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Abstract

This paper proposes a new way of extracting inflation information from the term structure.

We rehabilitate the Fisher equation, by setting it in the context of the stochastic discount factor

(SDF) asset pricing theory. We develop a multivariate estimation framework which models the

term structure of interest rates in a manner consistent with the SDF theory while at the same time

generating and including an often omitted time varying risk component in the Fisher equation.

The joint distribution of excess holding period bond returns of different maturity and fundamental

macroeconomic factors is modelled on the basis of the consumption CAPM, using multivariate

GARCH with conditional covariances in the mean to capture the term premia. We apply this

methodology to the U.S. economy, re-examining the Fisher equation at horizons of up to one year.

We find it offers substantial evidence in support of the Fisher equation and greatly improves its

goodness of fit, at all horizons.

Keywords: Inflation, Fisher equation, Term structure, the stochastic discount factor model,

term premia, GARCH

JEL Classification: G1, E3, E4, C5

Acknowledgements: We would like to express particular thanks to Peter Smith for many helpful

suggestions.

0



1 Inflation Prediction and the Term Structure of Interest

Rates

Macroeconomists and financial analysts have rarely found that they have a lot to discuss. All

too often it has seemed as if their perspectives on the same economic phenomena were vastly

different. The increasingly widespread adoption of inflation targeting is causing this to change.

They now have a shared interest in the term structure of interest rates. Macroeconomists examine

the level and slope of the yield curve for its information content on future inflation and output

as indicators of the current stance of monetary policy and of central bank credibility. Financial

analysts try to assess the impact of current and future inflation and output on the shape of the

yield curve and on term premia. In this paper we propose a new way to extract inflation forecasts

from the term structure based on taking account of term premia. Previous methods of trying to

recover information about the future path of inflation from the term structure have ignored the

information contained in term premia. We show that using this additional financial information

considerably improves inflation forecasts.

Although our interest in this paper is the information contained in the term structure about

future inflation, there is an entirely different literature on forecasting inflation which is based on

the use of standard time series forecasting methods. This literature aims to forecast inflation

largely from its past, but also from the past values of other variables, see for example Cecchetti,

Chu and Steindel (2001). An extensive comparison of the forecasting performance of some leading

models of inflation for the cross-section of G-7 countries has been undertaken by Canova (2002).

He shows that simple, univariate, autoregressive models can often outperform the bivariate and

trivariate models suggested by economic theory. Although there is no necessary reason for a good

forecasting model to have theoretical underpinnings, theory may still be able to help in the choice

of model to use. It is partly with this observation in mind that we take the approach of using the

information contained in the term structure.
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The main advantage of using the term structure is that it instantly and efficiently incorporates

new market information about inflation. As is well known, the yield to maturity on an n-period

bond is the expected value of the average of future one-period rates plus the expected value of the

average term premium on that bond for the rest of its life. Further, through the Fisher equation,

future one-period rates depend on expected future inflation. This provides a connection between

the current yield to maturity and the market’s expectation of future inflation. As a result, the

term structure of yields in the current period provides information about inflation over each of

the next n periods.

In addition to giving forecasts of future inflation, this also provides a useful check on the cred-

ibility of monetary policy. It enables a comparison to be made between the market’s expectations

of inflation and the inflation pronouncements of the monetary authority. This information is now

commonly taken into account when setting monetary policy as it enables the monetary authority

to respond to the market’s expectations or to adopt forward looking Taylor rules which rely on

forecasts of inflation for implementation (see Batini and Haldane (1998)).

The problem that remains is how best to extract inflation expectations from the term structure.

There is a large literature on this that began in the early 1980’s, see for example Fama and

Gibbons (1982). Notable more recent contributions include those by Schich (1999), Stock and

Watson (2003), Estrella, Rodrigues and Schich (2003) and Hardouvelis and Malliaropulos (2004).

The basis of forecasting inflation from the term structure is to form an n-period version of

the Fisher equation by combining the term structure with the one-period Fisher equation. This

relates the yield to maturity on an n-period bond to the expected value of average future inflation

and the underlying real interest rate over the next n-periods plus a risk premium, known as the

rolling risk premium. The problem is that two of these components (the real interest rate and

the rolling risk premium) are unobservable. The usual response, in practice, is to assume that the

underlying real interest rate is constant and to ignore the rolling risk premium. As both economic

constraints imposed by this approach are counter-intuitive and have been rejected by a large body

2



of research we propose an alternative response.

The key contribution of this paper is to take account of the rolling risk premium by using an

estimate obtained from a stochastic discount (SDF) model of the term structure. Further, we

allow for a time-varying ex ante real interest rate. We show that this considerably improves the

inflation forecasts of the Fisher equation. This approach is prompted by the findings of Balfoussia

and Wickens (2004) who used an SDF model to show how term premia are related to inflation and

how it is possible to obtain time series estimates of term premia based on observed macroeconomic

variables.

Previous work by Remolona, Wickens and Gong (1998) took a related approach. They esti-

mated a rolling inflation risk premium using an affine two-factor Cox-Ingersoll-Ross pricing model

of the U.K. nominal yield curve and a one-factor model of the real (indexed-linked) yield curve.

This was an improvement over the break-even approach of Barr and Campbell (1997) and Deakon

and Derry (1994) which simply subtracted indexed from nominal yields to obtain an estimate of

expected future inflation, as it takes into account not only the real risk premium but also the

inflation risk premium. Nevertheless, the significance of the risk premium in the Fisher equation

is not directly examined in this literature.1 Shome, Smith and Pinkerton (1988) are the first to

theoretically model a time-varying risk premium in the Fisher equation. However, their univariate

framework does not allow its direct estimation, obliging them to use survey data instead. Evans

and Wachtel (1992) generate a risk premium proxy in a preliminary step and subsequently include

it in univariate estimation of the Fisher equation, but do not model the conditional covariance of

bond returns with the pricing kernel. The advantage of the approach adopted in this paper is that

by jointly modelling the term structure and macroeconomic variables in a stochastic discount fac-

tor model we obtain a less restrictive specification of the risk premium than affine term structure

models while allowing its direct inclusion in the Fisher equation.

1 Moreover, the implementation of such models for the US is difficult since index-linked debt has only recently
been introduced.
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The paper is structured as follows. In Section 2 we construct the theoretical model proposed.

We first discuss the SDF asset pricing framework and the Fisher equation in some detail. Sub-

sequently, we propose a multivariate estimation framework, which models the term structure of

interest rates in a manner consistent with the SDF theory, while at the same time generating and

including a time varying risk component in the Fisher equation. The econometric methodology,

set out in Section 3, modifies the multi-variate GARCH model to fit our specification. The data

are described in Section 4. Section 5 presents the estimates obtained when this methodology is

applied to the U.S. economy, re-examining the Fisher equation at horizons of up to one year.

Finally, in Section 6 we present our conclusions.

2 Theoretical Framework

2.1 Notation and basic concepts

We use the following notation. Pn,t is the price of an n-period, zero-coupon (pure discount)

default-free bond at t, where P0,t= 1 as the pay-off at maturity is 1. Rn,t is the yield to maturity

of this bond, where the one-period, risk-free rate R1,t= st. The return to holding an n-period

bond for one period from t to t+ 1 is hn,t+1. It follows that

Pn,t =
1

[1 +Rn,t]n

and

1 + hn,t+1 =
Pn−1,t+1
Pn,t

(1)

If pn,t = lnPn,t then, taking logs

hn,t+1 ' pn−1,t+1 − pn,t = nRn,t − (n− 1)Rn−1,t+1 (2)

In the absence of arbitrage opportunities, after adjusting for risk, investors are indifferent

between holding an n-period bond for one period and holding a risk-free 1-period bond. In the
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absence of default, the risk is due to the price of the bond next period being unknown this period.

Et[hn,t+1] = st + ρn,t (3)

where ρn,t is the risk, or term, premium on an n-period bond at time t.

2.2 A general equilibrium SDF model of the term structure

The SDF model relates the price of an n-period zero-coupon bond in period t to its discounted

price in period t+ 1 when it has n− 1 periods to maturity. Thus

Pn,t = Et[Mt+1Pn−1,t+1]

where Mt+1 is a stochastic discount factor, or pricing kernel. It follows that

Et[Mt+1(1 + hn,t+1)] = 1

and for n = 1,

(1 + st)Et[Mt+1] = 1

If Pn,t and Mt+1 are jointly log-normally distributed and mt+1 = lnMt+1 then

pn,t = Et(mt+1) +Et(pn−1,t+1) +
1

2
Vt(mt+1) +

1

2
Vt(pn−1,t+1) + Covt(mt+1, pn−1,t+1) (4)

and as po,t = 0,

p1,t = Et(mt+1) +
1

2
Vt(mt+1) (5)

Subtracting (5) from (4) and re-arranging gives the no-arbitrage equation

Et(pn−1,t+1)− pn,t + p1,t +
1

2
Vt(pn−1,t+1) = −Covt(mt+1, pn−1,t+1) (6)

Using (1) this can be re-written in terms of holding-period returns as

Et(hn,t+1 − st) +
1

2
Vt(hn,t+1) = −Covt(mt+1, hn,t+1) (7)
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This is the fundamental no-arbitrage condition for an n-period bond2 which must be satisfied to

ensure there are no arbitrage opportunities across the term structure. The term on the right-hand

side is the term premium and 1
2Vt(hn,t+1) is the Jensen effect. Comparing equations (3) and (7),

we note the SDF model implies that

ρn,t = −
1

2
Vt(hn,t+1)− Covt(mt+1, hn,t+1)

Empirical work on the term structure can be distinguished by the choice of ρn,t and the

discount factor mt. The expectations hypothesis assumes that ρn,t = 0 but this is rejected by a

vast amount of evidence. We shall therefore assume that the risk premium is non-negligible and

hence must be explicitly modelled.

To complete the specification, it is necessary to specify mt. Assuming joint log-normality of

the excess returns and the factors, mt is a linear function of the underlying factors. The SDF

model does not specify which factors to use. Different formulations of the SDF model for the

term structure are discussed and tested in Balfoussia and Wickens (2004). The best known SDF

model is the general equilibrium consumption-based capital asset pricing model (C-CAPM) based

on power utility. For nominal returns C-CAPM defines mt+1 as

mt+1 ' lnβ − σ
∆Ct+1
Ct

− π1,t+1 (8)

where Ct is real consumption, π1,t+1 is the rate of inflation3 between periods t and t+1, β is the

discount factor for computing the present value of current and future utility and σ is the coefficient

of relative risk aversion. The no-arbitrage condition for an n-period bond is then obtained from

equation (7) as

Et(hn,t+1 − st) = −
1

2
Vt(hn,t+1) + σCovt(

∆Ct+1
Ct

, hn,t+1) + Covt(π1,t+1, hn,t+1) (9)

2 Arbitrage opportunities are excluded if and only if there exists a unique positive stochastic discount factor
Mt+1 that prices all assets (Cochrane 2001). In the models presented in this paper a positive discount factor is
used to price bonds of all maturities included in each estimation.

3 Throughout this paper we denote the rate of inflation realised during the single period from time t to t+1 by
π1,t+1. We use πn,t+1 to denote the inflation rate between times t and t+ n. Hence n is the horizon over which
inflation is measured.

6



The right hand side of expression (9) is the risk premium ρn,t. This implies that the greater the

predicted covariation of the risky return with consumption growth and inflation, the higher the

risk premium. In other words, assets are being priced in accordance to the insurance they offer

against adverse movements in consumption.

As condition (9) is required to hold for all bonds, it provides a set of restrictions across the

term structure that guarantee the absence of arbitrage opportunities between bonds of different

maturities. However, Balfoussia andWickens (2004) found that these restrictions were not satisfied

for the US term structure and that a more general model was required, in which the log discount

factor depended on the time to maturity. As our primary aim is to assess the forecasting ability

of the term structure with respect to inflation, we extend their specification to include inflation

over different horizons in the future. The log stochastic discount factor for forecasting inflation at

the n-month horizon shall take the form

mn,t+1 ' an + bn,C
∆Ct+1
Ct

+ bn,ππn,t+1 (10)

where πn,t+1 denotes realised inflation between period t and period t + n. This specification

remains in line with the C-CAPM intuition, while allowing us to jointly model inflation over an

n-period horizon.4 The resulting asset pricing equation is

Et(hn,t+1 − st) = −
1

2
Vt(hn,t+1) + bn,CCovt(

∆Ct+1
Ct

, hn,t+1) + bn,πCovt(πn,t+1, hn,t+1) (11)

where the right-hand side of the expression is a measure of the risk premium ρn,t. This shall be

endogenously generated in our estimation and will form the basis of the risk premium component

to be included in the Fisher equation.

4 The use of πn,t+1 instead of π1,t+1 allows us to model inflation over different horizons in our multivariate
framework. Although strictly not exact, such deviations from the theory-implied SDF specification are very common
in the literature. Examples can be found in recent research on affine term structure models, much of which uses
year-on-year growth rates of macroeconomic variables as their observable factors, despite the fact that the term
structure data used are typically monthly. See for instance Ang and Piazzesi (03), DeWachter, Lyrio and Maes
(04) and Diebold, Rudebusch and Aruoba (04).
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2.3 The Fisher equation under uncertainty

2.3.1 The n-period Fisher equation

The Fisher (30) equation is a simple decomposition of the nominal interest rate into a real rate

and an expected inflation component. For the short rate st it takes the following, familiar form

st = rt +Et[π1,t+1] (12)

where rt is the one-period underlying real interest rate and Et[π1,t+1] is the one period ahead

inflation expectation, conditional on information available at time t. We seek a corresponding

relation for the yield to maturity on an n-period bond.5

The relation between the yield to maturity and the short rate is obtained from equations (2)

and (3). Eliminating the holding-period yield gives

Et[hn,t+1] = Et[nRn,t − (n− 1)Rn−1,t+1] = st + ρn,t (13)

This gives an unstable difference equation for Rn,t

Rn,t =
n− 1
n

Et[Rn−1,t+1] +
1

n
(st + ρn,t)

It can be solved forwards to give the following intuitive decomposition of the yield to maturity

into the expected value of average current and future short rates and the expected value of the

average risk premium until maturity on that bond

Rn,t =
1

n

n−1X
i=0

Etst+i +
1

n

n−1X
i=0

Etρn−i,t+i (14)

Using the Fisher equation (12) to eliminate the short rate from equation (14) we obtain the

n-period Fisher equation

Rn,t =
1

n

n−1X
i=0

Etrt+i +
1

n

nX
i=1

Etπ1,t+i +
1

n

n−1X
i=0

Etρn−i,t+i (15)

5 In early work (see Fama (75), Barthold and Dougan (86) for instance) the Fisher equation was often directly
extended to bonds of any maturity. However, in an uncertain world with risk averse agents, Fisher’s original
proposition is only accurate for the short rate which, by assumption, is taken to be risk free. Hence we draw on
term structure theory in order to derive a more general version of the Fisher equation for the n-period bond, which
will allow for risk compensation.
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The yield to maturity on an n-period bond is therefore equal to the expected value of the average

real interest rate and future inflation over the next n-periods plus a risk premium, known as the

rolling risk premium. In other words, we have decomposed the yield into three components: a

real, a nominal and a risk component, all of which are functions of the time to maturity.

Inflation prediction from the term structure consists of recovering the forward-looking inflation

component in equation (15) which can be re-written as

Etπn,t+1 = Rn,t − ψn,t − ωn,t (16)

where Etπn,t+1 =
1

n

Pn
i=1Etπ1,t+i is the average expected inflation between times t and t + n,

ψn,t =
1

n

Pn−1
i=0 Etrt+i denotes the average expected real rate and ωn,t =

1

n

Pn−1
i=0 Etρn−i,t+i is

the rolling risk premium of an n-period bond at time t.6 7 Although extracting expectations is,

in general, not an easy task, the additional complication in this case is that the last two terms in

equation (16) are unobservable ex ante as well as ex post.

It is common to assume that the average real interest rate is constant over time plus risk

neutrality implying that ωn,t = 0. The resulting forecasting equation for inflation is

πn,t+1 = a+ bRn,t + ηn,t (17)

where the constant a replaces both the average real rate and the risk premium component of

equation (16) and ηn,t is an error term. We use Chow’s test to examine the stability of this

constrained form of the n-period Fisher equation over our sample period. Table 1 reports two test

statistics for Chow’s test, the F-statistic and the likelihood ratio.8 The hypothesis of coefficient

6 Note that the decomposition of equation 16 involves the average of expected one-period real interest rates
which are by assumption risk free, while both real and nominal risk are captured by the rolling risk premium.

7 Variations of equation 16 are occasionally referred to in the literature as the “inverse generalised Fisher
equation”.

8 The principle of the Chow test is to fit the equation separately for each of two or more subsamples, in order to
examine whether there are significant differences in the estimated equations. On the basis of the structural breaks
commonly found in the literature and of the evolution of the ex post real rate over our sample period (see Figure 1)
we select as breakpoints the two months corresponding to the adoption and the abandonment of strict money-base
targeting by the Fed, that is October 1979 and October 1982. The test statistic is based on a comparison of the sum
of squared residuals obtained by fitting a single equation to the entire sample with that obtained when separate
equations are fitted to each subsample of the data. It is distributed as an F -distribution, a significant difference
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stability is decisively rejected at all horizons, suggesting that either or both of these common

assumptions are unrealistic. Recent research confirms this conclusion.

2.3.2 The real rate component

There is substantial empirical evidence that a constant alone cannot adequately capture the real

rate component in the Fisher equation. Mishkin (1990) and Caporale and Pittis (1998) find

the ex ante US real interest rate to be significantly time-varying. Malliaropulos (2000), Evans

and Lewis (1995) and Garcia and Perron (1996) report evidence of structural breaks in its mean

while, in different contexts, Chen (2001) and Shrestha, Chen and Lee (2002) also draw the same

conclusion. Moosa and Kwiecien (1999) demonstrate for the US that relaxing the assumption of

a constant real interest rate renders the Fisher equation a more accurate and efficient forecasting

tool. Consequently we must allow for a time-varying ex ante real rate in the Fisher equation, if

we are to ensure it is not misspecified.

The only observable measure of the underlying real rate is the ex post real interest rate. This

differs from the ex ante real interest rate by the errors involved in predicting both the real rate

and inflation. Nevertheless, assuming that agents are rational and hence that their errors are

independent and have a zero mean, we can use a smoothed function of the ex post real interest

rate as a proxy. We use the realised, ex post 1-month real interest rate which, by assumption, is

risk free.9 As this is likely to be much more volatile than the ex ante 1-month real interest rate,

let alone the 3, 6 or 12-month averages we are actually proxying for, we take the two-year moving

average of this variable instead. In this way we are using information on the changes in the trend

of the underlying ex ante real interest rate, while not allowing the month-to-month shocks and

indicating a structural change in the underlying relationship. We also report a second test statistic for this test,
the likelihood ratio statistic. This is based on the comparison of the restricted and unrestricted maximum of the
log-likelihood function and, in this test, has an asymptotic distribution with 4 degrees of freedom under the null
hypothesis of no structural change. Maddala (92) offers a textbook discussion of Chow’s various specification tests.

9 In contrast, the ex post real interest rates of longer maturities would include a non-negligible risk premium
component associated with perceived real risk in the economy. This would contaminate our primary effort to model
and estimate the rolling risk premium, especially since our rolling risk premium measure will include a conditional
consumption covariance term which can be thought of as a direct measure of the real risk premium. Hence, the ex
post 1-month real interest rate is preferable, irrespective of the prediction horizon.
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expectation errors included in the ex post real interest rate to enter our estimation. We include

the first lag of this variable in the Fisher equation, a quantity known at time t. Hence our real

rate proxy, which we denote by ψ̃t is
10

ψ̃t =
1

24

24X
l=1

(st−l − π1,t−l) (18)

2.3.3 The rolling risk premium

Empirical research allowing for a time-varying risk premium in the Fisher equation is limited,

having emerged only after the rejection of the “pure” expectations hypothesis of the term structure

in the 1980s and early 1990s.11 In a notable early paper, Shome, Smith and Pinkerton (1988)

use survey data as well as time series forecasts to establish the significance of modelling the risk

premium in the Fisher equation. Evans and Wachtel (1992) confirm their results while, more

recently, Evans (2003) finds that the presence of time-varying risk premia in the term structure

makes inferences regarding expected inflation based on the classic Fisher equation very unreliable,

the link between the current term structure and expectations of future inflation only approaching

the implied relation at very long horizons.

However, the asset pricing literature, albeit in a different context, offers abundant evidence on

this issue. Recent research on term structure dynamics unequivocally rejects risk-neutrality and

maintains that bond risk premia are not only significant but also highly time-varying. See for

example Cochrane and Piazzesi (2005), Duffee (2002), Piazzesi (2003) and Tzavalis (2003). This

financial information has several interesting implications for macroeconomists, inter alia that it

potentially casts doubt on much of the empirical work on the Fisher equation. Based on this

evidence, to omit or constrain the rolling risk premium to a constant could lead to substantial

10 Since this proxy will be used in all Fisher equation estimations, irrespective of the horizon examined, the
subscript n is henceforth omitted from the notation.

11 Indeed, even in recent research the information content of the term structure on future inflation is often defined
simply as the ability of the slope of the yield curve to predict changes in inflation. For example, Mishkin (95),
Mishkin and Simon (95), Caporale and Pittis (98) and Malliaropulos (00) among others choose not to model the
risk premium at all, thus essentially assuming risk neutrality on behalf of the investors. Crowder and Hoffman (96)
and Shrestha, Chen and Lee (02) discuss the significance of a time-varying risk premium, but nevertheless set it to
a constant.
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biases of the Fisher equation estimates.

We hence assume investors to be risk-averse and the rolling risk premium ωn,t to vary with

n and over time. Consequently we need to estimate ωn,t. As ωn,t =
1

n

Pn−1
i=0 Etρn−i,t+i, this in

turn requires estimates of ρn−i,t+i. In principle, these may be obtained from equation (11) which

provides a measure of ρn,t.

The problem, in practice, is that it would be necessary to estimate equations for the holding-

period for each maturity up to n. Apart from the fact that data do not exist for yields of each

maturity at every period of time and would therefore need to be interpolated using estimates of the

yield curve, even if such data were used this would entail an intractable estimation problem due

to the large number of equations that would need to be estimated simultaneously for reasonable

values of n. We would also have to form expectations of future conditional covariance terms. As

a result, we adopt a alternative, but closely related, approach in this paper.

The term premia ρn−i,t+i involve the variables Covt(
∆Ct+1+i
Ct+i

, hn−i,t+i+1) and Covt(πt+i+1,

hn−i,t+i+1).12 As we are unable to contemporaneously estimate all of these and having established

in Balfoussia and Wickens (2004) that the ρn,t for different n are highly correlated, we instead

estimate ωn,t directly using

ω̃n,t = ϑn,CCovt(
∆Ct+1
Ct

, hn,t+1) + ϑn,πCovt(πn,t+1, hn,t+1) (19)

In effect, we are assuming that the average value of Covt(
∆Ct+1+i
Ct+i

, hn−i,t+i+1) can be expressed

as a linear function of Covt(
∆Ct+1
Ct

, hn,t+1) and that the average value of Covt(πt+i+1, hn−i,t+i+1)

may be approximated by Covt(πn,t+1, hn,t+1).

As the two conditional covariance terms are unobservable, we estimate the n-period Fisher

equation jointly with the term structure equation (11) of the corresponding maturity. In this

way, by integrating the Fisher equation within the stochastic discount factor theory, we are able

12 There is also a Jensen term, resulting from the assumption of log-normality. However, based on evidence by
Shome, Smith and Pinkerton (88) who found it insignificant and by Balfoussia and Wickens (04) who find its size
to be negligible for the term structure, we chose to ignore it in the construction of the rolling risk premium.
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to generate estimates for the two conditional covariances that are consistent with our general

equilibrium term structure model.

3 Econometric methodology

Our aim is to estimate the Fisher equation including the risk premium term, while jointly modelling

the term structure. Hence, we must model the joint distribution of the macroeconomic variables,

i.e. inflation and consumption, jointly with the excess holding-period returns in such a way that

the mean of the conditional distribution of inflation is allowed to include the appropriate risk

premium terms. The conditional means of both inflation and the excess holding-period returns

involve selected time-varying second moments of the joint distribution. We therefore require

a specification of the joint distribution that admits a time-varying variance-covariance matrix.

We use the Ding and Engle (1994) vector-diagonal multivariate GARCH-in-mean model, while

appropriately adjusting the in-mean equations to our inflation specification.13

Let xt+1 = (hn,t+1−st, hk,t+1− st,πn,t+1,
∆Ct+1
Ct

)0 and yt = (Rn,t, ψ̃n,t)
0, where k > n. Our

model can be written

xt+1 = α+ Γxt +Θyt +Bgt + εt+1

where

εt+1 | It ∼ D[0,Ht+1]

gt = vech{Ht+1}

The vech operator converts the lower triangle of a symmetric matrix into a vector. The distribution

is the multivariate log-normal distribution. The specification of Ht is

Ht =H0(ii
0 − aa0 − bb0) + aa0 ∗ Σt−1 + bb0 ∗Ht−1

13 For a review of multivariate GARCH models see Bollerslev, Chou and Kroner (1997) and for a discussion of
their use in financial models see Flavin and Wickens (1998) and Smith and Wickens (2002).
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where i is a vector of ones, ∗ denotes element by element multiplication (the Hadamard product)

and Σt−1 = εt−1ε
0
t−1. This is a special case of the diagonal Vech model, in which each conditional

covariance depends only on its own past values and on surprises. The restrictions implicitly im-

posed by this parameterisation of the multivariate GARCH process guarantee positive-definiteness

and also substantially reduce the number of parameters to be estimated, thus facilitating compu-

tation and convergence. Stationarity conditions are imposed. The estimation is performed using

quasi-maximum likelihood.

Following the n-period Fisher equation (16) the inflation specification will be14

πn,t+1 = δn,RRn,t + δn,ψψ̃n,t + δn,ωω̃n,t + επn,t (20)

where ψ̃n,t is the real rate proxy as defined in equation (18) and ω̃n,t is the rolling risk premium

proxy as defined in equation (19). The 4 × 2 matrix Θ is appropriately constrained so that the

regression form of the n-period Fisher equation is

πn,t+1 = δn,RRn,t + δn,ψψ̃n,t + ζn,CCovt(
∆Ct+1
Ct

, hn,t+1 − st) + ζn,πCovt(πn,t+1, hn,t+1 − st) + επn,t

(21)

where ζn,C = δn,ωϑn,C and ζn,π = δn,ωϑn,π.

Having established in Balfoussia and Wickens (2004) that it is important to adequately rep-

resent the yield curve when modelling the term structure, we include in each estimation not only

the excess return on the bond of maturity equal to the horizon n examined, but also a second one,

of medium to long maturity k. For the 3-month horizon forecast bonds of 3 and 24 months to

maturity are included; for the 6-month horizon bonds of 6 and 24 months to maturity are included

while for the 12-month horizon the maturities included are of 12 and 60 months. The conditional

means of the two excess holding period returns included in each estimation are restricted to satisfy

the condition (11). Real consumption growth is specified as an AR(1) process.

14 The inclusion of a constant could capture a possible constant element of the rolling risk premium, thus
distorting our estimates of the parameters and the risk premium itself. Since we have incorporated a real rate
proxy as an exogenous variable in our estimation, we set the constant term of the Fisher equation to its theoretical
value of zero.

14



We are interested in testing the Fisher equation’s validity and predictive power. We estimate

our model for the 3, 6 and 12 month horizon. For each horizon n we want to test δn,R = 1 and

δn,ω = 0 individually and jointly. Since δn,ω, ϑn,C and ϑn,π cannot not be separately identified,

we shall instead test the hypotheses δn,R = 1, ζn,C = 0 and ζn,π = 0. According to the Fisher

equation we expect to accept the first hypothesis and reject the following two. We also expect the

inclusion of the proxy ω̃n,t to improve the explanatory power of the Fisher equation. Finally, an

integral implication of the theory is that the real rate should contribute negatively to the Fisher

equation. Hence, as a test of the appropriateness of our real rate proxy, we shall be testing not

only its significance, but also whether indeed δn,ψ < 0.

4 Data

The complete sample is monthly, from January 1970 to December 1998. Inflation is the 3, 6 and

12-month ahead realised ex-post growth rate of the consumer price index for all urban consumers.

Until 1991, the term structure data are those of McCulloch and Kwon.15 This dataset was

extended until 1998 by Bliss using the same technique. Excess holding-period returns are taken

in excess of the one-month risk-free rate provided by K. French.16 17

The consumption measure used in this work is the month-on-month growth rate of total real

personal consumption. Our sample has 345 observations for the 3-month horizon, 342 for the 6-

month horizon and 336 for the 12-month horizon. All data are expressed in annualised percentages.

Descriptive statistics for our dataset are presented in Table 2. We see that, though the mean

inflation increases with the horizon, the standard deviation decreases. This is to be expected,

since the longer the period over which we take the growth rate, the smoother the series will be.

The average yield curve is upward sloping. Average excess holding-period returns are positive

15 See McCulloch and Kwon (1993). We do not use the complete term structure dataseries available by McCulloch
and Kwon because no real personal consumption data was available for earlier dates.

16 In constructing holding-period returns we use the change in n-period yields∆Rn,t+1 instead of Rn−1,t+1−Rn,t,
since Rn−1,t+1 is not available. This a common approximation in the literature.

17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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for all maturities and increase with time to maturity. Like most financial data, excess holding-

period returns exhibit excess skewness and kurtosis, particularly for short maturities. Fitting a

univariate GARCH(1,1) to them indicates there is also significant heteroskedasticity.18 Their

unconditional variances increase with maturity, as do the absolute unconditional covariances of

the excess returns with the macroeconomic variables.

Table 3 reports the unconditional sample correlations of the series used in this paper. The

unconditional correlations of the macroeconomic variables with the excess returns are negative

and for each macroeconomic variable they increase in absolute value with the maturity of the

bond.

5 Empirical Results

All results are reported in Tables 4 to 7. Row 1 of Table 4 reports our estimates of the Fisher

equation (21) for the 3-month horizon, when no risk premium term has been included. The

coefficient δ3,R of the yield is estimated at 0.745 and is highly significant. It has the correct

sign and is closer to its theoretical value of 1 than the coefficient obtained in the corresponding

preliminary OLS estimation of Table 1 and than those typically reported in univariate estimations

in the literature. Hence, the inclusion of the real rate proxy and the GARCH specification of

the error appear to help reduce the bias usually observed in estimations of the Fisher equation.

Nevertheless, the yield coefficient remains significantly different from the expected value of 1. The

real rate proxy coefficient δ3,ψ is estimated at −0.448, implying, as we would expect, that the real

rate component is subtracted from the yield in order to extract the inflation expectation. With

only 41% of the inflation variance explained,19 the fit of this equation is poor, though once again

offering a higher explanatory power than typically reported in the literature for the usual Fisher

equation specification.

18 Estimation results are available upon request.

19 Since no constant has been included in our estimations, R-squared may be biased. Hence, we report instead
the share of inflation’s variance which is explained by each specification.
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The second row reports the corresponding estimates obtained once the risk premium terms, i.e.

the estimated conditional covariances of the 3-month excess holding-period return with each of the

two macroeconomic variables have been included in the Fisher equation. The estimated coefficient

of the 3-month yield δ3,R is now 0.95 and again highly significant. It still has the expected sign and,

though statistically it remains significantly different from its theoretical value of unity, it is much

closer to it now than it was before the inclusion of the two second moments. Hence, it seems that

the inclusion of the risk premium proxy reduces the bias observed in the standard specification

of the Fisher equation. The real rate proxy coefficient δ3,ψ still has the correct sign, estimated at

−0.733. The coefficients of the conditional covariances included in the mean are reported in the

following two columns. The coefficient of the inflation covariance ζ3,π is estimated to be −0.158,

significant at the 10% level. The coefficient ζ3,C of the consumption covariance is much smaller

at 0.054 and statistically insignificant. However, their inclusion is jointly highly significant, as

demonstrated by the likelihood ratio test comparing the two specifications. Its value is 21.8, much

higher than the critical value of 3.84 for one constraint at a 5% significance level. The share of

variance explained is now substantially higher than before, at 77%.

Finally, row 3 reports the results of our null estimation. As above, the risk premium terms

have been included and the coefficient of the yield has now been constrained to its theoretical

value of unity. The real rate proxy coefficient δ3,ψ is very close to its previous value, estimated at

−0.675. The conditional covariance terms now have positive estimated coefficients and are much

more significant individually. The inflation covariance coefficient ζ3,π is estimated at 0.158 and

the consumption covariance coefficient ζ3,C has increased to 1.37. Finally, the share of variance

explained by this specification of the Fisher equation has increased further to 80%. Nevertheless,

the likelihood ratio criterion clearly rejects this specification against the previous, less restricted

one of row 2, the test statistic of 20.3 being much higher than the critical value of 5.99 for two

constraints at a 5% significance level.

Figure 2 provides a graphical representation of the fit of all three estimations. Both speci-
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fications including a risk premium proxy offer a remarkably better fit than the first estimation,

while the null provides a marginally better fit than the specification allowing the yield coefficient

unconstrained.

Tables 5 and 6 present estimates of the corresponding estimations for the 6-month and 1-year

horizons. Our conclusions are broadly similar. The estimated yield coefficient is very close to its

theoretical value of 1 once the risk premium has been proxied for, essentially alleviating the bias

previously observed. The explanatory power of the Fisher equation also increases substantially

at all horizons. Furthermore, although we cannot accept the hypothesis that δn,R = 1 for the

two shortest maturities, the null cannot be rejected against the less constrained alternative at the

1-year horizon, once the time-varying rolling risk premium proxy has been included.

The estimated coefficient of the real rate proxy δn,ψ is negative and highly significant in all

estimations. It is interesting that, as the horizon increases, this coefficient decreases in absolute

value, deviating from its theoretical value of −1. Indeed, given that it is based on the ex post

1-month real rate, our real rate proxy should, by construction, be more appropriate, in terms of

magnitude, for shorter horizons.

Figures 3 and 4 provide graphical representations of the fit of the three estimations for the

6-month and 1-year horizons respectively. The explanatory power of the Fisher equation clearly

increases once the risk premium proxy has been included. In view of the reduction of bias of

the δn,R estimates and the improvement in the goodness of fit, we conclude the Fisher equation

provides a much better predictor of future inflation once the risk premium is taken into account

by including an appropriate risk premium proxy.

Our results confirm those of Shome, Smith and Pinkerton (1988) and Evans and Wachtel (1992)

who also draw on the C-CAPM in their models. Shome, Smith and Pinkerton (1988) use survey

data and a rolling regression technique to construct estimates of the conditional moments, which

they find to be highly significant in the Fisher equation. Evans and Wachtel (1992) essentially

extend the Shome, Smith and Pinkerton (1988) model to allow for taste shocks to utility. They

18



first estimate a bivariate ARCH model of consumption and inflation to obtain estimates of the

conditional moments, which they then substitute in a GMM estimation of the Fisher equation.

They also conclude the risk premium is statistically significant.

We now take a closer look at the estimated coefficients of the conditional covariance terms

included in the different Fisher equation specifications. The coefficients of the inflation covariance

component of the risk premium increase with the horizon. For example, in the null specification,

the inflation covariance coefficients are estimated at 0.158, 0.587 and 0.891 for the 3, 6 and

12-month horizons respectively. The opposite pattern appears in the consumption covariance

coefficients. Furthermore, while the inflation covariance is generally highly significant, especially

as the horizon increases, the consumption covariance is often insignificant. All three estimations

indicated by the likelihood ratio criterion confirm the conclusion of inter alia Balfoussia and

Wickens (2004) and Ang and Piazzesi (2003) that inflation seems to be the dominant source of

risk in the term structure.

One might also argue that the estimated conditional covariance coefficients have the expected

sign. These are positive for both macroeconomic variables.20 Given the negative unconditional

correlation of the excess returns with both macroeconomic variables, this would imply that risk,

whether associated with the nominal or the real component of the stochastic discount factor,

individually generates a positive premium which is subtracted from the yield as implied by the

Fisher equation (16).21 Hence, our results are overall in line with our a priori intuition.

Figure 5 plots the aggregate contribution of the risk premium proxy terms to the Fisher

equation in both specifications and at all horizons. Indeed, their contribution is almost entirely

negative. Moreover, the evolution of the estimated rolling risk premia through time can be related

to major macroeconomic events and shocks of the period. They are much higher and more volatile

during the 1979-82 period, which corresponds to the “monetary experiment” of the Fed. They

20 There is an exception of two terms which, however are not significantly negative.

21 This is in contrast to the estimates presented in Balfoussia and Wickens (04), where the estimated coefficient
of the consumption covariance had the opposite sign than expected.
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are also relatively high during the first oil crisis, and in the early 1980s, when inflation volatility

was still relatively high. Throughout the 1990s, a decade largely marked by Greenspan’s success

in maintaining a low and stable level of inflation, the estimated rolling risk premia become lower

and increasingly stable.

The rolling risk premium seems to increase in magnitude with the horizon over which we are

predicting. Indeed, yields on bonds of longer maturities should include a higher risk premium

component. Nevertheless it is notable that one of the two plots for the 3-month horizon is very

close to zero during periods of relative stability, possibly indicating that the 3-month T-bill is

almost risk-free. An additional explanation may be that, at such a short maturity, much of

the volatility is due to noise, thus rendering our effort to decompose the yield into its different

components more difficult. A final interesting observation is that, while at the 3-month horizon the

rolling risk premia estimated for each of the two specifications of the generalised Fisher equation

do not coincide, they gradually converge as the horizon increases. This reinforces our inference

from the likelihood ratio criterion which leads us to reject the null hypothesis of δn,R = 1 for the

two shortest maturities while accepting it for the 1-year horizon.

Table 6 reports one representative complete set of estimated parameters corresponding to the

1-year horizon specification of the n-period Fisher equation where the yield coefficient is uncon-

strained.22 The coefficients of the conditional covariances in the excess return equations are

highly significant. They are negative and significantly so, implying once again a positive risk

premium associated with both the real and the inflation component of the stochastic discount

factor. Further, neither macroeconomic variable’s covariance coefficient changes notably as ma-

turity increases. This is an important point, as the equality of the covariance coefficients across

the yield curve is implicit in the no-arbitrage assumption. It is a substantial improvement over

Balfoussia and Wickens (2004) who, in a similar setup find these coefficients decrease along the

yield curve, possibly implying that the specification for the SDF or inflation used in this paper is

22 The complete estimates for all specifications are available upon request.
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superior. Figure 6 plots the excess holding-period return risk premia ρ12,t and ρ60,t generated by

the two term structure equations of this estimation. Despite the slightly modified SDF specifica-

tion, these are very similar to the ones obtained in Balfoussia and Wickens (2004), and explain

a very high share of the excess holding-period return variance, 19% and 16% for the 1-year and

5-year maturities respectively. The constant and first lag of total personal consumption growth in

the corresponding equation are highly significant, as are the ARCH and GARCH estimates. The

dynamic structure of the conditional variance-covariance matrix, depends largely on the lagged

conditional covariance matrix and much less on lagged innovations.

6 Conclusions

In this paper we have shown how it is possible to integrate the workhorse of inflation prediction,

the Fisher equation, with the stochastic discount factor theory. This allows us to develop a multi-

variate framework in which to jointly model the term structure and inflation, while endogenously

generating a suitable rolling risk premium proxy for each inflation prediction horizon. The inclu-

sion of this risk component in the Fisher equation is highly significant, substantially improving the

predictive power of the Fisher equation at all horizons while reducing the bias of the estimated

yield coefficient. We conclude that the Fisher equation provides a sound theory and a useful

modelling tool for inflation, once the risk component has been appropriately taken into account.
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3 month horizon 0.510 0.694 0.26 69.19 * 205.91 *
1.09 10.97

6 month horizon 1.120 0.582 # 0.22 104.40 * 276.25 *
2.47 9.81

12 month horizon 2.091 0.433 # 0.13 151.16 * 349.80 *
4.37 7.14

Notes
1.  Chow's breakpoint test fits the equation separately for each subsample and examines whether there are significant
     differences in the estimated equations. A significant difference indicates a structural change in the relationship. The 
     two breakpoint dates used in all tests are October 1979 and October 1982. We report two test statistics for the test.
2.  * denotes rejection of the hypothesis of coefficient stability for our sample period.
3.  # denotes rejection of the hypothesis that the yield coefficient is equal to 1 at the 5% significance level.
4.  t -statistics are below the estimated parameters in italics.

Table 1: Stability tests of the Fisher equation
Chow breakpoint test1

Constant R n, t R2Prediction Horizon
F -statistic Likelihood ratio

 Mean  Median  Maximum  Minimum  Std. Dev.  Skewness  Kurtosis

π 3, t+1 5.28 4.13 18.95 -3.60 3.70 1.03 3.79

π 6, t+1 5.28 4.32 16.26 -0.18 3.40 1.12 3.64

π 12, t+1 5.31 4.25 14.76 1.10 3.19 1.14 3.39

s t 6.80 6.04 17.46 2.55 2.85 1.27 4.85

R 3, t 6.85 6.08 16.00 2.78 2.72 1.18 4.36

R 6, t 7.10 6.43 16.51 2.88 2.74 1.14 4.22

R 12, t 7.34 6.85 16.35 3.09 2.68 1.06 3.94

R 24, t 7.64 7.07 16.15 3.80 2.52 1.07 3.85

R 60, t 8.04 7.53 15.70 4.35 2.31 1.09 3.65

h 3, t+1 - s t 0.07 0.01 8.84 -7.47 1.46 0.38 13.51

h 6, t+1 - s t 0.35 0.19 24.81 -14.40 3.19 1.23 15.79

h 12, t+1 - s t 0.65 0.74 47.24 -33.23 6.72 0.56 12.50

h 24, t+1 - s t 1.07 1.02 82.48 -71.01 12.60 0.20 11.30

h 60, t+1 - s t 1.77 2.17 111.49 -128.11 26.02 -0.22 6.08

∆ lnC t+1 3.52 3.35 29.87 -25.59 7.16 0.14 4.76

1.43 1.35 6.90 -3.31 2.58 0.09 2.21
Notes
1.   All series are in annualised percentages.

2.   π 3, t+1 is the 3-month ahead, annualised ex-post  change in CPI inflation, π 6, t+1 the same for a 6-month horizon etc.
3.   The real rate proxy is the lagged 2-year moving average of the ex-post  1-month real interest rate

Table 2: Descriptive statistics

Real rate proxy
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h 3, t+1 - s t h 6, t+1 - s t h 12, t+1 - s t h 24, t+1 - s t h 60, t+1 - s t π 3, t+1 π 6, t+1 π 12, t+1 ∆ lnC t+1

h 3, t+1 - s t 1.00

h 6, t+1 - s t 0.87 1.00

h 12, t+1 - s t 0.73 0.95 1.00

h 24, t+1 - s t 0.64 0.88 0.96 1.00

h 60, t+1 - s t 0.54 0.76 0.87 0.94 1.00

π 3, t+1 -0.04 -0.12 -0.17 -0.21 -0.24 1.00

π 6, t+1 -0.08 -0.15 -0.19 -0.23 -0.25 0.92 1.00

π 12, t+1 -0.07 -0.12 -0.15 -0.18 -0.20 0.85 0.94 1.00

∆ lnC t+1 -0.02 -0.05 -0.07 -0.06 -0.09 -0.16 -0.12 -0.12 1.00

Table 3: Sample correlations

π 3, t+1 ∆ lnC t+1

 0.745 * -0.448 - - 21.8 # 0.41
65.72 -13.28

 0.950 * -0.733 -0.158 0.054 0.77
53.90 -17.41 -1.59 1.03

1.000 -0.675 0.158 1.370 20.3 # 0.80
-15.29 1.81 4.53

Notes

1.  The covariance of the 3-month excess holding-period return with π 3, t+1 and ∆lnC t+1 respectively
2.  Likelihood ratio tests: The row title corresponds to the constrained specification which is tested against the
     unconstrained model including risk premium terms in the Fisher equation.
     # denotes rejection of the restriction(s) tested, at the 5% significance level.
3.  Share of inflation variance explained in each estimation
4.  t-statistics are below the estimated parameters in italics.
5.  * denotes rejection of the hypothesis of coefficient equality to unity, using a t-test at the 5% significance level.

Table 4: The Fisher equation
Estimation results for inflation prediction at the 3-month horizon

Constraints imposed R 3, t Real rate proxy
Risk premium proxy components1

Likelihood ratio 
tests2

 Share of 
variance3

No risk premium terms

Incl. risk premium terms

Null
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π 6, t+1 ∆ lnC t+1

 0.680 * -0.354 - - 70.1 # 0.39
84.52 -15.20

 0.901 * -0.660 0.672 -0.043 0.74
29.31 -15.01 5.51 -0.96

1.000 -0.608 0.587 0.836 57.8 # 0.97
-9.76 9.03 10.41

Notes

1.  The covariance of the 6-month excess holding-period return with π 6, t+1 and ∆lnC t+1 respectively
2.  Likelihood ratio tests: The row title corresponds to the constrained specification which is tested against the
     unconstrained model including risk premium terms in the Fisher equation.
     # denotes rejection of the restriction(s) tested, at the 5% significance level.
3.  Share of inflation variance explained in each estimation
4.  t-statistics are below the estimated parameters in italics.
5.  * denotes rejection of the hypothesis of coefficient equality to unity, using a t-test at the 5% significance level.

Table 5: The Fisher equation
Estimation results for inflation prediction at the 6-month horizon

Constraints imposed R 6, t Real rate proxy
Risk premium proxy components1

Likelihood ratio 
tests2

 Share of 
variance3

No risk premium terms

Incl. risk premium terms

Null

π 12, t+1 ∆ lnC t+1

 0.768 * -0.535 - - 35.0 # 0.61
75.15 -21.24

0.971 -0.514 0.856 0.023 0.81
34.81 -8.45 8.70 1.25

1.000 -0.530 0.891 0.021 0.5 0.83
-8.57 9.20 1.20

Notes

1.  The covariance of the 12-month excess holding-period return with π 12, t+1 and ∆lnC t+1 respectively
2.  Likelihood ratio tests: The row title corresponds to the constrained specification which is tested against the
     unconstrained model including risk premium terms in the Fisher equation.
     # denotes rejection of the restriction(s) tested, at the 5% significance level.
3.  Share of inflation variance explained in each estimation
4.  t-statistics are below the estimated parameters in italics.
5.  * denotes rejection of the hypothesis of coefficient equality to unity, using a t-test at the 5% significance level.

Table 6: The Fisher equation

No risk premium terms

Incl. risk premium terms

Null

Estimation results for inflation prediction at the 1-year horizon

Constraints imposed R 12, t Real rate proxy
Risk premium proxy components1

Likelihood ratio 
tests2

 Share of 
variance3
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π 12, t+1 ∆ lnC t+1

-1.015 -0.212 0.19
-7.02 -3.76

-1.063 -0.233 0.16
-6.75 -3.62

0.856 0.023 0.81
8.70 1.25

- - 0.06
. .

Notes
1.  t -statistics are below the estimated parameters in italics.
2.  The coefficients are of the conditional covariances between the variables defined by the column and row of each cell.
     An exception is the second in-mean covariance included in the Fisher equation. The coefficient reported is not that of the
    covariance between the two macroeconomic variables but that between ∆ lnC t+1 and the 1-year excess holding period return.
3.  Share of the dependent variable's variance explained in each estimation
4.  A consistent estimator of the long-run variance covariance matrix, to which H 0 is subsequently fixed, is obtained by
    estimating a standard homoskedastic VAR estimator for the whole system. Hence no t-statistics are reported for H 0 .

. . . . 

. 

. . . . 

-3.010

4.404

0.909

-4.806

-23.151

0.909

50.079

. . 

. 
156.832

-0.767

-4.806

156.832

694.723

-3.010

-23.151

. 

. . 

5.13

GARCH

0.912
76.38

0.949
107.04

0.966
102.38

0.727
6.63

ARCH

-0.348
-15.54

Long run variance-covariance matrix4

46.701
. 

-0.767

-0.514
-8.45

0.000
. 

Yield

0.000
. 

0.000

0.000

0.000

0.000
. 

0.000
. 

-0.239
-4.61

. 

. 

0.000
. 

0.971
34.81

3.550
7.80

0.000
. 

0.000
. 

h60, t+1 - st

h12, t+1 - st
0.000

. 

0.000
. . 

-10.95

0.243
8.14

0.234

-0.239

h12, t+1 - st

Conditional Covariances2

Conditional variance equations
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Table 7: Complete estimation results

Inflation prediction horizon: 12 months     Bond maturities: 12 & 60 months
Conditional mean equations

Equation

Risk premium terms included

Constant
 Share of 
variance3Real Rate ProxyOwn lag
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Figure 1: The Real Rate Proxy
(the 2-year moving average of the ex post 1-month real rate)
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c. Null: Risk premium proxy included and yield coefficient constrained to unity

-5

0

5

10

15

20

Null Realised inflation

b. Risk premium proxy included

-5

0

5

10

15

20

Incl. risk premium term Realised inflation

Figure 2: Fit to 3-month Ahead Inflation

a. No risk premium included
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c. Null: Risk premium proxy included and yield coefficient constrained to unity
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Figure 3: Fit to 6-month Ahead Inflation

a. No risk premium included
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c. Null: Risk premium proxy included and yield coefficient constrained to unity
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Figure 4: Fit to 12-month Ahead Inflation
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b. 6-month horizon
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c. 12-month horizon
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Figure 5: The Risk Premium Proxy Contribution
a. 3-month horizon
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b. 5-year bond 
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Figure 6: Excess Holding-Period Return Risk Premia
12-month Inflation Prediction Horizon - Risk premium term included

 

a. 12-month bond 
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