
Portfolio Selection with Parameter and Model Uncertainty:

A Multi-Prior Approach∗

Lorenzo Garlappi† Raman Uppal‡ Tan Wang§

April 2004

∗We gratefully acknowledge financial support from INQUIRE UK; this article however represents
the views of the authors and not of INQUIRE. We are very grateful to Ľuboš Pástor for extensive
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Portfolio Selection with Parameter and Model Uncertainty:
A Multi-Prior Approach

Abstract

In this paper, we extend the mean-variance portfolio model where expected returns are ob-
tained using maximum likelihood estimation to explicitly account for uncertainty about the
estimated expected returns. In contrast to the Bayesian approach to estimation error, where
there is only a single prior and the investor is neutral to uncertainty, we allow for multiple
priors and aversion to uncertainty. We characterize the set of priors as a confidence interval
around the estimated value of expected return and we model aversion to uncertainty via a
minimization over the set of priors. The multi-prior model has several attractive features:
One, just like the Bayesian model, the multi-prior model is firmly grounded in decision
theory; Two, it is flexible enough to allow for uncertainty about expected returns estimated
jointly for all assets or different levels of uncertainty about expected returns for different
subsets of the assets; Three, we show how in several special cases of the multi-prior model
one can obtain closed-form expressions for the optimal portfolio, which can be interpreted
as a shrinkage of the mean-variance portfolio towards either the risk-free asset or the mini-
mum variance portfolio. We illustrate how to implement the multi-prior model using both
international and domestic data. Our analysis suggests that allowing for parameter uncer-
tainty reduces the fluctuation of portfolio weights over time and, for the data set considered,
improves the out-of sample performance.

Keywords: Portfolio choice, asset allocation, estimation error, uncertainty, ambiguity, ro-
bustness.
JEL Classification: G11, D81
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1 Introduction

Expected returns, variances, and covariances are estimated with error. But classical mean-

variance portfolio optimization ignores the estimation error, and consequently, the mean-

variance portfolio formed using sample moments has extreme portfolio weights that fluctuate

substantially over time and the out-of-sample performance of such a portfolio is quite poor.1

The standard decision-theoretic approach2 adopted in the literature to deal with estimation

error is to use Bayesian “shrinkage” estimators that incorporate a prior.3 But, the Bayesian

approach assumes that the decision-maker has only a single prior or is neutral to uncertainty

in the sense of Knight (1921).

Given the difficulty in estimating moments of asset returns, it is much more likely that

investors have multiple priors rather than a single prior about moments of asset returns.

Moreover, there is substantial evidence from economic experiments that agents are not neu-

tral to the ambiguity arising from having multiple priors (Ellsberg (1961)), with the aversion

to uncertainty being particularly strong in cases where people feel that their competence in

assessing the relevant probabilities is low (Heath and Tversky (1991)) and when subjects

are told that there may be other people who are more qualified to evaluate a particular risky

position (Fox and Tversky (1995)). A recent literature, for instance, Anderson, Hansen, and

Sargent (1999), Chen and Epstein (2002), and Uppal and Wang (2003), develops models of

decision making that allow for multiple priors and where the decision maker is not neutral to

uncertainty. Our objective in this paper is to examine the implications of these theoretical

models for investment management.
1For a discussion of the problems entailed in implementing mean-variance optimal portfolios, see Hodges

and Brealey (1978), Michaud (1989), Best and Grauer (1991), and Litterman (2003).
2Other approaches for dealing with estimation error are to impose arbitrary portfolio constraints prohibit-

ing shortsales (Frost and Savarino (1988) and Chopra (1993)), which Jagannathan and Ma (2003) show can
be interpreted as shrinking the extreme elements of the covariance matrix, and the use of resampling based
on simulations advocated by Michaud (1998). Scherer (2002) describes the resampling approach in detail and
discusses some of its limitations, while Harvey, Liechty, Liechty, and Müller (2003) discuss other limitations
and provide an estimate of the loss incurred by an investor who chooses a portfolio based on this approach.
Black and Litterman (1990, 1992) propose an approach that combines two sets of priors—one based on an
equilibrium asset pricing model and the other based on the subjective views of the investor—which is not
strictly Bayesian because a Bayesian approach combines a prior with the data.

3In the literature, the Bayesian adjustment has been implemented in different ways. Barry (1974),
and Bawa, Brown, and Klein (1979), use either a non-informative diffuse prior or a predictive distribution
obtained by integrating over the unknown parameter. In a second implementation, Jobson and Korkie
(1980), Jorion (1985, 1986), Frost and Savarino (1986), and Dumas and Jacquillat (1990), use empirical
Bayes estimators, which shrinks estimated returns closer to a common value and moves the portfolio weights
closer to the global minimum-variance portfolio. In a third implementation, Pástor (2000), and Pástor and
Stambaugh (2000) use the equilibrium implications of an asset pricing model to establish a prior; thus, in
the case where one uses the CAPM to establish the prior, the resulting weights move closer to those for a
value-weighted portfolio.
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Our main contribution is to show how the multi-prior model of decision making can be

applied to the practical problem of portfolio selection when expected returns are estimated

with error,4 and to compare explicitly the portfolio weights from this approach with those

from the mean-variance and traditional Bayesian models. We demonstrate how to formulate

the portfolio selection problem of an uncertainty-averse fund manager. This formulation

relies on two changes to the standard mean-variance model: (i) We impose an additional

constraint on the mean-variance portfolio optimization program that restricts the expected

return for each asset to lie within a specified confidence interval of its estimated value; and

(ii) We permit the fund manager to minimize over the choice of expected returns and/or

models subject to this constraint, in addition to the standard maximization over portfolio

weights. The additional constraint recognizes the possibility of estimation error; that is, the

point estimate of the expected return is not the only possible value of the expected return

considered by the investor. The minimization over the estimated expected returns reflects

the investor’s aversion to uncertainty; that is, in contrast to the standard mean-variance

model or the Bayesian approach, in the model we consider the investor is not neutral toward

uncertainty.5

To understand the intuition underlying the multi-prior model, observe that because of

the constrained minimization over expected returns, when the confidence interval is large

for a particular risky asset (that is, the mean is estimated imprecisely), then the investor

relies less on the estimated mean, and hence, reduces the weight invested in this asset.

When this interval is small, the minimization is constrained more tightly, and hence, the

portfolio weight is closer to the standard weight that one would get from a model that

ignores estimation error. In the limit, when the confidence interval is zero, the optimal

weights are those from the classical mean-variance model.

Our formulation of the multi-prior model of portfolio selection has several attractive

features. One, just like the Bayesian model, the multi-prior model is firmly grounded in

decision theory—the max-min characterization of the objective function is consistent with
4We focus on the error in estimating expected returns of assets because as shown in Merton (1980) they

are much harder to estimate than the variances and covariances. Moreover, Chopra and Ziemba (1993)
estimate the cash-equivalent loss from the use of estimated rather than true parameters. They find that
errors in estimating expected returns are over ten times as costly as errors in estimating variances, and over
twenty times as costly as errors in estimating covariances. For a discussion of the problems in estimating
the covariance matrix in the context of portfolio optimization, see Best and Grauer (1992), Ledoit (1996),
Chan, Karceski, and Lakonishok (1999), and Ledoit and Wolf (2003).

5See Section 2 and Bewley (1988) for a discussion of how confidence intervals obtained from classical
statistics are related to Knightian uncertainty and Bayesian models of decision making.
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the multi-prior approach advocated by Gilboa and Schmeidler (1989) and developed in

a static setting by Dow and Werlang (1992) and Kogan and Wang (2002), in dynamic

discrete-time by Epstein and Wang (1994), and in continuous time by Chen and Epstein

(2002). Two, in several economically interesting cases, we show that the multi-prior model

can be simplified to a mean-variance model but where the expected return is adjusted to

reflect the investor’s uncertainty about its estimate. The analytic expressions we obtain for

the optimal portfolio weights allow us to provide insights about the effects of parameter

and model uncertainty in a multi-prior setting. For instance, in one special case where we

obtain a closed-form solution, we show that the optimal portfolio weights can be interpreted

as a weighted average of the classical mean-variance portfolio and the minimum-variance

portfolio, with the weights depending on the precision with which expected returns are

estimated and the investor’s aversion to uncertainty. This special case is of particular

importance because it allows us to compare the multi-prior approach of this paper with the

traditional Bayesian approach in the literature. The analytic solutions also indicate how

the multi-prior model can be implemented as a simple maximization problem instead of a

much more complicated saddle point problem.

Three, the multi-prior model is flexible enough to allow for the case where the expected

returns on all assets are estimated jointly and also where the expected returns on assets

are estimated in subsets. The estimation may be undertaken using classical methods such

as maximum likelihood or using a Bayesian approach. Moreover, the framework can incor-

porate both parameter and model uncertainty; that is, it can be implemented when one is

estimating expected returns from their sample moments or when one is using a particular

factor model for returns such as APT or the CAPM and there is uncertainty about this

being the true model. Four, the multi-prior model does not introduce ad-hoc short-sale

constraints on portfolio weights that rule out short positions even if these were optimal

under the true parameter values. Instead, the constraints imposed in the multi-prior model

arise because of the investor’s aversion to parameter and model uncertainty. At the same

time, our formulation of the multi-prior model can accommodate real-world constraints on

the size of trades or position limits.6 Finally, in contrast to the Bayesian approach where
6In addition to the features described above, the multi-prior approach is consistent with any utility

function, not just utility defined over mean and variance—our focus on the mean-variance objective function
is only because of our desire to compare our results to those in this literature.
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the investor is neutral to uncertainty, the multi-prior model captures the investor’s aversion

to uncertainty about both estimated parameters and the return-generating model.

Our paper is closely related to several papers in the literature. Goldfarb and Iyengar

(2003), Halldórsson and Tütüncü (2000), and Tütüncü and Koenig (2003) develop algo-

rithms for solving max-min saddle-point problems numerically and apply the algorithms

to portfolio choice problem, while Wang (2003) shows how to obtain the optimal portfolio

numerically in a Bayesian setting in the presence of uncertainty. Our paper differs from

Goldfarb and Iyengar (2003), Halldórsson and Tütüncü (2000), and Tütüncü and Koenig

(2003) in serval respects. First, we incorporate not only parameter uncertainty, but also

model uncertainty. Second, we introduce joint constraints on expected returns instead of

only individual constraints as in Goldfarb and Iyengar (2003), Halldórsson and Tütüncü

(2000), and Tütüncü and Koenig (2003). Finally, as mentioned above, for several special

cases we obtain not just numerical solutions but also closed-form expressions for the optimal

portfolio weights, which enables us to provide an economic interpretation of the effect of

aversion to uncertainty.

In order to understand the difference between the properties of the portfolio weights

from the multi-prior approach and the mean-variance and Bayesian models, we apply the

multi-prior model to two portfolio selection problems. In the first application, we consider

the problem of a fund manager allocating wealth across eight international equity indices

and who is uncertain about the expected returns on these equity indices. In the second

application, we consider the problem of a fund manager who is uncertain about the expected

returns on two investable portfolios, HML and SMB, and also about the market-model

generating returns on these portfolios. For both applications, we characterize the properties

of the portfolio weights under the multi-prior approach and compare them to the standard

mean-variance portfolio that ignores estimation error and the Bayesian portfolio that allows

for estimation error but has a single prior or is uncertainty neutral. Even though the utility

function under which each of these portfolios is selected is not the same, we report the

out-of-sample performance of these portfolios so that prospective users of the model can

evaluate the various models.

For the international data set, we find that the portfolio weights using the multi-prior

model are less unbalanced and vary much less over time compared to the mean-variance
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portfolio weights. More importantly, the out-of-sample returns generated by the multi-

prior portfolio model have a substantially higher mean and lower volatility compared to the

standard mean-variance portfolio strategy. The portfolio that incorporate aversion to un-

certainty also outperforms the Bayes-diffuse-prior and the empirical Bayes-Stein portfolios.

The explanation for this is that the uncertainty averse portfolio and the Bayesian portfolios

consist of a weighted average of the mean-variance and minimum-variance portfolios, the

uncertainty averse portfolio puts a higher weight on the minimum-variance portfolio, and

in this data set the expected returns are so noisy that it is optimal to ignore estimates

of expected returns all together. The second application considers the case where returns

are assumed to be driven by a single-factor (CAPM) model, and the fund manager faces

both parameter and model uncertainty when deciding how to allocate wealth to the Fama-

French HML and SMB portfolios and the market portfolio. In this case, we find that the

portfolio has a substantial proportion of wealth in the riskfree asset—typically more than

the Bayesian model would suggest. Moreover, when the multi-prior portfolio allows for

a small degree of uncertainty its out-of-sample Sharpe Ratio is greater than that of the

mean-variance portfolio and the Bayesian portfolios.

The rest of the paper is organized as follows. In Section 2, we show how one can

formulation the problem of portfolio selection for a fund manager who is averse to parameter

and model uncertainty and illustrate this formulation through a simple example with only

two risky assets. In Section 3, we discuss the relation of the multi-prior model to the

traditional Bayesian approach for dealing with estimation error and we compare analytically

the portfolio weights under the two approaches. Then, in Section 4, we illustrate the out-of-

sample properties of the multi-prior model by considering two empirical portfolio selection

settings: in the first, the investor has to allocate wealth across eight international equity-

market indices, and in the second the investor has to allocate wealth to the market portfolio

and two Fama-French portfolios, HML and SMB. Our conclusions are presented in Section 5.

Proofs for propositions are collected in the Appendix.

2 Multi-prior approach to portfolio choice

This section is divided into two parts. In the first, Section 2.1, we summarize the standard

mean-variance model of portfolio choice where estimation error is ignored. In the second
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part, Section 2.2, we show how this model can be extended to incorporate aversion to

uncertainty about the estimated parameters and the return-generating model.

2.1 The classical mean-variance portfolio model

According to the classical mean-variance model (Markowitz (1952, 1959), Sharpe (1970)),

the optimal portfolio of N risky assets, w, is given by the solution of the following opti-

mization problem,

max
w

w>µ− γ

2
w>Σw, (1)

where µ is the N -vector of the true expected excess returns, Σ is the N × N covariance

matrix, 1N is a N -vector of ones and the scalar γ is the risk aversion parameter. The

solution to this problem is

w =
1
γ

Σ−1µ, (2)

In the absence of a risk-free asset, the problem faced by the investor has the same form

as (1) with the difference that µ represents the vector of true expected return and the

portfolio weights has to sum to one. The solution in this case is

w =
1
γ

Σ−1
(
µ− µ0 1N

)
, (3)

where µ0 is the expected return on the zero-beta portfolio associated with the optimal

portfolio w and is given by

µ0 =
B − γ

A
, (4)

where A = 1>NΣ−11N and B = µ>Σ−11N .

A fundamental assumption of the standard mean-variance portfolio selection model

in (1) is that the investor knows the true expected returns. In practice, however, the

investor has to estimate expected returns. Denoting the estimate of expected returns by µ̂,

the actual problem that the investor solves is

max
w

w>µ̂− γ

2
w>Σw. (5)

subject to w>1N = 1. The problem in (5) coincides with (1) only if expected returns are

estimated with infinite precision, that is, µ̂ = µ. In reality, however, expected returns are
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notoriously difficult to estimate. As a result, portfolio weights obtained from solving (5) tend

to consist of extreme positions that swing dramatically over time. Moreover, these optimal

portfolios often perform poorly out of sample even compared to portfolios selected according

to some simple ad hoc rules, such as holding the value-weighted or equally-weighted market

portfolio.

2.2 Extension of the standard model to incorporate uncertainty aversion

To explicitly take into account that asset expected returns are estimated imprecisely, we

introduce two new components into the standard mean-variance portfolio selection problem

in (1). One, we impose an additional constraint on the mean-variance optimization program

that restricts the expected return for each asset to lie within a specified confidence interval

of its estimated value. This constraint implies that the investor recognizes explicitly the

possibility of estimation error; that is, the point estimate of the expected return is not the

only possible value considered by the investor. Two, we introduce an additional optimiza-

tion—the investor is allowed to minimize over the choice of expected returns and/or models

subject to the additional constraint. This minimization over expected returns, µ, reflects

the investor’s aversion to uncertainty (Gilboa and Schmeidler (1989)).

With the two changes to the standard mean-variance model described above, the multi-

prior model takes the following form in general:

max
w

min
µ

w>µ− γ

2
w>Σw, (6)

subject to

f(µ, µ̂,Σ) ≤ ε, (7)

w>1N = 1, (8)

where f(·) is a vector-valued function, and ε is a vector of constants that reflects both the

investor’s uncertainty and his aversion to uncertainty. The role of ε will be explained further

below. As before, equation (8) constrains the weights to sum to unity in the absence of a

riskfree asset; when a riskfree asset is available, this constraint can be dropped.

In the rest of this section we illustrate several possible specifications of the constraint

given in (7) and their implications for portfolio selection.
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2.2.1 Uncertainty about expected returns estimated asset-by-asset

We start by considering the case where f(µ, µ̂,Σ) has N components,

fj(µ, µ̂,Σ) =
(µj − µ̂j)2

σ2
j /Tj

, j = 1, . . . , N, (9)

where Tj is the number of observations in the sample for asset j. In this case, the constraint

in (7) becomes

(µ̂j − µj)2

σ2
j /Tj

≤ εj , j = 1, . . . , N. (10)

The constraints (10) have an immediate interpretation as confidence intervals. For

instance, it is well known that if returns are assumed to be normally distributed then µ̂j−µj

σj/
√

Tj

follows a normal distribution.7 Thus, the εj in constraints (10) determines a confidence

interval. When all the N constraints in (10) are taken together, (10) is closely related to

the probabilistic statement

P (µ1 ∈ I1, . . . , µN ∈ IN ) = 1− p, (11)

where Ij , j = 1, . . . , N , are intervals in the real line. Here p is a significance level. For

instance, if the returns are independent of each other and if pj is the significance level

associated with εj , then the probability that all the N true expected returns fall into the

N intervals, respectively, is 1− p = (1− p1)(1− p2) · · · (1− pN ).8

While confidence intervals or significance levels are often associated with hypothesis

testing in statistics, Bewley (1988) shows that they can be interpreted as a measure of the

level of uncertainty associated with the parameters estimated. An intuitive way to see it is

to envision an econometrician who estimates the expected returns for an investor. He can

report to the investor his best estimates of the expected returns. He can at the same time

report the uncertainty of his estimates by stating, say, the confidence level of µj ∈ Ij for all

j = 1, . . . , j = N , is 95%.
7If σj is unknown then it follows a t-distribution with Tj − 1 degrees of freedom.
8When the asset returns are not independent, the calculation of the confidence level of the event involves

multiple integrals. In general, it is difficult to obtain a closed-form expression for the confidence level. The
fact that the data for different assets may be of different lengths does not present a serious problem for the
multivariate normal distribution setting as shown by Stambaugh (1997).
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When viewed in isolation, (10) can have the simple interpretation as measure of un-

certainty just described. When it is combined with the maxmin problem (6), i.e., when it

is used in an investor’s portfolio selection problem, however, it also captures the investor’s

aversion to uncertainty. For example, suppose that the standard practice of econometricians

is to report 95% confidence interval. If the investor has high uncertainty aversion, he could

use an ε that corresponds to a 99% confidence interval. In other words, by picking the

appropriate εj the investor can indicate the level of uncertainty he has about the estimate

of the expected return of asset j as well as his level of uncertainty aversion.

To gain some intuition regarding the effect of uncertainty about the estimated mean on

the optimal portfolio weight, one can simplify the max-min portfolio problem, subject to

the constraint in (10), as follows.

Proposition 1 The max-min problem (6) subject to (8) and (10) is equivalent to the fol-

lowing maximization problem

max
w

{
w>(µ̂− µadj)− γ

2
w>Σw

}
, (12)

subject to (8), where µadj is the N -vector of adjustments to be made to the estimated expected

return:

µadj ≡
{
sign(w1)

σ1√
T

√
ε1, . . . , sign(wN )

σN√
T

√
εN

}
. (13)

The proposition above shows that the multi-prior model, which is expressed in terms of

a max-min optimization, can be interpreted as the mean-variance optimization problem in

(5), but where the mean has been adjusted to reflect the uncertainty about its estimated

value. The term sign(wj) in (13) ensures that the adjustment leads to a shrinkage of the

portfolio weights; that is, if a particular portfolio weight is positive (long position) then the

expected return on this asset is reduced, while if it is negative (short position) the expected

return on the asset is increased. In Section 2.2.3, we characterize the optimal solution for

this problem.
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2.2.2 Uncertainty about expected returns estimated jointly for all assets

Instead of stating the confidence intervals for the expected returns of the assets individually

as described in the previous section, one could do this jointly for all assets. Suppose that

expected returns are estimated by their sample mean µ̂. If returns are drawn from a normal

distribution, then the quantity

T (T −N)
(T − 1)N

(µ̂− µ)>Σ−1(µ̂− µ) (14)

has an χ2 distribution with N degrees of freedom.9 Let f = T (T−N)
(T−1)N (µ̂ − µ)>Σ−1(µ̂ − µ)

and ε be a chosen quantile for the F -distribution. Then the constraint (7) can be expressed

as
T (T −N)
(T − 1)N

(µ̂− µ)>Σ−1(µ̂− µ) ≤ ε. (15)

In other words, this constraint corresponds to the probabilistic statement

P

(
T (T −N)
(T − 1)N

(µ̂− µ)>Σ−1(µ̂− µ) ≤ ε

)
= 1− p,

for some appropriate level p.

The following proposition shows how the max-min problem (6) subject to (8) and (15)

can be simplified into a maximization problem which is easier to solve, and how one can

obtain an intuitive characterization of the optimal portfolio weights.

Proposition 2 The max-min problem (6) subject to (8) and (15) is equivalent to the fol-

lowing maximization problem

max
w

w>µ̂− γ

2
w>Σw −

√
εw>Σw, (16)

subject to w>1N = 1, where ε ≡ ε (T−1)N
T (T−N) . Moreover, the expression for the optimal portfolio

weights can be written as:

w∗ =
1
γ

Σ−1

 1

1 +
√

ε
γσ∗P

µ̂−
B − γ

(
1 +

√
ε

γσ∗P

)
A

1N

 , (17)

9It follows an F distribution with N and T −N degrees of freedom (Johnson and Wichern, 1992, p. 188)
if Σ is not known.
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where A = 1>N Σ−1 1N , B = µ̂> Σ−1 1N , and σ∗P is the variance of the optimal portfolio that

can be obtained from solving the polynomial equation (A11) in Appendix A.

We can now use the expression in (17) for the optimal weights to interpret the effect of

parameter uncertainty. Note that as ε → 0, that is either ε → 0 or T → ∞, the optimal

weight w∗ converges to the mean-variance portfolio10

w∗ =
1
γ

Σ−1
(

µ̂− B − γ

A
1N

)

=
1
γ

Σ−1
(
µ̂− µ01N

)
, (18)

where B−γ
A = µ0 is the expected return on the zero-beta portfolio associated with w∗ defined

in equation (3). Thus, in the absence of parameter uncertainty the optimal portfolio reduces

to the mean-variance weights. On the other hand, as ε →∞ the optimal portfolio converges

to

w∗ =
1
A

Σ−11N , (19)

which is the minimum-variance portfolio. These results suggest that parameter uncertainty

shifts the optimal portfolio away from the mean-variance weights toward the minimum-

variance weights.

2.2.3 Uncertainty about expected returns estimated for subsets of assets

In Section 2.2.1 we described the case where there was uncertainty about expected returns

that were estimated individually asset-by-asset, and in Section 2.2.2 we described the case

where the expected returns were estimated jointly for all assets. Stambaugh (1997) provides

motivation for why one may wish to do this – for example, the lengths of available histories

may differ across the assets being considered. In this section, we present a generalization

that allows the estimation to be done separately for different subclasses of assets, and we

show that this generalization unifies the two specifications described above.
10In taking these limits, it is important to realize that σ∗P also depends on the weights. In order to obtain

the correct limits, it is useful to look at equation (A11), which characterizes σ∗P .
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Let Jm = {i1, . . . , iNm}, m = 1, . . . , M , be M subsets of {1, . . . , N}, each representing

a subset of assets. Let f be a M -valued function with

fm(µ, µ̂,Σ) =
Tm(Tm −Nm)
(Tm − 1)Nm

(µ̂Jm − µJm)>Σ−1
Jm

(µ̂Jm − µJm). (20)

Then (15) becomes

Tm(Tm −Nm)
(Tm − 1)Nm

(µ̂Jm − µJm)>Σ−1
Jm

(µ̂Jm − µJm) ≤ εm, m = 1, . . . ,M. (21)

Just as in the earlier specifications, these constraints corresponds to the probabilistic state-

ment

P (X1 ∈ I1, . . . , XM ∈ IM ) = 1− p,

where Xm, m = 1, . . . , M , are sample statistics defined by the left hand side of the

inequalities in (21).

The case where Jm, m = 1, . . . , M , do not overlap with each other and investors

have access to a risk-free asset is of particular interest since we can obtain an analytic

characterization of the portfolio weights, as the following proposition shows.

Proposition 3 Consider the case of M non-overlapping subsets of assets and assume f

in (7) is an M -valued function expressing the uncertainty aversion of the investor in each

subset of assets. Then, if the investor has access to a risk-free asset, the optimal portfolio

is given by the solution to the following system of equations:

wm = max

1−
√

εm√
g(w−m)>Σ−1

m g(w−m)
, 0

 1
γ

Σ−1
m g(w−m) (22)

for m = 1, . . . ,M, where εm ≡ (Tm−1)Nm

Tm(Tm−Nm) , w−m represents the weights in the assets not in

subclass m, Σm is the variance-covariance matrix of the asset in subclass m, and

g(w−m) = µ̂m − γΣm,−mw−m, m = 1, . . . M (23)

with Σm,−m the matrix of covariances between assets in class m and assets outside class m.

If the number of subclasses M is equal to the number of assets N , the model reduces to

the one discussed in Section 2.2.1. Similarly, if there is only one subclass of assets, (M = 1)
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the model reduces to the one studied in Section 2.2.2. The following two corollaries formalize

this relation and characterize the optimal portfolios.

Corollary 1 If the number of subclasses M is equal to the number of assets N and there

is a risk-free asset, the optimal portfolio in problem (6) is given by solving the following

system of simultaneous equations

wi = max [ |g(w−i)| −
√

εi, 0 ]
1

γσi
sign[g(w−i)], i = 1, 2, . . . , N (24)

where εi = εi
T , w−i are the N − 1 portfolio weights on the assets other than i,

g(w−i) = µ̂i − Σi,−iw−i

and Σi,−i is the i-th row of the variance-covariance matrix with the i-th element removed.

Corollary 2 If there is only one subclass of assets, that is M = 1, then in the presence of

a risk-free asset, the optimal portfolio is given by

w = max

[
1−

√
ε

µ̂>Σ−1µ̂
, 0

]
1
γ

Σ−1µ̂, where ε ≡ ε
(T − 1)N
T (T −N)

. (25)

2.2.4 Uncertainty about the return-generating model and expected returns

In this section, we explain how the general model developed in Section 2.2.3 where there are

M subsets of assets can be used to analyze situations where investors rely on a factor model

to generate estimates of expected return and are averse to both the estimated expected

returns on the factor portfolios and the model used to generate the expected returns on

investable assets.

To illustrate this situation, consider the case of a market with N risky asset in which

an asset pricing model with K factors is given. Denote with rat the N × 1 vector of excess

returns of the non-benchmark assets over the risk-free rate in period t. Similarly, denote by

rft the excess return over the benchmark assets. The mean and variance of the assets and

factors are:

µ =

(
µa

µf

)
, Σ =

(
Σaa Σaf

Σfa Σff

)
. (26)
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We can always summarize the mean and variance of the assets by the parameters of the

following regression model

rat = α + βrft + ut, cov(ut, u
>
t ) = Ω, (27)

where α is a N × 1 vector, β is a N ×K matrix of factor loadings, and ut is a N × 1 vectors

of residuals with covariance Ω. Hence, the mean and variance of the returns can always be

expressed as follows

µ =

(
α + βµf

µf

)
, Σ =

(
βΣffβ> + Ω βΣff

Σffβ> Σff

)
. (28)

An investor who is averse to uncertainty about both the expected returns on the factors

and the model generating the returns on the assets will solve the following problem. Defining

w ≡ (wa, wf )> to be the (N + K)× 1 vector of portfolio weights, the investor’s problem is:

max
w

min
µa,µf

w>µ− γ

2
w>Σw, (29)

subject to

(µ̂a − µa)>Σ−1
aa (µ̂a − µa) ≤ εa, (30)

(µ̂f − µf )>Σ−1
ff (µ̂f − µf ) ≤ εf . (31)

Equations (30) and (31) capture parameter uncertainty over the estimate of the expected

returns. If investors use the asset pricing model to determine the estimate of µ̂a, then

µ̂a = βµf and equation (30) can be interpreted as a multi-prior characterization of model

uncertainty. Setting εa = 0 corresponds to imposing that the investor believes dogmatically

in the model.11

From Proposition 3 the solution to this problem is given by the following system of

equations

wa = max

1−
√

εa√
g(wf )>Σ−1

aa g(wf )
, 0

 1
γ

Σ−1
aa g(wf ), (32)

wf = max

1−
√

εf√
h(wa)>Σ−1

ff h(wa)
, 0

 1
γ

Σ−1
ff h(wa), (33)

11To be precise, the interpretation of equation (30) as a characterization of model uncertainty is true only
if εf = 0. To see this, note that when µ̂a = βµf , µ̂a − µa = β(µ̂f − µf )− α. Therefore, unless µf = µ̂f the
difference µ̂a − νa does not represent Jensen’s α.
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where

g(wf ) = µ̂a − γΣafwf , (34)

h(wa) = µ̂f − γΣfawa. (35)

To understand the structure of the solution to this problem we consider the case where

there are two assets and one factor. The parameters for these assets are summarized in

Table 1 and the optimal portfolio weights are reported in Table 2.12 Each panel corresponds

to a different level of uncertainty εf about the factor. Within each panel of the table, each

row represent a different level of uncertainty εa about the asset. A clear pattern emerges

from the portfolio weights reported in the table. First, when εf = 0 then for all values of

εa > 0 the investor is more uncertain about the assets than about the factor, and hence will

hold 100% of his wealth in the factor portfolio. Second, given a certain level of uncertainty

about the factor (i.e. keeping fixed εf > 0), as uncertainty in the asset estimate increases the

holdings of the risky non-benchmark assets decrease and the holding of the factor portfolio

increases. Third, given a certain level of uncertainty about the assets (i.e., keeping fixed

εa), as εf increases, the holdings of risky non-benchmark assets increase and the holding

of the factor decreases. These results are intuitive and suggest that the more uncertain is

the estimate of the expected return of an asset the less an investor is willing to invest in

that asset. Obviously, the uncertainty in the assets and the factors are interrelated and it is

ultimately the relative level of uncertainty between the two classes of asset that determines

the final portfolio.

3 Comparison with other approaches to estimation error

In this section, we relate the multi-prior framework for portfolio choice in the presence

of parameter and model uncertainty to other approaches considered in the literature, and

in particular, to portfolios that use the traditional Bayesian approach. We compare the

portfolio weights from the multi-prior model to the following: (i) the standard mean-variance

portfolio that ignores estimation error, (ii) the minimum-variance portfolio, (iii) the portfolio

based on Bayes-diffuse-prior estimates as in Bawa, Brown, and Klein (1979), and (iv) the
12The parameters are chosen to match the results we would obtain by estimating a regression of the

monthly returns on the Fama-French portfolios HML and SMB on the Market from July 1926 to December
2002. More details on this data set are provided in section 4.2.
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portfolio based on the empirical Bayes-Stein estimator, as described in Jorion (1985, 1986).

In this section, the comparison is done in terms of the theoretical foundations of the models

and their implications for portfolio weights, while in Section 4 this comparison is undertaken

empirically using two different data sets and the comparison set includes also the weights

obtained by using the data-and-model approach of Pástor (2000).

3.1 A summary of the traditional Bayesian approach

It is useful to begin with a brief summary of the traditional Bayesian approach. Let U(R) be

the utility function, where R is the return from the investment, and g(R|θ) the conditional

density (likelihood) of asset returns given parameter θ. In the setting of this paper, θ is

the vector of the expected returns of the risky assets. More generally, it can include the

covariances of the asset returns. If the parameter θ is known, then the conditional expected

utility of the investor is

E[U(R)|θ] =
∫

U(R)g(R|θ)dR. (36)

In practice, however, the parameter θ is often unknown and needs to be estimated from

data, i.e., there is parameter uncertainty. In the presence of such parameter uncertainty,

Savage’s expected utility approach is to introduce a conditional prior (posterior) p(θ|X),

where X = (r1, . . . , rT ) is the vector of past returns, such that the expected utility is given

by

E[U(R)|X] = E [E[U(R)|θ]|X] =
∫ ∫

U(R)g(R|θ)p(θ|X)dRdθ. (37)

Let π(θ) is the unconditional prior about the unknown parameter. Then the posterior

density given X is

p(θ|X) =
∏T

t=1 g(rt|θ)π(θ)∫ ∏T
t=1 g(rt|θ)π(θ)dθ

, (38)

and the predictive density, given X, is

g(R|X) =
∫

g(R|θ)p(θ|X)dθ =
∫

g(R|θ)
∏T

t=1 g(rt|θ)π(θ)∫ ∏T
t=1 g(rt|θ)π(θ)dθ

dθ. (39)

Using the predictive density, the expected utility of the investor is given by

E[U(R)|X] =
∫

U(R)
(∫

g(R|θ, X)p(θ|X)dθ

)
dR =

∫
U(R)g(R|X)dR. (40)
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Thus the key to the Bayesian approach is the incorporation of prior information and the

information from data in the calculation of the posterior and predictive distributions. The

effect of information on the investor’s decision comes through its effect on the predictive

distribution.

The foundation for the Bayesian approach was provided by Savage (1954). Early ap-

plications of this approach can be found in Klein and Bawa (1976), Jorion (1985, 1986).

More recent applications include Pástor (2000) and Pástor and Stambaugh (2000) who, in

addition to parameter uncertainty, consider also model uncertainty.

3.2 Comparison of the multi-prior approach with Bayesian approach

The decision-theoretic foundation of the multi-prior approach is laid by Gilboa and Schmei-

dler (1989). Equally well-founded axiomatically, the most important difference between

the Bayesian approach and the multi-prior approach is that in the Bayesian approach the

investor is implicitly assumed to be neutral to parameter and/or model uncertainty, while

in the multi-prior approach, the investor is averse to that uncertainty.

That in the Bayesian approach the investor is uncertainty neutral is best seen through

equation (40). The middle expression in the equation suggests that parameter and/or

model uncertainty enters the investor’s utility through the posterior p(θ|X), which can

affect the investor’s utility only through its effect on the predictive density g(R|X). In

other words, as far as the investor’s utility maximization decision is concerned, it does not

matter whether the overall uncertainty comes from the conditional distribution g(R|θ) of

the asset return or from the uncertainty about the parameter/model p(θ|X), as long as

the predictive distribution g(R|X) is the same. In other words, if the investor were in a

situation where there is no parameter/model uncertainty, say, because the past data X

could be used to identify the true parameter perfectly, and the distribution of asset returns

is characterized by g(R|X), then the investor would feel no different. In particular, there

is no meaningful separation of risk aversion and uncertainty aversion. In this sense, we say

that the investor is uncertainty neutral.

In the multi-prior framework, the risk (the conditional distribution g(R|θ) of the asset

returns is treated differently from the uncertainty about the parameter/model of the data

generating process. For example, in the portfolio choice problem described by equations
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(6)-(8), the risk of the asset returns is captured by Σ which appears in equation (6). The

uncertainty about the unknown mean return vector, µ, is however captured by the constraint

(7). The two are further separated by the minimization over µ subject to the constraint

(7). As a result, the investor is no longer uncertainty neutral in this approach.

3.3 Analytic comparison of the portfolio weights from the various models

In this section, we compare analytically the portfolio weights from the multi-prior model to

those obtained when using traditional Bayesian methods to deal with estimation error.13 We

start by describing the portfolio obtained when using the empirical Bayes-Stein estimator.

The Bayes-diffuse prior portfolio is then obtained as a special case of this portfolio, while

the mean-variance portfolio and the minimum-variance portfolio are discussed as limit cases

of the traditional Bayesian models and also the multi-prior model.

The problem facing a Bayesian investor is to estimate the N -dimensional vector of means

µ from the i.i.d. population yt ∼ N (µ,Σ), t = 1, . . . , T . The key result in Jorion (1986)

can be summarized as follows. Assume the following three conditions: (i) Investors have an

informative prior on µ of the form

p(µ|µ̄, νµ) ∝ exp
[
−1

2
(µ− µ̄1N )>(νµ Σ−1)(µ− µ̄1N )

]
, (41)

with µ̄ being the grand mean and νµ giving an indication of prior precision (or tight-

ness of the prior); (ii) Investors have diffuse prior on the grand mean µ̄; (iii) The density

p(νµ|µ, µ̄,Σ) is a Gamma function. Then, the predictive density for the returns p(r|y, Σ, νµ),

conditional on Σ and the precision νµ is a multivariate normal with predictive Bayes-Stein

mean, µBS , equal to

µBS = (1− φBS)µ̂ + φBS µMIN 1N , (42)
13The Bayes-Stein approach to minimizing the impact of estimation risk on optimal portfolio choice

involves “shrinking” the sample mean towards a common value or, as it is usually called, a grand mean.
Stein (1955) and Berger (1974) developed the idea of shrinking the sample mean towards a common value
and showed that these kind of estimators achieve uniformly lower risk than MLE estimator (where here risk
is defined as the expected loss, over repeated samples, incurred by using an estimator instead of the true
parameter). The results from Stein and Berger can be interpreted in a Bayesian sense where the decision-
maker assumes a prior distribution for the common value and for the precision of the estimation procedure.
This is what defines a Bayes-Stein estimator. An Empirical Bayes estimator is a Bayes estimator where the
grand mean and the precision are inferred from the data.
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where µ̂ is the sample mean, µMIN is the minimum-variance portfolio,

φBS =

(
νµ

T + νµ

)
=

N + 2
(N + 2) + T (µ̂− µMIN 1N )>Σ−1(µ̂− µMIN 1N )

, (43)

and covariance matrix

V [r] = Σ

(
1 +

1
T + νµ

)
+

νµ

T (T + 1 + νµ)
1N1>N

1>NΣ−11N
. (44)

Note that the case of zero precision (νµ = 0) corresponds to the Bayes-diffuse-prior case

considered in Bawa, Brown, and Klein (1979) in which the sample mean is the predictive

mean but the covariance matrix is inflated by the factor (1+1/T ). Finally, observe that for

νµ →∞ the predictive mean is the common mean represented by the mean of the minimum

variance portfolio.

We are now ready to determine the optimal portfolio weights using the Bayes-Stein

estimators. Let us assume that we know the variance-covariance matrix and that only the

expected returns are unknown. In the case where a risk free asset is not available, we know

that the classical mean-variance portfolio is given by (3). Substituting the empirical Bayes-

Stein (BS) estimator µBS in (3), one can show that the optimal weights can be written as

follows:

wBS = φBS wMIN + (1− φBS) wMV , (45)

where the minimum-variance portfolio weights, which ignore expected returns altogether,

is

wMIN =
1
A

Σ−11N , (46)

and the mean-variance portfolio weights formed using the maximum-likelihood estimates of

the expected return are

wMV =
1
γ

Σ−1 (µ̂− µ̂0 1N ) . (47)

We now compare the mixture portfolio (45) obtained from a Bayes-Stein estimator

with the optimal portfolio derived from the multi-prior (MP) approach that incorporates

aversion to parameter uncertainty and is given in equation (17). After some manipulation,

the optimal portfolio for an investor who is averse to parameter uncertainty can be written
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as

wMP = φMP wMIN + (1− φMP ) wMV , (48)

where

φMP (ε) =

( √
ε

γσ∗P +
√

ε

)
=

√
ε (T−1)N

T (T−N)

γσ∗P +
√

ε (T−1)N
T (T−N)

, (49)

and wMIN and wMV are defined in (46) and (47), respectively.

Comparing the weights in equation (45) that are obtained using a Bayes-Stein estimator

to the weights in equation (48) obtained from the multi-prior model, we notice that both

methods shrink the mean-variance portfolio toward the minimum-variance portfolio, which

is the portfolio that essentially ignores all information about expected returns. However,

the magnitude of the shrinkage is different, that is, φBS 6= φMP (ε). In the next section,

where we implement these different portfolio strategies using real-world data, we will find

that the shrinkage factor from the multi-prior approach is much greater than that for the

empirical Bayes-Stein portfolio; that is, for reasonable values of ε, φMP (ε) > φBS .

So far, we have considered the following two cases: one, where the investor uses classical

maximum-likelihood estimators to estimate expected returns and then accounts for model

uncertainty in obtaining the weights in equation (48), and two, where the investor uses

Bayesian methods for estimating expected returns but ignores the possibility that these

estimates are uncertain, which leads to the portfolio weights in (45). But, one could just

as well have a third case where the estimation is done using Bayesian methods and the

investor allows for parameter uncertainty.14 In this case, the optimal portfolio weights are

given by the following expression.

wBS
MP = φMP wMIN + (1− φMP ) wBS , (50)

where the minimum-variance-portfolio, wMIN , and the Bayesian portfolio, wBS , are defined

in (46) and (45), respectively. Observe that the expression in (50) is similar to that in (48)

but where wBS replaces wMV ; that is, the effect of uncertainty is to shrink the portfolio

that is now obtained using Bayesian estimation methods, wBS , toward wMIN . Notice that

in the limiting case where the investor is neutral toward uncertainty, setting ε = 0 in (50),
14In this comparison, the Bayesian approach is interpreted narrowly as an estimation technique rather

than a decision-theoretic approach.
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which leads to φMP = 0, implies that the optimal portfolio reduces to wBS . This is the

sense in which the portfolio obtained using Bayesian estimation methods is nested in the

multi-prior approach.

One can also view the expression in (50) as being similar to that in (45), but where the

shrinkage factor consists not just of an adjustment because one is using Bayesian estimation

but also because the investor is averse to uncertainty. To see this, substitute in (50) the

expression for wBS in (45), to get

wBS
MP = φBS

MP wMIN +
(
1− φBS

MP

)
wML, (51)

where the shrinkage factor is now given by

φBS
MP = φMP + φBS − φMP φBS . (52)

This expression again shows that if the investor is uncertainty neutral (ε = 0), then φMP = 0

and the optimal portfolio is the Bayesian portfolio wBS . If, on the other hand, there is zero

precision about the prior mean (νµ = 0), then φBS = 0 and the optimal portfolio is wMP .

And, only in the case where the investor is both uncertainty neutral and has zero precision

about the prior mean is it optimal to hold the standard mean-variance portfolio, wMV ,

which is obtained using maximum-likelihood estimates of the mean.

Of course, from equation (52) it is clear that φBS
MP > φBS and φBS

MP > φMP , so the

investor who is using Bayesian estimation methods and is averse to uncertainty will shrink

his portfolio much more toward the minimum-variance portfolio, wMIN , than either the

investor who uses Bayesian estimation methods but is uncertainty averse, or the investor

who is uncertainty averse but has a diffuse prior so that he is using maximum-likelihood

estimates.

4 Empirical applications of the multi-prior approach

In this section, we show how to apply the multi-prior approach to portfolio selection. Our

goal in this section is (i) to demonstrate how the multi prior approach can be implemented

in practice and (ii) to compare the portfolio recommendations from this approach to other

procedures commonly used, with a particular emphasis on the Bayesian approach with

model uncertainty introduced in Pástor (2000).
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We consider two versions of the model. First, in Section 4.1 we illustrate the model

described in Section 2.2.2, where the expected returns on all assets are estimated jointly

and there is no riskfree asset. Then, in Section 4.2, we illustrate the model described in

Section 2.2.3 where there is both uncertainty about expected asset returns and the factor

model generating these returns and a riskfree asset is available. For the first application, we

use returns on eight international equity indices. For the second application, we consider

returns on a factor portfolio, which is the excess return on the US market portfolio (defined

as the value-weighted return on all NYSE, AMEX and NASDAQ stocks, minus the one-

month Treasury bill rate) and the Fama-French portfolios, HML and SMB. Details of these

two applications are given below.

4.1 Uncertainty about expected returns: International data

For our first empirical illustration we consider allocating wealth over eight international

equity indices whose returns are computed based on the month-end US-dollar value of the

equity index for the period January 1970 to July 2001. The equity indices are for Canada,

Japan, France, Germany, Italy, Switzerland, United Kingdom, United States. Data are

from MSCI (Morgan Stanley Capital International). The data set is similar to the one used

by De Santis and Gerard (1997) but spans for a longer time period than theirs. Summary

statistics for the indexes of the eight countries as well as for the MSCI world index are

provided in Table 3.

We assume that there is no risk-free asset and that the investor estimates the expected

returns jointly over portfolio by expressing uncertainty over the whole set of assets, as

described in Section 2.2.2. Using this model, we compute the mean-variance portfolios

that account for different degrees of uncertainty in the statistical estimate (ε) about the

expected returns. We also compute (i) the standard mean-variance portfolio that ignores

estimation error, (ii) the minimum-variance portfolio, and (iv) the portfolio based on Bayes-

Stein estimators, as described in Jorion (1985, 1986). From the result in Section 2.2.2 we

know that the resulting portfolio is a combination of the minimum variance portfolio and

the mean-variance portfolio.

To assess the performance of the different portfolio models, we determine the weights

from each model based on a window of 60 months and then calculate the return from holding
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this portfolio in the 61st month. We repeat this for the entire data set and compute the

average out-of sample means, volatilities and Sharpe ratios of each strategy. For each of the

portfolio models, we consider two cases: one, where short-selling is allowed, and the other

where short-selling is not allowed.

In our analysis, we set T = 60 because the estimation is done using a rolling-window of 60

months and we set N = 8 because there are eight country-indexes. Under the assumption

that the returns are normally distributed, if µ̂ is taken to be the sample average of the

returns, the quantity T (T−N)
(T−1)N (µ̂ − µ)>Σ−1(µ̂ − µ) is distributed as an F8,52. For reference

purpose, we recall that the 95-percentile of an F8,52 corresponds to ε = 2.122, while the

99-percentile corresponds to ε = 2.874.15

The results of our analysis are reported in Panel A of Table 4. Compared to the mean-

variance strategy in which historical mean returns µ̂ are taken to be the estimator of ex-

pected returns µ, the portfolios constructed using the model that allows for parameter

uncertainty exhibit uniformly higher means and lower volatility.

Notice from Panel A that the case of ε = 0 corresponds to the mean-variance portfolio

while the case of ε →∞ corresponds to the minimum-variance portfolio, as discussed in the

previous section. Both the Bayes-diffuse-prior and the empirical Bayes-Stein portfolios show

lower mean and higher variance than any of the portfolios that account for uncertainty aver-

sion. To understand the reason for this, observe that for the case of the Bayes-diffuse prior

portfolios parameter uncertainty is dealt with by inflating the variance-covariance matrix by

the factor 1+ 1
T (see Bawa, Brown, and Klein (1979)) while still using the historical mean as

a predictor of expected returns. For large enough T (60 in our case), this correction to the

variance-covariance matrix has only a mild effect on performance. The under-performance

of the empirical Bayes-Stein portfolio is due to the fact that this estimation model still puts

too much weight on the estimated expected returns, and consequently, does not shrink the

portfolio weights sufficiently toward the minimum-variance portfolio relative to the portfolio

that incorporates model uncertainty. The weighting factor assigned by the empirical Bayes-

Stein model to the minimum-variance portfolio over the out of sample period averages to
15Alternatively, selecting ε = 2 implies a 93.53%-confidence interval, while ε = 3 corresponds to 99.24%-

confidence interval.
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0.6582, while this factor for the model that accounts for parameter uncertainty is 0.8741

when ε = 1 and, as shown in the previous section, this factor is increasing with ε. 16

Recall from equations (45) and (48) that the optimal portfolio of the investor can also

be interpreted as one that is a weighted-average of the standard mean-variance portfolio

and the minimum-variance portfolio, with the mean-variance portfolio shrinking toward the

minimum-variance portfolio as uncertainty increases. In Figure 2 we present the weights

assigned by the investor to the minimum-variance portfolio when he is uncertain about

expected returns, φMP (ε = 1), and a second case where the level of uncertainty is higher,

φMP (ε = 5). We also provide the shrinkage factor for the empirical Bayes-Stein approach,

φBS . From the figure, we see that as ε increases the shrinkage toward the minimum-variance

portfolio increases; moreover, the shrinkage factor fluctuates much less for higher levels of

uncertainty.

To analyze the effect of uncertainty aversion on the individual weights in the risky port-

folio, we report in Panel A of Figure 1 the percentage weight allocated to the US index

from January 1975 to July 2001.17 The dashed line refers to the percentage of wealth allo-

cated to the US index implied by the mean-variance portfolio implemented using historical

estimates. The other two lines refer to portfolios obtained by incorporating aversion to pa-

rameter uncertainty. Two levels of aversion to uncertainty are considered. The dash-dotted

line (ε = 1) are the portfolio weights obtained for a degree of uncertainty expressed roughly

by the 55% confidence interval for an F8,52 centered around the sample mean, while the solid

line (ε = 3) are portfolio weights obtained assuming uncertainty about expected returns is

given by the 99% confidence interval. We find that portfolio weights from the optimization

incorporating parameter uncertainty has less extreme positions and the portfolio weights

vary much less over time compared to the weights for the classical mean-variance portfolio.

A higher ε means a higher confidence interval and, consequently, more aversion to uncer-

tainty in the estimates. As a consequence, the higher is ε, the less extreme are the portfolio

weights.

In the results described above, investors were permitted to hold short positions. We now

repeat the analysis but impose a further condition on the multi-prior model that short-sales
16For reference purposes, the number in parenthesis appearing in the table refer to the percentage-

confidence interval implied by different value of ε and computed from a F8,52 distribution.
17Estimates of the turnover in the composition of the standard mean-variance optimal portfolio as a

function of the estimation error are given in Chopra (1993).
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are not allowed. Formally, the problem we now solve is the same as the one in Section 2.2.2,

but with the additional constraint that short sales are not allowed: w ≥ 0N .

The results of this analysis are reported in Panel B of Table 4. As in Panel A, this panel

compares the out-of-sample mean return, volatility and Sharpe ratio obtained from the

multi-prior model with alternative portfolio strategies. We find that the portfolio strategies

that incorporate parameter uncertainty achieve a higher mean and lower volatility than the

mean-variance portfolio and the Bayes-diffuse-prior portfolio. The relatively poor perfor-

mance of the empirical Bayes-Stein portfolio is again due to the relatively low weight this

approach assigns to the minimum-variance portfolio, as discussed above.18

It is well known (Frost and Savarino (1988)) and Jagannathan and Ma (2003)) that

imposing a short-selling constraint improves the performance of the mean-variance portfolio.

This result can be confirmed by comparing Panel B of Table 4 with Panel A. Both the mean-

variance portfolio and the Bayesian portfolios show a higher Sharpe ratio in the case in which

short selling is not allowed. It is also interesting to note that the out-of sample performance

of the portfolio constructed by incorporating parameter uncertainty is less sensitive to the

introduction of a short sale constraint. For these portfolios, the difference in Sharpe ratios

between Panels A and B is much less dramatic than for the case of the mean-variance

portfolio or for the Bayesian portfolios. This is because the effect of parameter uncertainty,

as we saw previously for the case in which short-sales were allowed, is to reduce extreme

positions, producing the same effect on the portfolio as a constraint on short selling. This

intuition is confirmed by noting, for example, that for ε greater than 3 (99-percentile of an

F8,52) the Sharpe ratios for the parameter uncertainty portfolios in Panel A of Table 4 are

larger than the Sharpe ratio for the constrained mean-variance portfolio in Panel B. Though

the effect of incorporating parameter uncertainty is similar to the effect of constraining

short sales, there is one important difference: the “constraints” imposed by incorporating

parameter uncertainty are endogenous rather than exogenous, and consequently, if it is

optimal to have short positions in some assets these are not ruled out a priori.
18Note however that in Panels A and B of Table 4 the portfolio with the highest mean and lowest volatility

is the minimum-variance portfolio (or, equivalently, the portfolio for a very high level uncertainty (ε =∞).
The reason for this is that in the particular data that we are using, returns are so noisy that expected returns
are estimated very imprecisely, and hence, one is best off ignoring them all together. However, simulations
reveal that when data is less noisy, then it will no longer be optimal to hold only the minimum-variance
portfolio.
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We report also the portfolio weights over time when short sales are prohibited, just

as we did for the case without shortsale constraints. In Panel B of Figure 1, we report

the percentage weight allocated to the US index from January 1975 to July 2001. As

in Panel A of Figure 1, the dashed refers to the mean-variance portfolio obtained using

historical estimates while the other two lines refers to weights obtained from portfolios

that allow for parameter uncertainty with ε = 1 (dash-dotted line, low uncertainty) and

ε = 3 (solid line, higher uncertainty). Note how the introduction of parameter uncertainty

reduces the “bang-bang” nature displayed by the mean-variance portfolio weight, and thus,

incorporating parameter uncertainty reduces turnover.

4.2 Uncertainty about expected returns and factor model: Domestic data

In this section we implement the model discussed in Section 2.2.4 in which assets are assumed

to follow a factor structure and investors are uncertain about the validity of the return-

generating model. The assets we consider for this exercise are the Fama-French portfolio,

HML and SMB. The former is a zero-cost portfolio that is long in high book-to-market

stocks and short in low book-to-market stocks. The latter is a zero-cost portfolio that is

long in small stocks and short in big stocks. We use a series of monthly returns on HML

and SMB starting in July 1926 until December 2002. As a factor we use the excess return

on the market, defined as the value-weighted return on all NYSE, AMEX and NASDAQ

stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates).19

In this application we allow for the existence of a risk-free asset.

In each month, the investor uses the most recent 120 months of data to estimate the

moments of the asset and to form portfolios.20 These estimates and the resulting portfolios

are then revised a month later when the most recent data point is added to the estimation

period and the most distant data point is dropped. We consider two possible scenarios: in

the first, the investor takes as a reference for the estimate µ̂a of the expected return on

the asset the MLE estimate (i.e. the sample average) but allows for uncertainty around

this estimate as indicated by the parameter εa. In the second case, the investor forms his

expectation about µ̂a by relying on the CAPM and therefore, in each month estimates
19The data are taken from Kenneth French’s website.
20We use a 120-month window to compare the portfolios from the multi-prior model with the portfolios

obtained by Pástor (2000).
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µ̂a = βaµ̂f where βa is the 2 × 1 vector of betas. In this case too, the investor allows for

uncertainty about the estimate from the model, captured by the parameter εa. In both

cases, the reference estimate for the expected return on the factor µ̂f is represented by the

MLE estimate. However, the investor allows for uncertainty about this estimate too, as

reflected by the uncertainty aversion parameter εf . When εa = 0 and εf = 0, the investor’s

portfolio will be the mean-variance portfolio if the reference estimator for µ̂a is the MLE

estimator, while it will be the market portfolio, if the reference estimator for µ̂a is obtained

through the CAPM. This case would correspond to an investor who believes dogmatically

in the CAPM.

Figure 3 reports the evolution of the portfolio in SMB, HML, Market and the riskfree

asset for an investor who estimates expected returns using the maximum-likelihood esti-

mator and historical returns. In each plot, we report the portfolio holdings for different

levels of uncertainty over the estimate of the expected return of the assets (εa) and over the

estimate of the expected return of the factors (εf ). For comparison purposes the solid line

in each figure represents the portfolio which will be chosen by using a MLE estimator.21

The figures confirms the properties of the multi-prior portfolios described in section 2.2.4.

As the uncertainty about the estimate of the expected return in an asset increases, the

optimal holdings in that asset decrease. This can be seen in each figure by comparing the

portfolio holdings for different values of εa. For the assets (HML and SMB—in Panels A and

B) it is always the case that higher levels of εa lead to lower portfolio holdings. Similarly

for the factor (MKT—in Panel C), higher level of εf lead to lower holding of the market. In

interpreting the portfolio holdings reported in Figure 3 it is important to bear in mind that

it is the relative uncertainty εa vs. εf that ultimately determine the optimal portfolio in a

multi-prior setting. This explain why, for example, when investors are uncertain about the

market (εf = 2) they decide to hold more of the asset (as in Panels A and B) or, equivalently,

why higher uncertainty over the assets (εa) induces more holdings of the market (as in Panel

C).

Figure 4 repeats the above analysis by assuming that expected returns of assets are

generated by a single-factor (CAPM) model. In this case note that the portfolio is almost

always entirely invested in the market (as it should be). The only case in which this does
21This portfolio corresponds to a portfolio chosen by a Bayesian with infinite confidence in the data.
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not happen is when investors are uncertain about the factor (εf = 2) and infinitely confident

about the estimate of the individual assets (εa = 0), as is shown in Figure 4.

For completeness, we report the Sharpe Ratios of various portfolio strategies when the

fund manager can invest in the market (factor) portfolio and the HML and SMB portfolios.

In addition to the mean-variance portfolio, the minimum-variance portfolio (of only risky

assets), and the Bayes-Stein Bayesian portfolio, we give the Sharpe ratio for the single-prior

“model-and-data” approach in Pástor (2000) and the portfolio weights from the multi-prior

model. The Bayesian prior is represented by the value ω, where ω = 0 implies no confidence

in the model, while ω = 1 implies 100% confidence in the model.22 The multi-prior model

assumes that an investor uses a prior belief ω in determining the “reference” estimator for

µa but allows for multiple priors as represented by εa > 0 and εf > 0.

In Table 5 we consider the case in which ω = 0 and in Table 6 we consider the case

in which ω = 1. From the two tables we observe that the multi-prior portfolio with small

values of εa > 0 and εf > 0 has a Sharpe Ratio that is greater than that of the mean-

variance portfolio and the Bayesian portfolios. However, for larger values of εa and εf , the

performance of the portfolio from the multi-prior model declines. The minimum-variance

portfolio has quite a high Sharpe Ratio and for only a few values of εa and εf for the case in

which ω = 0 does the multi-prior model outperform the minimum-variance portfolio, while

the mean-variance and Bayesian models never outperform it.

5 Conclusion

Traditional mean-variance portfolio optimization assumes that the parameters that the

expected returns used as inputs to the model and obtained using maximum likelihood

estimation are known with perfect precision. In practice, however, it is extremely difficult

to estimate expected returns precisely. And, portfolios that ignore estimation error have

very poor properties: the portfolio weights have extreme values and fluctuate dramatically

over time. The Bayesian approach that is traditionally used to deal with estimation error

assumes that investors have only a single prior and that they are neutral to uncertainty.
22Pástor (2000) considers also other values of ω; we have not reported the Sharpe Ratios for these values

of ω because for those values Pastor’s model is not strictly nested in our model. The results for these other
values of ω are available on request.
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In this paper, we have shown how one can extend the classical mean-variance portfolio

optimization model to allow for the possibility of multiple priors and to incorporate aversion

to uncertainty about the estimated expected returns and the underlying return-generating

model. The multi-prior approach relies on imposing constraints on the mean-variance port-

folio optimization program, which restrict each parameter to lie within a specified confidence

interval of its estimated value. This constraint recognizes the possibility of estimation error.

And, in addition to the standard maximization of the mean-variance objective function over

the choice of weights, one also minimizes over the choice of parameter values subject to this

constraint. This minimization reflects the desire of the investor to guard against estimation

error by making choices that are conservative.

We show analytically that the max-min problem faced by an investor who is concerned

about parameter uncertainty can be reduced to a maximization-only problem, but where

the estimated expected returns are adjusted in order to reflect the parameter uncertainty.

The adjustment depends on the precision with which these parameters are estimated, the

length of the data series, and on the investor’s aversion to uncertainty. For the case without

a riskless asset, we show that the optimal portfolio can be characterized as a weighted

average of the standard mean-variance portfolio, which is the portfolio where the investor

ignores the possibility of error in estimating expected returns, and the minimum-variance

portfolio, which is the portfolio formed by completely ignoring expected returns. We also

explain the sense in which the portfolio formed using Bayesian estimation methods is nested

in the multi-prior model.

We illustrate the multi-prior approach using both domestic and international sets. First,

we consider a portfolio allocated across equity indexes for eight countries and then consider

a portfolio allocated to the US market portfolio and the Fama-French portfolios, HML and

SMB, when there is uncertainty both about the factor model generating returns and also

about expected returns. We find that the portfolio weights using the multi-prior model are

less unbalanced and fluctuate much less over time compared to the standard mean-variance

portfolio weights and also the portfolios from the Bayesian models. We find that allowing

for a small amount of uncertainty about factor and asset returns in the multi-prior model

leads to an out-of-sample Sharpe Ratio that is greater than that of the mean-variance and

Bayesian portfolios.
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A Appendix: Proofs of all propositions

Proof of Proposition 1

The solution to the inner minimization problem is easily found to be

µj = µ̂j − sign(wj)σ
√

εj√
T

, j = 1, . . . , N.

which, when substituted back into the original problem, gives

max
w

w>µ̂−
N∑
j

sign(wj)wj
σj√
T

√
εj −

γ

2
w>Σw

 , (A1)

subject to w>1N = 1.23 Collecting the first two terms in the curly brackets gives the result

in the proposition.

Proof of Proposition 2

Let us focus first on the inner minimization

min
µ

w>µ − γ

2
w>Σw, (A2)

subject to

(µ̂− µ)>Σ−1(µ̂− µ) ≤ ε. (A3)

The Lagrangian is

L(µ, λ) = w>µ − γ

2
w>Σw − λ

(
ε− (µ̂− µ)>Σ−1(µ̂− µ)

)
. (A4)

It is well-known that µ∗ is a solution of the constrained problem (A2)-(A3) if and only if

there exist a scalar λ∗ ≥ 0 such that (µ∗, λ∗) is a solution of the following unconstrained

problem

min
µ

max
λ
L(µ, λ). (A5)

From the first order conditions with respect to µ in (A4) we obtain

µ∗ = µ̂− 1
2λ

Σw. (A6)

23Note that the objective function is not differentiable at wj = 0, j = 1, . . . , N .
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Substituting this in the Lagrangian (A4), we get

L(µ∗, λ) = w>µ̂−
(

1
4λ

+
γ

2

)
w>Σw − λε. (A7)

Hence, the original max-min problem in (6) subject to (8) and (15) is equivalent to the

following maximization problem

max
w,λ

w>µ̂−
(

1
4λ

+
γ

2

)
w>Σw − λε, (A8)

subject to w>1N = 1. Solving for λ we obtain λ = 1
2

√
w>Σw

ε > 0 from which, upon

substitution in (A8) we obtain (16).

The maximization in (16) can be rewritten as follows

max
w

w>µ̂− γ

2
w>Σw

(
1 +

2
√

ε

γ
√

w>Σw

)
,

subject to w>1N = 1. Letting Ω(w) ≡
(

1 + 2
√

ε

γ
√

w>Σw

)
, we can write the above maximiza-

tion as

max
w

w>µ̂− γ

2
w>Ω(w)w,

subject to w>1N = 1. The Lagrangian is

L(w, λ) = w>µ̂− γ

2
w>Ω(w)w + λ(1− w>1N ).

The first order conditions with respect to w gives

µ̂−
(√

ε + γ
√

w>Σw√
w>Σw

)
Σw − λ1N = 0.

Let σP ≡
√

w>Σw. From the last equation

w =
(

σP√
ε + γσP

)
Σ−1(µ̂− λ1N ). (A9)

Using w>1N = 1 we can write

1 = w>1N =
(

σP√
ε + γσP

)
(µ̂> − λ1>N )Σ−11N

=
(

σP√
ε + γσP

)
(B − λA),
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where A = 1>N Σ−1 1N and B = µ̂> Σ−1 1N . From the last equality, we obtain

λ =
1
A

(
B −

√
ε + γσP

σP

)
.

Substituting this in the expression for the weights in (A9) we arrive at

w =
σP√

ε + γσP
Σ−1

(
µ̂− 1

A

(
B −

√
ε + γσP

σP

)
1N

)
. (A10)

We obtain, after some manipulation, that the variance of the optimal portfolio w∗ subject

to w>1N = 1 is given by the (unique) positive real solution σ∗P of the following polynomial

equation

Aγ2 σ4
P + 2Aγ

√
ε σ3

P + (Aε−AC + B2 − γ2) σ2
P − 2γ

√
ε σP − ε = 0, (A11)

where A = 1>NΣ−11N , B = µ̂>Σ−11N and C = µ̂>Σ−1µ̂. Note that, since Σ is definite

positive, the above polynomial equation always has at least one positive real root. Let σ∗P

be the unique positive real root of this equation.24 Then, the optimal portfolio w∗ is given

by

w∗ =
σ∗P√

ε + γσ∗P
Σ−1

(
µ̂− 1

A

(
B −

√
ε + γσ∗P

σ∗P

)
1N

)
, (A12)

which simplifies to (17).

Proof of Proposition 3

Without loss of generality we consider the case of M = 2 non-overlapping subsets. The two

subsets are labeled a containing Ma assets, and f containing Mf assets, with Ma+Mf = N .

Since there are only two subclasses if we label by a subclass m, subclass −m will be labeled

by f and vice-versa. The investor faces the following problem

max
w

min
µa,µf

w>µ− γ

2
w>Σw, (A13)

24It is possible to show that the fourth degree polynomial in (A11) has at least two real roots, one of
which is positive. This occurs since the polynomial is equal to −ε in x = 0 and tends to +∞ for x→ ±∞.
Moreover, the first derivative of (A11) is negative in x = 0 and has at least a negative local maximum,
implying that the positive real root of (A11) is unique.
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subject to

(µ̂a − µa)>Σ−1
aa (µ̂a − µa) ≤ εa (A14)

(µ̂f − µf )>Σ−1
ff (µ̂f − µf ) ≤ εf (A15)

The Lagrangian of the inner minimization is

L(µa, µf , λf , λα) = w>
a µa + w>

f µf −
γ

2
w>Σw (A16)

− λα

(
εα − (µ̂a − µa)>Σ−1

aa (µ̂a − µa)
)

(A17)

− λf

(
εf − (µ̂f − µf )>Σ−1

ff (µ̂f − µf )
)

.

Solving for µa and µf in the inner minimization yields

µ∗a = µ̂a −
1

2λα
Σaawa, µ∗f = µ̂f −

1
2λf

Σff (A18)

λα =
1
2

√
w>

a Σaawa
√

εα
, λf =

1
2

√
w>

f Σffwf

√
εf

, (A19)

where λf ≥ 0 and λα ≥ are the Lagrange multipliers for the constraints (A15) and (A14).

Substituting these back in the Lagrangian we can rewrite the original maxmin problem

as follows

max
wa,wf

w>
a µ̂a + w>

f µ̂f −
γ

2

[
w>

a Σ̂aa(wa, εα)wa − w>
a Σafwf − w>

f Σfawa − w>
f Σ̂ff (wf , εf )wf

]
,

(A20)

where

Σ̂aa(wa, εα) =
(

1 +
2
γ

√
εa√

waΣaawa

)
(A21)

Σ̂ff (wf , εf ) =

(
1 +

2
γ

√
εf√

wfΣffwf

)
. (A22)

Let us define

σa ≡
√

waΣaawa (A23)

σf ≡
√

wfΣffwf . (A24)
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Since Σaa and Σff are positive definite, σa > 0 unless wa = 0Ma×1, and similarly, σf > 0

unless wf = 0Mf×1. Now the first-order conditions with respect to wa and wf yield

(√
εα + γσa

σa

)
Σaawa = µ̂a − γΣafwf , (A25)

(√
εf + γσf

σf

)
Σffwf = µ̂f − γΣfawa. (A26)

Given wf , we can solve for σa in (A25) and get

σa =
1
γ

max
[√

g(wf )>Σ−1
aa g(wf )−

√
εα, 0

]
, (A27)

where g(wf ) = µ̂a−γΣafwf . Substituting this back into (A25) we obtain (22) when m = a.

Similarly, given wa, we can solve for σf in (A26) and get

σf =
1
γ

max
[√

h(wf )>Σ−1
ff h(wf )−

√
εα, 0

]
(A28)

where h(wa) = µ̂f−γΣfawa. Substituting this back into (A26) we obtain (22) when m = f .

Note finally that it is always possible to find a set in which the mapping Υ : RMa ×

R
Mf → R

Ma × RMf defined by (22) admits a solution. To see this, let Wa ⊂ RMa and

Wf ⊂ RMf be non-empty, closed, bounded and convex subsets containing the origin. Define

the set

Γ =
[
1
γ

Σ−1
aa g(Wa)

]
×
[
1
γ

Σ−1
ff h(Wf )

]
⊂ RMa ×RMf . (A29)

Since Υ is continuous and the “max” in (22) are bounded between zero and one, Υ(Γ) ⊆ Γ.

By the Brower Fixed Point Theorem, Υ has a fixed point in Γ.

Proof of Corollary 1

Immediate consequence of Proposition 3 for M = N .

Proof of Corollary 2

From Proposition 3, note that when M = 1, g(wm) = g(w) = µ̂. The result then follows

from equation (22).



Portfolio selection with parameter and model uncertainty 35

Table 1: Parameters for the two-asset one-factor example

This tables reports the parameters used to solve for the optimal portfolio of an uncertainty averse investor
who bases his expected return for the N asset using an asset pricing model with K factors. Here, αi denotes
the mispricing of each asset, βij are the factor loadings, ωi are the percent volatilities of the residuals
(assuming that the matrix Ω is diagonal), µF

j and σF
j are the expected returns and volatilities of the factor.

Parameter Value
N 2
K 1
α1 0.0000
α2 0.0000
β1 0.1900
β2 0.1300
ω1 3.3764
ω2 3.6194
µF

1 0.6230
σF

1 5.5227
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Table 2: Portfolio weights for the two-asset one-factor example

This table reports for different values of εa and εf (which gives the level of uncertainty about the factor), the
optimal percentage of wealth to be invested in the two assets, w1 and w2, and in the weight in the factor, wf

according to the multi-prior model. The parameters used to generate asset returns are described in Table 1.

w1(%) w2(%) wf (%)

Panel A: εf = 0.0

εa = 0.00000 0.00 0.00 100.00
εa = 0.00005 0.00 0.00 100.00
εa = 0.00010 0.00 0.00 100.00
εa = 0.00015 0.00 0.00 100.00
εa = 0.00020 0.00 0.00 100.00

Panel B: εf = 0.01

εa = 0.00000 1.86 1.11 97.03
εa = 0.00005 0.15 0.09 99.76
εa = 0.00010 0.00 0.00 100.00
εa = 0.00015 0.00 0.00 100.00
εa = 0.00020 0.00 0.00 100.00

Panel C: εf = 0.02

εa = 0.00000 2.65 1.58 95.78
εa = 0.00005 0.94 0.56 98.50
εa = 0.00010 0.21 0.13 99.66
εa = 0.00015 0.00 0.00 100.00
εa = 0.00020 0.00 0.00 100.00

Panel D: εf = 0.03

εa = 0.00000 3.25 1.94 94.81
εa = 0.00005 1.56 0.93 97.52
εa = 0.00010 0.83 0.49 98.67
εa = 0.00015 0.26 0.16 99.58
εa = 0.00020 0.00 0.00 100.00

Panel E: εf = 0.04

εa = 0.00000 3.77 2.24 93.99
εa = 0.00005 2.08 1.24 96.68
εa = 0.00010 1.36 0.81 97.84
εa = 0.00015 0.79 0.47 98.74
εa = 0.00020 0.31 0.18 99.51
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Table 3: Summary statistics for international data

This table gives the summary statistics for the monthly returns on eight country indices and the unconditional
correlations of excess returns. The month-end dollar-denominated returns on the equity indices of eight
countries are from MSCI (Morgan Stanley Capital International). Excess return are obtained by subtracting
the month-end return on the United States 30 day T-bill as reported by the CRSP data-files. The sample
period is 31 January 1970 to 31 July 2001 (379 observations).

Panel A: Summary statistics
World Canada Japan France Germany Italy Switzerland U.K. U.S.

Mean 0.90 0.89 1.13 1.10 1.01 0.76 1.09 1.11 0.95
Std.Dev. 4.16 5.62 6.61 6.61 5.91 7.55 5.50 6.83 4.46
Skewness -0.40 -0.42 0.24 0.01 -0.12 0.32 -0.03 1.34 -0.30
Kurtosis 1.44 1.93 0.53 1.40 0.91 0.72 1.34 11.30 2.00

Panel B: Unconditional correlations of excess returns
World Canada Japan France Germany Italy Switzerland U.K. U.S.

WR 1 0.726 0.685 0.641 0.587 0.444 0.674 0.683 0.846
CA 1 0.312 0.458 0.355 0.306 0.453 0.508 0.721
JP 1 0.398 0.365 0.351 0.424 0.369 0.306
FR 1 0.627 0.461 0.611 0.550 0.459
GE 1 0.412 0.673 0.439 0.397
IT 1 0.376 0.339 0.253
SW 1 0.565 0.502
UK 1 0.515
US 1
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Table 4: Out-of-sample performance of various portfolios using international
data

This table reports the out-of-sample Mean, Standard Deviation and Mean-to-Standard Deviation ratio for
the returns on different portfolio strategies. Means and Standard Deviations are expressed as percentage
per month. The portfolio weights for each strategy are determined based using the international data based
on a data-window of 60 months and these portfolio weights are then used to calculate the returns in the
61st month. The resulting out-of-sample period spans January 1975 to July 2001 (319 observations). Data
are described in Table 3. In parenthesis we report the percentage size of the confidence interval for a F8,52

implied by the values of ε.

Strategy Mean Std.Dev. Mean
Std.Dev.

Panel A: Short sales allowed
Mean-Variance -0.517 42.085 -0.012

Minimum-Variance 1.090 4.116 0.265

Bayesian approach
Diffuse Prior -0.491 41.394 -0.012
Empirical Bayes-Stein -0.162 17.508 -0.009

Multi-prior approach
ε = 0 (0.00%) -0.517 42.085 -0.012
ε = 1 (55.26%) 0.555 7.687 0.072
ε = 3 (99.23%) 0.965 4.513 0.214
ε = 5 (99.98%) 1.010 4.267 0.237
ε = 10 (99.99%) 1.040 4.135 0.251
ε →∞ (100%) 1.090 4.116 0.265

Panel B: Short sales not allowed
Mean-Variance 1.031 5.708 0.181

Minimum-Variance 1.100 4.007 0.274

Bayesian approach

Diffuse Prior 1.031 5.708 0.181
Empirical Bayes-Stein 1.081 5.071 0.213

Multi-prior approach
ε = 0 (0.00%) 1.030 5.708 0.181
ε = 1 (55.26%) 1.085 4.330 0.251
ε = 3 (99.23%) 1.086 4.087 0.266
ε = 5 (99.98%) 1.089 4.044 0.269
ε = 10 (99.99%) 1.092 4.013 0.272
ε →∞ (100%) 1.100 4.007 0.274
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Table 5: Out-of-sample Sharpe Ratios for various portfolios using domestic data
with ω = 0

This table reports the Sharpe Ratio for the returns on different portfolio strategies for the case in which
ω = 0.00, implying that the investor has zero confidence in the return-generating model. The portfolio
weights for each strategy are determined using the domestic data based on a data-window of 120 months
and these portfolio weights are then used to calculate the returns in the 121st month. The data range from
July 1926 to December 2002, with the first portfolio formed in August 1936. The slight difference between
the Sharpe Ratio for the mean-variance portfolio, 0.111, and the 0.109 for the multi-prior model when
εa = εf = 0 is because of the degrees-of-freedom adjustment, as explained in Wang (2003). In parenthesis
we report the percentage size of the confidence interval for a F2,118 implied by the values of εa and the
percentage size of the confidence interval for a t119 implied by the values of εf .

Strategy Sharpe Ratio
Mean-Variance 0.111

Minimum-Variance 0.162

Bayesian approach
Bayes-Stein 0.116
Pastor-Stambaugh
with ω = 0.00 0.109

Multi-prior approach εf

with ω = 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00
% (0.0) (38.20) (68.07) (86.37) (95.22) (98.62) (99.67)

εa %

0.000 (0.00) 0.109 0.105 0.069 0.014 0.086 0.082 0.071
0.500 (39.21) 0.130 0.053 0.082 0.044 0.075 -0.027 -0.009
1.000 (62.90) 0.157 0.168 0.109 0.041 0.051 0.036 0.090
1.500 (77.26) 0.069 0.181 0.170 0.159 0.132 0.074 0.009
2.000 (86.01) 0.072 0.171 0.161 0.157 0.150 0.138 0.113
2.500 (91.36) 0.104 0.147 0.146 0.153 0.156 0.143 0.118
3.000 (94.64) 0.091 0.143 0.146 0.149 0.154 0.144 0.108
3.500 (96.66) 0.064 0.144 0.148 0.152 0.159 0.154 0.125
4.000 (97.91) 0.070 0.141 0.143 0.139 0.151 0.145 0.114
4.500 (98.69) 0.097 0.137 0.138 0.140 0.151 0.150 0.118
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Table 6: Out-of-sample Sharpe Ratios for various portfolios using domestic data
with ω = 1

This table reports the Sharpe Ratio for the returns on different portfolio strategies for the case in which
ω = 1, implying that the investor has perfect confidence in the return-generating model. The portfolio
weights for each strategy are determined using the domestic data based on a data-window of 120 months
and these portfolio weights are then used to calculate the returns in the 121st month. The data range from
July 1926 to December 2002, with the first portfolio formed in August 1936.In parenthesis we report the
percentage size of the confidence interval for a F2,118 implied by the values of εa and the percentage size of
the confidence interval for a t119 implied by the values of εf .

Strategy Sharpe Ratio
Mean-Variance 0.111

Minimum-Variance 0.162

Bayesian approach
Bayes-Stein 0.116
Pastor-Stambaugh
with ω = 1.00 0.102

Multi-prior approach εf

with ω = 1.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00
% (0.0) (38.20) (68.07) (86.37) (95.22) (98.62) (99.67)

εa %

0.000 (0.00) 0.102 -0.047 -0.017 -0.016 -0.037 -0.023 -0.026
0.500 (39.21) 0.102 0.140 0.151 0.142 0.144 0.139 -0.018
1.000 (62.90) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
1.500 (77.26) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
2.000 (86.01) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
2.500 (91.36) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
3.000 (94.64) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
3.500 (96.66) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
4.000 (97.91) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
4.500 (98.69) 0.102 0.140 0.151 0.142 0.145 0.144 0.116
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Figure 1: Portfolio weights in the US index over time

This figure reports the portfolio weights in the US index from January 1975 to July 2001. Panel A shows the
case where short-selling is allowed and Panel B gives the case where short-selling is not allowed. The dashed
line (MV) refers to the mean-variance portfolio. The dash-dotted line (ε = 1) are the portfolios obtained
with a degree of uncertainty expressed roughly by the 55% confidence interval for an F8,52 centered around
the sample mean, while the solid line (ε = 3) are portfolio obtained assuming uncertainty about expected
returns is given by a 99% confidence interval.
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Figure 2: Shrinkage factors φMP (ε) and φBS over time

The optimal portfolio of the investor can be interpreted as the weighted-average of the standard mean-
variance portfolio and the minimum-variance portfolio. The figure reports the weight put on the minimum-
variance portfolio for different levels of uncertainty. The plot φMP (1) gives the weight on the minimum-
variance portfolio when ε = 1, and the plot φMP (5) gives the weight on the minimum-variance portfolio
when ε = 5. The solid line, φBS gives the weight on the minimum-variance portfolio if one were using the
empirical Bayes-Stein estimator of expected returns. These weights are determined based on a data-window
of 60 months and the resulting portfolio generates returns over the 61st month. The out-of sample period
spans from January 1975 to July 2001 (319 observations). The data are described in Table 3.
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Figure 3: Portfolio weights assuming expected returns estimated using MLE

The figure has four panels (two on this page and two on the next) which report the weight over time in SMB,
HML, MKT and the riskfree asset. Expected returns are estimated using the maximum-likelihood estimator
using a rolling window estimation period of 120 months. The data range from July 1926 to December 2002.
The first portfolio is formed in August 1936. The plots on the left hand side refer to the case of no uncertainty
in the market (εf = 0), while the plots on the right hand side assume a level of uncertainty in the market
equal to εf = 2. In each figure we consider three different level of uncertainty about the asset estimate:
εa = 0 (dash-dotted), εa = 0.5 (dotted), εa = 4.5 (dashed). The solid black line represents the portfolio
chosen by a single-prior Bayesian who places infinite confidence in the data (ω = 0).
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Panel C: Portfolio weights in MKT
εf = 0.00 εf = 2.00
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Figure 4: Portfolio weights assuming factor model (CAPM) for expected returns

The figure has four panels (two on this page and two on the next) which report the weight over time in SMB,
HML, MKT and the riskfree asset. Expected returns are estimated assuming that there is a factor structure
(CAPM) and using a rolling window estimation period of 120 months. The data range from July 1926 to
December 2002. The first portfolio is formed in August 1936. The plots on the left hand side refer to the case
of no uncertainty in the market (εf = 0), while the plots on the right hand side assume a level of uncertainty
in the factor equal to εf = 2. In each figure we consider three different level of uncertainty about the asset
estimate: εa = 0 (dash-dotted), εa = 0.5 (dotted), εa = 4.5 (dashed). The solid black line represents the
portfolio chosen by a single-prior Bayesian who places infinite confidence in the model (ω = 1).
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Panel C: Portfolio weights in MKT
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Panel D: Portfolio weights in the riskfree asset
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