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1 Introduction

The Ricardian Equivalence proposition (Barro 1974) states that the government choice to

finance a given amount of expenditures with taxes or with debt is irrelevant for the econ-

omy. The assumptions under which the proposition holds are that agents are infinitely

lived, rational, perfectly informed, and have no precautionary savings motive (i.e. the

certainty equivalence result). Further, there are no liquidity constraints for consumers,

governments do not engage in Ponzi games and taxes are lump-sum. Under these con-

ditions debt-financed tax cuts, for instance, do not increase private consumption because

consumers expect a tax increase sometime in the future if the government is to satisfy its

intertemporal budget constraint. Consumers save the tax cut so that total economy-wide

savings and thus interest rates do not change. Aggregate demand and output are unaf-

fected. For early overviews of the theoretical and empirical literature on the Ricardian

Equivalence proposition we refer to Bernheim (1987) and Seater (1993). As far as the

empirical testing of the proposition is concerned, a large number of studies have tested

it by estimating consumption functions that are derived from the first-order condition of

a maximization problem and that incorporate one or more specific deviations from the

theorem (i.e. the Euler equation approach). For instance, Evans (1988) and Haque (1988)

use Blanchard’s (1985) model to test whether consumers have finite horizons. Campbell

and Mankiw (1991) and Evans and Karras (1998) investigate the importance of liquidity

constraints. Dalamagas (1994) investigates whether consumers are myopic or irrational.

Others like Haque and Montiel (1989) , Rockerbie (1997), Lopez et al. (2000), and Pozzi

(2003) investigate two or more deviations from Ricardian Equivalence simultaneously. In

most of these studies strict Ricardian Equivalence is rejected. It should be noted that

almost all these studies use a time series approach to test the proposition on one or more

individual countries. Two panel studies that test for (deviations from) the Ricardian

Equivalence proposition are Evans and Karras (1998) and Lopez et al. (2000). In both

studies the Ricardian Equivalence proposition is rejected.

In this paper we investigate the Ricardian Equivalence proposition for a panel of OECD
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countries in the 1980s and 1990s. We derive and estimate a nonlinear consumption func-

tion from a model that allows for the presence of two consumer types: rule-of-thumb

current income consumers and optimizing, permanent income consumers who incorporate

the government budget constraint. Besides rule-of-thumb consumption (see also Evans

and Karras 1998 and Lopez et al. 2000) a second deviation from Ricardian Equivalence

is incorporated in the model, namely the possibility that permanent income consumers

consume less in each period than what they would consume under certainty equivalence,

i.e. they have a lower marginal propensity to consume out of permanent income. This

reflects a precautionary savings motive which has, to the best of our knowledge, not been

tested before via consumers’ marginal propensity.

Methodologically, the focus of the paper lies on avoiding information loss in both

the derivation and the estimation of the model and on correct small sample inference.

As far as the first issue is concerned, we note that many studies in the Euler equation

tradition derive consumption equations that are either in first differences or in growth

rates (see Lopez et al. 2000 and Evans and Karras 1998). While this may be desirable in

a time-series context because of stationarity concerns, it may be problematic in a panel

context.1 The reason is that panel data estimation in the presence of endogenous or

predetermined variables necessitates some kind of transformation to get rid of country-

specific heterogeneity. As shown by Nickell (1981) transforming the data in deviations

from the country-specific means leads to biased estimates if the time dimension of the

panel is modest.2 Therefore it is common to transform the data in first-differences to

get rid of the country-specific effect (i.e. the estimators of Anderson and Hsiao 1982

and Arellano and Bond 1991). If the equation that is estimated is in first-differences or

in growth rates to begin with, a first-difference transform implies an equation in second

differences or in first differences of growth rates. This implies a large loss of information and

potential instrumentation problems (see the problems associated with the first-difference

1The trend properties of the variables in the estimated equation are irrelevant for the asymptotic

properties of large N panel data estimators (where N is the number of cross-sections).
2 Judson and Owen (1999) use Monte Carlo simulations to show that even for a time dimension as large

as 30 biases may be substantial when using the within estimator to estimate a dynamic panel model.
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estimators as discussed in for instance Blundell and Bond 1998). To avoid these problems,

first, we derive an empirical specification that is in levels and not in first-differences or

growth rates. Second, we use an estimation method that gets rid of the unobserved

heterogeneity without resorting to a transformation of the data in deviations from country-

specific means (as in Evans and Karras 1998) or resorting to a mere transformation of

the data in first-differences (as in Lopez et al. 2000). More specifically, we estimate

our nonlinear consumption function with the Generalized Method of Moments (GMM)

estimator using moment conditions of the type suggested by Arellano and Bover (1995)

and Blundell and Bond (1998). Estimation with these moment conditions allows us to use

information from the levels of the variables included in the consumption function. To the

best of our knowledge, this type of moment condition has not yet been used in a nonlinear

GMM framework before. The second methodological issue we focus on is small sample

inference. It is well-known that GMM estimation is not without problems when applied

to samples typically encountered in practice (see Tauchen 1986). We use both one-level

and two-level bootstraps to conduct inference and to check whether point estimates and

estimated standard errors are biased.

The main conclusions from estimating our consumption function for 16 to 19 OECD

countries are, first, that over the period 1980-1997 the fraction of rule-of-thumb consumers

in these economies is around 25%. Second, the remaining 75% forward-looking consumers

have a marginal propensity to consume out of permanent income that is somewhat lower

than what we would expect in the certainty equivalence case that underlies Ricardian

Equivalence. These conclusions also hold for subsamples (i.e. taking the 80s and 90s

seperately). Thus, Ricardian Equivalence is rejected. This is in line with most of the

literature (see e.g. the recent overview given by Lopez et al. 2000). Third, the specification

test we use does not reject the validity of our model. Fourth, we do not reject the moment

conditions suggested by Arellano and Bover (1995) and Blundell and Bond (1998) that

allow us to use information from the levels of the variables in our estimations. Fifth,

our GMM estimates are not biased but the estimated asymptotic standard errors severely

understate the small sample standard errors and the asymptotic distributions of the test
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statistics prove to be a poor guide for small sample inference. By using appropriate

bootstrap standard errors and bootstrap distributions we are able to conduct inference in

a more reliable manner.

The paper is structured as follows. In section 2 we derive a consumption function

that allows us to estimate the number of rule-of-thumb current income consumers versus

the number of optimizing (Ricardian) consumers. In section 3 we extensively discuss

the estimation method we think is the most convenient to avoid information loss and

to conduct correct inference in a small sample. In section 4 data issues are discussed.

In section 5 we present the results of estimating our specification for a panel of OECD

countries in the 80s and 90s. Section 6 concludes.

2 Theoretical Framework

In this section we present a theoretical framework in which a group of consumers follows

current income. Another group of consumers is fully optimizing and (weakly) Ricardian.

We derive a testable consumption function with variables expressed in levels.

Suppose there are two consumer types in the real economy: rule-of-thumb current

income consumers and optimizing permanent income consumers. As a first type, rule-of-

thumb consumers base their consumption decisions on current income because of liquidity

constraints (see e.g. Campbell and Mankiw 1990, 1991), myopia (see e.g. Flavin 1985),

precaution (see e.g. Carroll 1994), finite horizons (see e.g. Gali 1990) or imperfect in-

formation (see e.g. Goodfriend 1992) . We assume that these consumers consume their

entire disposable income in each period so that their consumption c1t can be written as,

c1t = λ(yt − tt) (1)

where yt is pre-tax labour income in the economy, tt are net taxes, and the parameter

λ (0 ≤ λ ≤ 1) denotes the fraction of disposable income in the economy that goes to

rule-of-thumb consumers. The second type, optimizing infinitely lived permanent income
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consumers, maximize V = Et
P∞

j=0(1 + ρ)−j log(c2t+j) where c2t is consumption of this

type of consumers, Et is the expectations operator conditional on information available

to consumers in period t, and ρ (0 < ρ < 1) is their subjective rate of time prefer-

ence. Maximization occurs subject to the budget restriction c2t+(1+r)−1(wt+1+ bt+1) =

(1−λ)(yt−tt)+(wt+bt) where wt is private financial wealth (excluding government bonds)

at the beginning of period t, bt is government debt at the beginning of period t, and r is

the interest rate in the economy. The first-order condition is Et

µ³
c2t+1
c2t

´−1¶
= 1+ρ

1+r (∀t).
We linearize the LHS of this condition by taking a second-order Taylor approximation of³
c2t+1
c2t

´−1
around c2t+1

c2t
= 1 where the conditional uncentered second moment of consump-

tion growth is assumed to be constant and is denoted by σ2 (see Appendix A). We obtain

Etc2t+1 = kc2t (∀t) where k = (σ2(1 + r) + 2r + 1− ρ)(1 + r)−1.

Imposing a transversality condition on the budget constraint of the optimizing per-

manent income consumers, we can write this constraint as
P∞

j=0(1 + r)−jEtc2t+j =

wt + bt +
P∞

j=0(1 + r)−jEt(1 − λ)(yt+j − tt+j). Substituting the linearized first-order

condition into this, we obtain (under the assumption that k(1 + r)−1 < 1),

c2t = β(
∞X
j=0

(1 + r)−jEt[(1− λ)(yt+j − tt+j)] + wt + bt) (2)

where β = (r2 + ρ− (1 + r)σ2)/(1 + r)2 is the marginal propensity to consume out of

permanent income.3 If σ2 = 0 and r = ρ we have β = r/(1 + r). In that case eq.(2) is the

textbook permanent income result (i.e. the certainty equivalence case). Given that log

utility implies convex marginal utility, there is a ”precautionary savings” motive reflected

by σ2 that tends to lower consumption relative to the certainty equivalence case.

Note further that we assume that permanent income consumers discount future dis-

posable income at a rate equal to the interest rate r. Preliminary estimations of a more

complicated model in which the discount rate of these consumers may exceed the discount

3Log utility is basically a special case of the standard CRRA type of utility function with the coefficient

of relative risk aversion restricted to be equal to 1. Our analysis can be extended to a more general utility

function with unrestricted but constant relative risk aversion in which case β will be a function of risk

aversion as well.
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rate of the government r by a mark-up that reflects the length of the consumers’ horizon

(see Blanchard 1985) gave point estimates very close to zero.4 Note that in most studies

that add rule-of-thumb consumers to Blanchard’s finite horizon specification, this mark-up

is found not to be different from zero (see Haque and Montiel 1989 and Rockerbie 1997 as

well as Lopez et al. 2000 who show this result for a panel of OECD countries). We there-

fore consider the assumption of equal discount rates for consumers and the government to

be appropriate.

If permanent income consumers optimize fully, they take the intertemporal government

budget constraint into account, i.e. they are Ricardian. Given that, as noted above, our

model does not rule out precaution, we say that consumers are weakly Ricardian.5 The

government budget constraint is given by
P∞

j=0(1+r)
−jtt+j =

P∞
j=0(1+r)

−jgt+j+bt where

gt are government expenditures (government consumption and investment). Substituting

this equation into eq.(2), we obtain,

c2t = β(
∞X
j=0

(1 + r)−jEt[(1− λ)(yt+j − gt+j)] +wt + λbt) (3)

Note that in eq.(3) government debt plays a larger role in permanent income if the

fraction of income going to rule-of-thumb consumers is larger. The reason is that a part of

the future tax implications of debt will be paid for by these consumers so that a fraction

λ of bt will be wealth for Ricardian consumers.

Total consumption ct can be written as,

ct = c1t + c2t (4)

Substituting eqs.(1) and (3) into eq.(4) and using the quasi-difference approach by

Hayashi (1982)6 to remove the unobservables, we obtain the following testable specification
4These point estimates were obtained while restricting this mark-up to be larger than or equal to zero

during estimation. The results for the other parameters are identical whether or not a mark-up is added

as an additional parameter.
5Strict Ricardian Equivalence rules out precaution. Consumers are strictly Ricardian if σ2 = 0.
6Note that other solution methods are possible. Himarios (1995) finds that, in models where rule-of-

thumb consumers are included, mathematically equivalent ways of solving the consumer Euler equation

give similar estimation results in a time series context.
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for total private consumption,

ct = (1 + r)ct−1 + λ(yt − (1 + r)yt−1)− λ(tt − (1 + r)tt−1) (5)

+β(wt − (1 + r)wt−1) + βλ(bt − (1 + r)bt−1)

−β(1− λ)(1 + r)yt−1 + β(1− λ)(1 + r)gt−1 + ηt

where for the error term ηt we have that Et−jηt = 0 (∀j > 0). We refer to the appendix
B for the derivation of this equation. Note that the consumption function is in levels.

The rest of the paper deals with the testing of the model and with the estimation of

β and λ conditional on values imposed on r (see section 3). Note that (weak) Ricardian

Equivalence holds if λ = 0. If in addition β = r(1+r)−1, then strict Ricardian Equivalence

holds. Note further that β > r(1 + r)−1 implies that impatience has a relatively strong

effect on current consumption compared to precaution. The opposite is implied by β <

r(1 + r)−1.

3 Estimation issues

In this section we discuss our empirical approach. The focus is on avoiding information

loss and on problems of inference in a relatively small sample.

3.1 Empirical specification and moment conditions

Simplifying notation and adding a cross-sectional dimension to eq.(5), we obtain an em-

pirical specification that we can estimate using a panel of countries,

cit = f(cit−1,xit, xit−1, ψ) + µi + ηit (6)

where i (i = 1, ..., N) refers to cross-section, t (t = 1, ..., T ) continues to refer to

time periods, f(.) is a non-linear function in ψ, µi is an unobserved country-specific in-

tercept, ψ is a 2 × 1 vector given by ψ = (β, λ)0, and xit is a 5 × 1 vector given by
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xit = (yit, tit, git, wit, bit)
0. To avoid numerical problems given our highly nonlinear specifi-

cation, the real interest rate r is fixed to a number of values during estimation. This is in

line with the literature (see e.g. Evans 1993 , Lopez et al. 2000). The methodology we use

to estimate eq.(6) must tackle a number of empirical difficulties. First, it must allow for

correlation between the individual effect µi and the regressors. Second, it must deal with

the endogeneity of (some of the) regressors with respect to private consumption. Third, it

must deal with potential problems of heteroskedasticity both in time and across countries.

Finally, it must take into account the fact that the error term ηit is not necessarily white

noise (as derived in the theory in the previous section) but may exhibit autocorrelation

of the moving average form of order one (i.e. an MA(1) error) due to time aggregation

(Working 1960), the presence of transitory consumption or problems associated with con-

sumer durables (Mankiw 1982). The currently most popular approach to deal with these

problems would be to first-difference eq.(6) directly to eliminate µi (see Anderson and

Hsiao 1982). This gives,

∆cit = f(∆cit−1,∆xit,∆xit−1, ψ) +∆ηit (7)

Valid moment conditions given the potential MA(1) structure of ηit are,

E [cit−s∆ηit] = 0 (8)

E [xit−s∆ηit] = 0 (9)

for t = 4, ..., T and s ≥ 3. These conditions can be used in a GMM framework to

estimate ψ consistently (i.e. the first-difference GMM estimator by Arellano and Bond

1991). Besides the obvious information loss involved in transforming the data, an impor-

tant shortcoming of estimating a first-difference specification is that, since the macroeco-

nomic series we use are typically persistent, instrumentation may be problematic. With

persistent data, lagged levels of the variables are weak instruments for the regression in

first-differences. This may lead to imprecise estimates and serious small sample biases (see

e.g. Ahn and Schmidt 1995, Blundell and Bond 1998, Blundell, Bond, and Windmeijer

2000). To deal with this, additional moment conditions have been suggested by Arellano
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and Bover (1995) and Blundell and Bond (1998) where lagged differences of the variables

are used in the levels equation. Additional non-redundant moment conditions for our case

then are,

E [∆cit−2(µi + ηit)] = 0 (10)

E [∆xit−2(µi + ηit)] = 0 (11)

for t = 4, ..., T . As noted by Arellano and Bover (1995) the validity of these additional

moment conditions is in many cases an empirical issue.7 We return to the issue of testing

these conditions in the next section.

3.2 Estimation

We use both types of moment conditions discussed in the previous section together to

estimate ψ consistently using a nonlinear GMM estimator. Given the relatively large

time series dimension and the relatively small cross-sectional dimension of our panel, we

avoid using an unmanageable number of moment conditions by choosing a fixed number

of moment conditions or instruments per time period. As noted by Tauchen (1986) using

too many moment conditions may lead to biased estimates (see below in section 3.3 for

more on this). For the moment conditions presented above this implies that s is kept fixed

for every value of t. We set min(s) = 3 and max(s) = 3 (instrument set 1) and min(s) = 3

and max(s) = 4 (instrument set 2). For instrument set 1, for example, we can then write

eqs.(8)-(11) more compactly as,

E(Z 0ivi) = 0 (12)

where vi is the 2(T − 3)× 1 vector (∆ηi4,∆ηi5, ...,∆ηiT , µi+ ηi4, µi+ ηi5, ..., µi+ ηiT )
0

7 It is easily seen that these moment conditions are satisfied under the assumption that cit and xit are

jointly mean stationary processes. This is a sufficient condition however, not a necessary one. Blundell,

Bond, and Windmeijer (2000) give conditions under which for the linear model with exogenous or endoge-

nous regressors the additional moment conditions are valid when regressors (and thus regressand) have

time-varying means.

10



and where Zi is the 2(T − 3)× 12(T − 3) matrix given by,

Zi =



ci1 x0i1 0 0 ... 0 0 0 0 0 0 ... 0

0 0 ci2 x0i2 ... 0 0 0 0 0 0 ... 0

. . . . ... . . . . . . ... .

0 0 0 0 ... ciT−3 x0iT−3 0 0 0 0 ... 0

0 0 0 0 ... 0 0 ∆ci2 ∆x0i2 0 0 ... 0

0 0 0 0 ... 0 0 0 0 ∆ci3 ∆x0i3 ... 0

. . . . ... . . . . . . ... .

0 0 0 0 ... 0 0 0 0 0 0 ... ∆x0iT−2


The GMM estimator we use is bψ = argminψ (v0Z)WN (Z

0v) where v is the 2N(T−3)×1
vector (v1, ..., vN)

0, where Z is the 2N(T−3)×12(T−3)matrix given by (Z1, ..., ZN)
0.8 The

matrix WN is a positive definite weighting matrix. Hansen (1982) shows that the optimal

choice for WN is the inverse of the variance-covariance matrix of the moment conditions,

namely WN = (N
−1PN

i=1 Z
0
ivi(

bψ1)vi(bψ1)0Zi )
−1 where bψ1 is an initial consistent estimate

of ψ which we obtain by applying our GMM estimator using an initial parameter indepen-

dent weighting matrix.9 The optimal GMM estimator is thus obtained in two steps and is

robust to heteroskedasticity and autocorrelation. Under regularity conditions,
√
N(bψ−ψ)

has an asymptotic normal distribution (i.e. asymptotics hold for N →∞). The variance-
covariance matrix V can be estimated by bV = ( bD0dWN

bD)−1 with the 12(T − 3)× 2 matrixbD =
h
∂(N−1Z0v)

∂ψ0

i
ψ=bψ. Asymptotic standard errors of bψ then are sda(bψ) = qbVjj/N for

j = 1, 2. Since our model is overidentified (i.e. dim(Z 0v) > dim(ψ) ), we use the Sargan

test for overidentifying restrictions given by S(bψ) = N−1
³
v(bψ)0Z´dWN

³
Z 0v(bψ)´(see e.g.

8Note that when we use instrument set 2 (max(s) = 4) the dimension of vi is 2(T − 4) × 1 and the
dimension of Zi is 2(T − 4) × 18(T − 4) (i.e. one additional lag of each variable per time period in the
first difference part of the system). Likewise v now has dimension 2N(T − 4) × 1 and Z has dimension

2N(T − 4)× 18(T − 4).
9As an initial weight matrix we use W 1

N = (N−1
PN

i=1 Z
0
iHZi)

−1 where H is a block diagonal matrix

where the upper diagonal block corresponds to the first-difference part of the system and contains ”2”’s

on its diagonal, ”-1” above and below each ”2” and ”0”’s elsewhere. The lower diagonal block corresponds

to the levels part of the system and is an identity matrix.
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Blundell, Bond, and Windmeijer 2000). This statistic is asymptotically χ2 distributed

under the null hypothesis that the moment conditions are valid. Degrees of freedom are

equal to dim(Z 0v) − dim(ψ). The final statistic we are interested in makes it possible to
test the validity of the additional moment conditions given by eqs.(10) and (11). This is

the difference Sargan test (see e.g. Blundell, Bond, and Windmeijer 2000) which is given

by dS(bψ) = S − S∗ where S∗ is the Sargan test that is obtained when estimating ψ by

using only the moment conditions in eqs.(8) and (9), i.e. estimating the first-difference

part of the system only. It is asymptotically χ2 distributed under the null that the level

moment conditions are correct. Degrees of freedom are equal to dim(Z 0v) −m where m

is the number of moment conditions in the restricted first difference case (e.g. m equals

6(T − 3) for instrument set 1).

Note that even though we restrict the number of moment conditions by using a fixed

number of instruments per time period, the number of moment conditions is still relatively

large compared to the cross-sectional dimension of the panel. This causes some difficulties

to invert the variance-covariance matrix of the moment conditions. Therefore we use

a pseudo-inverse of this matrix as weighting matrix instead of the regular inverse (see

Arellano and Bover 1995).

Finally, we note that our parameter estimates are insensitive to the choice of the

starting values for the numerical optimization procedure for the criterion function.

3.3 Small sample inference

It is well known that GMM estimation may be problematic in samples typically encoun-

tered in practice. Problems that may occur are that coefficients and standard errors are

biased and that the assumed asymptotic distributions for the test statistics poorly ap-

proximate their small sample counterparts. Tauchen (1986) for instance emphasizes the

danger of having too many moment conditions in GMM estimation. When the sample

size is small, an increase in the number of moment conditions increases efficiency but may

also lead to biased estimates. Biases are caused because the optimal set of moment con-
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ditions may contain instruments dated far into the past that have low correlation with

the instrumented variables (see Nelson and Startz 1990 ) or because there is a correlation

between the sample moments and the sample weight matrix (see Altonji and Segal 1994

and Ziliak 1997). Further, Arellano and Bond (1991) show that the estimated asymptotic

standard errors of the efficient two-step GMM estimator used in dynamic panels can be

severely (downward) biased in small samples (see also Windmeijer 2000). Recent Monte

Carlo simulations by Hall and Horowitz (1996) and Bergström, Dahlberg, and Johansson

(1997) show that asymptotic distributions and small-sample distributions of test statistics

like t-tests and Sargan tests may differ considerably in small samples. To deal with these

problems, we conduct a bootstrap that allows us to check whether our estimates and (as-

ymptotic) standard errors are biased and that allows us to use small sample critical values

of (asymptotically pivotal) test statistics instead of asymptotic critical values when testing

hypotheses.10 For an example of an application of GMM bootstrap methods to dynamic

(but linear) panels we refer to Dahlberg and Johansson (2000).

We start by drawing a cross-sectional unit with probabilityN−1 (with replacement) and

pick out the (complete) time series for that unit. We repeat this until we have a full sample

consisting of N cross-sections. Given that changing the drawing order of a given sequence

of cross-sections does not affect the bootstrap GMM estimates, the number of different

bootstrap samples that we can draw in this way equals (((N − 1) +N)!)((N − 1)!N !)−1.
Using this bootstrap sample we construct the bootstrap equivalent of the instrument

matrix Z which we name Zb. Likewise the vector vb is the bootstrap equivalent of v.

We estimate our specification, eq.(5), using this bootstrap sample. The bootstrap

GMM estimator is given by bψb
= argminψ

¡
vb0Zb − g0

¢
W b

N

¡
Zb0vb − g

¢
where g = Z 0v(bψ)

are the sample moment conditions estimated from the original data (where bψ is the second
step GMM estimate based on the original sample). We use g to recenter the bootstrap

10For linear dynamic panels Windmeijer (2000) provides an analytical small sample correction for the

asymptotic standard errors obtained with GMM estimation in two steps. In our case, since the moment

conditions are highly nonlinear in ψ, a bootstrap approach is necessary to obtain more reliable means of

inference.
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moment conditions (see Hall and Horowitz 1996). The reason is that the bootstrap treats

the original data as the population. Contrary to the population moment conditions given

in eq.(12), the sample moments Z 0v(bψ) are not equal to zero in overidentified models.
Therefore, to avoid that the bootstrap imposes moment conditions that do not hold in

the population the bootstrap samples from, it is necessary to recenter. Further, note

that W b
N =

³
N−1PN

i=1

³
Zb0
i v

b
i (
bψb

1)− g1

´³
vbi (
bψb

1)
0Zb

i − g01
´´−1

where bψb

1 is the first-step

GMM estimator based on the bootstrap sample and where g1 = Z 0v(bψ1) are the bootstrap
moments used to recenter in the first step (where bψ1 is the first-step GMM estimate based

on the original sample). Besides bψb
, we also calculate asymptotic standard errors sda(bψb

),

the Sargan test S(bψb
) and the difference Sargan test dS(bψb

) from our bootstrap sample.

We repeat the drawing of a sample and the estimation of coefficients, asymptotic

standard errors and test statistics B times where B is the number of bootstrap replications

(we set B = 200 in all cases). To check whether our estimates are biased we calculate

bias(bψ) = bψ − ψ
b
where ψ

b
= B−1

PB
b=1

bψb
. We calculate the bootstrapped standard

errors as sd(bψ) = q
(B − 1)−1PB

b=1(
bψb − ψ

b
)2 . Comparison of these standard errors

with sda(bψ) gives us an idea of whether the asymptotic standard errors are well estimated
or not.

Instead of using the critical values of the χ2 distribution to test the validity of the

moment conditions, we use the critical values of the small sample distribution of the Sargan

test S(bψb
) (b = 1, ..., B) and of the difference Sargan test dS(bψb

) (b = 1, ..., B). More

specifically, we reject the null hypothesis of valid moment conditions if S(bψ) > cv
³
S(bψb

)
´

and we reject the null hypothesis of valid level moment conditions if dS(bψ) > cv
³
dS(bψb

)
´

where cv denotes the critical value of the small sample distribution under investigation.

To perform a one-sided test we use the percentiles 90 and 95 of these distributions as

respectively the 10% and 5% critical values.

Similarly, instead of using the critical values of the standard normal distribution to

test hypotheses on ψ, we could use the critical values of the small sample distribution of t-

values ta(bψb
) =

bψb−bψ
sda(bψb) (b = 1, ..., B). We would then reject the null hypothesis ψ = ψ0 = 0
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in favour of ψ > 0 if ta(bψ) = bψ−ψ0
sda(bψ) > cv

³
ta(bψb

)
´
where cv are the 10% and 5% critical

values which, since the test is one-sided, correspond to the 90 and 95 percentiles of the

distribution. Note that this method of sampling and this method of constructing t-values

and testing hypotheses is the method suggested by Hall and Wilson (1991).11

One problem with the application of this method is that it may provide bad results if

the estimate of the variance is poor (see Li and Maddala 1996 ). The results reported below

suggest that the estimated asymptotic standard errors are underestimated. Therefore we

follow the suggestion by Hartigan (1986) to implement a two-level bootstrap. That is, we

calculate bootstrapped standard errors and use these instead of the unreliable asymptotic

ones to construct a correct (pivotal) t-value. Then we bootstrap again to obtain a small

sample distribution of t-values. Thus we obtain t(bψb
) =

bψb−bψ
sd(bψb) (b = 1, ..., B) where sd(bψb

)

is the bootstrapped standard error obtained by bootstrapping from the (bootstrap) sample

from which bψb
was estimated. The number of bootstrap replications to compute sd(bψb

) for

b = 1, ..., B is set to B∗ (we set B∗ = 200 in all cases). We now reject the null hypothesis

ψ = ψ0 = 0 in favour of ψ > 0 if t(bψ) = bψ−ψ0
sd(bψ) > cv

³
t(bψb

)
´
where cv are the 10% and 5%

critical values which, since the test is one-sided, correspond to the 90 and 95 percentile of

the distribution.12

4 Data issues

In this section we discuss the data and the data sources that we use. Data are annual and

mostly taken from OECD (2003). All data are in real terms. For private consumption

(ct) we use real aggregate consumption (code: CPV). For debt bt we use both gross and

net government debt (code: GGFL for gross debt en NGFL for net debt) deflated by the

consumer price index (code: CPI). Note that for Australia (gross) nominal debt is not

available from OECD before 1988, so we take the gross debt series available from the IMF

11See sampling scheme S1 with statistic T1 in Li and Maddala (1996) on page 122.
12We also test β = r(1 + r)−1 versus β 6= r(1 + r)−1 (two-sided test) by using the percentiles 2.5 and

97.5 of the t(bβb) distribution as 5% critical values and percentiles 5 and 95 as 10% critical values.
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(IFS, 2000). For government expenditures gt (consumption and investment) we use real

government investment (code: IGV) plus real government consumption (code: CGV). For

taxes minus net transfers (tt) we calculate real government expenditures minus the real

primary deficit. The nominal primary deficit (code: NLGX) is deflated by the consumer

price index. For pre-tax income (yt) real GDP (code: GDPV) is used. The advantage of

this measure is that it excludes interest income on government bonds as is the case for yt

in the theory. Private sector wealth excluding government bonds (wt) is proxied through

the real capital stock of the business sector (code: KBV) plus real net foreign assets. Net

foreign assets are taken from Lane and Milesi-Ferretti (2001a, 2001b) and are first set

from USD into local currency through purchasing power parities (code: PPP) after which

they are deflated by the consumer price index. For the complications encountered with

this series for Belgium we refer to Pozzi (2003). Finally, we divide all series by population

(code: POP) to obtain per capita measures and we scale the variables by dividing all

observations in one country by that country’s real per capita GDP in the first year of the

sample.

Data availability determines the sample period which is 1980-1997. The sample con-

tains 19 countries if gross government debt is used: Australia, Austria, Belgium, Canada,

Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Japan, Netherlands,

Norway, Spain, Sweden, UK, and USA. When using net government debt Australia,

Greece, and Ireland drop out since no net government debt series is available for these

countries.

5 Results

The results from estimating eq.(5) with instrument set 1 using the gross government debt

are presented in table 1. We refer to section 3.2 for the description of this instrument set.

Interest rates are set respectively to 0.03, 0.05, and 0.07. The point estimates for β and

λ have the expected signs and plausible values. Using the critical values of the two-level

bootstrapped small sample distribution of the t-values, only in the case r = 0.07 we find
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that β is significantly higher than zero at the 10% level. Further, the point estimates for

β are in general smaller than the value of the marginal propensity to consume in the case

of certainty equivalence (i.e. the value for r
1+r ). Interpreting this in terms of our model

it implies that forward looking consumers may have a precautionary savings motive that

potentially offsets their impatience. We can however not reject the hypothesis β = r
1+r at

the usual levels of significance (results not reported but available upon request).

The point estimates for λ are significantly positive at the 5% level. Over the period

1980-1997 these results suggest that about 25% of consumers in OECD countries are rule-

of-thumb current income consumers. This result is within the range of country-specific

estimates found for this fraction in other studies (see e.g. Campbell and Mankiw 1991,

Bacchetta and Gerlach 1997). As far as panel studies are concerned, it is more or less in line

with the fraction estimated by Evans and Karras (1998) for 66 development and industrial

countries over the period 1970-1989. It is however substantially lower than the 40% found

by Lopez et al. (2000) for OECD countries over the period 1975-1992. Possibly the

difference stems from the different panel methodology employed. Lopez et al. (2000) apply

a first difference GMM estimator to a consumption function derived in first differences

(thus differencing the data twice before estimation), whereas we avoid differencing by

applying the system GMM estimator to an equation with variables expressed in levels.

If we compare the usual GMM asymptotic standard errors with the bootstrapped ones,

we can see that the former are considerably lower than the latter for both β and λ in all

cases. This result is in accordance with the problem of underestimated standard errors

of two-step GMM estimators as reported by Arellano and Bond (1991) and Windmeijer

(2000). The observed biases in the point estimates are negligible however. The problems

encountered do justify a posteriori the use of (two-level) bootstrapped distributions for

the t-values to conduct inference.

If we look at the Sargan test and the difference Sargan test we find no evidence against

our model and instruments. Using the reported p-values we cannot reject the null hy-

pothesis that the moment conditions are correct (for the Sargan test) and that the level

moment conditions are correct (for the difference Sargan test). Thus, our approach of
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using a first-difference specification combined with a levels specification to avoid informa-

tion loss seems justified. We also note that the bootstrapped distributions (and thus the

critical values) for both these test statistics differ considerable from the asymptotic ones

so that, again, our bootstrap approach is appropriate and necessary.

In table 2 we present the results of estimating eq.(5) with the net government debt.

Though net government debt may be a more appropriate measure for debt in a Ricar-

dian model, data are now only available for sixteen OECD countries instead of nineteen.

The cross-sectional dimension is now somewhat smaller than the time dimension. The

conclusions regarding the point estimates and the significance of β and λ are identical to

those reported in table 1. The Sargan and the difference Sargan test do not reject the

moment conditions. The only exception is the case r = 0.03 where the difference Sargan

test reveals some evidence of misspecification when using the level moment conditions.

As a robustness check we estimate eq.(5) using a different instrument set (instrument

set 2 which is explained in section 3.2). The results for gross government debt are reported

in table 3, those for net government debt in table 4. The conclusions reached are largely

identical to those reported for tables 1 and 2.

Finally, we note that the estimation of eq.(5) for the 80s and 90s seperately does not

reveal significant differences in the point estimates for λ and β between these two periods

or between these subperiods and the full sample period (results not reported but available

upon request). Thus, for the OECD countries as a whole, there is no indication of shifts

in time of the fraction of current income consumers during the 80s versus the 90s. Since

the evidence on time-variation in the excess sensitivity of private consumption to current

income in individual country studies is mixed (see e.g. Campbell and Mankiw 1991,

Bacchetta and Gerlach 1997), this result is not inconsistent with the existing literature.
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6 Conclusions

In this paper we investigate the Ricardian Equivalence proposition for a panel of OECD

countries in the 1980s and 1990s. We use a model with two consumer types. One type

of consumers is rule-of-thumb and follows current income, the other type is a permanent

income consumer who incorporates the government budget constraint. The presence of

the first type constitutes a deviation from the Ricardian Equivalence proposition. We also

allow for a second deviation from Ricardian Equivalence, a precautionary savings effect,

by allowing that permanent income consumers consume less out of permanent income

than what they would consume in the case of certainty equivalence. Methodologically,

we focus on the problems of information loss and small sample inference when estimating

dynamic panels. As far as the first issue is concerned, we avoid the loss of information that

comes with first-difference transformations by deriving a testable consumption function

that is in levels to begin with. Then, we use a nonlinear GMM estimator that uses

moment conditions that exploit information from the levels of the variables that appear

in the consumption function. As for the second issue, we use both one-level and two-level

GMM bootstraps to conduct inference and to check whether our estimates and asymptotic

standard errors are biased.

Our results suggest that about 25% of the consumers in OECD countries over the

period 1980-1997 are rule-of-thumb consumers and that the remaining fraction are perma-

nent income consumers who incorporate the government budget constraint. This remain-

ing 75% of consumers may not be strictly Ricardian however since the marginal propensity

to consume out of permanent income of these consumers is lower (though not significantly

so) than what we would expect in the certainty equivalence case which underlies Ricardian

Equivalence. We conclude that Ricardian Equivalence is rejected. Our model and each

type of moment conditions we use in the estimations is supported by the data. This jus-

tifies the use of information from the levels of the variables to obtain estimates. Further,

our point estimates are not biased, but the asymptotic standard errors are, as exptected,

underestimated. The asymptotic distributions of the test statistics poorly approximate
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their small sample counterparts justifying our bootstrap approach to conduct inference.
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Appendix A: derivation of linearized first-order condition

Consider the first-order condition,

Et

Ãµ
c2t+1
c2t

¶−1!
=
1 + ρ

1 + r
(A1)

A second-order Taylor approximation of
³
c2t+1
c2t

´−1
around c2t+1

c2t
= 1 gives,

µ
c2t+1
c2t

¶−1
= 1−

µ
c2t+1
c2t
− 1
¶
+

µ
c2t+1
c2t
− 1
¶2

(A2)

Furthermore, we assume a constant conditional uncentered second moment of con-

sumption growth equal to σ2, i.e.,

Et

µ
c2t+1
c2t
− 1
¶2
= Et

µ
c2t+1 − c2t

c2t

¶2
= σ2 (A3)

Substituting eqs. (A2) and (A3) into eq.(A1), we obtain,

Et

µ
1−

µ
c2t+1
c2t
− 1
¶¶

+ σ2 =
1 + ρ

1 + r

or,

Etc2t+1 =

µ
σ2 + 2− 1 + ρ

1 + r

¶
c2t
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This corresponds to the linearized first-order condition given in the text, namely,

Etc2t+1 = kc2t

with

k =
σ2 (1 + r) + 2r + 1− ρ

1 + r

Appendix B: derivation of eq.(5)

Suppose we have a variable xt and a discount rate m, so that we can write,

∞X
j=0

(1 +m)−jxt+j ≡ (1 +m)

 ∞X
j=0

(1 +m)−jxt+j−1 − xt−1


After taking expectations at time t of both sides and adding and subtracting the term

(1 +m)
P∞

j=0(1 +m)−jEt−1 [xt+j−1] at the RHS, following equation is obtained,

∞X
j=0

(1 +m)−jEt [xt+j ] = (1 +m)

 ∞X
j=0

(1 +m)−jEt−1 [xt+j−1]− xt−1

+ ext

where

ext =
∞X
j=0

(1 +m)−j+1 (Et [xt+j−1]−Et−1 [xt+j−1])

Replace xt with yt and gt and m with r to obtain,

∞X
j=0

(1 + r)−jEt [yt+j ] = (1 + r)

 ∞X
j=0

(1 + r)−jEt−1 [yt+j−1]− yt−1

+ eyt (B1)

∞X
j=0

(1 + r)−jEt [gt+j ] = (1 + r)

 ∞X
j=0

(1 + r)−jEt−1 [gt+j−1]− gt−1

+ egt (B2)

with expectation revisions (thus uncorrelated to lagged information sets),

eyt =
∞X
j=0

(1 + r + ρ)−j+1 (Et [yt+j−1]−Et−1 [yt+j−1])

egt =
∞X
j=0

(1 + r + ρ)−j+1 (Et [gt+j−1]−Et−1 [gt+j−1])
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Substituting eqs.(1) and (3) into eq.(4), we obtain,

ct = λ(yt − tt) + β(
∞X
j=0

(1 + r)−jEt[(1− λ)(yt+j − gt+j + wt + λbt)] (B3)

Lagging eq.(B3) one period and rearranging leads to,

β(1− λ)
∞X
j=0

(1 + r)−jEt−1[yt+j−1] = ct−1 − λ(yt−1 − tt−1) (B4)

+β(1− λ)
∞X
j=0

(1 + r)−jEt−1 [gt+j−1]− βwt−1 − βλbt−1

Moreover, using eqs.(B1)-(B2) into eq.(B3), we obtain,

ct = λ(yt − tt) + β (1− λ) (1 + r)

 ∞X
j=0

(1 + r)−jEt−1 [yt+j−1]− yt−1

 (B5)

+β(1− λ)eyt − β (1− λ) (1 + r)

 ∞X
j=0

(1 + r)−jEt−1 [gt+j−1]− gt−1


−β(1− λ)egt + βwt + βλbt

Plugging eq.(13) into eq.(13) leads to eq.(5) with,

ηt = β(1− λ)(eyt − egt)
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Tables

Table 1. Estimation results for eq.(5) with instrument set 1 and gross government debt

(19 OECD countries, annual data, 1980-1997).

(1) (2) (3)

r=0.03 r=0.05 r=0.07

β est 0.014 0.025 0.034*

sda 0.009 0.009 0.008

sd 0.039 0.044 0.040

bias 0.006 0.003 0.000

λ est 0.258** 0.254** 0.250**

sda 0.017 0.017 0.017

sd 0.054 0.057 0.052

bias -0.002 0.005 0.003

S pval 0.430 0.435 0.455

df 178 178 178

dS pval 0.315 0.320 0.310

df 90 90 90

Notes: we refer to section 3.2 for details on instrument sets. est is the second step GMM point

estimate, sda is the asymptotic standard error, sd is the bootstrapped standard error, bias is the

bias in the point estimate, S is the Sargan test, dS is the difference Sargan test, pval (p-value) is

calculated from the bootstrapped distributions of the Sargan test statistic and difference Sargan

test statistic. It equals 1 minus the percentile that coincides with the value found for these tests in

the estimation. The null hypothesis is that the moment conditions are correct for S and that the

level moment conditions are correct for dS. df are the degrees of freedom. * (**) indicates that the

estimate is significantly larger than zero at the 10% (5%) level of confidence. This one-sided test

uses the 90 and 95 percentiles of the bootstrapped distribution of t-values (two-level bootstrap).

We refer to sections 3.2 and 3.3 for details.
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Table 2. Estimation results for eq.(5) with instrument set 1 and net government debt

(16 OECD countries, annual data, 1980-1997).

(1) (2) (3)

r=0.03 r=0.05 r=0.07

β est 0.014 0.025 0.034*

sda 0.011 0.009 0.008

sd 0.052 0.054 0.048

bias 0.000 0.004 0.005

λ est 0.262** 0.257** 0.251**

sda 0.020 0.020 0.020

sd 0.056 0.057 0.055

bias -0.011 -0.010 -0.004

S pval 0.150 0.160 0.175

df 178 178 178

dS pval 0.040 0.110 0.120

df 90 90 90

Notes: we refer to section 3.2 for details on instrument sets. est is the second step GMM point

estimate, sda is the asymptotic standard error, sd is the bootstrapped standard error, bias is the

bias in the point estimate, S is the Sargan test, dS is the difference Sargan test, pval (p-value) is

calculated from the bootstrapped distributions of the Sargan test statistic and difference Sargan

test statistic. It equals 1 minus the percentile that coincides with the value found for these tests in

the estimation. The null hypothesis is that the moment conditions are correct for S and that the

level moment conditions are correct for dS. df are the degrees of freedom. * (**) indicates that the

estimate is significantly larger than zero at the 10% (5%) level of confidence. This one-sided test

uses the 90 and 95 percentiles of the bootstrapped distribution of t-values (two-level bootstrap).

We refer to sections 3.2 and 3.3 for details.
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Table 3. Estimation results for eq.(5) with instrument set 2 and gross government

debt (19 OECD countries, annual data, 1980-1997).

(1) (2) (3)

r=0.03 r=0.05 r=0.07

β est 0.014 0.025 0.035*

sda 0.013 0.013 0.012

sd 0.041 0.035 0.034

bias 0.006 0.004 0.006

λ est 0.263** 0.259** 0.255**

sda 0.013 0.014 0.015

sd 0.057 0.054 0.049

bias -0.005 -0.001 -0.002

S pval 0.310 0.355 0.290

df 250 250 250

dS pval 0.395 0.465 0.390

df 84 84 84

Notes: we refer to section 3.2 for details on instrument sets. est is the second step GMM point

estimate, sda is the asymptotic standard error, sd is the bootstrapped standard error, bias is the

bias in the point estimate, S is the Sargan test, dS is the difference Sargan test, pval (p-value) is

calculated from the bootstrapped distributions of the Sargan test statistic and difference Sargan

test statistic. It equals 1 minus the percentile that coincides with the value found for these tests in

the estimation. The null hypothesis is that the moment conditions are correct for S and that the

level moment conditions are correct for dS. df are the degrees of freedom. * (**) indicates that the

estimate is significantly larger than zero at the 10% (5%) level of confidence. This one-sided test

uses the 90 and 95 percentiles of the bootstrapped distribution of t-values (two-level bootstrap).

We refer to sections 3.2 and 3.3 for details.
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Table 4. Estimation results for eq.(5) with instrument set 2 and net government debt

(16 OECD countries, annual data, 1980-1997).

(1) (2) (3)

r=0.03 r=0.05 r=0.07

β est 0.015 0.026 0.035

sda 0.018 0.016 0.015

sd 0.047 0.046 0.048

bias 0.009 0.006 0.005

λ est 0.270** 0.264** 0.259**

sda 0.017 0.016 0.016

sd 0.056 0.061 0.053

bias -0.009 -0.011 -0.010

S pval 0.165 0.160 0.185

df 250 250 250

dS pval 0.240 0.165 0.130

df 84 84 84

Notes: we refer to section 3.2 for details on instrument sets. est is the second step GMM point

estimate, sda is the asymptotic standard error, sd is the bootstrapped standard error, bias is the

bias in the point estimate, S is the Sargan test, dS is the difference Sargan test, pval (p-value) is

calculated from the bootstrapped distributions of the Sargan test statistic and difference Sargan

test statistic. It equals 1 minus the percentile that coincides with the value found for these tests in

the estimation. The null hypothesis is that the moment conditions are correct for S and that the

level moment conditions are correct for dS. df are the degrees of freedom. * (**) indicates that the

estimate is significantly larger than zero at the 10% (5%) level of confidence. This one-sided test

uses the 90 and 95 percentiles of the bootstrapped distribution of t-values (two-level bootstrap).

We refer to sections 3.2 and 3.3 for details.
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