings on date t, which
leads to an equilibrium value of the interest rate rt (which will be equal to the steady
state interest rate only when the debt/patent ratio reaches its steady state value x∗).
The aggregate debt/patent dynamics is:

xt =M (xt−1, Rt−1) = 1− 1− x
c

θ
+
1

θ

(1− xc)2 (1− θ) (1− δ)

(1− xc) (1− θ) (1− δ) + θΠm − θRt−1xt−1
(3.14)

For the relevant values of the debt/patent ratio (0 < xt ≤ xc), there is a unique
steady state x∗ (Rt−1) for a given interest rate (denotedRt−1), The slope of the function
M (0 < M 0 (xt) < 1) ensures regular convergence with to this steady state, without
any cyclical, chaotic or indeterminate patterns (cf. figure 1). For example, assume
a shock on exogenous parameters leading to a new and higher steady state value of
the debt/patent ratio x∗∗, to a new steady state interest rate r∗∗ and a new steady
state growth rate g∗∗. The convergence will be, for example, such that x∗0 < xt <
xt+1 ≤ x∗∗. Then the interest Rt is derived recursively, knowing that the growth rate
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of aggregate debt of entrepreneurs has to match the growth rate rate of households
savings (identical to the growth rate of households consumption) at each period t, so
that:

Ã
Rt
1 + ρ

! 1
σ

=
Πm −Rt−1xt−1

1− xt =
Πm −Rt−1xt−1
1−M (xt−1, Rt−1)

(3.15)

Knowing Rt, one proceeds to the next step xt+1 = M (xt, Rt).
11 Knowing Rt, the

growth factor on date t is found using Gt =
³
Rt
1+ρ

´ 1
σ . When the interest rate rises,

so does the economy growth rate, as in other convergence models based on Ramsey’s
savings behaviour. However, those dynamics present a remarkable feature. There may
be interest rate transitory dynamics whereas the marginal product of R&D investment
does not change over time. Because of financial constraints, the observed dynamics of
the interest rate and of the marginal productivity is no longer predicted to be identical.
This is not the case in most of the literature on GDP per head convergence of nations,
which are based on perfect capital markets, where the user cost equals the marginal
product of capital (for example, the standard Solow type convergence model).
Finally, let us consider two simple extensions of the model. First, one may con-

sider a finite duration T of patents rights protection (around 18 years in the U.S.),

which decreases the collateral ceiling for creditors: (1 − µ)πntPT
τ=0

³
1−δ
R

´τ
. A sim-

ilar pattern emerges with creative destruction models, where the expected duration
is endogenous. This indeed fosters the persistance effects at the individual level (cf.
the denominator of the persistance coefficient, section 2), and affects the aggregate
growth rate and the interest rate in a similar way than a rise of the transaction cost
on property rights over patents royalties for lenders (µ). This means that financial
and collateral constraints are likely to exhibit even stronger effects in ”destructive
creation” R&D growth models (Aghion and Howitt [1992]) than in expanding variety
R&D growth models. Institutional policies improving the enforcement of patent rights
and increasing the duration of patents foster financially constrained R&D growth.
Secondly, one may consider an endogenous probability of having a positive net

present value investment opportunity. When the random shock affecting the marginal
product of innovation (εtπ) is not confined to two states of nature (εt = 0 with prob-
ability 1− θ, εt = 1 with probability θ) but distributed over a large number of states
of nature according to a cumulative distribution function F (εt), (with an expectation
equal to unity, E (εt) = 1 so that π = Et−1 (εtπ) in the model) then the probability
of a positive net present value R&D project is given by: θ = Prob (εtπ ≥ q (r + δ)) =

1 − F
³
q(r+δ)

π

´
. The probability of investing now increases with the marginal benefit

11For the sake of simplicity, it is assumed here that the forward looking debt ceiling variable
xc discounts patents royalties at the final steady state interest rate r∗∗ after the initial shock. This
means that the debt ceiling is lower than when discounting the future royalties of existing patents by
the future sequence of transitory interest rate (a second order effect which increases marginally the
speed of convergence).
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of R&D and decreases with its user cost. Then, the sensitivity of the growth rate of
patents with respect to the interest rate increases (the slope of the patent growth curve
increases on the diagram 2) with respect to the case where the probability θ is con-
stant. This extension may lead to relatively lower steady state financially constrained
growth rate and interest rate.

4. Conclusion

This paper describes an endogenous growth model with lenders limiting credit up to
collateralizable value of existing patents and with a composition between innovative
firms facing a probability to find a positive net present value R&D investment oppor-
tunity or not each period. The combination of financially constrained growth, taking
into account the distinction between stocks and flows of both internal and external
finance, and of R&D investment lumpiness provided the following results
First, at the entrepreneur level, financial constraints and lumpiness leads to a

specific entrepreneurs saving behaviour where they build ”deep pockets”, by anticipa-
tion of financial constraint when facing a future lumpy R&D investment opportunity.
When this lumpy investment opportunity occurs, the dependance of the persistence of
R&D investment on the markup rewarding innovations is amplified by the debt/patent
collateral constraint (a specification which matches an empirical model of R&D in-
vestment estimated by Blundell, Griffith and Van Reenen [1999]).
Secondly, there are specific consequences on macro-economic growth of R&D in-

vestment lumpiness at the entrepeneur level which emerge when combined with finan-
cial constraints and which do not show up in the perfect capital market case. The
reason is that entrepreneurs’ savings by anticipation of financially constrained lumpy
R&D investments affect differently the growth rate of aggregate debt and the growth
rate of aggregate patents. The aggregation of entrepreneurs behaviour, some of them
saving, some of them investing, determines a steady state endogenous aggregate lever-
age (or debt/patent ratio) below the leverage ceiling.
Thirdly, the probability of R&D investment opportunity increases the financially

constrained steady state growth rate of the economy, which is not the case in the
perfect capital market case. This financially constrained steady state arise under
a general condition (labeled A4) when the entrepreneurs consumption is ”high” and
limit their savings and their investment, when the households growth rate of savings is
relatively high, when the transfer of property rights over patents royalties to creditors
is poor, when the enforcement of patents protection is poor and/or the hazard of
obsolescence of patents are high, and when the probability of finding net present value
R&D investment opportunity for entrepreneurs is low. This financially constrained
steady state has two characteristics. First, the marginal benefit of R&D investment
exceeds its marginal cost (a fact observed empirically, although the measurement of the
marginal cost is particularly difficult). Secondly, the growth of patent is a decreasing
function of interest rate, which is not the case in standard expanding variety growth
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models with perfect capital markets.
Finally, firms savings by anticipation of a lumpy R&D investment may cause a

sluggish macroeconomic adjustment to a new steady state, following shocks on exoge-
nous characteristics of a financially constrained economy. Those transitory dynamics
on the debt, patent, consumption and interest rates may occur without any transitory
dynamics on the R&D marginal return, since the equality linking the interest rate
with the marginal return on R&D does not hold in a financially constrained regime.
Economic policy targeting growth in a financially constrained regime may promote

the enforcement of patent protection and changes in bankruptcy law decreasing the
cost of the tranfer of property rights over patents royalties to creditors. Lumpy R&D
investment would be more directly supported by investment tax credit conditional
to an effective R&D investment instead of a non targeted decrease of the corporate
income tax.
Direction of future research may consider structural estimations of R&D individual,

sectorial and aggregate behaviour based on this model.
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5. Appendix 1

The Lagrangian of the entrepreneur program is:

(nt, bt) ∈ ArgmaxE0
+∞X
t=1

R−tLt (5.1)

with Lt = dt + λbt

µ
(1− µ) π

r + δ
nt − bt

¶
+ λdt (dt − dmnt−1) (5.2)

where λbt is the Lagrange multiplier related to the debt ceiling constraint, λ
d
t is

the Lagrange multiplier related to the minimal consumption constraint, and with
consumption dt given by the flow of funds constraint:

dt = πnt−1 + bt−
∼
1it>0 q

µ
nt −

µ
1− ∼

δ

¶
nt−1

¶
−Rbt−1 + dmnt−1 (5.3)

The Euler equation on debt bt is, for any date t:

1 + λdt − λbt +R
−1Et

³
1 + λdt+1

´
(−R) = 0⇒ λdt = λbt +Et

³
λdt+1

´
(5.4)

With probability 1 − θ, the Bernoulli random variable
∼
1it>0is equal to zero, and

the entrepreneur faces the constraint nt =
µ
1− ∼

δt−1
¶
nt−1, so that he decides nt

only when, with probability θ, the Bernoulli random variable
∼
1it>0is equal to unity.

Then the variable (1− δ) τnt is present with probability (1− θ)τ θ in the R&D cost
function and in the debt ceiling constraint in the discounted element of the Lagrangian
R−t−τLt+τ for any integer τ . The first order condition with respect to the stock of
patents nt is then:

³
1 + λdt

´
q = λbtqx

c+
1

R

τ=+∞X
τ=0

βτ
n³
1 +Etλ

d
t+1+τ

´
(π + θq (1− δ))

o
+
dm
R

τ=+∞X
τ=0

βτEtλ
d
t+1+τ

(5.5)

with β = (1− θ) (1− δ) /R and assuming thatEt

µ
λdt+1+τ

∼
δj

¶
= Et

³
λdt+1+τ

´
Et

µ∼
δj

¶
for any integer τ and j. Using the first order condition for debt and the equality³
R/

Pτ=+∞
τ=0 βτ

´
− θ (1− δ) = r + δ, this equation can be written as:

π

q
− (r + δ) = (1− xc)

Pτ=+∞
τ=0 βτEt

³
λdt+τ − λdt+τ+1

´
Pτ=+∞

τ=0 βτ
³
1 +Etλdt+τ+1

´ +
dm
Rq

Pτ=+∞
τ=0 βτEtλ

d
t+τ+1Pτ=+∞

τ=0 βτ
³
1 +Etλdt+τ+1

´
(5.6)

The rate of return is equal to the user cost when λdt+τ = 0 for any integer τ .
Suppose now that λdt > 0, so that the consumption is kept at its minimal level dmnt−1
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and the rate of return is higher than the user cost according to the above equation.

Then, in the case where the firm has an opportunity to invest
∼
1it>0= 1, maximizing

utility amounts to maximize nt. The flow of funds constraints shows that this is
obtained when the debt ceiling is binding so that λbt > 0. Else, in the case where

the firm has no opportunity to invest
∼
1it>0= 1, the following constraint is binding

nt =
µ
1− ∼

δt−1
¶
nt−1 so that the flow of funds constraint determines debt and the

debt/patent ratio:

xt =
R

q (1− δ)
xt−1 − π − dm

q (1− δ)

The debt/patent ratio decreases xt < xt−1 ≤ xc when dm < µπ. Else a firm
financially constrained previously would keep its debt/patent ratio at the ceiling level
when it does not have an R&D investment opportunity.

6. Appendix 2

This appendix deals with the existence and unicity of the steady state debt/patent
ratio x given by the following quadratic equation (we use the implicit dynamics for
the debt/patent ratio provided by GNB = GN):

N (x) = R+
1 + π−dm

q
− δ −R

1− x − (1− θ) (1− δ)− θ

1 + π−dm
q
− δ −Rx

1− xc
 = 0

The function N (x) is continuous on the interval [0, xc] and strictly increasing:

∂N (x)

∂x
=
1 + π−dm

q
− δ −R

(1− x)2 + θ
R

1− xc > 0

A unique solution exist for a positive steady state debt/patent ratio 0 < x∗ ≤ xc <
1 under the conditions N (0) < 0 and N (xc) > 0. First, N (xc) > 0 is always fulfilled
as long as θ ≤ 1 :

N (xc) = R+
1 + π−dm

q
− δ −R

1− xc − (1− θ) (1− δ)− θ
1 + π−dm

q
− δ − xcR

1− xc ≥ 0

Second, N (0) < 0 leads to condition A3 on θ:

N (0) = 1 +
π − dm
q

− δ − (1− θ) (1− δ)− θ
1 + π−dm

q
− δ

1− xc < 0

⇒ θ > θxmin =
π−dm
q
(1− xc)

xc (1− δ) + π−dm
q

> 0 (A3)
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For the steady state debt/patent ratio to be strictly positive, the proportion of
firms who invest should be at least over θxmin < 1. Identical results are obtained
using the explicit function xt+1 =M (xt) when looking for solutions of the fixed point
equality: M (x)− x = 0.
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Appendix 3 and Figure 3: Patents and Debt Dynamics at the Innovative Firm Level
Parameter values identical to those of figure 2 with an interest rate of 4.5%,
except for 28 draws of the random possibility of Net Present Value R&D Investment
corresponding to a low average probability of investing equal to 25%.

The firm turns to be a net creditor after eight periods, an event with a probability 0.10
(for θ=0.25 at the power 8). 
Doms and Dunne (1998) evaluation for θ related to tangible investment is 0.7
For such a value, the probability that a firm turns to be a net creditor is 0.0001 
when other parameters remain unchanged.
Due to non-investing periods, the average debt/patents ratio is below the debt/ceiling.
There is an increasing Patent Growth trend besides random R&D Investment.
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