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Abstract

I introduce Expectational Business Cycles where aggregate activity �uctuates due to

learning, heterogeneous updating rules and random changes in the social norm predictor.

Agents use one of two updating rules to learn the equilibrium values while heterogeneity is

dictated via an evolutionary process. Uncertainty of a new equilibrium, due to a shock to

the structure of the economy, results in a sudden decrease in output. As agents learn the

equilibrium, output slowly increases to its equilibrium value. These business cycles arrive

faster, are longer and more severe as agents possess less rationality.
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1 Introduction

Uncertainty a¤ects the daily decisions we make in our lives for if we knew all our future lifetime

events, we would certainly change our behavior in order to maximize actual total lifetime utility.

Unfortunately, we are uncertain about events that a¤ect our lives, the world and the economy
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in both the micro and macro levels. This uncertainty a¤ects each individual�s behavior of

consumption, investment, and employment. Better expectation mechanisms can lead to smaller

forecasting mistakes and less uncertainty and thus lead to higher current and future bene�ts.

It is common knowledge among economists that there is more uncertainty in a recession that

there is during an expansion. The median forecast error and the dispersion of GDP forecasts in

the Survey of Professional Forecasters tend to increase during a recession. In a period of higher

uncertainty, agents may be confused about whether there is a permanent or transitory shock to

their income and well being. As a result, agents may be unsure how to smooth consumption and

thus decrease it more than they would with greater certainty. This is demonstrated in Cogley

(2001) where consumption is more volatile during a recession. Furthermore, �rms may also be

less certain about returns to investments during a recession. Potter (1999) �nds that investors

may take a stand of �wait and see�during times of uncertainty, thus decreasing investment.

There has been several di¤erent types of literature that have focused on the importance of

learning as an endogenous propagation mechanism for the business cycle. The �rst type of

models, I call the �Good-Bad�models, generate a business cycle from a Markov process of good

and bad times. These models focus on providing explanation of the well known fact that the

average business cycle is asymmetric where the arrival of the recession is quite prompt and the

recovery is more drawn out. In Chalkley and Lee (1998), agents learn from their predecessors

on the state of the economy with some noise. These agents decide whether to put in high or

low e¤ort based on their knowledge. If agents believe that they are in a �bad� state and see

an aggregate increase, they may believe that the increase was from a stochastic shock and not a

shift to the �good�state. Therefore, agents will adjust quickly in the bad state, but, due to risk

aversion, the agents will slowly adjust in the �good�state. In González (1997), agents learn from

others in good times creating informational economies of scale. During bad times, agents focus

on their microeconomic activity rather than learning about macroeconomic activity. When there

is a shock to the �bad�state, agents see this shock due to the informational economies of scale

and react to the shock quickly. When the shock to the �good�state occurs, agents are unaware

of this shock due to the loss of the informational economies of scale. The author suggests that in

order for others to believe that they are back in the �good�state, some agents must experiment

which could further increase aggregate activity. Finally, Nieuwerburgh and Veldcamp (2003)
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consider an RBC-like model with a Markov technology shock and informational economies of

scale through production. They conclude that low production creates noisy estimates of recovery

leading to a slower recovery.

The second type of models in the literature are those of learning or changes in expectations

producing the business cycle. Farmer and Guo (1994) investigate a model with an aggregate

technology that is subject to increasing returns. They demonstrate that the model can display

�uctuations at business cycle frequencies due to sunspots even when there are no shocks to the

fundamentals of the economy. Evans, Honkapohja, and Romer (1998) consider a model with

multiple equilibria and produce a business cycle from a change in expectations via a Markov

process.1 They �nd that the equilibrium of "growth cycles" is stable under a simple learning

rule. Kasa (1995) considers a model where �rms forecast the forecasts of other �rms. He

discovers that forecast errors can make a signi�cant contribution to the propagation of business

cycles.

Finally, the third type of literature is including learning in RBC models. Williams (2003a)

�nds that learning does not substantially change the volatility and the persistence of key economic

variables. However, when agents learn about the structural features of the economy, there are

much greater e¤ects to volatility and persistence. This suggests that a less rational form of

learning may work as a stronger propagation mechanism for the business cycle.

In this paper, I examine a model in which a Markov process or technology shocks do not

directly create a business cycle. Following Williams (2003a), there is a less rational type of

learning mechanism produced from heterogeneous learning mechanisms. I use the model dis-

cussed in Guse (2003b) and de�ne a utility function based on uncertainty to describe the cyclical

�uctuations. In this case, learning and changing learning behavior acts as a propagation mech-

anism of the business cycle. Furthermore, this model gives the same results of asymmetry in

the business cycle as discussed in the literature.

1Farmer and Guo (1994) and Evans, Honkapohja, and Romer (1998) have the same basic idea: a non-convex
economy that leads to stationary sunspot equilibria (SSE). In Farmer and Guo, there are SSE�s near a single
steady state, while in Evans, Honkapohja and Romer there are multiple steady states each with SSE�s near them.
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2 The Validity of Adaptive Learning

One of the main conclusions of the adaptive learning literature is that a rational expectations

equilibrium (REE) is relevant only when agents can learn the solution when their initial beliefs

are o¤ the equilibrium path. If the equilibrium is not learnable, then one should not consider

it a possible solution when studying economic policy as an alternative result will occur when o¤

the equilibrium path. If a REE is stable under learning, then when agents continue to learn the

equilibrium using least squares or a closely related algorithm, ceterus peribus, the agents will

learn the REE.

One objection to adaptive learning is, �why have we yet not learned the (stable) rational

expectations equilibrium?� Those who feel this way must believe that the economy is static and

forget that the world is always changing. Over the past thirty plus years, we have seen many

structural changes to the world economy from an oil crisis to the development of the internet to

the post September 11, 2001 economy. If people continued to form expectations in the same

manner over these years, would this not be considered naive? This paper demonstrates an

important fact that some economists maybe ignoring; people will change the way they form

expectations due to �expectational shocks�to the economy.

In Guse (2003b), agents could di¤er in the way they formed expectations in the short run.

Under certain situations, some agents using the �ine¢ cient�predictor decided to switch to the

�e¢ cient�predictor. This process continued until all of the agents were using the same e¢ cient

predictor creating a �social norm�for forming expectations. This paper will show how a business

cycle may occur due to a change in a �social norm� for forming expectations. Suppose that

the economy is experiencing a period of expansion and there is a shock to the structure of the

economy. This shock may be a change in preferences, monetary or �scal policy, technology,

or a major event that e¤ects the world economy. From this shock, there may be another

predictor that is now more e¢ cient than the current �social norm�predictor. With agents now

using a relatively ine¢ cient predictor, there may be less investment and a decline in consumer

con�dence due to an increase in uncertainty. This may lead to a decline in growth and an

increase in unemployment moving the economy into a recession. During this time, a small

amount of agents may discover that the current predictor is ine¢ cient and switch to using the
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new e¢ cient predictor. Agents using the ine¢ cient predictor may see this and decide to change

to the other predictor while others will follow later. This process will lead to a new �social

norm�for forming expectations and bring the economy into another expansion from agents now

using an e¢ cient predictor.

The goal of this paper is to introduce the concept of Expectational Business Cycles where

aggregate �uctuations are produced from such a change in the social norm predictor. When

this new predictor is introduced, agents slowly move to the e¢ cient predictor and learn the new

parameter values. Evolutionary dynamics and learning act as a propagation mechanism for the

business cycle. When individuals learn, they tend to make large initial mistakes and then learn

how to minimize these mistakes. As a result, learning is a prime candidate for an explanation

of asymmetry in the business cycle.

3 The Model

The model discussed in this paper is a version of Taylor (1977).2 It is a self referential linear

stochastic model with real balance e¤ects consisting of four parts:

Aggregate Demand : yt = ��1(it � E�t�1pt+1 + E�t�1pt) + �2(mt � pt)

+�3 ln

�
Ct
1
�2

�
Aggregate Supply : yt = �1(mt � pt) + "t

Money Demand : mt = yt + pt � �1it + �2(mt � pt)

Money Supply : mt = m;

where yt is the logarithm of real output, Ct is the current level of con�dence, it is the nominal

interest rate, pt is the logarithm of the price of output, mt is the logarithm of the stock of nominal

2This model is not used in business cycle literature but is a current workhorse for the learning literature. I
use this model as it is the simplest model with multiple stationary and learnable rational expectations equilibria.
Future work will consider more commonly used models where multiple updating rules may be used.
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money balances, and "t is a persistent random shock variable3

"t = �"t�1 + �t

where

�t � N
�
0; �2�

�
.

�2 represents the variance of the stochastic shock variable, ~�t, de�ned below. All greek let-

ters represent positive coe¢ cients and �2 � 1: E�t�1 represents the not necessarily rational

expectation operator at t� 1.

This model now includes a con�dence e¤ect on real output that was not present in Taylor

(1977). The con�dence level is determined by how well the average agent can predict current

and future prices. In this economy, agents will consume and invest more if they feel comfortable

about their own predictions of the future. Therefore, the con�dence coe¢ cient can be motivated

by precautionary savings by consumers and �rms. Predictability will be determined by the

average mean squared error (MSE). As the average MSE increases, the uncertainty of the future

increases. Agents will choose not to consume and invest as much as before thus decreasing real

GDP.

This model can be written in its reduced form as the following:

pt = �t + �0E
�
t�1pt + �1E

�
t�1pt+1 + �vt�1 +

~�t (1)

3The original Taylor model has separate shocks to aggregate demand and money demand as well as to aggregate
supply. Including three shocks complicates the model, but does not change the results below.
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where4

�t = m� �0�3
�1

ln

�
Ct
1
�2

�
�0 = � �1�1

�1 (�2 � �1)� �1 (�1 � (1� �2))
�1 = ��0

vt = �0 �
�
(�1 + �1)

�1�1

�
"t

~�t = �0 �
�
(�1 + �1)

�1�1

�
�t

and

~�t � N
 
0; �2 = �20 �

�
(�1 + �1)

�1�1

�2
�2�

!
.

With the inclusion of the con�dence variable, the rational expectations equilibria does not change,

so the MSE of each predictor and E-stability conditions are the same as in Guse (2003b).

3.1 Choice of Predictors

Assume that agents have the choice of using one of two predictors corresponding to two possible

REE discussed below:

PLM1 : pt = a1 + �vt�1 + ~�t (2)

PLM2 : pt = a2 + b2pt�1 + �vt�1 + ~�t. (3)

where agents recursively estimate the coe¢ cients of their PLM to form expectations. If a

proportion of � agents uses PLM1 and the remaining (1� �) agents use PLM2, then the actual

law of motion (ALM) is:

pt = �+ �a1(�0 + �1) + (1� �)a2(�0 + �1 (1 + b2))

+[(1� �)b2(�0 + �1b2)]pt�1 + �vt�1 + ~�t (4)

4The solutions for the reduced form in Taylor (1977) are incorrect, however, this does not a¤ect his results.
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The above system de�nes a mapping from the PLM to the ALM as follows:

T

0BBBB@
a1

a2

b2

1CCCCA =

0BBBB@
�+�a1(�0+�1)+(1��)a2(�0+�1(1+b2))

1�(1��)b2(�0+�1b2)

�+ �a1(�0 + �1) + (1� �)a2(�0 + �1 (1 + b2))

(1� �)b2(�0 + �1b2)

1CCCCA (5)

The resulting equilibria are expressed as:5

a1 =
�

1� �0 � �1
a2 = a1 (1� b2) (6)

b2 =
1� (1� �)�0
(1� �)�1

or

a1 =
�

1� �0 � �1
a2 =

�

1� �0 � �1
(7)

b2 = 0

Equilibrium (6) is referred to as the AR(1) mixed expectations equilibria (MEE).6 In this

equilibrium, the proportion of agents using PLM1 are underparameterizing the model when

they are forming their expectations. PLM2 will be referred to as the AR(1) predictor since

these agents believe that the actual equilibrium will be equilibrium (6). Equilibrium (7) is

referred to as the minimum state variable (MSV) MEE. Although the equilibria expectations

in the MSV solution are homogenous, it will be considered heterogeneous expectations since two

predictors are used to form expectations. PLM1 will be referred to as the MSV predictor as

these agents believe the true equilibrium is equilibrium (7).

Learnability of the two equilibria can be determined by the E-stability principle.7 Consider

5One restriction is that the AR(1) MEE must be stationary for the �rst component of the T-map to be
well-de�ned.

6Each equilibrium is referred to as �mixed�because it may be generated from two expectations predictors.
7For a detailed presentation of the E-stability Principle, see Evans and Honkapohja (2001).
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the following ordinary di¤erential equation (ODE):

d�

d�
= T (�)� �;

where � denotes notional, or arti�cial time. An equilibrium, or �xed point of the ODE, is

E-stable if it is locally stable under the ODE. The following proposition, from Guse (2003a),

presents the E-stability conditions for both equilibria under the above model.

Proposition 1: Assume that �0 + �1 < 1. If �0 <
1

1�� , then the MSV MEE is E-stable and

the AR(1) MEE is E-unstable. If �0 >
1

1�� , then the MSV MEE is E-unstable and the AR(1)

MEE is E-stable.

One key result in Guse (2003a) is that the equilibria exchange stability at �0 =
1

1�� where

the mean squared error of the MSV predictor under the AR(1) solution is minimized. This

relationship will be important when considering predictor choice dynamics.

3.2 Predictor Choice Dynamics

Assume that there is a continuum agents where each agent�s decision does not a¤ect the state

of the economy. Let ([0; 1] ;B) be the underlying space where [0; 1] is the player set and B is

the Borel subsets of [0; 1]. Let Si = fPLM1; PLM2g be the set of strategies for each player i.

Suppose that each player receives a payo¤ from choosing either strategy in the following manner:

vi (si; �) =
1

MSE1
�K1 = U1 if Si = PLM1

=
1

MSE2
�K2 = U2 if Si = PLM2

where Kj � 0 is the cost parameter for using the jth predictor discussed further below.

When considering predictor choice dynamics in such a model, one must consider when each

solution is evolutionary E-stable. To theoretically evaluate an equilibrium for evolutionary E-

stability, I assume Fast-Slow dynamics which is a process where agents learn the corresponding

parameter equilibria prior to each period when � is updated using some form of a selection

criterion. Therefore, the speed of parameter learning is in�nitely faster than the speed of the
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population dynamics.

De�nition 1: Assume that the model is updated using Fast-Slow dynamics. An MEE or REE,

�� (��), is Evolutionary E-stable if for all � 2 [0; 1] su¢ ciently close to �� (1) �t ! �� under

the replicator dynamics and (2) � (�t) is E-stable for all �t.

Here, � (�) refers to an E-stable MEE that is determined by the level of heterogeneity, �,

and �� (��) is the MEE determined by a Nash solution of ��. Under evolutionary E-stability,

if a mutation occurs to change the level of heterogeneity, then the system will return to the

evolutionary E-stable MEE or REE. Furthermore, at each � in the neighborhood of ��, the

corresponding MEE is E-stable. Like E-stability, this is a local condition, but unlike E-stability,

the boundary of attraction may be determined under the replicator dynamics for each Nash

solution.

The selection criterion used in this paper will be the replicator dynamics which is commonly

used in evolutionary game theory. The replicator dynamics, in discrete time, is de�ned as

follows:

�t =

�
� + U1

� + �t�1 � U1 + (1� �t�1) � U2

�
� �t�1. (8)

Equation (8) directs the population to use the more e¢ cient predictor at time t � 1. In the

game, there is the possibility of convergence to homogeneous expectations due to the exponential

nature of the replicator dynamics.

3.3 Evolutionary E-stability

The MSV predictor is always e¢ cient if the AR(1) predictor is relatively more expensive and the

AR(1) solution is never stable under learning (� < 1). A version of the proposition found in

Guse (2003b) shows that for some parameter values, the MSV REE can always be evolutionary

E-stable:

Proposition 2: For the above model, the MSV REE is evolutionary E-stable and the AR(1) REE

is not evolutionary E-stable for all � 2 (0; 1], when K1 �K2 < 0, and �0 < 1.

The proof is given in Appendix A. When the MSV REE is evolutionary E-stable for all

� 2 (0; 1], the model is said to be MSV dominant. Here, as long as �0 > 0, the replicator
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dynamics will direct the entire population to use the MSV predictor. Furthermore, the resulting

learned equilibrium will be the MSV REE.

Guse (2003b) does not consider the case where the cost of using the MSV predictor is greater

than the cost of using the AR(1) predictor. This is presented in the following proposition:

Proposition 3: For the above model, the AR(1) REE is evolutionary E-stable and the MSV REE

is not evolutionary E-stable for all � 2 [0; 1), when K1 �K2 > 0, �0 > 1, and �0 + �1 < 1.

The proof is given in Appendix B. Since the MSE for the AR(1) predictor is always less

or equal to the MSE of the MSV predictor, a larger relative cost for using the MSV predictor

will make the AR(1) predictor the e¢ cient predictor for all levels of heterogeneity. When the

AR(1) solution is evolutionary E-stable for all �0 2 [0; 1), I will refer to the model as being

AR(1) dominant. This result is not found in Guse (2003b) as a non-zero cost for using the MSV

predictor was not considered.

With the possibility of MSV and AR(1) dominance, the above model can be presented in such

a manner where the e¢ cient predictor may randomly change due to some structural shock to the

economy. For instance, the model may switch from being MSV dominant to AR(1) dominant. I

will compare the results of this mechanism using: rational expectations (RE), evolutionary game

theory with no econometric learning, and evolutionary game theory with econometric learning.

3.4 The Markov Process

Assume that a Markov process occurs within the above model. This process will cause a change

of predictor e¢ ciency due to a structural shift to the economy. For example, we may see a

change in monetary policy, �scal policy, technology, or a change in consumer or �rm behavior.

The most e¢ cient predictor may change from such a shock to the economy.

The time invariant Markov chain presented in this paper will follow Ljungqvist and Sargent

(2000). It is de�ned by a triple of objects:

�x 2 Rn,

P

�0
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where �x records the possible values of the states of the system, P is the transition matrix, and �0

records the probabilities of being in each state i at time 0. I make the two standard assumptions

below that are also made by Ljungqvist and Sargent (2000).

Assumption 1: For i = 1,...,n, the matrix P satis�es

nX
j=1

Pij = 1

Assumption 2: The vector �0 satis�es

nX
i=1

�0i = 1.

Matrix P is a stochastic matrix which de�nes the probabilities from moving from one state

to any other in one period. It has the interpretation

Pij = Prob (xt+1 = �xj jxt = �xi) .

The vector �0 has the interpretation

�0i = Prob (x0 = �xi) .

In the case of the Taylor model with only two predictors, the Markov chain is the following:

x =
h�
�A0 ; �

A
1 ;K

A
1 ;K

A
2

�
;
�
�B0 ; �

B
1 ;K

B
1 ;K

B
2

�i
P =

264 P11 P12

P21 P22

375
�0 = [�0;1; (1� �0;1)]
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where

KA
1 = KB

2 = 0

KA
2 = KB

1 = k

k > 0:

To follow the Taylor model, assume that

�A0 = ��A1

�B0 = ��B1 .

3.4.1 State A: The MSV Evolutionary E-stable State

In state A, the MSV REE is evolutionary E-stable since the MSV updating rule is the e¢ cient

predictor. Here there is some cost, KA
2 for using the AR(1) updating rule such that all of the

agents will asymptotically choose the MSV predictor for any �0 2 (0; 1]. For this to occur, it

must be that �A0 < (1� �0)
�1. A natural choice is �A0 < 1 and �

A
1 = ��A0 where the MSV REE

is E-stable for any level of heterogeneity.

3.4.2 State B: The AR(1) Evolutionary E-stable State

State B is the AR(1) evolutionary E-stable state where the AR(1) updating rule is the e¢ cient

predictor for all � 2 [0; 1). With the new relative costs, the AR(1) REE will always be evolution-

ary E-stable if � 6= 1 and the AR(1) REE is E-stable. A natural choice for the parameters here

are �B0 > 1 and �
B
1 = ��B0 where either the MSV or AR(1) MEE is E-stable for all � 2 [0; 1],

and the AR(1) REE is E-stable when � = 0.

3.4.3 Intuition for State Changes and Costs

Although the states represent one of the two predictors being the e¢ cient predictor, a more

interesting interpretation is to assume each state brings a new e¢ cient predictor into the economy.

Assume that agents receive their predictions from one of two existing forecast agencies. One

agency provides predictions from an AR(1) process with learned parameter values while the other
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provides the predictions from the MSV process with learned parameter values. In every state,

one of the two predictors is known as the �new�predictor. In order for the agency with the new

predictor to attract new customers, they will charge a lower cost than the other agency. At a

state change, the old agency will go out of business leaving room for another to enter the market.

Those using the exiting agency�s predictor will then be forced to use the only existing agency�s

predictor. Then, a new agency will enter the market with the exiting agency�s predictor with

some new initial priors. A very small proportion of agents will see this agency enter the market

and will use this new predictor.8

4 Necessary Conditions For Evolution and E-stability

In order for the above system to be stable, the resulting parameter equilibrium must be stable

under learning and the replicator dynamics must asymptotically direct the population to use the

e¢ cient predictor. To achieve this, the parameter estimates, a1t, a2t, and b2t, and the population,

�t, must always be contained within the domain of attraction of the current evolutionary E-stable

REE, � (��). Consider the following restrictions that must be made in order to ensure stability

within the two states.

Assume that the model switches from state B to state A at time t = T . If no agents are

using the new MSV predictor at this time, then the level of heterogeneity will never change by

the replicator dynamics. When the model moves to state A, let

�T = �L > 0

where �L denotes the proportion of intelligent agents who instantaneously discover that the MSV

predictor is e¢ cient at the time of the state switch. This allows some agents a larger degree of

intelligence than others. Assume that there is a subset of agents who do not posses RE, but

they are able to determine the (asymptotic) e¢ ciency of each updating rule at any time, t. All

agents may be able to witness a structural change in the economy, but only these agents see that

8Although the new agency always provides the most e¢ cient predictor, this is only asymptotically. In the
short run, as this agency learns, the MSE for this predictor may be higher than that of the old agency�s prediction.
Therefore, it would not be bene�cial for all agents to use the new predictor at the initial state change.
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this change a¤ects the e¢ ciency of each predictor. Therefore, these agents rationally change

their predictor to the e¢ cient predictor at time T .

Now suppose the model switches from state A to state B at time t = T . Once again, if

no agents use the new AR(1) predictor, then the level of heterogeneity will never change by the

replicator dynamics. Therefore, the more intelligent agents choose the AR(1) updating rule at

the state change such that

�T = �H < 1.

Note that at the time of the state change, the AR(1) predictor may receive new priors. Since the

AR(1) solution is not globally stable under learning, it must be that the new priors are inside

the basin of attraction of the E-stable equilibrium. As discussed in chapter 6 of Evans and

Honkapohja (2001), a reasonable set of priors, within the basin of attraction, and shocks with a

relatively small support should be enough to ensure stability.9

5 Learning Within and Between States

As in previous literature, agents will learn the parameter values of the model using recursive

least squares within each state. Evans and Honkapohja (2001) show that this system of learning

can be written as a stochastic recursive algorithm (SRA):

�t = �t�1 + tH (�t�1; Xt) ,

where �t is a vector of parameter estimates:10

�t = vec (�t St MSEt) ;

�t = (a1t; a2t; b2t)
0
, St is the moment matrix for AR(1) estimation, MSEt = (MSE1t;MSE2t)

0,

Xt is the state vector, H (:) is a function describing how the vector � is updated, and t is a

deterministic positive, nonstochastic, nonincreasing sequence of �gains.� Previous literature has

9A projection facility may alternatively be used, however, it has been criticized in Grandmont and Laroque
(1991), Grandmont (1998), and Moreno and Walker (1994) as being inappropriate for decentralized markets.
10vec is a matrix operator which stacks, in order, the columns of the matrix (�t St MSEt) into a column vector.
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assumed that
1X
t=1

t =1 and
1X
t=1

2t <1.

As time goes by, the present becomes less important in the updating of parameter values. This

causes parameter values to converge asymptotically as long as the initial conditions are contained

within the basin of attraction of the equilibrium.

Learning within a state will be very similar to previous literature. Agents will continue to

update the parameter estimates using recursive least squares. This system can be written using

the above SRA. Within a state, E-stability conditions will hold since the gain parameter will

diminish over time.

At a state change agents using the new e¢ cient updating rule should not emphasize the past

as they did with the other updating rule.11 The gain parameter will not converge to zero when

the model switches between equilibria between states. In this way, once agents learn of the

switch, they will no longer put such a large emphasis on the past data since they are aware of

the recent structural change to the economy.12

5.1 Updating the Gain Parameter Between States

Updating the gain parameter at each state change will be similar to the restarting gain technique

used by Timmermann (1996). When a state switch occurs, at t = T , agents who use the new

e¢ cient predictor, i, will adjust the gain parameter to

iT =
1

!
.

The gain sequence will follow like recursive least squares

i;t+1 =
i;t

1 + i;t
,

11Agents are not aware of the state change until they switch to the e¢ cient predictor. Since they do not know
when the economy is in each state, they can not use information from past states to form expectations.
12This process, with a decreasing gain parameter, produces results similar to �escape dynamics� discussed in

Sargent (1999), Williams (2003b) and Cho, Williams, and Sargent (2002) who assume a constant gain parameter.
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however, at any time before another state change, if

MSEit < (1 + {) � �2

where { > 0, then the gain sequence will be restarted to

i;t+1 =
1

!
.

With the introduction of the con�dence variable in aggregate demand, even a small increase in the

average MSE (decrease in con�dence) can lead to a large change in output and prices.13 Those

using the new predictor are aware of this and therefore, they aggressively learn using a constant

gain learning algorithm. Aggressive learning will continue until the agents are convinced that

they have learned the equilibrium. Agents using the old predictor are not aware of the state

change and therefore, do not restart their gain sequence and continue to use an in�nite memory

learning algorithm.

At any time t, there exists a gain vector,

t = (1t; 2t)

where

1t < 2t

in state A and

2t < 1t

in state B.14 ;15 The new SRA becomes

�t = �t�1 + tH (�t�1; Xt) .
13Too large of a �3 can destabilize the system in which an increase in the average MSE can lead to larger and

larger values for the intercept term, �t from equation (1). The system seems to be stable given my choice of �3.
14Using the E-stability results from Giannitsarou (2003) and Guse (2004a), it can be inferred that the E-stable

equilibrium will be stable under learning even when agents have di¤erent gains and di¤erent PLM�s.
15Here, the gain parameters are random. Random gains that do not converge to zero have been discussed in

Evans, Honkapohja, and Marimon (2001) and Honkapohja and Mitra (2003).
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Within a state (assuming that there is no switch to the other state), each gain sequence has the

same asymptotic property as the previous literature where

lim
t!1

it = 0.

Therefore, learning has the same asymptotic �feel� in each state, but this property will not

appear between states. The probability of staying in the same state forever in the Markov chain

is zero, therefore, within the entire model:

lim
t!1

it 6= 0

since

prob
�
it = !

�1jS (t� 1) = j
�
= pji > 0

and

prob
�
i;t+1 = !

�1jS (t� 1) = i
�
= pijpji > 0

Now, within the model, there will not be convergence to a single equilibrium, but there will be

a tendency of convergence to a single equilibrium within each state.

6 Dynamics

Next, I analyze the dynamics of the model under three conditions. First, the dynamics will be

discussed under rational expectations. This is the case where at the time of the state change,

all of the agents instantaneously change to the new e¢ cient predictor. Next, I will discuss the

dynamics of the case of �fast-slow� learning. This is the case where the variables of the MEE

are learned in�nitely fast compared to the replicator dynamics. Finally, I consider the case of

econometric learning with replicator dynamics. I show that a less rational system accentuates

asymmetry in an Expectational Business Cycle.
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6.1 Con�dence

In order to show a business cycle, from a change in uncertainty, output must be negatively

dependent upon uncertainty. Assume that agents receive utility based upon how well they form

expectations. Agents who are more certain about the status of the current economy will consume

and invest more than those less certain of the status of the economy. More informed agents will

be able to distinguish between permanent and transitory shocks and thus will be able to make

better decisions than less informed agents. The Mean Squared Error will be used as a proxy for

ability to form expectations.

The average level of con�dence in the economy will be the average of the inverses of MSE�s

realized in the previous period:

Ct = �t
1

MSE1;t�1
+ (1� �t)

1

MSE2;t�1
.

As agents learn the REE, con�dence will tend to increase, so at a state change, the level of

con�dence will tend to decrease and then increase as agents learn the REE.

6.2 Rational Expectations

Consider the case of Rational Expectations where all agents know that the state switch occurred

and instantaneously start using the corresponding e¢ cient predictor at time t = T . In this case,

con�dence will be

Ct =
1

�2

in either state at all times. In this case, real GDP, besides white noise, will remain constant

throughout time. This demonstrates that the Markov process is not creating any �uctuations in

output, so if business cycle-like dynamics are to occur, then it must be from agents changing the

way they form expectations. I will show this in both the case of replicator dynamics without

learning and the case of replicator dynamics with learning.
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6.3 Replicator Dynamics without Learning

Next, consider the case where agents learn parameter values in�nitely fast compared to the

replicator dynamics. At every period, the agents know the MEE, but will not necessarily know

which of the two predictors is e¢ cient. Predictor choice will be dictated by the replicator

dynamics directing agents to use the e¢ cient predictor Because agents know the MEE, GDP is

determined by con�dence and the stochastic shocks.

First, consider the dynamics in state A where the MSV REE is evolutionary E-stable. Each

predictor produces the following MSE:16

MSE1 =MSE2 = �
2.

Therefore, the level of con�dence in the economy is:

Ct = �t
1

�2
+ (1� �t)

1

�2
=
1

�2
.

With no learning, the level of con�dence does not change through time, so real GDP will only

change from white noise and no business cycle-like dynamics are produced.

Next, consider the dynamics in state B where the AR(1) REE is evolutionary E-stable. When

the MSV MEE is E-stable, con�dence is the same as it is in state 1 because the MSE�s are the

same for each predictor. However, when the level of � moves to the point where

� < 1� 1

�0
,

then the AR(1) MEE becomes the E-stable solution andMSE1 > MSE2. The level of con�dence

in the economy for � < 1� 1
�0
in state B is the following:

Ct = (1� �t)
1

�2
+ �t

 
1

�2

 
1� (1� (1� �t)�0)

2

(1� �t)
2
�21

!!
<
1

�2
.

16Theoretical MSE0s are presented in appendix C.
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For � 2
h
0; 1� 1

�0

�
, the level of con�dence has a local minimum at

�M =
1 + 2�0 �

p
1 + 8�0

2�0
.

When � is still relatively high, con�dence will decrease as � falls sinceMSE1 is increasing. How-

ever, average con�dence will begin to increase as less agents use the MSV predictor. Therefore,

as � decreases with the replicator dynamics, con�dence �rst stays constant at Ct = 1
�2 , then

decreases, and then returns to:

Ct =
1

�2
.

The results for y are expressed on �gure 1. Since agents know the MEE for all time periods,

y is entirely determined by the level of con�dence (and an error term in which I leave out for

presentation). At time zero, there is a state change from A to B. The level of heterogeneity, �,

decreases when the intelligent agents switch to using the AR(1) updating rule. GDP does not

initially decrease as con�dence does not initially decrease. However, when � < 1 � 1
�0
, output

begins to decline as con�dence declines. When � < �M , output increases with con�dence and

asymptotically returns to the REE level (y = 0). By simple inspection, one can see that the

expectational business cycle is only slightly asymmetric and the decline in output is rather small.

When agents learn the parameters, it turns out that this asymmetry becomes much more obvious

and the decline in output becomes much larger.

FIGURE 1. Expectational Business Cycle -AR(1)

Replicator Dynamics with no Learning
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With no learning, the state change from A to B �rst has no a¤ect on con�dence, but con�dence

changes as the AR(1) MEE becomes the E-stable equilibrium. A change in the e¢ cient predictor

led to an �expectational business cycle� within the state from the replicator dynamics and a

change in the learnable equilibrium. This type of �business cycle�exists because of the replicator

dynamics and not the Markov process.

6.4 Replicator Dynamics with Learning

In the previous section, a change to state A did not produce an �expectational business cycle.�

This was due to agents having rational expectations. A more interesting result would be the

possibility of a decrease in con�dence from such a state change. Econometric learning creates

such properties for this model. This section will show that the existence of learning may create

a further possibility of an �expectational business cycle.�

Consider the following learning algorithm:

�t = �t�1 + tH (�t�1; Xt)
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where �t = vec (�t St MSEt) andMSE
0
t = (MSE1t;MSE2t). The �rst two components of this

SRA are

�t = �t�1 + t

0BBBB@
yt � a1;t�1 � �vt�1

S�1t�1zt�1

0B@yt � z0t�1
0B@ a2;t�1

b2;t�1

1CA� �vt�1
1CA
1CCCCA (9)

St = St�1 + t(ztz
0
t � St�1) (10)

where

�0t�1 = (a1;t�1; a2;t�1; bt�1);

z0t�1 = (1; yt�1):

The MSE component of the SRA is the following:

MSEt = MSEt�1 +

m �

0BBBB@
0BBBB@

(pt � a1;t�1)20B@pt � z0t�1
0B@ a2;t�1

b2;t�1

1CA
1CA
2

1CCCCA�MSEt�1
1CCCCA (11)

where m > 0 is a �xed gain parameter. MSEt demonstrates how well the learned parameters,

for each predictor, have predicted pt. It is important since the con�dence variable, Ct, is

based upon the ability to predict. The agents do not learn this value, but they do receive the

corresponding level of uncertainty from it. Since this value is not learned by the agents, it will

be generated by a �nite memory algorithm. Equation (11) will provide di¤erent dynamics of

con�dence and output in state A than what was shown with no learning.

6.4.1 State B to State A

FIGURE 2. Expectational Business Cycle-MSV

Replicator Dynamics with Learning
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First, consider the dynamics from a change from state B to state A. Recall that at this

change, the MSV updating rule becomes the e¢ cient predictor over the AR(1) updating rule.

For simplicity, assume that at t = T1 � 1, the agents have learned the AR(1) REE, and � = 0.

This means that MSE2 = �2, so the level of con�dence is equal to:

Ct =
1

�2
.

At time t = T1, assume that a small amount of agents, � = �L, see the state change and decide

to use the MSV predictor and

MSET1 =

0B@ �2

�2

1CA
as it is in the case with no learning.

Learning will now change the dynamics of the level of con�dence through time. Consider

the replicator dynamics at t = T1:

�T1+1 = �L

 
1
�2

�L
�
1
�2

�
+ (1� �L) �

�
1
�2 �KA

2

�! .
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Since KA
2 > 0, there will be more agents using the MSV predictor at t = T1 + 1

17 . The agents

will continue to choose the MSV predictor over the AR(1) predictor until all agents are using

the MSV predictor. Those using the MSV predictor are updating their estimates with a larger

gain. Therefore, a2 and b2 parameters will be updated relatively slowly and thus the updated

MSE2 will increase. As long as the learned parameters for a2 and b2 are not equal to a1 and

0 respectively, the MSE2 will continue to increase. An increase in the MSE2 will decrease

Ct and thus increase �t in equation (1). This then increases MSE1 and further increases �t.

With aggressive learning, the agents using the e¢ cient updating rule prevent �t from diverging

to in�nity. As more agents use the e¢ cient predictor, and the agents are more certain of the

updating rule, the value of �t decreases and converges to �t = m, the REE value.

Figure 2 presents the dynamics of output and � when the MSV updating rule becomes the

e¢ cient predictor. It is a result of average of 1000 simulation results where the economy is in

state B for the �rst 5000 periods and is in state A for the next 5000 periods. The values used

for all the simulations are: �2 = 2, �3 = 20, �1 = 3:2, �2 = :6, � = 20, and �2 = 1. Since

�0 is homogeneous of degree 1 with respect to �1 and �1 and the coe¢ cients on the error terms

are homogeneous of degree zero with respect to the same variables, I change only these values

between the two states In state A, �1 = �1 = 2 so that �
A
0 = 0:5, and in state B, �1 = �1 = 12,

so that �B0 = 3.

In �gure 2, output decreases for the �rst 150 periods with a small increase in agents using the

e¢ cient predictor. This large change in output comes from an increase in bothMSE0s as agents

are learning the new equilibrium. The replicator dynamics direct all the agents towards using

the MSV updating rule. As more agents use this rule, Ct increases and thus output increases as

well. However, since agents are still learning, the expansion back to equilibrium is slower than

the initial recession. Therefore, the combination of learning and replicator dynamics produce

an asymmetric Expectational Business Cycle.

17Since I am looking at real-time dynamics, there is a possibility that U1 < U2 from the estimated MSE�s. In
this case, assume that the agents using the MSV predictor know their future utility will be greater than the utility
of using the AR(1) predictor, thus they will choose to keep using the asymptotically �e¢ cient�predictor.
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6.4.2 State A to State B

FIGURE 3. Expectational Business Cycle-AR(1)

Replicator Dynamics with Learning

Next, I examine the dynamics from a change to state B where the AR(1) updating rule

becomes the e¢ cient predictor. Assume that the economy has reached the equilibrium levels

prior to this state change so that � = 1 and Ct = 1
�2 . At time T2, assume that a small proportion

of agents, (1� �H) see the state change and switch to using the AR(1) updating rule. Here,

MSET2 =

0B@ �2

�2

1CA
as it is in the case with no learning.

Next consider the replicator dynamics when there is a cost for using the MSV predictor of
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KB
1 > 0 at t = T2:

�T2+1 = (1� �L)
 

1
�2

(1� �L)
�
1
�2 �KB

1

�
+ �L �

�
1
�2

�! .
The proportion of agents using the AR(1) predictor will increase as times goes by. Those now

using the AR(1) updating rule are learning more aggressively than the agents using the MSV

updating rule. Small shocks to the system can lead to those using the AR(1) updating rule to

believe that b2 6= 0 even though the MSV MEE is E-stable for � > 1� 1
�0
. As a result, MSE2

may increase leading to an increase in �t. This will then in turn increase MSE1 as these agents

are not learning as aggressively as the AR(1) learners. The process of learning thus leads to

an overall decrease in the level of con�dence, Ct and a decrease in output. As less agents use

the MSV learning rule, the level of con�dence and output will increase back to their equilibrium

levels.

Figure 3 shows that the real-time learning dynamics of the model in state B are much di¤erent

than the dynamics without learning. After the state change, there is a rather short period small

increase in output. This occurs due to the empirical MSE�s being smaller than �2. However, as

this goes away, output reduces rather quickly when the majority of agents are still using the MSV

updating rule. Using learning and an estimated MSE results in a faster arrival of a recession

than with RE and replicator dynamics. The expected arrival time of the recession is shown by

the �rst vertical gray line in �gure 3. Learning also extends the length of the recession. In �gure

3, the expected length of the recession is the distance between the �rst and second gray lines.

However, one can see that the length between the �rst peak and the valley is much greater. By

comparing �gure 3 with �gure 1, one can see how learning greatly accentuates the asymmetry

in the Expectational Business Cycle. In �gure 1, the recovery is just a little longer than the

decline, but with learning, �gure 3 shows that the recovery is approximately 3 times longer than

the decline.

6.4.3 The Markov Process

Next, �gure 4 shows the dynamics of the system under a Markov Process. The parameter values

in states A and B are the same as above and the model arbitrarily initially starts in state A.
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Within each state, the probability of entering the other state is .03% meaning that 3 state changes

should occur on average for a simulation of 10,000 periods. A simulation of the Markov process

was �rst run for 10,000 periods. Then, using this process, 1000 simulations each consisting of

10,000 periods was run to smooth the data as was done above.

Figure 4 shows that the Markov process can a¤ect the length of both the expansions and

the recessions. There is a long period of expansion after the recession caused by the �rst state

change due to a long period of staying in state B. When there is no change in the e¢ cient

predictor, learning allows agents to unknowingly coordinate to the REE. When the agents learn

the REE, they become quite con�dent about their ability to forecast and thus the random i.i.d.

shocks are dictating the dynamics of the economy.

There is a substantially smaller time period between the second and third state changes.

After the second state change, agents do not have enough time to learn the new social norm

predictor and do not learn the REE before the third state change. As a result, agents are

quite confused about which predictor is e¢ cient. A recession may last quite a long time on the

unlikely result of several state changes over a short time period.

The recessions as a result of a switch to state B are on average much larger than those from

state A. This results from the fact that the price level is not a stationary system in the short

run due to the change in MSE�s. At the change to state B, the initial proportion of agents who

use the MSV updating rule is set at .99. A small shock to the economy can lead to a higher

average MSE. The average MSE feeds back into the system making it no longer stationary since

the constant is now dependent on the average MSE. This further increases the MSE for using

the MSV rule.18 The replicator dynamics directs agents using the MSV updating rule to use

the AR(1) rule. As more agents us the AR(1) rule, the e¤ect from the higher MSE diminishes

and the process becomes stationary again. This process does not typically occur during the

transition dynamics in state A because most of the agents initially use an updating rule that can

learn a non-stationary equilibrium. During these dynamics, when most of the agents are using

the MSV rule, the recession has ended and thus the system is again stationary.

18A large value of �3 can lead to the process becoming highly unstationary in the short run and thus a non-stable
system. Assuming a small enough �3 is equivalent to assuming a stationary solution.
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FIGURE 4. The Full System

6.4.4 Discussion of Results

Hamilton (1989) presents a model where the parameters of an autoregression are an outcome a

Markov process. Here an econometrician must make an inference of the unobserved state based

on the observed behavior of the economy. Hamilton presents an empirical application to his

technique where there is a two state process: one state is positive growth while the other state is

negative growth which is a recurrent feature of the U.S. business cycle. He �nds that a typical

recession is associated with a 3% permanent drop in the level of GNP.

The above model is similar as it incorporates a Markov process, however, it is not intended

for estimation. For explaining the dynamics of a business cycle, this technique is more realistic

than Hamilton�s for two reasons. First, recessions and expansions are dictated by expectations

and learning dynamics and not some exogenous state change. Recall the relationship between

business cycles and expectations which suggests that learning may be quite an important mech-

anism when describing the business cycle. Second, Hamilton�s technique suggests that a long
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recession or very short recession may be more common than suggested by the above model. This

is due to the process being driven by exogenous state changes and not an endogenous propaga-

tion mechanism. Above, a recession occurs as a response to a state change, but dissipates as

agents learn the new equilibrium. Under "normal" circumstances, a very short recession could

not occur while a long recession could only occur due to several unlikely state changes.

I have shown that as rationality decreases, the e¤ect from a state change to aggregate output

is greatly magni�ed. First, the arrival time of the decline in output is shortened when agents

learn the parameters of the model and the cycle takes longer to return to the equilibrium value.

Second, the overall decline itself is much greater than it is without learning and only the replicator

dynamics. These results show how limited information can negatively a¤ect the economy.

Uninformed, risk-averse agents will tend to produce and consume less than what they would

with more information. In the model above, suppose that there was an outside agent that

provided additional (correct) information. With this additional information, agents can learn

and discover the best way to learn faster than without the information. By providing the

additional information, the outside agent could prevent such large downswings of aggregate

output due to uncertainty.

7 Conclusion

This paper has developed a model of business cycles through the process of learning and replicator

dynamics. The model used is a simple self referential linear stochastic model discussed in Taylor

(1977). This model is provided as a starting point to introduce the concept of Expectational

Business Cycles. I assumed a stationary process for the model for any �, the proportion of agents

who use the MSV predictor, such that stability properties will always occur in the model. From

this assumption, it follows that the results in Guse (2003b) can be used to determine stability

under learning and evolutionary dynamics of the equilibria in the model. The e¢ cient predictor

in the model changes randomly via a two-state Markov process.

The stability properties of the model are dependent upon the initial value of �, so the initial

values of certain parameters are restricted after a state change. These changes arise from an

assumption that agents change their guess of the �e¢ cient� predictor when they see a state
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change, and some �intelligent�agents can see every state change instantaneously. Next, I allow

the gain parameter used for learning to adjust in order to have stable learning dynamics within

each state.

I discuss the theoretical dynamics of the model within three frameworks. To do this, the

con�dence level is de�ned such that it will change through time with changes in uncertainty.

The case of rational expectations is �rst considered which shows that aggregate output does not

change between each state change. This means that the Markov process alone does not generate

any business cycles. Next, the case of replicator dynamics without learning is considered. Here,

the transitional dynamics provide aggregate �uctuations like that of a business cycle in one of

the two state changes. When learning is included in the model, these aggregate �uctuations

are further accentuated. The arrival time of the expectational business cycle is shortened and

the overall decrease in output due to uncertainty is greatly increased. These results suggest

the importance of providing information to agents who make decisions based on uncertainty. If

the overall uncertainty is minimized, then the decrease of output due to uncertainly should be

minimized as well.
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Appendix A. Proof of Proposition 2

Guse (2003a) shows that the MSV MEE is E-stable for all � 2 (0; 1] when �0 < 1 and

�0 = ��1. Here, the AR(1) MEE is never E-stable. Without loss of generality, assume that

K1 = 0 and K2 > 0. When the cost for using the AR(1) predictor is K2 > 0, the replicator

dynamics is (assuming � = 0)

�t =
1
�2

1
�2 �

�
1� �t�1

�
K2

�t�1.

For � 2 (0; 1), this is an increasing function, so with the nature of the replicator dynamics, it

follows that:

lim
t!1

�t = 1.

Therefore, the MSV REE is evolutionary E-stable and the AR(1) REE is never evolutionary

E-stable for all � 2 [0; 1), when �0 < 1 and K1 �K2 < 0.

Appendix B. Proof of Proposition 3

Guse (2003a) shows that for �0 + �1 < 1, the AR(1) mixed expectations equilibrium (MEE)

is E-stable for all � 2 [0; 1 � 1
�0
) and the MSV MEE is E-stable for all � 2

h
1� 1

�0
; 1
i
. If

� = 1� 1
�0
, the MSV and AR(1) MEE are equivalent at:

a1 = �

a2 = �

b2 = 0.

Here, there is a natural exchange of E-stability from MSV to AR(1) when � decreases from 1 to

0. Guse (2003a) shows that at this point of E-stability exchange,

MSE1 =MSE2

Without loss of generality, assume that K2 = 0 and K1 > 0. For � > 1 � 1
�0
, assume that
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� = 0. The replicator dynamics becomes

�t =
1
�2 �K1

1
�2 � �t�1K1

�t�1.

It can be easily seen that this is a decreasing function for � 2
�
1� 1

�0
; 1
�
, so �t will tend to

decrease as t!1.

For � < 1� 1
�0
, it turns out that

MSE1 > MSE2

for all � 2 [0; 1 � 1
�0
). Here, the replicator dynamics is also a decreasing function. From the

nature of the replicator dynamics, it turns out that

lim
t!1

�t = 0.

Therefore, for any �0 2 [0; 1) the AR(1) REE is evolutionary E-stable and the MSV REE is

never evolutionary E-stable.

Appendix C. Calculation of the MSE for both of the PLM�s

MSE for the �rst PLM

PLM1:

MSE1 = E (y � a1)2

= E (y � E (y))2

= V ar (y)

=
�2v

1� b2

If b=0 then the MSE from the �rst predictor becomes:

MSE1 = �
2
v (12)
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When we enter the MEE values in for the MSE1 we get the following solution:

MSE1 =
(1� �)2�2v�21

(1� �)2�21 � (1� (1� �)�0)2
(13)

MSE for the second PLM

PLM2:

MSE2 = E(y � a2 � b2yt�1)2

= E(Ta2 + Tb2yt�1 + vt � a2 � b2yt�1)2

= �2v (14)

The mean square error for the second predictor will always be �2 as long as y follows a stationary

process. This means that the MSE1 � MSE2 for all E-stable stationary values of �, �0, and

�1. This intuitively makes sense because the AR(1) predictor is always unbiased while the MSV

predictor is unbiased only when b2 = 0.
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