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Abstract

The method of maximum likelihood is used to estimate a Dynamic Stochas-

tic General Equilibrium business cycle model that combines elements of existing

sticky-price and limited-participation specifications. Sticky prices are incorpo-

rated, following Rotemberg (1982), by assuming that monopolistically competitive

firms face a quadratic cost of nominal price adjustment. Limited participation is

incorporated, following Cooley and Quadrini (1999), by assuming that households

face a quadratic cost of portfolio adjustment.The results support the hypothesis

that the degree of the portfolio adjustment is very small in the data, but significant.

In addition, the data suggest that the response of the interest rate to deviations of

output from the steady state in the interest rate rule should be very close to zero.

This is argued by Christiano and Gust (1999) as well. Furthermore, as in Ireland

(1999, 2000), the model can not reject the hypothesis of parameter stability for

the policy parameters. On the other hand, the model rejects the hypothesis for

the rest of the parameters.
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1. Introduction

In the paper “Sticky Prices, Limited Participation or Both?”, the model that incor-

porates both sticky prices and limited participation is calibrated based on parameter

values that have been used in the literature, and to values that empirically in a simi-

lar specification is shown to be giving impulse responses and second moments that can

replicate those in the data. A problem though that still remains is the value of the those

parameter that other studies have not determined previously e.g. portfolio adjustment

costs, and the interest rate rule in a set up that incorporates limited participation.

Secondly, real business cycle models have been criticized that are not as structural

to changes in monetary policy regimes they are supposed to be, that the structural pa-

rameters cannot remain invariant. This criticism follows the very famous Lucas critique.

Therefore, this paper focuses on the specification and stability of the closed economy

dynamic, stochastic, general, equilibrium model that combines sticky prices and limited

participation. The model is estimated with maximum likelihood estimation, in order

to provide an insight on the degree of the cost of price stickiness and the portfolio

adjustment as well as the nature of the interest rate rule, without having any prior

assumptions on their level. In addition, the estimation exercise will help us attack the

issue of stability as well, in an attempt to show that the structural parameters indeed

have remain stable despite the widely believed change in the monetary policy regime

that occurred in 1980s.

This methodology, that is proposed in Ireland (1999), combines the dynamic, stochas-

tic, general, equilibrium theory with the flexibility of vector autoregressive time-series

models. The purpose is to obtain a hybrid that shares the desirable features of both

approaches in macroeconomics: firstly the fact that VARs are designed to be taken di-

rectly to the data, are easy to estimate, and can be used for statistical hypothesis tests

and forecast analysis, and secondly the fact that DSGE models are based on economic

theory. Therefore, the DSGE model is augmented so that its residuals, the movements

and co-movements in the data that the theory cannot explain, are described by a VAR

allowing us to estimate it and perform hypothesis tests and stability analysis. At the

end, the time-series behavior of the endogenous variables is related to the structural

parameters that describe private agents’ tastes and technologies.

The results of this paper support the hypothesis that the degree of the portfolio

adjustment is very small in the data, but significant. In addition, the data suggest that

the response of the interest rate to deviations of output from the steady state in the
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interest rate rule should be very close to zero. This is argued by Christiano and Gust

(1999) as well.

Turning to the issue of stability, the tests reject the hypothesis of parameter stability

of the structural parameters. In addition, the model is not able to account for the

instability in the parameters in the policy rule.

The remainder of this paper is organized as follows. Section 2, below, sets up the

model. Section 3 describes the data, estimates and tests. Section 4 summarizes and

concludes.

2. The Model

2.1. Overview

The model combines elements of existing sticky-price and limited-participation specifi-

cations. Sticky prices are incorporated, following Rotemberg (1982), by assuming that

monopolistically competitive firms face a quadratic cost of nominal price adjustment.

Limited participation is incorporated, following Cooley and Quadrini (1999), by assum-

ing that households face a quadratic cost of portfolio adjustment.

In the model, time periods are indexed by t = 0, 1, 2, .... There are five types of

agents: a representative household, a representative finished goods-producing firm, a

representative bank, a continuum of intermediate goods-producing firms indexed by

i ∈ [0, 1], and a monetary authority. Each intermediate goods-producing firm produces

a distinct, perishable intermediate good. Hence, the intermediate goods can also be

indexed by i ∈ [0, 1], where good i is produced by firm i. Nevertheless, the model

contains enough symmetry to allow the analysis to focus on a representative intermediate

goods-producing firm, which produces the generic good i. The activities of each agent

are described in the subsections below.

2.2. The Representative Household

The representative household enters period t with Mt−1 units of money and Kt units of

capital. Immediately following the realization of the period-t shocks, the household must

decide how to divide its funds into an amount Dt to be deposited in the representative

bank and an amountMt−1−Dt to be used to facilitate goods purchases. When choosing
Dt, the household faces a quadratic portfolio adjustment cost, measured in terms of time
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and given by

τ t =
φd
2

Ã
Dt
µDt−1

− 1
!2
, (2.1)

where φd ≥ 0 governs the magnitude of the adjustment cost and where, as noted below,
µ ≥ 1 denotes the gross steady-state rate of money growth.
During period t, the household supplies ht(i) units of labor at the nominal wage Wt

and Kt(i) units of capital at the nominal rental rate Qt to each intermediate goods-

producing firm i ∈ [0, 1]. The household’s choices must satisfy

ht =
Z 1

0
ht(i)di,

where ht denotes total hours worked, and

Kt =
Z 1

0
Kt(i)di

for all t = 0, 1, 2, ....

During period t, the household purchases output from the representative finished

goods-producing firm at the nominal price Pt. It divides its purchases up into an amount

Ct to be consumed and an amount It to be invested. Since it is assumed that the

household receives its wages before making its goods purchases, it faces the cash-in-

advance constraint
Mt−1 −Dt +Wtht

Pt
≥ vt(Ct + It) (2.2)

for all t = 0, 1, 2, .... In (2.2), vt is a random term that measures the amount of money

the household must carry to facilitate its purchases of goods; it is assumed to follow the

autoregressive process

ln(vt) = (1− ρv) ln(v) + ρv ln(vt−1) + εvt, (2.3)

where v > 0, 1 > ρv > 0, and the serially uncorrelated innovation εvt is normally

distributed with mean zero and standard deviation σv.

By investing It units of the finished good during each period t, the household increases

the capital stock over time according to

Kt+1 = (1− δ)Kt + etIt − φk
2

Ã
Kt+1

gKt
− 1

!2
Kt, (2.4)

where the depreciation rate satisfies 1 > δ > 0, where the parameter φk ≥ 0 governs the
magnitude of capital adjustment costs, and where, as noted below, g measures the gross
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steady-state growth rate of the capital stock. The variable et is Greenwood, Hercowitz,

and Huffman’s (1988) shock to the marginal efficiency of investment; it follows the

autoregressive process

ln(et) = ρe ln(et−1) + εet, (2.5)

where 1 > ρe > 0 and the serially uncorrelated innovation εet is normally distributed

with mean zero and standard deviation σe.

At the end of period t, the household receives its rental payments QtKt along with

principal plus interest rdtDt from the bank; hence, r
d
t measures the gross interest rate on

deposits. The household also receives nominal profits Bt from the representative bank

and Ft(i) from each intermediate goods-producing firm i ∈ [0, 1], for a total of Bt + Ft
in nominal profits, where

Ft =
Z 1

0
Ft(i)di.

The household then carries Mt units of money into period t + 1; it faces the budget

constraint

Mt−1 + (rdt − 1)Dt +Wtht +QtKt +Bt + Ft
Pt

≥ Ct + It + Mt

Pt
(2.6)

during each period t = 0, 1, 2, ....

Thus, the household chooses Ct, ht, τ t, Dt,Mt, It, and Kt+1 for all t = 0, 1, 2, ... to

maximize the expected utility function

E0
∞X
t=0

βt[at ln(Ct)− γ(ht + τ t)], (2.7)

subject to the constraints imposed by (2.1), (2.2), (2.4), and (2.6) for all t = 0, 1, 2, ....

In the utility function, 1 > β > 0, γ > 0, and the preference shock at follows the

autoregressive process

ln(at) = ρa ln(at−1) + εat, (2.8)

where 1 > ρa > 0 and the serially uncorrelated innovation εat is normally distributed

with mean zero and standard deviation σa.

Substitute (2.1) into the utility function and (2.4) into the budget and cash-in-

advance constraints. Let Λ1t denote the Lagrange multiplier on the budget constraint

(2.6) and let Λ2t denote the Lagrange multiplier on the cash-in-advance constraint (2.2).

Then the household’s first-order conditions include (2.1), (2.2), (2.4), and (2.6) with

equality, along with

at = (Λ1t + vtΛ2t)Ct, (2.9)
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γ = (Λ1t + Λ2t)(Wt/Pt), (2.10)

Λ1t
Pt
= βEt

Ã
Λ1t+1 + Λ2t+1

Pt+1

!
, (2.11)

γφd

Ã
Dt
µDt−1

− 1
!

Dt
µDt−1

(2.12)

=
[Λ1t(r

d
t − 1)− Λ2t]Dt

Pt
+ βγφdEt

"Ã
Dt+1
µDt

− 1
!
Dt+1
µDt

#
,

and

(Λ1t + vtΛ2t)(1/et)

"
1 +

φk
g

Ã
Kt+1

gKt
− 1

!#
(2.13)

= βEt [Λ1t+1(Qt+1/Pt+1) + (1− δ)(1/et+1)(Λ1t+1 + vt+1Λ2t+1)]

+βφkEt

"
(Λ1t+1 + vt+1Λ2t+1)(1/et+1)

Ã
Kt+2

gKt+1
− 1

!Ã
Kt+2

gKt+1

!#

−β(φk/2)Et
⎡⎣(Λ1t+1 + vt+1Λ2t+1)(1/et+1)

Ã
Kt+2

gKt+1
− 1

!2⎤⎦
for all t = 0, 1, 2, ....

2.3. The Representative Finished Goods-Producing Firm

During period t, the representative finished goods-producing firm uses Yt(i) units of each

intermediate good i ∈ [0, 1] to produce Yt units of the finished good according to the
constant returns to scale technology described by

∙Z 1

0
Yt(i)

(θ−1)/θdi
¸θ/(θ−1)

≥ Yt, (2.14)

with θ > 1. Intermediate good i sells at the nominal price Pt(i), while the finished

good sells at the nominal price Pt; given these prices, the finished goods-producing firm

chooses Yt and Yt(i) for all i ∈ [0, 1] to maximize its profits,

PtYt −
Z 1

0
Pt(i)Yt(i)di, (2.15)

for each t = 0, 1, 2, ....

The first-order conditions for this problem can be written as

Yt(i) = [Pt(i)/Pt]
−θYt (2.16)
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for all i ∈ [0, 1] and t = 0, 1, 2, .... Competition in the market for the finished good

requires that the representative firm earn zero profits in equilibrium. This zero-profit

condition determines Pt as

Pt =
∙Z 1

0
Pt(i)

1−θdi
¸1/(1−θ)

(2.17)

for all t = 0, 1, 2, ....

2.4. The Representative Bank

At the beginning of period t, the representative bank accepts deposits Dt from the

representative household. At the beginning of period t, the bank also receives a lump-

sum nominal transfer Xt from the monetary authority. Thus, the bank can lend Lt(i)

to each intermediate goods-producing firm i ∈ [0, 1], subject to the constraint

Dt +Xt ≥ Lt, (2.18)

where

Lt =
Z 1

0
Lt(i)di.

At the end of period t, the bank collects rtLt(i) in principal and interest from each

intermediate goods-producing firm i ∈ [0, 1]; hence, rt denotes the gross nominal interest
rate on loans. Since the bank owes rdtDt to its depositors, its profits are given by

Bt = rtLt +Dt +Xt − Lt − rdtDt. (2.19)

Competition among banks for loans and deposits guarantees that

rt = r
d
t (2.20)

for all t = 0, 1, 2, .... So long as the net nominal interest rate rt − 1 is positive, the bank
will lend out all of its funds and (2.18) will hold with equality.

2.5. The Representative Intermediate Goods-Producing Firm

The representative intermediate goods-producing firm hires ht(i) units of labor andKt(i)

units of capital from the representative household during period t in order to produce

Yt(i) units of intermediate good i according to the constant returns to scale technology

described by

Kt(i)
α[gtztht(i)]

1−α ≥ Yt(i), (2.21)
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where 1 > α > 0 and where g ≥ 1 denotes the gross rate of labor-augmenting techno-
logical progress. The aggregate technology shock zt follows the autoregressive process

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (2.22)

where z > 0, 1 > ρz > 0, and the serially uncorrelated innovation εzt is normally

distributed with mean zero and standard deviation σz.

The firm rents capital on credit, but must pay its wage bill with funds Lt(i) borrowed

from the representative bank. It therefore faces the finance constraint

Lt(i) ≥Wtht(i) (2.23)

for all t = 0, 1, 2, .... Since these funds are borrowed at the gross rate rt, the bank must

repay principal plus interest rtLt(i) at the end of the period.

Since intermediate goods substitute imperfectly for one another as inputs to pro-

ducing the finished good, the representative intermediate goods-producing firm sells its

output in a monopolistically competitive market; during each period t, it sets a nom-

inal price Pt(i) subject to the requirement that it satisfy the representative finished

goods-producing firm’s demand, taking Pt and Yt as given.

In addition, each intermediate goods-producing firm faces a quadratic cost of adjust-

ing its nominal price, measured in terms of the finished good and given by

φp
2

"
Pt(i)

πPt−1(i)
− 1

#2
Yt, (2.24)

where φp ≥ 0 governs the magnitude of the adjustment cost and where, as noted below,
π ≥ 1 denotes the gross steady-state rate of inflation.
These costs of price adjustment make the firm’s problem dynamic; it chooses ht(i),

Kt(i), Yt(i), Lt(i), and Pt(i) for all t = 0, 1, 2, ... to maximize its total market value,

equal to

E0
∞X
t=0

βtΛ1t[Ft(i)/Pt], (2.25)

where βtΛ1t/Pt represents the marginal utility to the representative household provided

by an additional dollar of profits during period t and where

Ft(i) = Pt(i)Yt(i) + [Lt(i)−Wtht(i)]−QtKt(i)

−rtLt(i)−
φp
2

"
Pt(i)

πPt−1(i)
− 1

#2
PtYt,
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subject to the constraints imposed by its production possibilities, by the finance con-

straint (2.23), and by the demand curve

Yt(i) = [Pt(i)/Pt]
−θYt

for all t = 0, 1, 2, ....

When the net nominal interest rate rt − 1 is positive, the finance constraint (2.23)
will hold with equality. In this case, the firm’s problem simplifies to one of choosing

ht(i), Kt(i), and Pt(i) to maximize its total market value, where

Ft(i)

Pt
=

"
Pt(i)

Pt

#1−θ
Yt − QtKt(i) + rtWtht(i)

Pt
− φp
2

"
Pt(i)

πPt−1(i)
− 1

#2
Yt, (2.26)

subject to the single constraint

Kt(i)
α[gtztht(i)]

1−α ≥ [Pt(i)/Pt]−θYt (2.27)

for all t = 0, 1, 2, .... The first-order conditions for this problem are (2.27) with equality,

Λ1trt(Wt/Pt)ht(i) = (1− α)ΞtKt(i)
α[gtztht(i)]

1−α, (2.28)

Λ1t(Qt/Pt)Kt(i) = αΞtKt(i)
α[gtztht(i)]

1−α, (2.29)

and

0 = (1− θ)Λ1t

"
Pt(i)

Pt

#−θ µ
Yt
Pt

¶
+ θΞt

"
Pt(i)

Pt

#−θ−1 µ
Yt
Pt

¶
(2.30)

−φpΛ1t
"
Pt(i)

πPt−1(i)
− 1

# "
Yt

πPt−1(i)

#

+βφpEt

(
Λ1t+1

"
Pt+1(i)

πPt(i)
− 1

# "
Pt+1(i)Yt+1
πPt(i)2

#)
for all t = 0, 1, 2, ..., where Ξt is the Lagrange multiplier on (2.27).

2.6. The Monetary Authority

The monetary authority conducts monetary policy by adjusting the short-term nominal

interest rate rt in response to deviations of detrended output yt = Yt/gt, inflation πt =

Pt/Pt−1, and money growth µt = Mt/Mt−1 from their steady-state values y, π, and µ

according to the policy rule

ln(rt/r) = ρy ln(yt/y) + ρπ ln(πt/π) + ρµ ln(µt/µ) + εrt, (2.31)

where r is the steady-state value of r. In (2.31), the parameters ρy, ρπ, and ρµ should all

be positive. The serially uncorrelated innovation εrt is normally distributed with mean

zero and standard deviation σr.

8



2.7. Symmetric Equilibrium

In a symmetric equilibrium, all intermediate goods-producing firms make identical deci-

sions, so that ht(i) = ht,Kt(i) = Kt, Ft(i) = Ft, Yt(i) = Yt, Pt(i) = Pt, and Lt(i) = Lt for

all i ∈ [0, 1] and t = 0, 1, 2, .... In addition, the market-clearing conditionMt =Mt−1+Xt
must hold for all t = 0, 1, 2, .... These equilibrium conditions, together with the first-

order conditions for the representative agents’ problems, the laws of motion for the

aggregate shocks, and the policy rule, form a system of difference equations describing

the model’s equilibrium. In the absence of shocks, the economy converges to a steady

state. The system is log-linearized around its steady state, and the methods of Blanchard

and Kahn (1980) can be is applied to obtain a solution of the form

ft = Ust (2.32)

and

st = Πst−1 +Wεt (2.33)

for all t = 0, 1, 2, ....

In (2.32) and (2.33), ft is the vector of the model’s flow variables which includes

output yt = Yt/gt, inflation πt, money growth µt, consumption ct = Ct/g
t, investments

it = It/g
t, the real factor prices wt = (Wt/Pt)/g

t, and qt = Qt/Pt, the interest rate

rt, the nominal transfers xt, banks profits bt = Bt/Mt, bank loans lt = Lt/Mt, hours

worked ht, real profits ft = (Ft/Pt)/gt, the bank deposits dt = Dt/Mt, the multipliers

λ1t = gtΛ1t, λ2t = gtΛ2t, and ξt = gtΞt. st is the vector of the model’s endogenous

state variables and the five shocks in the model. The model’s endogenous state variables

are the lagged values of the bank deposits dt−1 = Dt−1/Mt−1, the lagged values of real
balances mt−1 = (Mt−1/Pt−1)/gt−1, and the current values of the capital stock kt. The
five shocks in the model are the money demand shock vt, the shock to the marginal

efficiency of investment et, the preference shock at, the technology shock zt and the

policy shock εrt. The vector εt includes the four innovations εvt, εat, εzt, and εrt and is

assumed to be normally distributed with zero mean and covariance matrix

V = Eεtε
0
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2v 0 0 0 0

0 σ2e 0 0 0

0 0 σ2a 0 0

0 0 0 σ2z 0

0 0 0 0 σ2r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The parameters that describe private agents’ tastes, technologies and the policy rule

determine the elements of the matrices Π, W, and U. The model’s solution as described

by (2.32) and (2.33) takes the form of a state-space econometric model, driven by the

five innovations in εt. Therefore, maximum likelihood estimations of the parameters in

Π, W, and U can be obtained as described in Hamilton (1994) using the Kalman filter

together with the data on five variables: consumption Ct, investment It, money Mt,

prices Pt, and interest rates rt.

3. Data, Estimates and Tests

3.1. Data

In the data consumption is measured by personal consumption expenditure, investments

are measured by private gross domestic investment, real balances are measured by di-

viding the M2 money stock by the GDP deflator, inflation is measured by changes in the

GDP deflator and the interest rate is measured by the yield on three-month Treasure

bills. All series, except for the interest rate, are seasonally adjusted; the series for con-

sumption, investments and real balances are expressed in per-capita terms by dividing

by the civilian, noninstitutional population, age 16 and over.

The data are quarterly and run from 1959:1 through 2001:1. The data are divided

into two subsamples, the first covering the period 1959:1 through 1979:2, and the second

covering the period from 1979:3 through 2001:1. The breakpoint of the sample corre-

sponds to the widely believed change in monetary policy that occurred in 1979:2, when

Paul Volker was appointed Chairman of the Board of Governors of the Federal Reserve

System.

Distinct upward trends appear in the series for consumption, investments and real

balances, because of growth. Ireland (1997) accounts for these trends in the data by

including a deterministic trend in the production function that captures the effect of

labor-augmenting technological progress. Thus the model implies that Ct, It, and mt

grow at the same rate g along a balanced growth path.

The data don’t contain enough information to estimate all of the model’s parameters.

Therefore some must be fixed prior to estimation. Thus, the weight γ on leisure is set

equal to 1.5, implying that the household spends about one third of its time working.

The depreciation rate δ is set equal to 0.025. Lastly, θ is set equal to 6, implying an

average markup of price over marginal cost equal to 20 percent.
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3.2. Estimates

Table 1 displays maximum likelihood estimates of the model’s remaining 20 parameters,

together with their standard errors, that are computed by taking the square roots of

the diagonal elements of the inverted matrix of second derivatives of the maximized log

likelihood function.

The results support the hypothesis that the degree of the portfolio adjustment is

statistically significant in the data. In addition, the data suggest that the response of

the interest rate to deviations of output from the steady state in the interest rate rule

should be very close to zero. This is also argued by Christiano and Gust (1999). Models

that incorporate limited participation, should incorporate interest rate rules with the

interest rate reacting very little to deviations of output from the steady state in order

to have non-explosive results.

Table 2 displays the maximum likelihood estimates for the two subsamples, pre- and

post-1980s. It is observed that again the portfolio adjustment cost is significant in both

periods, and that the degree of the interest rate response to output deviations from the

steady state is very small in both subsamples, especially pre-1980s.

Tables 3 and 4 display the results of the forecast error variance decompositions, in

an attempt to find what fraction of the observed consumption and investment varia-

tion comes from the five shocks that are incorporated in the model. The estimated

model is used to decompose the k-step-ahead forecast error variances in consumption

and investments into five orthogonal components: one attributable to each shock, the

money demand, the investment, the preference, the technology and the policy shocks.

We observe that for k = ∞ investment shocks account for nearly 99 percent of the

unconditional variance in detrended output and investment. For one- to twenty-step-

ahead forecast error variances though it is indicated that both preference and technology

shocks are those that account for the variation in consumption. Concerning the variation

in investments, the shocks that account for its variation for one- to thirty-step-ahead

forecast error variance are investment and technology. These results indicate that in

addition to technology shocks that are important for the variation of the components of

output, consumption is specifically influenced by preference shocks and investment from

investment shocks.
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3.3. Tests

An advantage of the real business cycle models is that they are structural, meaning that

they are able to link the behavior of real variables in the economy with private agent’s

tastes, technologies. These structural parameters, in order to be consistent with the

Lucas critique, have to remain invariant to changes in the monetary policy regime.

As discussed above, table 2 displays the maximum likelihood estimates for the two

subsamples, pre- and post-1980s. Therefore, the hybrid model can be used to test

for parameter stability across the two sub-samples. Andrews and Fair (1988) describe

procedures that can be used to test for the stability of the model’s estimated parameters

across the two subsamples. Let the vector Θ1q contain q parameters estimated with pre-

1979 data, let Θ2
q contain the same q parameters estimated with post-1979, and let H

1
q

and H2
q denote the covariances matrices of Θ

1
q and Θ2

q. Then the Wald statistic can be

written more simply as

W = (Θ1q −Θ2q)
0(H1

q +H
2
q )
−1(Θ1

q −Θ2
q). (2.34)

According to Andrews and Fair, this statistic will be asymptotically distributed as

a chi-square random variable with q degrees of freedom under the null hypothesis of

stability, where q is the number of parameters being tested for stability.

The Wald statistics in table 5 indicate that the model is not able to accept the

null hypothesis that the structural parameters remain stable across the two subsamples.

Evidently, there has been a major change in the data between pre- and post- 1980s,

and the hybrid model cannot capture its source. On the other hand, the tests indicate

that the monetary policy regime has remained stable, since the model can not reject the

hypothesis of parameter stability for the policy parameters. This is something puzzling

that needs further investigation.

4. Conclusions

This paper, focuses on the specification and stability of the estimated model that incor-

porates sticky prices and limiter participation in the financial markets. The model is

estimated with maximum likelihood following the methodology in Ireland (1999).

The results indicate that limited participation is statistically significant, although

small in the data. In addition, they suggest that the degree of the interest rate response

to output deviations from the steady state in the monetary policy rule should be very
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small in order to have stability and non-explosive results, something that is argued by

Christiano and Gust (1999) as well.

Concerning stability between pre- and post-1980s, where there is believed that a

major change in the monetary policy has been occurred, the tests are not able to cap-

ture the stability of the structural parameters. Therefore the estimated model is not

consistent with the Lucas critique. In addition, the model is not able to account for the

instability in the parameters in the policy rule.
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Table 1. Full Sample Maximum Likelihood Estimates and Standard Errors

Full Sample Standard

Parameter Estimate Error

β 0.9997 0.0005

α 0.1685 0.0064

φd 0.0275 0.0035

φk 4.8556 0.0812

φp 25.5239 0.0000

µ 1.0002 0.0128

ρy 0.0003 0.0015

ρπ 0.7832 0.0081

ρµ 0.4101 0.0082

v 1.0115 0.0091

z 1098.9 0.4940

ρv 0.9999 0.0002

ρe 1.0000 0.0000

ρa 0.9673 0.0118

ρz 0.9063 0.0191

σv 0.0110 0.0006

σe 0.0267 0.0017

σa 0.0099 0.0009

σz 0.0130 0.0008

σr 0.0066 0.0004
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Table 2. Subsample Maximum Likelihood Estimates and Standard Errors

Pre-1979 Standard Post-1979 Standard

Parameter Estimate Error Estimate Error

β 0.9977 0.0005 0.9909 0.0008

α 0.2201 0.0065 0.2166 0.0173

φd 0.0040 0.0017 0.0290 0.0086

φk 7.9017 1.3240 4.9625 0.0127

φp 323.8098 3.8239 21.6284 0.0060

µ 1.0613 0.0165 1.0049 0.0113

ρy 0.0000012 0.0000 0.00046 0.0009

ρπ 0.6348 0.0514 0.8321 0.0165

ρµ 0.3709 0.0505 0.4002 0.0076

v 3.5779 0.5479 0.8210 0.0135

z 4043.4 0.9274 50425 0.0343

ρv 0.9991 0.0011 0.9999 0.0001

ρe 0.7391 0.0878 1.0000 0.0000

ρa 0.9656 0.0267 0.9173 0.0335

ρz 0.9904 0.0041 0.9300 0.0209

σv 0.0105 0.0008 0.0114 0.0010

σe 0.0118 0.0024 0.0210 0.0016

σa 0.0064 0.0005 0.0075 0.0013

σz 0.0184 0.0035 0.0110 0.0012

σr 0.0045 0.0004 0.0041 0.0003

18



Table 3. Forecast Error Variance Decompositions for Consumption

Full Sample
Quarters Ahead Money Demand Investment Preference Technology Policy

1 13.9776 8.8818 31.4929 26.6605 18.9872

4 4.4291 3.8451 37.7840 47.0659 6.8759

8 2.4074 2.1296 40.8737 50.8343 3.7550

12 1.8202 1.8423 43.1226 50.3740 2.8409

20 1.3802 3.6297 45.6078 47.2275 2.1548

40 0.9926 16.3689 43.1939 37.8957 1.5488

∞ 0.0009 99.921 0.0423 0.0343 0.0014

Pre-1979
Quarters Ahead Money Demand Investment Preference Technology Policy

1 35.5868 5.1292 4.3401 37.3261 17.6178

4 13.5804 1.3140 3.4016 74.0560 7.6479

8 6.2522 1.0756 2.5695 86.9132 2.9201

12 4.1187 1.0756 2.0867 91.1145 1.6045

20 2.7590 0.6777 1.5115 94.2649 0.7868

40 2.1141 0.3332 0.8670 96.3514 0.3343

∞ 11.9625 0.1058 0.2910 87.5387 0.1020

Post-1979
Quarters Ahead Money Demand Investment Preference Technology Policy

1 19.2401 9.2971 28.3054 32.8098 10.3475

4 6.0060 3.8894 28.6690 57.8700 3.5656

8 3.4320 2.2472 25.7685 66.5350 2.0174

12 2.6628 2.5662 23.2514 69.9720 1.5476

20 2.0491 7.2419 19.2831 70.2611 1.1648

40 1.3918 30.0134 12.7701 55.0696 0.7551

∞ 0.0054 99.9668 0.0050 0.0225 0.0003
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Table 4. Forecast Error Variance Decompositions for Investment

Full Sample
Quarters Ahead Money Demand Investment Preference Technology Policy

1 24.5314 24.8265 4.8024 12.2071 33.6327

4 8.7318 32.2586 1.5503 44.0357 13.4235

8 5.2209 36.7312 1.3356 48.6830 8.0293

12 4.3109 41.0208 1.3557 46.6791 6.6335

20 3.7002 47.2553 1.3878 41.9587 5.6981

40 3.2550 53.3663 1.3312 37.0317 5.0158

∞ 0.0415 99.4021 0.0171 0.4754 0.0639

Pre-1979
Quarters Ahead Money Demand Investment Preference Technology Policy

1 40.5289 35.2055 4.1320 1.5548 18.5788

4 21.8284 22.5599 1.5888 43.0170 11.0058

8 10.8738 10.9819 0.6117 72.9083 4.6243

12 7.2419 6.6440 0.3665 83.0233 2.7243

20 4.8920 3.8189 0.2240 89.5011 1.5640

40 3.7724 2.2577 0.1398 92.9079 0.9221

∞ 13.8510 1.2548 0.0784 84.3039 49.9613

Post-1979
Quarters Ahead Money Demand Investment Preference Technology Policy

1 31.2121 32.9433 6.6388 12.1430 17.0627

4 10.2936 41.2419 2.2353 40.1360 6.0931

8 6.0866 45.3085 1.3234 43.6712 3.6104

12 4.9029 49.0295 1.0659 42.0857 2.9160

20 4.0752 54.6030 0.8864 38.0041 2.4313

40 3.5058 60.7106 0.7635 32.9252 2.0950

∞ 0.0397 99.7291 0.0049 0.2129 0.0134
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Table 5. Tests of Parameter Stability

20 Estimated Parameters W = 3189555350***

5 Policy Parameters: µ, ρy, ρπ, ρµ, σr W = 10.0318

Portfolio Adjustment Cost: φd W = 8.11331***

Price Adjustment Cost: φp W = 6244.97476***

2 Adjustment Parameters: φd, φp W = 6349.9029***

3 Money Demand Parameters: v, ρv, σv W = 27.6580***

2 Investment Parameters: ρe, σe W = 15.6494***

3 Preference Parameters: β, ρa, σa W = 52.2749***

3 Technology Parameters: z, ρz, σz W = 2581737967***

Note: *** denotes significance at the 1% level.
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1. Symmetric Equilibrium

In a symmetric equilibrium, ht(i) = ht, Kt(i) = Kt, Ft(i) = Ft, Yt(i) = Yt,
Pt(i) = Pt, and Lt(i) = Lt for all i ∈ [0, 1] and t = 0, 1, 2, .... In addition, the
market-clearing condition

Mt =Mt−1 +Xt

or
µt = 1 +Xt/Mt−1 (24)

must hold for all t = 0, 1, 2, .... It is useful to note that these equilibrium condi-
tions, together with (13)-(15), (17), and (18), can be used to rewrite the house-
hold’s budget constraint (6) as the aggregate resource constraint

Yt = Ct + It +
φp
2

³πt
π
− 1
´2
Yt, (6)

which must also hold for all t = 0, 1, 2, ....
Collecting and simplifying (1)-(24) yields

τ t =
φd
2

µ
Dt
µDt−1

− 1
¶2
, (1)



Mt

Pt
= vt(Ct + It), (2)

ln(vt) = (1− ρv) ln(v) + ρv ln(vt−1) + εvt, (3)

Kt+1 = (1− δ)Kt + etIt − φk
2

µ
Kt+1

gKt
− 1
¶2
Kt, (4)

ln(et) = ρe ln(et−1) + εet, (5)

Yt = Ct + It +
φp
2

³πt
π
− 1
´2
Yt, (6)

ln(at) = ρa ln(at−1) + εat, (7)

at = (Λ1t + vtΛ2t)Ct, (8)

γ = (Λ1t + Λ2t)(Wt/Pt), (9)

Λ1t
Pt
= βEt

µ
Λ1t+1 + Λ2t+1

Pt+1

¶
, (10)

γφd

µ
Dt
µDt−1

− 1
¶

Dt
µDt−1

(11)

=
[Λ1t(r

d
t − 1)− Λ2t]Dt

Pt
+ βγφdEt

∙µ
Dt+1
µDt

− 1
¶
Dt+1
µDt

¸
,

(Λ1t + vtΛ2t)(1/et)

∙
1 +

φk
g

µ
Kt+1

gKt
− 1
¶¸

(12)

= βEt [Λ1t+1(Qt+1/Pt+1) + (1− δ)(1/et+1)(Λ1t+1 + vt+1Λ2t+1)]

+βφkEt

∙
(Λ1t+1 + vt+1Λ2t+1)(1/et+1)

µ
Kt+2

gKt+1
− 1
¶µ

Kt+2

gKt+1

¶¸
−β(φk/2)Et

"
(Λ1t+1 + vt+1Λ2t+1)(1/et+1)

µ
Kt+2

gKt+1
− 1
¶2#

Dt +Xt = Lt, (13)

Bt = rtXt, (14)

rt = r
d
t , (15)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (16)
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Lt =Wtht, (17)

Ft
Pt
= Yt − QtKt + rtWtht

Pt
− φp
2

³πt
π
− 1
´2
Yt, (18)

Yt = K
α
t (g

tztht)
1−α, (19)

Λ1trt(Wt/Pt)ht = (1− α)ΞtYt, (20)

Λ1t(Qt/Pt)Kt = αΞtYt, (21)

0 = (1− θ)Λ1t + θΞt − φpΛ1t
³πt
π
− 1
´³πt

π

´
(22)

+βφpEt

∙
Λ1t+1

³πt+1
π
− 1
´³πt+1

π

´µYt+1
Yt

¶¸
,

ln(rt/r) = ρy ln(yt/y) + ρπ ln(πt/π) + ρµ ln(µt/µ) + εrt, (23)

and
µt = 1 +Xt/Mt−1. (24)

Together with the definitions yt = Yt/gt, πt = Pt/Pt−1, and µt = Mt/Mt−1, these
24 equations determine the behavior of the 24 variables τ t, Dt, Mt, Pt, vt, Ct, It,
Kt, et, Yt, at, Λ1t, Λ2t, Wt, rt, Qt, Xt, Bt, rdt , zt, Lt, ht, Ft, and Ξt.

2. Characterizing the Equilibrium

2.1. Transformed System

As a first step in solving the model, define the transformed variables dt = Dt/Mt,
mt = (Mt/Pt)/g

t, µt = Mt/Mt−1, ct = Ct/gt, it = It/gt, kt = Kt/g
t, yt = Yt/gt,

λ1t = g
tΛ1t, λ2t = gtΛ2t, wt = (Wt/Pt)/g

t, qt = Qt/Pt, xt = Xt/Mt−1, bt = Bt/Mt,
lt = Lt/Mt, ft = (Ft/Pt)/g

t, and ξt = gtΞt. Use (15) to eliminate rdt from the
system, and rewrite (1)-(14) and (16)—(24) as

τ t =
φd
2

µ
µtdt
µdt−1

− 1
¶2
, (1)

mt = vt(ct + it), (2)

ln(vt) = (1− ρv) ln(v) + ρv ln(vt−1) + εvt, (3)
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gkt+1 = (1− δ)kt + etit − φk
2

µ
kt+1
kt
− 1
¶2
kt, (4)

ln(et) = ρe ln(et−1) + εet, (5)

yt = ct + it +
φp
2

³πt
π
− 1
´2
yt, (6)

ln(at) = ρa ln(at−1) + εat, (7)

at = (λ1t + vtλ2t)ct, (8)

γ = (λ1t + λ2t)wt, (9)

gλ1t = βEt

µ
λ1t+1 + λ2t+1

πt+1

¶
, (10)

γφd

µ
µtdt
µdt−1

− 1
¶
µtdt
µdt−1

(11)

= [λ1t(rt − 1)− λ2t]dtmt + βγφdEt

∙µ
µt+1dt+1
µdt

− 1
¶
µt+1dt+1
µdt

¸
,

g(λ1t + vtλ2t)(1/et)

∙
1 +

φk
g

µ
kt+1
kt
− 1
¶¸

(12)

= βEt [λ1t+1qt+1 + (1− δ)(1/et+1)(λ1t+1 + vt+1λ2t+1)]

+βφkEt

∙
(λ1t+1 + vt+1λ2t+1)(1/et+1)

µ
kt+2
kt+1

− 1
¶µ

kt+2
kt+1

¶¸
−β(φk/2)Et

"
(λ1t+1 + vt+1λ2t+1)(1/et+1)

µ
kt+2
kt+1

− 1
¶2#

dt + xt/µt = lt, (13)

btµt = rtxt, (14)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (16)

mtlt = wtht, (17)

ft = yt − qtkt − rtwtht −
φp
2

³πt
π
− 1
´2
yt, (18)

yt = k
α
t (ztht)

1−α, (19)
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λ1trtwtht = (1− α)ξtyt, (20)

λ1tqtkt = αξtyt, (21)

0 = (1− θ)λ1t + θξt − φpλ1t
³πt
π
− 1
´³πt

π

´
(22)

+βφpEt

∙
λ1t+1

³πt+1
π
− 1
´³πt+1

π

´µyt+1
yt

¶¸
,

ln(rt/r) = ρy ln(yt/y) + ρπ ln(πt/π) + ρµ ln(µt/µ) + εrt, (23)

and
µt = 1 + xt. (24)

Note also that the definitions of πt, mt, and µt imply

gmtπt = µtmt−1. (25)

These 24 equations determine the behavior of the 24 stationary variables yt, πt,
τ t, dt, mt, µt, vt, ct, it, kt, et, at, λ1t, λ2t, wt, rt, qt, xt, bt, zt, lt, ht, ft, and ξt.

2.2. Steady State

In the absence of shocks, the economy converges to a steady state, in which each
of the stationary variables is constant. Let µ be chosen by policy. Equations (3),
(5), (7), and (16) determine v, e = 1, a = 1, and z. Equations (1), (24), and (25)
determine

τ = 0,

π = µ/g,

and
x = µ− 1.

Equations (10)-(12), (14), and (22) determine

r = π(g/β),

b = rx/µ,

λ2 = (r − 1)λ1,
q = (g/β − 1 + δ)[1 + v(r − 1)],

5



and

ξ =

µ
θ − 1
θ

¶
λ1.

Equations (8) and (9) determine

c =
1

λ1 + vλ2

and
w =

γ

λ1 + λ2
.

Equations (2), (4), (6), (18), (20), and (21) determine

k =
c

(λ1q/αξ)− g + 1− δ
,

i = (g − 1 + δ)k,

m = v(c+ i),

y =
λ1qk

αξ
,

h =
(1− α)ξy

λ1rw
,

and
f = y − qk − rwh.

Equations (13) and (17) determine

l = wh/m

and
d = l − x/µ.

Finally, (19) determines

λ1 =

∙
γ

(1− α)z

¸µ
θ

θ − 1
¶1/(1−α) ³ q

α

´α/(1−α)
.
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2.3. Linearized System

Equations (1)-(14) and (16)—(25) can be log-linearized to describe the behavior of
the stationary variables as the fluctuate about their steady-state values in response
to shocks. Let ŷt = ln(yt/yt), π̂t = ln(πt/π), τ̂ t = ln(τ t/τ), d̂t = ln(dt/d), m̂t =
ln(mt/m), µ̂t = ln(µt/µ), v̂t = ln(vt/v), ĉt = ln(ct/c), ı̂t = ln(it/i), k̂t = ln(kt/k),
êt = ln(et/e), ât = ln(at/a), λ̂1t = ln(λ1t/λ1), λ̂2t = ln(λ2t/λ2), ŵt = ln(wt/w),
r̂t = ln(rt/r), q̂t = ln(qt/q), x̂t = ln(xt/x), b̂t = ln(bt/b), ẑt = ln(zt/z), l̂t = ln(lt/l),
ĥt = ln(ht/h), f̂t = ln(ft/f), and ξ̂t = ln(ξt/ξ). Then a log-linear approximation
of (1) implies that τ̂ t = 0, while log-linear approximations to (2)-(14) and (16)—
(25) yield

mm̂t = mv̂t + vcĉt + vîıt, (2)

v̂t = ρvv̂t−1 + εvt, (3)

gkk̂t+1 = (1− δ)kk̂t + iêt + îıt, (4)

êt = ρeêt−1 + εet, (5)

yŷt = cĉt + îıt, (6)

ât = ρaât−1 + εat, (7)

ât = λ1cλ̂1t + vλ2cv̂t + vλ2cλ̂2t + ĉt, (8)

0 = λ1wλ̂1t + λ2wλ̂2t + γŵt, (9)

rλ̂1t = Etλ̂1t+1 + (r − 1)Etλ̂2t+1 − rEtπ̂t+1, (10)

γφdµ̂t + γφd(1 + β)d̂t − γφdd̂t−1 (11)

= λ1(r − 1)dmλ̂1t + λ1rdmr̂t − λ2dmλ̂2t

+βγφdEtµ̂t+1 + βγφdEtd̂t+1,

gλ1λ̂1t + gvλ2v̂t + gvλ2λ̂2t − g(λ1 + vλ2)êt − φk(λ1 + vλ2)k̂t (12)

= βλ1(q + 1− δ)Etλ̂1t+1 + βλ1qEtq̂t+1 + β(1− δ)vλ2Etv̂t+1

+β(1− δ)vλ2Etλ̂2t+1 − β(1− δ)(λ1 + vλ2)Etêt+1

−φk(1 + β)(λ1 + vλ2)k̂t+1 + βφk(λ1 + vλ2)Etk̂t+2

dd̂t + (x/µ)x̂t − (x/µ)µ̂t = ll̂t, (13)

b̂t + µ̂t = r̂t + x̂t, (14)

7



ẑt = ρz ẑt−1 + εzt, (16)

m̂t + l̂t = ŵt + ĥt, (17)

ff̂t = yŷt − qkq̂t − qkk̂t − rwhr̂t − rwhŵt − rwhĥt, (18)

ŷt = αk̂t + (1− α)ẑt + (1− α)ĥt, (19)

λ̂1t + r̂t + ŵt + ĥt = ξ̂t + ŷt, (20)

λ̂1t + q̂t + k̂t = ξ̂t + ŷt, (21)

φpπ̂t = (θ − 1)ξ̂t − (θ − 1)λ̂1t + βφpEtπ̂t+1 (22)

r̂t = ρyŷt + ρππ̂t + ρµµ̂t + εrt, (23)

µµ̂t = xx̂t, (24)

and
m̂t + π̂t = µ̂t + m̂t−1. (25)

These 23 equations determine the behavior of the 23 variables ŷt, π̂t, d̂t, m̂t, µ̂t,
v̂t, ĉt, ı̂t, k̂t, êt, ât, λ̂1t, λ̂2t, ŵt, r̂t, q̂t, x̂t, b̂t, ẑt, l̂t, ĥt, f̂t, and ξ̂t. In preparing to
solve the model, it is convenient to use (25) to rewrite (2) and (17) as

mµ̂t +mm̂t−1 = mπ̂t +mv̂t + vcĉt + vîıt (2)

and
µ̂t + m̂t−1 + l̂t = π̂t + ŵt + ĥt. (17)

It is also convenient to use (3)-(5) to rewrite (12) as

gλ1λ̂1t + vλ2[g − β(1− δ)ρv]v̂t + gvλ2λ̂2t − φk(λ1 + vλ2)k̂t (12)

−{β(λ1 + vλ2)[φk(i/k)(1/g)− (1− δ)]ρe + g(λ1 + vλ2)}êt
= βλ1(q + 1− δ)Etλ̂1t+1 + βλ1qEtq̂t+1

+β(1− δ)vλ2Etλ̂2t+1 + βφk(λ1 + vλ2)(i/k)(1/g)Etı̂t+1

+φk(λ1 + vλ2){β[(1− δ)/g]− (1 + β)}k̂t+1
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2.4. The Linear System in Matrix Form

Let
f0t =

£
ŷt π̂t µ̂t ĉt ı̂t ŵt r̂t q̂t x̂t b̂t l̂t ĥt f̂t

¤0
,

s0t =
£
d̂t−1 m̂t−1 k̂t d̂t λ̂1t λ̂2t ξ̂t

¤0
,

and
z0t =

£
v̂t êt ât ẑt εrt

¤0
.

Then (2), (6), (8), (9), (13), (14), (17)-(21), (23), and (24) can be written as

Af0t = Bs
0
t + Cz

0
t , (26)

where A is 13× 13, B is 13× 7, and C is 13× 5.
Equation (2) implies

a12 = m

a13 = −m
a14 = vc

a15 = vi

b12 = m

c11 = −m
Equation (6) implies

a21 = y

a24 = −c
a25 = −i
Equation (8) implies

a34 = 1

b35 = −λ1c
b36 = −vλ2c
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c31 = −vλ2c
c33 = 1

Equation (9) implies

a46 = γ

b45 = −λ1w
b46 = −λ2w

Equation (13) implies

a53 = x/µ

a59 = −x/µ
a511 = l

b54 = d

Equation (14) implies

a63 = 1

a67 = −1
a69 = −1
a610 = 1

Equation (17) implies

a72 = 1

a73 = −1
a76 = 1

a711 = −1
a712 = 1

10



b72 = 1

Equation (18) implies

a81 = y

a86 = −rwh
a87 = −rwh
a88 = −qk
a812 = −rwh
a813 = −f
b83 = qk

Equation (19) implies

a91 = 1

a912 = α− 1
b93 = α

c94 = 1− α

Equation (20) implies

a101 = 1

a106 = −1
a107 = −1
a1012 = −1
b105 = 1

b107 = −1

Equation (21) implies

11



a111 = 1

a118 = −1
b113 = 1

b115 = 1

b117 = −1

Equation (23) implies

a121 = ρy

a122 = ρπ

a123 = ρµ

a127 = −1
c125 = −1

Equation (24) implies

a133 = µ

a139 = −x

Equations (4), (10)-(12), (22), and (25) can be written as

DEts
0
t+1 + FEtf

0
t+1 = Gs

0
t +Hf

0
t + Jz

0
t , (27)

where D and G are 7× 7, F and H are 7× 13, and J is 7× 5.
Equation (4) implies

d13 = gk

g13 = (1− δ)k

h15 = i

j12 = i

12



Equation (10) implies

d25 = 1

d26 = r − 1
f22 = −r
g25 = r

Equation (11) implies

d34 = βγφd

f33 = βγφd

g31 = −γφd
g34 = γφd(1 + β)

g35 = −λ1(r − 1)dm
g36 = λ2dm

h33 = γφd

h37 = −λ1rdm

Equation (12) implies

d43 = φk(λ1 + vλ2){β[(1− δ)/g]− (1 + β)}
d45 = βλ1(q + 1− δ)

d46 = β(1− δ)vλ2

f45 = βφk(λ1 + vλ2)(i/k)(1/g)

f48 = βλ1q

g43 = −φk(λ1 + vλ2)
g45 = gλ1

13



g46 = gvλ2

j41 = vλ2[g − β(1− δ)ρv]

j42 = −{β(λ1 + vλ2)[φk(i/k)(1/g)− (1− δ)]ρe + g(λ1 + vλ2)}
Equation (22) implies

f52 = βφp

g55 = θ − 1
g57 = 1− θ

h52 = φp

Equation (25) implies

d62 = 1

g62 = 1

h62 = −1
h63 = 1

The presence of dt in s0t+1 and s
0
t implies

d71 = 1

g74 = 1

Finally, (3), (5), (7), and (16) can be written as

z0t+1 = Pz
0
t + εt+1, (28)

where

P =

⎡⎢⎢⎢⎢⎣
ρv 0 0 0 0
0 ρe 0 0 0
0 0 ρa 0 0
0 0 0 ρz 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
and

εt =
£
εvt εet εat εzt εrt

¤0
.
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3. Solving the Model

Rewrite (26) as
f0t = A

−1Bs0t +A
−1Cz0t ,

and substitute it into (27) to obtain

Ets
0
t+1 = Ks

0
t + Lz

0
t , (29)

where
K = (D + FA−1B)−1(G+HA−1B)

and
L = (D + FA−1B)−1(J +HA−1C − FA−1CP ).

If the 7×7 matrix K has three eigenvalues inside the unit circle and four eigenval-
ues outside the unit circle, then the system has a unique solution. If K has more
than four eigenvalues outside the unit circle, then the system has no solution. IfK
has less than four eigenvalues outside the unit circle, then the system has multiple
solutions. For details, see Blanchard and Kahn (1980).
Assuming from now on that there are exactly four eigenvalues outside the unit

circle, write K as
K =M−1NM,

where

N =

∙
N1 0
0 N2

¸
and

M =

∙
M11 M12

M21 M22

¸
.

The diagonal elements of N are the eigenvalues of K, with those in the 3 × 3
matrix N1 inside the unit circle and those in the 4× 4 matrix N2 outside the unit
circle. The columns of M−1 are the eigenvectors of K; M11 is 3× 3, M12 is 3× 4,
M21 is 4× 3, and M22 is 4× 4. In addition, let

L =

∙
L1
L2

¸
,

where L1 is 3× 5 and L2 is 4× 5.
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Now (29) can be rewritten as∙
M11 M12

M21 M22

¸
Ets

0
t+1 =

∙
N1 0
0 N2

¸ ∙
M11 M12

M21 M22

¸
s0t +

∙
M11 M12

M21 M22

¸ ∙
L1
L2

¸
z0t

or
Ets

1
1t+1 = N1s

1
1t +Q1z

0
t (30)

and
Ets

1
2t+1 = N2s

1
2t +Q2z

0
t , (31)

where

s1t =M11

⎡⎣ d̂t−1m̂t−1
k̂t

⎤⎦+M12

⎡⎢⎢⎢⎣
d̂t
λ̂1t
λ̂2t
ξ̂t

⎤⎥⎥⎥⎦ , (32)

s2t =M21

⎡⎣ d̂t−1m̂t−1
k̂t

⎤⎦+M22

⎡⎢⎢⎢⎣
d̂t
λ̂1t
λ̂2t
ξ̂t

⎤⎥⎥⎥⎦ , (33)

Q1 =M11L1 +M12L2,

and
Q2 =M21L1 +M22L2.

Since the eigenvalues inN2 lie outside the unit circle, (31) can be solved forward
to obtain

s2t = −N−1
2 Rz

0
t ,

where the 4× 5 matrix R is given by

vec(R) = vec
∞X
j=0

N−j
2 Q2P

j =
∞X
j=0

vec(N−j
2 Q2P

j)

=
∞X
j=0

[P j ⊗ (N−1
2 )

j]vec(Q2) =
∞X
j=0

(P ⊗N−1
2 )

jvec(Q2)

= [I(20×20) − P ⊗N−1
2 ]

−1vec(Q2).
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Use this result, along with (33), to solve for⎡⎢⎢⎢⎣
d̂t
λ̂1t
λ̂2t
ξ̂t

⎤⎥⎥⎥⎦ = S1
⎡⎣ d̂t−1m̂t−1
k̂t

⎤⎦+ S2z0t , (34)

where
S1 = −M−1

22 M21

and
S2 = −M−1

22 N
−1
2 R.

Equation (32) now provides a solution for s11t:

s1t = (M11 +M12S1)

⎡⎣ d̂t−1m̂t−1
k̂t

⎤⎦+M12S2z
0
t .

Substitute this result into (30) to obtain⎡⎣ d̂tm̂t

k̂t+1

⎤⎦ = S3
⎡⎣ d̂t−1m̂t−1
k̂t

⎤⎦+ S4z0t , (35)

where
S3 = (M11 +M12S1)

−1N1(M11 +M12S1)

and
S4 = (M11 +M12S1)

−1(Q1 +N1M12S2 −M12S2P ).

Finally, return to

f0t = A−1Bs0t +A
−1Cut

= A−1B
∙
I(3×3)
S1

¸⎡⎣ d̂t−1m̂t−1
k̂t

⎤⎦+A−1B ∙ 0(3×5)
S2

¸
z0t +A

−1Cz0t ,

which can be written more simply as

f0t = S5

⎡⎣ d̂t−1m̂t−1
k̂t

⎤⎦+ S6z0t , (36)
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where

S5 = A
−1B

∙
I(3×3)
S1

¸
and

S6 = A
−1B

∙
0(3×5)
S2

¸
+A−1C.

Equations (28) and (34)-(36) provide the model’s solution:

st+1 = Πst +Wεt+1 (37)

and
ft = Ust, (38)

where
st =

£
d̂t−1 m̂t−1 k̂t v̂t êt ât ẑt ε̂rt

¤0
,

ft =
£
ŷt π̂t µ̂t ĉt ı̂t ŵt r̂t q̂t x̂t b̂t l̂t ĥt f̂t d̂t λ̂1t λ̂2t ξ̂t

¤0
,

εt =
£
εvt εet εat εzt εrt

¤0
,

Π =

∙
S3 S4
0(5×3) P

¸
,

W =

∙
0(3×5)
I(5×5)

¸
,

and

U =

∙
S5 S6
S1 S2

¸
.

4. Estimating the Model

Suppose that data are available on consumption Ct, investment It, money Mt,
prices Pt, and interest rates rt. These data can be used to construct a series
{dt}Tt=1, where

dt =

⎡⎢⎢⎢⎢⎣
ĉt
ı̂t
m̂t

π̂t
r̂t

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
ln(Ct)− t ln(g)− ln(c)
ln(It)− t ln(g)− ln(i)
ln(Mt)− ln(Pt)− t ln(g)− ln(m)
ln(Pt)− ln(Pt−1)− ln(π)
ln(rt)− ln(r)

⎤⎥⎥⎥⎥⎦ .
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Equations (37) and (38) then given rise to an empirical model of the form

st+1 = Ast +Bεt+1 (39)

and
dt = Cst, (40)

where A = Π, B =W , C is formed from the rows of Π and U as

C =

⎡⎢⎢⎢⎢⎣
U4
U5
Π2
U2
U7

⎤⎥⎥⎥⎥⎦ ,
and the vector of serially uncorrelated innovations

εt+1 =
£
εvt+1 εet+1 εat+1 εzt+1 εrt+1

¤0
is assumed to be normally distributed with zero mean and diagonal covariance
matrix

V = Eεt+1ε
0
t+1 =

⎡⎢⎢⎢⎢⎣
σ2v 0 0 0 0
0 σ2e 0 0 0
0 0 σ2a 0 0
0 0 0 σ2z 0
0 0 0 0 σ2r

⎤⎥⎥⎥⎥⎦ .
The model defined by (39) and (40) is in state-space form; hence, the likelihood

function for the sample {dt}Tt=1 can be constructed as outlined by Hamilton (1994,
Ch.13). For t = 1, 2, ..., T and j = 0, 1, let

ŝt|t−j = E(st|dt−j, dt−j−1, ..., d1),

Σt|t−j = E(st − ŝt|t−j)(st − ŝt|t−j)0,
and

d̂t|t−j = E(dt|dt−j, dt−j−1, ..., d1).
Then, in particular, (39) implies that

ŝ1|0 = Es1 = 0(8×1) (41)
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and
vec(Σ1|0) = vec(Es1s01) = [I(64×64) −A⊗A]−1vec(BV B0). (42)

Now suppose that ŝt|t−1 and Σt|t−1 are in hand and consider the problem of
calculating ŝt+1|t and Σt+1|t. Note first from (40) that

d̂t|t−1 = Cŝt|t−1.

Hence
ut = dt − d̂t|t−1 = C(st − ŝt|t−1)

is such that
Eutu

0
t = CΣt|t−1C

0.

Next, using Hamilton’s (p.379, eq.13.2.13) formula for updating a linear projec-
tion,

ŝt|t = ŝt|t−1 + [E(st − ŝt|t−1)(dt − d̂t|t−1)0][E(dt − d̂t|t−1)(dt − d̂t|t−1)0]−1ut
= ŝt|t−1 + Σt|t−1C 0(CΣt|t−1C 0)−1ut.

Hence, from (39),

ŝt+1|t = Aŝt|t−1 +AΣt|t−1C 0(CΣt|t−1C 0)−1ut.

Using this last result, along with (39) again,

st+1 − ŝt+1|t = A(st − ŝt|t−1) +Bεt+1 −AΣt|t−1C 0(CΣt|t−1C 0)−1ut.

Hence,

Σt+1|t = BV B0 +AΣt|t−1A0 −AΣt|t−1C 0(CΣt|t−1C 0)−1CΣt|t−1A0.

These results can be summarized as follows. Let

ŝt = ŝt|t−1 = E(st|dt−1, dt−2, ..., d1)

and
Σt = Σt|t−1 = E(st − ŝt|t−1)(st − ŝt|t−1)0.

Then
ŝt+1 = Aŝt +Ktut
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and
dt = Cŝt + ut,

where
ut = dt −E(dt|dt−1, dt−2, ..., d1),

Eutu
0
t = CΣtC

0 = Ωt,

the sequences for Kt and Σt can be generated recursively using

Kt = AΣtC
0(CΣtC 0)−1

and
Σt+1 = BV B

0 +AΣtA0 −AΣtC 0(CΣtC 0)−1CΣtA0,
and the initial conditions ŝ1 and Σ1 are provided by (41) and (42).
The innovations {ut}Tt=1 can then be used to form the log likelihood function

for {dt}Tt=1 as

lnL = −5T
2
ln(2π)− 1

2

TX
t=1

ln |Ωt|− 1
2

TX
t=1

u0tΩ
−1
t ut.

The model’s 24 parameters are
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φd ≥ 0
µ ≥ 1
v > 0

1 > ρv ≥ 0
σv > 0

1 > δ > 0

φk ≥ 0
g ≥ 1

1 > ρe ≥ 0
σe > 0

1 > β > 0

γ > 0

1 > ρa ≥ 0
σa > 0

θ > 1

1 > α > 0

z > 0

1 > ρz ≥ 0
σz > 0

φp ≥ 0
ρy > 0

ρπ > 0

ρµ > 0

σr > 0

5. Evaluating the Model

5.1. Testing for Parameter Stability

The procedures described by Andrews and Fair (1988) can be used to test for
the stability of the model’s estimated parameters. Let Θ1 and Θ2 denote the
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estimated parameters from two disjoint subsamples, and let H1 and H2 denote
the associated covariance matrices, so that asymptotically,

Θ1 ∼ N(Θ10,H1)

and

Θ2 ∼ N(Θ20,H2).

One way of testing for the stability of all of the estimated parameters is with the
likelihood ratio statistic

LR = 2[lnL(Θ1) + lnL(Θ2)− lnL(Θ)],
where lnL(Θ1), lnL(Θ2), and lnL(Θ) are the maximized log likelihood functions
for the first subsample, the second subsample, and the third entire sample. Ac-
cording to Andrews and Fair, this statistic will be asymptotically distributed as
a chi-square random variable with q degrees of freedom under the null hypothesis
of stability, where q is the number of estimated parameters.
Alternatively, the stability of some or all of the parameters can be tested with

the Wald statistic

W = g(Θ1,Θ2)0(GĤG0)−1g(Θ1,Θ2),

when the stability restrictions are written as

g(Θ1,Θ2) = 0

and where

G =
ϑg(Θ1,Θ2)

ϑ(Θ1,Θ2)0

and

Ĥ =

∙
H1 0
0 H2

¸
.

If Θ1
q and Θ

2
q denote the subsets of Θ

1 and Θ2 of interest, and if H1
q and H

2
q denote

the covariances matrices of Θ1
q and Θ2q, then this Wald statistic can be written

more simply as
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W = (Θ1q −Θ2q)
0(H1

q +H
2
q )
−1(Θ1

q −Θ2
q).

According to Andrews and Fair, this statistic will be asymptotically dstributed as
a chi-square random variable with q degrees of freedom under the null hypothesis
of stability, where q is the number of parameters being tested for stability.

5.2. Variance Decompositions

Begin by considering (39), which can be rewritten as

st = Ast−1 +Bεt

or

(1−AL)st = Bεt,
or

st =
∞X
j=0

AjBεt−j.

This last equation implies that

st+k =
∞X
j=0

AjBεt+k−j,

Etst+k =
∞X
j=k

AjBεt+k−j,

st+k −Etst+k =
k−1X
j=0

AjBεt+k−j,

and hence

Σsk = E(st+k −Etst+k)(st+k −Etst+k)0
= BV B0 +ABV B0A0 +A2BV B0A2

0
+ ...+Ak−1BV B0Ak−10.

In addition, (39) implies that
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Σs = lim
k→∞

Σsk

is given by

vec(Σs) = [I(64x64) −A⊗A]−1vec(BV B0).
Next, consider (38) and (39), which imply that

Σfk = E(ft+k −Etft+k)(ft+k −Etft+k)0 = UΣskU 0,

Σf = lim
k→∞

Σfk = UΣ
sU 0,

Σdk = E(dt+k −Etdt+k)(dt+k −Etdt+k)0 = CΣskC 0,
and

Σd = lim
k→∞

Σdk = CΣ
sC 0.

Let Θ denote the vector of estimated parameters, and let H denote the covari-
ance matrix of these estimated parameters, so that asymptotically,

Θ ∼ N(Θ0, H).
Note that the elements of Σsk, Σ

s, Σfk, Σ
f , Σdk, and Σd can all be expressed as

nonlinear functions of Θ :

Σ = g(Θ),

so that asymptotic standard errors for these elements can be found by calculating

5gH 5 g0.
In practice, the gradient5g can be evaluated numerically, as suggested by Runkle
(1987).
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