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1. Introduction

Previous literature has recognized the importance of regime changes in the calculation

of ex-ante equity premia. However, the methodologies used to estimate equity premia

only allow for very restrictive forms of regime changes. For example, Blanchard (1993)

uses rolling samples to estimate conditional equity premia. Jagannathan, McGrattan

and Scherbina (2000), and Fama and French (2002) use non-overlapping subsamples to

estimate unconditional equity premia. In this paper we use an optimal filter that allows

for a wide class of regime transitions to efficiently estimate ex-ante equity premia.1

Calculation of expected equity returns and equity premia is crucial to correctly price

assets and guide portfolio allocation decisions. The work cited above emphasizes that

use of historical averages of excess returns may result in a poor estimate of the ex-ante

equity premium. This is because the calculation misses changes in prices that would

accompany an unexpected change in the premium. A more precise measure of the

expected equity premium is then calculated from the yield derived from present value

relations.

There are two related problems with the use of present value formulas to estimate

expected returns. First, they require a log-linearization of returns around a steady-

state value of the dividend-price ratio. Second, they require a specification of the law

of motion of dividend growth. The usual assumption is that dividend growth follows

a stationary ARMA process. While this is a convenient simplifying assumption, there

is no reason to assume that the law of motion of dividend growth should follow a

stationary process. For example, the Modigliani-Miller theorem states that firm value

maximization does not constrain the form of dividend policy. Firm managers then

have no incentive to follow a constant law of motion for dividends. This may lead to

inconsistent estimation of expected returns. If prices are invariant to dividend policy

while dividends are subject to regime changes, the law of motion of the dividend-price

ratio will also be time-varying. This implies that log-linearization around an invariant

steady state value may be inappropriate. Since the approximating constants enter as

geometric weights in the infinite sum of future dividend growth required to estimate

expected returns, even small changes in the steady-state value of the dividend-price

ratio imply a larger bias in estimated expected returns.

1The distinction between conditional and unconditional will be defined below. In this paper we
provide estimates of both conditional and unconditional equity premia.
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If the laws of motion of dividend growth and the dividend-price ratio evolve, so should

their joint behavior with other macro-economic variables like consumption growth. In

this paper we address these issues by modeling dividend growth, the dividend-price ra-

tio, and consumption growth as a reduced form VAR with two ingredients: time-varying

coefficients and time-varying variance-covariance matrix. In contrast to previous liter-

ature that examines the behavior of the ex-ante equity premium over time, we use an

optimal filter to provide Bayesian estimates of the annual equity premium from 1928

to 2002 that use the entire sample. Also in contrast to previous literature, we include

consumption in the system to relate movements of expected returns and equity premia

to sources of macroeconomic risk, as measured by fluctuations in per capita consump-

tion growth. Moreover, Parker and Julliard (2005) find that consumption contains

information about expected returns at multi-year horizons for a cross section of stock

portfolios.

Results from our empirical model substantially extend and confirm previous work of

Blanchard (1993), Siegel (1999), Jagannathan, McGrattan and Scherbina (2000), and

Fama and French (2002), on the declining equity premium. We find that the equity

premium in recent years is closer to levels implied by standard consumption models

and that it has been declining in the post-war period from the unusually high levels

of the 1930’s and 1940’s. This decline suggests that the high equity returns in the

post war period may represent the end of a high equity premium, as opposed to a

puzzle. Furthermore, we find a common low frequency component between volatility of

consumption growth and the level of the equity premium.

We also perform exploratory data analysis in search of clues about factors that drive

risk premia at business cycle frequencies. Results point to changing consumption volatil-

ity as an important priced factor. We find that volatility of consumption growth is a

good indicator of economic uncertainty, and as such, changes are reflected in expected

returns, and are priced by the market.

For time variation to be relevant, it should also be detected in the data. Timmermann

(2001) presents empirical evidence on the existence of multiple structural breaks in the

U.S. dividend process using monthly data on the S&P 500 from 1871-1999. Evans (1998)

shows evidence of breaks using annual series. Here we review some of that evidence using

a quarterly data set and performing stability tests on the VAR equations for dividend
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growth, consumption growth, and dividend-price ratio. The results of these tests are

presented in the next section.

That expected excess returns evolve over time has been well documented and is at the

heart of the predictability literature (Fama and French, 1998; DeBont and Thaler, 1985).

Evans (1998) gives an example in which ex-post returns are in-sample forecastable

even though agents have rational expectations as a result of regime switching in VAR

parameters.

Evans uses Campbell and Shiller’s (1988) log-linear approximation of returns and

allows the dividend process to switch between two regimes. He then uses the estimated

time series process to derive implications for asset prices. Evans is not directly interested

in measures of the equity premium, so he does not use the implied VAR parameters

to estimate expected excess returns. Further, we do not restrict dividend growth to

switch between two regimes. Discrete-switches models either impose a finite number

of recurring states, or a finite number of non-recurring states and the switch between

regimes is a discrete jump. These models may well describe rapid changes in the joint

behavior of the variables of interest, but seem less suitable to capture changes in aggre-

gate stock market behavior, where aggregation among agents smooths out most of the

changes. Finally, VAR parameters may vary as a result of economy-wide changes other

than dividends, such as changes in preferences or risk attitudes, which can affect the

time series properties of the dividend-price ratio.

Other work has looked at the movements in the equity premium over time using

present value relations. Of particular importance for our work is Blanchard (1993).

As we will see below, our conditional measure of the premium is intimately related to

Blanchard’s. Blanchard recognizes that the relationship between fundamentals and the

premium varies over time. He is more concerned about an unstable inflation process

over the sample he considered. This is important in Blanchard’s framework, since he

needs an estimate of a long-run real return on bonds. Because of this, he chooses

to use 40 years rolling samples in his estimations of both expected stock returns and

expected bond yields. While rolling regressions allow for smooth regime changes of the

type modeled here, they throw away some of the sample at each point in time and

the sample size used at time t is chosen in a deterministic way. The procedure used

in this paper extends the work of Blanchard in this direction, by providing estimates

of expected equity premium at each point in time that use the entire sample. It is
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left to the data to decide how much weight to give to observations far from date t.

Finally, Blanchard’s procedure requires to make assumptions on dividend growth after

the terminal date in the sample (1993 in his case). Use of VAR parameters as in our

case does not require this.

Like Blanchard, Fama and French (2002), and Jagannathan McGrattan and Scherbina

(2000) provide evidence that the unconditional equity premium has declined in the last

50 years and suggest that high realized returns over the period are a consequence of a

declining equity premium. Both papers base their analysis on unconditional measures

based on ten years sub-samples. Therefore they implicitly assume that the stochastic

process underlying stock prices is stable within each decade.

Finally, by introducing consumption growth in the VAR, we link our work to recent

developments in the relationship between asset prices and macroeconomic risk, as mea-

sured by volatility of consumption. Consumption volatility is found to be time varying

and predictable by valuation ratios. Recent work by Bansal, Khatcharian, and Yaron

(2003) and Lettau, Ludvigson, and Wachter (2003) show that this relationship is con-

sistent with existing general equilibrium models. Here, using our conditional measures,

we provide direct empirical evidence on the relationship between consumption volatility

and expected returns, and consumption volatility and expected excess returns.

The remaining of the paper is organized as follows. Section 2 reports stability tests

on the VAR equations. Section 3 outlines the econometric model used and discusses the

relevant assumptions. Section 4 motivates the Bayesian inference, specifies the priors

used in the analysis and gives an overview of the Gibbs sampler. Section 5 details

the used measures of expected returns and discusses the results. Section 7 concludes

the paper. Two appendices at the end of the paper provide robustness checks of our

Bayesian inferences, and details of the Gibbs sampler used in estimation

2. Stability Tests

Stability tests are conducted using quarterly data on dividend growth (∆dt), per-capita

consumption growth (∆ct) and the log of dividend-price ratio (δt). Data on dividends

and prices refer to the S&P 500 and are downloaded from Robert Shiller’s website as
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well as the CPI used to convert to real figures. Data on consumption and population

are from the FREDII website.2

The top panel of Table 1 presents summary statistics and Phillips-Perron unit root

tests for δt, ∆ct, ∆dt. The second part of the table presents residual analysis for AR(2)

models of each variable. Ljung-Box statistics (lag length = 12) indicate that two lags are

enough to model the dynamics of dividend yields, consumption growth, and dividend

growth. Absence of autocorrelation is not rejected in the residuals of the estimated

equations. The Phillips-Perron test statistic does not reject the unit root hypothesis

for dividend yields, although it does reject the hypothesis for dividend growth and

consumption growth. One possible reason for failing to reject is that the dividend yield

is a very persistent process, and so the data is not informative enough to distinguish

between the two types of processes. Alternatively, and this is the view we take here,

the time series model for δt may not be stable over the sample, while being stationary

within sub-intervals in the sample.

To explore this hypothesis, we present results from the Bai and Perron (1998) tests

for structural breaks in Table 2.

The battery of tests by Bai and Perron provides a way to test for deterministic

breaks, i.e. at this point we do not seek to model the probability of a break in the

processes governing the variables. For instance, a process for dividend-yields δt with m

deterministic breaks can be written as

δt = x
′

tβ1 + ut t = 1, 2, . . . , T1(1)

δt = x
′

tβ2 + ut t = T1 + 1, . . . , T2

...
...

δt = x
′

tβm+1 + ut t = Tm + 1, . . . , T.

where T is the sample size, T1 < T2 < · · · < Tm < T are the break points, ut is a

disturbance term, and βj are the time-varying parameters. The deterministic procedure

of Bai and Perron provides tests and consistent estimation of the number and location

of breakpoints. The tests were conducted using a Gauss procedure provided by Bai

and Perron (2001)(henceforth BP). We allowed up to 8 breaks and used a trimming

2Evans, 1998 provides evidence of an unstable dividend growth process using Shiller’s annual data.
Timmermann (2001) presents evidence at monthly frequency.
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ǫ = 10%, 3 hence each segment has a minimum of 19 observations. Consider the

dividend yield first. The first issue is the determination of the number of breaks. The

first column of Table 2 shows results for dividend yield modelled as an AR(2) process

to limit the number of estimated parameters. SupF tests of zero breaks versus 1 up to

5 breaks are all significant at the 1% level. The two double maximum tests, unweighted

double maximum test (UDmax) and weighted double maximum (WDmax), test for zero

breaks against an unspecified number of breaks and show significance at the 1% level.

The following two SupF statistics test the presence of l + 1 breaks given that l breaks

are present. I only report here statistics up to three breaks given two, which are both

significant at the 1% level. The sequential procedure is a procedure that BP suggest for

estimating the number of breaks, which corresponds to a sequential application of the

SupFT (l + 1|l) test to estimate the breaks. The procedure finds evidence of four breaks

at the 5% level.

The third column of Table 2 presents results from a model for dividend yields that

includes AR(2) terms augmented by ∆ct and ∆dt to guard against the possibility that

the breaks are due lack of appropriate conditioning information. If anything, the results

strengthen the evidence of breaks in the dividend yield process.

Next, we analyze the behavior of consumption growth and dividend growth. Con-

sumption growth shows pretty strong evidence of breaks: most of the SupF tests are

highly significant as well as the double maximum tests. Dividend growth shows less

evidence of breaks, although the WDmax is significant at the 1% level. Stronger ev-

idence for breaks is found in the absolute value of dividend growth, |∆dt|, or in the

square of dividend growth, which may be thought as proxies for volatility. This indi-

cates that a better model for dividend growth should be non-linear. The last column

shows results for |∆dt|. The SupF statistics, as well as the double maximum statistics

are all highly significant, suggesting rejection of constant parameters in the variance of

dividend growth. The SupFT (l + 1|l) statistics fail to reject. Bai and Perron (2001)

points out that the sequential procedure may fail to reject in the presence of breaks

if there are recursive states. This could be the case here given the evidence of breaks

indicated by the double max statistics. It would also be consistent with the observation

that volatility varies over the business cycle.

3See Bai and Perron 2001 for details. Other values for the trimming parameters and number of
breaks were tried for robustness check, but results are very similar.
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To summarize, we find significant evidence of parameter instability in the behavior

of δt, ∆ct, ∆dt over the sample considered. This and the existing evidence reported in

Timmermann (2001) and Evans (1998) gives support to a time varying specification of

the joint behavior of the series.4

3. The Econometric Model

We model the joint behavior of the dividend-price ratio, dividend growth and con-

sumption growth as a VAR with time-varying parameters:

yt = X ′
tθt + ut(2)

X ′
t = In ⊗ [1, y′

t−1, . . . , y
′
t−k],

where yt includes dividend growth, consumption growth, and the log of dividend-price

ratio in this order. In general this is an n× 1 vector. ⊗ denotes the Kronecker product,

so in general X ′
t is an n × k matrix. θt is the k × 1 vector of coefficients. The ut

are disturbance terms with variance covariance matrix Ωt. Without loss of generality

consider the following decomposition

(3) Ωt = A−1
t ΣtA

′−1
t

where At is lower triangular

At =





1 0 · · · 0

a21,t 1 . . .
...

...
...

. . . 0

an1,t · · · ann−1,t 1





and Σ
1/2
t is the diagonal matrix

Σ
1/2
t =





σ1,t 0 · · · 0

0 σ2,t . . .
...

...
...

. . . 0

0 · · · 0 σn,t




.

It follows that (2) is equivalent to

(4) yt = X ′
tθt + A−1

t Σ
1/2
t εt

4We also conduct Hansen’s (1992) test of parameter instability and find similar evidence. Results
(not reported) are available in an appendix upon request.
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The drifting coefficients are meant to capture possible nonlinearities or time variation

in the lag structure of the model. The multivariate time varying variance covariance

matrix captures possible heteroskedasticity of the shocks and time variation in the

simultaneous relations among the variables in the system. In the context of time varying

VAR models, a similar specification has been proposed by Primiceri (2003) and Cogley

and Sargent (2002), though the latter has a time invariant At matrix. As emphasized in

Primiceri (2003), a time variant At is highly desirable if the objective is to model time

variation in a simultaneous equation model.

Let αt be the vector of non-zero and non-one elements of the matrix At (stacked by

rows) and σt be the vector of diagonal elements of Σ
1/2
t . The model’s time varying

parameters evolve as follows:

θt = θt−1 + νt,(5)

αt = αt−1 + ζt,(6)

log σt = log σt−1 + ηt,(7)

with the distributional assumptions regarding (εt, νt, ζt, ηt) stated below. Time varying

parameters θt and At are modeled as driftless random walks and the standard deviations

are assumed to evolve as geometric random walks. Thus, the model belongs to the class

of stochastic volatility models, which constitutes an alternative to ARCH models. The

crucial difference with ARCH is that the variances generated by (7) are unobservable

components.

Equations (4)-(7) form a state space representation for the model. (4) is termed the

observation equation, and (5)-(7) are the state equations.

An undesirable feature of the random walk assumption is that the process hits any

upper or lower bound with probability one. Our objective though is to uncover the values

of the parameters θt, At and σt as they evolve in our finite sample. As long as (5)-(7) are

thought to be in place for a finite period of time, the random walk assumption should

be quite innocuous and provides flexibility while reducing the number of parameters in

the estimation procedure. This is particularly true if, quite plausibly, the variances of

parameter innovations are small.
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All the innovations in the model are assumed to be jointly normally distributed with

a block diagonal covariance matrix:

(8) V = Var









εt

νt

ζt

ηt








=





In 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W




,

where In is the identity of dimension n, Q, S, and W are positive definite matrices. We

will further assume that S is block diagonal with blocks corresponding to parameters

belonging to separate equations in the structural model. This assumption simplifies

inference and increases the efficiency of the estimation algorithm.

4. Bayesian Methods

The model in (4)-(7) is basically a regression model with random coefficients and

covariances. The Bayesian framework, which views parameters as random variables, is

the most natural approach in this setting. The Kalman filter, which is the algorithm used

to make inferences about the history of θt, also fits naturally in a Bayesian framework

(see Meinhold and Singpurwalla, 1983) . This section gives an overview of the estimation

strategy and the algorithm used in estimation. Two other important reasons make

Bayesian methods particularly suitable for this class of models. First, if the variance

of the time varying coefficients is small, as one would expect here, then the maximum

likelihood estimator is biased towards a constant coefficients VAR. As a consequence,

Numerical optimization methods are very likely to get stuck in uninteresting regions of

the likelihood (see for instance Stock and Watson, 1998 for a discussion on the subject).

The second and related drawback is that numerical optimization methods have to be

employed in a highly dimensional problem. Multiple peaks are highly probable in such

a non-linear model. This makes MLE quite unreliable if in fact a peak is reached at all.

In a Bayesian setting with uninformative or weakly informative priors on reasonable

regions of the parameter space, these types of misbehavior are limited.

The problem of estimating a highly dimensional parameter vector is dealt with by

means of the Gibbs sampler, which allows to divide the task in smaller and simpler

ones. The Gibbs sampler is a stochastic algorithm, and as such it is more likely to

escape local maxima.
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Finally, MCMC methods, of which Gibbs sampling is a variant, deliver smoothed

series i.e. conditional on observing the sample. This is what we want here, as the

objective is to uncover how economic quantities of interest have evolved over time in

our observed sample.

4.1. Priors.

We choose prior distributions following Cogley and Sargent (2002) and Primiceri (2003).

The choice is based on intuitiveness and statistical convenience of the distributions for

the application at hand. Following the Bayesian literature, θt, At, Σt will be called

“parameters” and the elements of Q, S, W “hyperparameters”.

The hyperparameters are assumed to be distributed as independent inverse-Wishart.

The Wishart distribution can be thought of as the multivariate analog of the χ-square,

and it is used to impose positive definiteness of the blocks of V as defined in (8). The

prior is

p(V ) = IW (V
−1

, T0),

where IW (Sc, df) represents the inverse-Wishart with scale matrix Sc and degrees of

freedom df .

The priors for the initial states of the regression coefficients, the covariances, and log

volatilities, p(θ0), p(α0), p(log σ0), are conveniently assumed to be normally distributed,

independent of each other and of the hyperparameters. The VAR is further assumed to

be stationary at each point in time. This can be written as

p(θ0) ∝ I(θ0)N(θ, P ),

where I(θ0) = 0 if the roots of the associated VAR polynomial are on or inside the unit

circle.

The assumption of a normal prior may be thought as the asymptotic distribution of

the parameters θ0, α0, and log σ0 in the frequentist approach. As the sample size on

which the prior is calibrated (T0) gets large, the frequentist estimate of the parameters

would approach a normal distribution under mild assumptions by a central limit theo-

rem. Here, the assumption is made mostly for simplicity. These assumptions, together

with (5)-(7) imply normal priors for the evolving parameters. For instance, the vector

of covariance states evolves according to p(αt+1|αt, S) ∼ N(αt, S), and similarly for

volatility states. The vector of coefficient states on the other hand, evolves according
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to

(9) p(θt+1|θt, Q) ∝ I(θt+1)f(θt+1|θt, Q)π(θt+1, Q)

where I(θt) = 0 if the roots of the associated VAR polynomial are inside the unit circle

and

(10) f(θt+1|θt, Q) ∼ N(θt, Q).

The multiplication by I(θt) reflects the assumption that the log dividend-price ratio,

dividend growth and consumption growth evolve as a stationary VAR, given the state.

This is important if we want to estimate long-run expected returns, as we will see

below. The constant π(θt+1, Q) is derived in Cogley and Sargent (2002) . It represents

the probability that random walk paths emanating from θt+1 will remain in the non-

explosive region going forward in time. Thus I(·) truncates the unconstrained normal

distribution f(θt+1|θt, Q) and π(·) downweights values of θt+1 that are likely to become

explosive.

The normal prior on θ is standard. The non-unit roots prior is proposed by Cogley

and Sargent (2001, 2002) . Primiceri (2003), Smith and Kohn (2002) use the same

decomposition of Ωt and place a similar prior on the elements of A, as well as Cogley

and Sargent (2002). The log normal prior on the volatility parameters is common in the

stochastic volatility literature modelling ηt as Gaussian (see Kim, Shephard and Chib,

1998). Such prior is not conjugate, but has the advantage of tractability, as detailed in

the Appendix.

4.2. Overview of the Simulation method.

The complete Gibbs sampling procedure is detailed in the Appendix, as well as a de-

scription of how priors are calibrated. Here I sketch the MCMC algorithm used to

sample from the joint posterior of (θT , AT , ΣT , V ). Here and throughout the paper, a

superscript T denotes complete histories of data (e.g. θT = θ′1, . . . , θ
′
T ).

Sampling from the joint posterior is complicated, so sampling is carried out in four

steps by sequentially drawing from the conditional posterior of the four blocks of param-

eters: coefficients θT , simultaneous relations AT , variances ΣT , and hyperparameters V .

Posteriors for each block of the Gibbs sampler are conditional on the observed data and

the rest of the parameters.
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Conditional on AT and ΣT , the state space form given by (4) and (5) is linear and

Gaussian. Therefore, the conditional posterior of θT is a product of Gaussian densities

and θT can be drawn using a standard simulation smoother (see for instance Fruhwirth-

Schnatter (1994) or Cogley and Sargent 2002). This consists in drawing an initial state

θ0, then use of the Kalman filter produces a trajectory of parameters. From the terminal

state, a backward recursion produces the required “smoothed” draws (i.e. draws of θ’s

given Y T ). Similarly, the posterior of AT conditional on θT and ΣT is a product of

normal densities, so AT is drawn in the same way.

Drawing from the conditional posterior of ΣT is a little more involved because the

conditional state-space representation for log σt is not Gaussian. This stage of the Gibbs

sampler uses a method proposed by Kim, Shephard and Chib (1998) . This consists

of transforming the non-Gaussian state space form in an approximately Gaussian one

(by using a mixture of normal distributions), which allows us again to use the standard

simulation smoother conditional on a member of the mixture.

Finally, drawing from the conditional posterior of the hyperparameters (V ) is stan-

dard, since it is a product of independent inverse-Wishart distributions.

The same Gibbs sampler is used by Primiceri (2003) in the context of a VAR for

the US economy. Still in the contest of evolving monetary policy, Cogley and Sargent’s

(2002) algorithm is similar, though differs in the assumption of AT being constant, and

in the use of a different method to draw from the posterior for volatility states.

After a transitional period (“burn-in” period), the sequence of draws of the four

blocks from their respective conditional posteriors converges to a draw from the joint

distribution p(θT , AT , ΣT , V |Y ).

5. Results from the Time Varying VAR

In this section, we present results from two types of VAR(2) estimated from two

different samples. A VAR(2) for dividend growth (∆dt), consumption growth (∆ct),

and the log of dividend-price ratio (dt − pt ≡ δt) is used to estimate expected stock

returns in both samples.5 A second VAR(2), in which dividend growth is replaced by

dividend growth in excess of the risk free rate (∆dt − rf
t ) is estimated to measure the

equity premium, defined as the expected excess return on stocks over the risk free rate.

5Here and throughout the rest of the paper, lower case represent natural logs of the variables, e.g.
pt is log of price at time t.



14

The equity premium is inferred using a time-varying version of what Campbell and

Shiller call the dynamic Gordon growth model, which will be detailed below.

Data on dividends and prices refer to the S&P 500. The data is downloaded from

Robert Shiller’s web-site. The analysis uses two separate data sets. The first data set

is annual and runs from 1890 through 2002. The second is quarterly and runs from the

third quarter of 1949 through the second quarter of 2002. The annual data set includes

(apart from S&P 500 data) the consumption series, CPI and the rate on 4-6 month

commercial paper (the “risk-free” rate) available on Shiller’s page. This dataset is the

one used in most the work reported in Shiller (1989) and much other subsequent work

in asset pricing. Quarterly data on the S&P and consumption are the ones described

in section 2. The risk free rate considered in quarterly data is the 3 month T-bill.

We focus on the annual sample to uncover movements in the last 75 years and relate

this to the discussion on the declining equity premium. We then use the quarterly

sample to further explore movements in the equity premium during the last 40 years

and to relate this to some recent literature on the premium and macroeconomic risk

that uses the same data set.

Our results on the equity premium are conditional on the index used, the S&P 500.

While it may be argued that the S&P 500 index is too narrow a measure for overall

market performance, Campbell and Shiller (1988a) document striking similarities be-

tween the S&P 500 and the CRSP index over the period 1926-1986. The indices have

a correlation coefficient of 0.985 in annual data. Their mean is 0.044 and 0.042 respec-

tively, and the standard deviations are 0.200 and 0.208. Similar results are found for

dividends and dividend-price ratio series. Also, the S&P 500 includes something like

75% of US securities in value.

For each estimated VAR, we repeat the algorithm detalied in Appendix 24,000 times,

dropping the first 4,000 draws and keeping one every two draws of the remaining 20,000.

This yields a sample of 10,000 draws. We use posterior draws to compute expected

returns and risk premia as detailed below.

5.1. Prior Calibration.

The priors are calibrated on a constant parameter VAR(2) estimated using an initial

sample of 36 observations. This corresponds to the years 1892-1927 in annual data and
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1952.Q1-1961.Q3 in the quarterly sample. Priors for parameters and hyperparameters

are modeled as follows:

θ0 ∼ N
(
θ̂OLS, V (θ̂OLS)

)

A0 ∼ N
(
ÂOLS, V (ÂOLS)

)

log σ0 ∼ N (log σ̂OLS, In)

Q ∼ IW
(
k2

QT0V (θ̂OLS), T0

)

W ∼ IW
(
k2

W In, 4
)

S1 ∼ IW
(
k2

SV (Â1,OLS), 2
)

S2 ∼ IW
(
k2

SV (Â2,OLS), 3
)

(11)

The prior on θ0 is standard. For σ0 we simply use the log of the OLS estimate. The

prior on A is calibrated using the residual from the OLS regressions ût = A−1
0 Σ0εt. Since

A0 is lower triangular, we can get estimates of the coefficients in A by regressing ût,2 on

ût,1, and ût,3 on ût,2 and ût,1. The regressions also provide estimates of V (ÂOLS). The

prior for the hyperparameters are inverse-Wishart with scale matrices set to a fraction

of the OLS covariance matrix of the respective parameters. So for Q, the scale matrix

k2
Q times the covariance of the OLS estimates for θ0, times T0. We set kW = 0.025.

With k = 0.025 our prior attributes 2.5% of the estimated total variation in parameters

to time variation. This should be a quite conservative value, letting the likelihood

add variability if needed. T0, the prior degrees of freedom, is set to 22, the minimum

required for the prior to be proper (22=dim(Q)+1). We multiply the variance by T0

so that we have a scale matrix, as opposed to a covariance. Cogley and Sargent (2001)

and Primiceri (2003) use similar values. For kW and kS I choose the same values as

Primiceri (2003), i.e. 0.01 and 0.1 respectively. Some robustness checks are discussed in

Appendix A. These values seem to be plausible for both data sets and the conclusions

drawn below are not altered for alternative sensible specifications of the parameters.

5.2. Measures of Expected Returns and Equity Premiums.

To estimate expected returns and excess returns, we use the log linear approximation
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of returns of Campbell and Shiller (1988a,b) . This is

(12) ht+1 ≃ k + δt + ∆dt+1 − ρδt+1

where h denotes log returns, k and ρ approximating constants, and δt the log of dividend-

prices (δt = dt − pt). The constants of log-linearization are evaluated at the mean of δ

in Campbell and Shiller (19881,b), so that they are defined by ρ = 1/(1 + exp(d − p))

and k = − log(ρ) − (1 − ρ) log(1/ρ − 1).

Campbell and Shiller derived the linear approximation on the assumption that divi-

dend yield is a stationary process and so choose the sample mean as point of approxi-

mation. In a time varying context, it is more appropriate that the approximating point

varies over time. We do this by approximating around µδ
t , the time-varying uncondi-

tional mean of dividend-prices, i.e. we calculate k and ρ at each t (therefore we have kt

and ρt) using µδ
t as opposed to d − p.

The first order difference equation defined by (12) can be solved for δt imposing

the terminal condition limj→∞ ρj
tδt+j = 0. Taking expected values conditional on an

information set containing δt we obtain

(13) δt = −
kt

1 − ρt

+ Et

∞∑

j=0

ρj
tht+j+1 − Et

∞∑

j=0

ρj
t∆dt+j+1.

So the dividend-price ratio (log of it) is equal to a constant plus a weighted sum of

future expected returns minus a weighted sum of future expected dividend growth.

Campbell and Shiller call this the dynamic Gordon growth model for it generalizes

Gordon’s valuation formula Dt/Pt = r − g.

The first sum on the right hand side of (13) is a weighted sum of future expected

returns whose weights sum to (1 − ρt). We can therefore get a measure of expected

returns as follows, which we term ERc

(14) ERc ≡ (1 − ρt)Et

∞∑

j=0

ρj
tht+j+1 = kt + (1 − ρt)(δt + Et

∞∑

j=0

ρj
t∆dt+j+1).

This measure of expected returns is simply the average yield on the asset. Notice that

even small changes in ρt may have an impact in the measurement of expected returns,

as the error propagates in the infinite sum. VAR parameters are used to calculate the
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expectation on the right hand side as

Et

∞∑

j=0

ρj
t∆dt+j+1 = sdg

(
µt

1 − ρt

+ Ft(I − ρtFt)
−1ξt

)
.

Ft contains the time-t VAR parameters re-written in “companion form”, ξt contains the

state vector in deviation from the (time-varying) unconditional means (as in Hamilton

p. 259). The unconditional means are computed as µt = (I − Ft)
−1ct, where ct is the

vector of intercepts in the VAR. sdg is a row vector that selects dividend growth from

the VAR. This is analogous to what one would do with a constant parameter VAR.

Here we use a different set of parameters at each date. The conditional expectation

Et is therefore conditional on the variables at time t, yt in the VAR, and conditional

on the VAR parameters θt. If we condition only on θt we can get a measure of time-t

unconditional expected returns. In other words, if we had a time invariant VAR, the

unconditional mean of (12) gives µh = k + µδ(1 − ρ) + µdg. Analogously, in a time

varying VAR we have:

(15) ERu ≡ µh
t = kt + µδ

t (1 − ρt) + µdg
t .

Values on the right hand side are calculated from the VAR parameters at each point in

time. This is our unconditional measure. ERu can also be derived by averaging over yt

in (14).

Our conditional measure of expected returns ERc is an average yield on the risky

asset, and can be thought as the average expected return over a period say of 15-20

years, in annual data. At each date t, expected 15-20 years annualized returns will

depend on the price level relative to dividends at time t. If stocks are expensive relative

to dividends compared to some mean reverting value, yields will be lower. The second

measure ERu represents expected returns as if one bought stocks at their mean price

relative to dividends. The fact that our unconditional measure varies over time is

meant to capture non-stationarity of dt − pt due to structural shifts in dividend policy,

productivity, or preferences that change expected returns and/or expected growth rates.

Our analysis focuses mostly on measures of equity premia, or expected excess returns.

To calculate expected excess returns (the equity premium), notice that excess log returns

can be approximated using (12) as

ht+1 − rf
t+1 = kt + δt + (∆dt+1 − rf

t+1) − ρtδt+1
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where rf
t+1 is the return on the risk free rate between t and t + 1. This implies that

to get measures of the equity premium using the VAR we can just run a VAR with

∆dt − rf
t instead of ∆dt, and use the same formulas above for this VAR with excess

dividend growth. This procedure will yield a conditional equity premium (denoted by

EPc) and an unconditional equity premium (denoted by EPu). Notice that this way

of calculating the premium will automatically yield a real equity premium, as inflation

corrections cancel out. This also mean that we do not have to worry about calculating

expected inflation in our measure of the premium.

It is worth emphasizing the importance of ex-ante measures of the equity premium.

Suppose the expected returns on stocks decline slowly and unexpectedly over some

period of time. Then, simply looking at Gordon’s valuation formula, the price of the se-

curity will be rising and realized returns will be higher. So there is a negative correlation

between expected returns and realized returns. This is found to be the case in the data,

and it lies at the basis of the return predictability literature. If expected returns are

time varying with some degree of persistence, then variables that change with expected

returns should have some correlation with realized returns and therefore should predict

returns in the data.6 This observation has also prompted some theoretical research

that has led to numerous models with this feature, namely time variation in expected

returns negatively correlated with ex-post returns, as in Campbell and Cochrane (1999)

and Barberis, Huang, and Santos (2001).

This misalignment between ex-ante and realized returns suggests that using returns

directly in the VAR may result in a less precise estimate of the ex-ante equity premium.

This is indeed what Fama and French (2002) suggest. Our measure ERc can be regarded

as an extension to the work of Blanchard (1993). Our unconditional measure ERu is an

extension to Jagannathan, McGrattan, and Scherbina (2000). Our approach is therefore

part of a growing literature that uses valuation models to estimate expected returns.

The approach is more general because it provides time-varying measures using the entire

history of data. Blanchard’s or Jagannathan et al.’s measures use rolling samples to

account for time variation in the distribution of state variables.

5.2.1. The Declining Equity Premium.

Our measures of expected returns and equity premia for annual data are reported in

6See Cochrane 2001 and Campbell, Lo, MacKinlay 1997 for complete discussions about return
predictability.
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Figure 1. The equity premium is defined as excess returns on the S&P 500 relative to

6-month commercial paper. Figure 2 does the same for the quarterly sample, which

uses the three-month T-bill as risk-free rate. The first noticeable fact is the decline of

the equity premium over the past 75 years. This is reflected in both our conditional

and unconditional measures. The sample mean of realized excess returns for the period

1928-2002 is 6.5%. Our measure of unconditional equity premium is close to this value

only for the period 1928-46, when it is constant at about 6.4%, correcting for Jensen’s

inequality.7 Ex-post excess returns for the period 1928-46 average at about 6%. From

1946 to 1971 we observe a continuous decline, the decline being sharper from 1963. In

this sub-sample, the realized excess return is 8.6%, but the unconditional mean return

moves from 6% to 3.5 %(from 5% to about 2.5% using log-returns). This confirms

both Fama and French (2002) and Jagannathan et McGrattan and Scherbina (2000)

conjecture that the ex-post returns are a distorted view of expected excess returns on

equities and are a result of a declining equity premium. Similarly, notice that our

measure of log expected excess returns stays constant at about 2.5% between 1971 and

1988, or 3.2% in terms of expected excess returns. The ex-post excess returns during

the period average at 3.2%. Succinctly, during periods of constant expected returns, the

ex-post returns are a better measure of expected returns than in periods of changing

expected returns. The evidence is summarized in Table 3. This should warn us about the

use ex-post returns in equity valuation, a point also made by Jagannathan, McGrattan,

Scherbina (2000) and Siegel (1999).

How can we explain the long run decline of the equity premium? Part of the high

equity premium of the period 1928-46 can be explained by the turbulent years of the

Great Depression. The feeling of aversion to the stock market generated by the volatile

years during and after the Great Depression lasted until well after the war. The early

thirties were indeed a period of higher volatility for both dividend growth and dividend

yield, as can be seen from estimated volatilities (see Figure 4), particularly for dividend

growth. Also, this is a period in which participation to the stock market was quite

limited and mutual funds where not available to investors. This made it harder to

share risks across people. Fear of a catastrophic event, limited participation, and costly

diversification can explain the high ERu and EPu of the thirties and why the premium

7The VAR produces log excess returns. We correct our measure using the estimated variance of
returns. The correction is on average 1.25%.
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stayed high for so long. Investors in the 1930’s could not know for certain that the U.S.

would be the most successful capitalist country in history. Even a small probability of

a catastrophic event like the Great Depression can generate a substantial premium, see

Rietz (1988) . Even with the economy getting out of the depression, investors’ revision

of beliefs about the economy could be very slow, given the size of the depression. This

could explain the persistence and slow decline of the premium afterwards. As memories

of the Great depression started to fade, the premium gradually declined until 1971.

The increased desirability of stocks over this period (and therefore the declining pre-

mium) can be further reinforced by the perception that the business cycle has become

less severe over time. A measure of the severity of the business cycle is the conditional

standard deviation of consumption growth. Macroeconomic risk measured this way

increased between 1928 and 1946 (see Figure 4). After 1946, it declines until 1970,

strongly supporting the idea of declining macro-risk.

The unconditional equity premium is more or less constant in the period 1976-1988,

though volatility of consumption growth keeps increasing until 1981. It then declines

again from 1988 to 2002. Increased diversification from the availability of index mutual

funds and other new financial instruments in the seventies offsets the increased volatility

of consumption growth in the period 1976-1988 and, as a result, the premium remained

more or less constant. The premium then declines again with lower uncertainty and

greater opportunities for portfolio diversification.

A similar interpretation applies to our conditional measure EPc. Recall from its

definition that EPc can be considered as an approximation to an average expected

excess return on the stock market over a period say of 15-20 years, given the state of

the economy at time t. EPc peaks in 1951 and declines more or less steadily from 1952

to 1973. It then peaks in 1975 and 1985 to start declining again. The seventies are

a period of greater uncertainty (see Figures 4 and 5) and higher inflation, and as a

consequence, EPc stops declining and it is about constant until 1988. EPc peaks in

1975 and stays high until 1985, at a level of about 4%. It then declines to historical

lows.

The brief shock of October 1987 is reflected in EPc, our conditional measure, which

increases in 1988 and declines little for about 3 years afterwards.

Adjusting for Jensen’s inequality, the unconditional equity premium in 2002 is about

3% (2.95%), rather than the 6% recorded by Mehra and Prescott (1985).
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The quarterly measures are basically a blow-up of the annual counterparts for the

period 1961-2002, and tell a similar story. There is a sharp drop in the equity premium

starting in 1994 which is not as pronounced in annual data. One possible explanation

is a drastic regime shift in the payout policy of corporations at the end of the sample

that is not well captured by our model. Grullon and Michaely (2002) report evidence

for the period 1972-2000 that repurchases have become an important source of payout

for U.S. corporations and that firms finance their share repurchases with funds that

would otherwise be used to increase dividends. In the sample examined by Grullon and

Michaely, repurchases amounted to an average of 10% of dividend payments up to 1983.

Between 1984 and 2000, repurchases were 57.7% of dividends, reaching a maximum of

113.11% in 2000. Because this shift is so drastic and it occurs at the end of the sample,

it is possible that our model interprets part of this regime shift as a decrease in expected

future dividend growth, rather than a change in the law of motion for dividends. With

a decrease in expected dividend growth, price can only rise relative to dividends if yields

decrease. If this is the case, we can correct our measure of expected excess returns using

a payout ratio, rather than the dividend price ratio, for the later part of the sample.

Figure 3 graphs the series EPc and EPu calculated from a VAR that uses the payout

ratio as opposed to the dividend-price ratio.8 As the figure shows, repurchases account

for most the sharp drop in the unconditional premium of the late nineties.

5.2.2. Equity Premium and Macroeconomic Risk.

In this section we explore the relationship between expected returns and selected macroe-

conomic variables. We summarize the co-movements of our measure of the equity pre-

mium and variables that should contain, or have been found to contain information

about the premium. We run exploratory regressions here, and while we recognize that

the regressions may be subject to some measurement error and do not have a full struc-

tural interpretation, we claim that this is a useful exercise that provides some new

empirical evidence. Further, the variables we include in the regressions are justified by

existing literature that tries to build a bridge between the behavior of the stock market

and macroeconomic risk. As some of the variables depend on our estimation proce-

dure, they may have some complicated time series properties, so the standard errors

8To calculate the payout ratio, we adjust the S&P 500 dividend-price ratio using the data from
Table I in Grullon and Michaely (2002). The assumption is therefore that the same dividend-payout
ratio in the sample used by Grullon and Michaely is representative for the S&P 500
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are Newey-West autocorrelation-corrected for lags of ten periods in all the regressions

discussed below.

Also, we use posterior medians of estimated quantities such as equity premia and

volatility of consumption growth, i.e. we do not conduct a fully Bayesian analysis. In

other words, we view the prior on the parameters, and the posterior, as theoretical tools

to obtain useful economic objects, without attaching to them subjective significance.9

We first look at the relationship between the equity premium and the conditional

standard deviation of consumption growth in greater detail. Results are presented in

Table 4. Bansal and Yaron (2004) show that for a class of exchange economies (as

in Lucas, 1978) with Epstein-Zin-Weil preferences and conditionally heteroskedastic

consumption growth, the equity premium is an affine function of the volatility of con-

sumption growth:

(16) Etht+1 − rf
t+1 = γ0 + γ1σ

2
t (∆ct+1).

If the equity premium EPc is regressed on consumption volatility as in (16), the coeffi-

cient is 1.29 and it is highly significant, with an R2 of 41% in annual data. The same

regression using quarterly data produces similar results, with an R2 of 26%. These two

regressions confirm the discussion of section 5.2.1 on the long-run relationship between

macroeconomic risk and the equity premium.

In the remaining regressions of Table 4, we use the quarterly data set to provide

evidence that there is also a relationship between the conditional standard deviation

of consumption growth and asset prices at higher frequencies. Notice first that the

quarterly volatility measure shows much more variation than its annual counterpart

(see Figures 4 and 5). This is consistent with the ARCH literature on excess returns.

Changes in the conditional variance of stock returns are most dramatic in monthly data,

but weaker at lower frequencies.

Consider the following three regressions:10

dt − pt = b0 + b1σc,t−1 + u1,t(17)

Et[ht+1] = c0 + c1σc,t−1(18)

σc,t+j = d0 + d1(dt − pt) + u2,t,(19)

9This is consistent with the discussion in Bickel and Doksum (2000).
10Apart from being motivated by the findings above, the same projections are implied by the model

studied by Bansal and Yaron (2004).
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where Etht+1 denotes a conditional expected real return on stocks. In (17)-(18), positive

b1 and c1 indicates financial markets dislike uncertainty, and so dividend-prices should

increase as prices decrease, and returns should be expected to go up. The last equation

provides information on the extent to which volatility is long lasting and time-varying. If

volatility is time varying and has some persistence, this should be captured by valuation

ratios and the coefficient should be positive and significant. Bansal, Khatcharian, and

Yaron (2003) (henceforth BKY) also run the regressions (17) and (19) but, because they

do not have a measure of expected returns, they cannot estimate the projection in (18).

We run the first regression on the dividend-price ratio in deviation from the time

varying unconditional mean, given our assumption of time-varying parameters. This

will also remove the low frequency component. The coefficient on consumption-growth

volatility is positive and significant, even after correcting for autocorrelation, and even

if we include past values of the dividend price ratio, to limit the possibility of spurious

results. This corroborates the results in BKY. Notice that although consumption growth

volatility is estimated, in this particular model the t-statistic is still valid asymptotically

for the test of b = 0.11

We run the second regression for both ERc (row 4 in Table 4) and ERc − ERu (on

row 5), to filter out a low frequency component in expected returns. We find c1 to

be positive and significant. It is worth emphasizing that a significant coefficient in the

regression of ERc−ERu implies that the conditional standard deviation is important in

explaining short-run changes in expected returns. The coefficient is also economically

significant. A 1% increase in volatility of consumption growth implies a 1.156% overall

increase in expected real return on stocks, and .692% in terms of deviation from the

time t unconditional return.

For the third regression, (17), which summarizes the ability of the valuation ratio

to predict future volatility, we find a positive and significant coefficient for 1, 4, and 8

lags.12 Notice that this last regression, which suggests that volatility of consumption

growth is priced, does not suffer from measurement error bias, as the estimated variable

is on the left hand side. If anything, this error should inflate standard errors.

11This is because the asymptotic bias in the standard errors with estimated regressors depends
multiplicatively on b, as shown in Pagan (1984), so it disappears under the null of b = 0.

12Lags are chosen to match the work by BKY. Notice that coefficients in BKY are negative, because
they use pt − dt the negative of what we use here.
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In Table 5 we add explanatory variables to the regressions of excess returns. These

provide robustness tests on the importance of consumption growth-volatility, and allow

us to explore the role of other variables for movements in the premium. We use both

quarterly and annual data, though we focus our discussion on the quarterly data set,

as it is the data set on which the literature on macroeconomic risk has mostly focused

on. For completeness, the tables present regressions using both EPc and EPc − EPu,

but we focus on the latter variable in which the low frequency component is filtered out

(this also reduces the risk of spurious regressions).

The first regression of EPc −EPu (the left panel of the two tables) includes expected

inflation, dividend growth (in deviation from the time-varying unconditional mean),

a measure of consumption-wealth ratio in logs (cayt), the payout ratio (dividend over

earnings), and the volatility of consumption growth estimate from our model. The

reason for including inflation or expected inflation in a regression of the equity premium

comes from the large body of research which links inflation to the premium through the

interaction of inflation and taxation, inflation and risk, or inflation and money illusion.13

The consumption wealth ratio is the cayt variable computed by Lettau and Ludvigson

(2001). Data on this variable, both annual and quarterly, can be downloaded from their

webpages. The idea behind the variable is that deviations of consumption from a

long-run trend with wealth should contain information about expected returns. Under

some assumptions, Lettau and Ludvigson compute the variable from a co-integrating

relationship between consumption and wealth derived from the intertemporal budget

constraint.

It is plausible to think that the payout ratio should predict expected returns. Payout

ratios move in response to cyclical variation in earnings and to permanent changes in

future expected growth. If payout ratios are higher because companies anticipate higher

future growth, then this information should be reflected in prices and expected returns.

The R2 is high and above 60% in quarterly data. Evidence on expected inflation is

mixed, it is positive and significant in quarterly data, but not significant in annual data.

The payout ratio is not significant in the quarterly regression, but significant in annual

data and significant at the 10% level in the quarterly regression of EPc. This confirms

13That investors may be comparing nominal rates on bonds to dividend yields for stocks was argued
by Modigliani and Cohn (1979), who predicted that if inflation came down, the equity premium would
also decrease. The prediction may have held in the eighties, during which we assist to both declining
inflation and premium.
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the idea that low frequency movements in the payout ratio forecast future returns,

whereas cyclical fluctuations do not, as they are mostly driven by cyclical variation in

earnings.

The cayt variable is positive and significant in both data sets, corroborating the results

in Lettau and Ludvigson (2001). The regression provides an important robustness test

of the effect of consumption-growth volatility on movements of the equity premium.

The standard deviation of consumption growth is positive and significant. Also, notice

that the size of the coefficient (.56) is not significantly altered by the inclusion of other

control variables.

The cayt variable, being derived from an intertemporal budget constraint, does not

impose any particular asset pricing theory. The fact that volatility of consumption

growth is still significant means that the variable captures additional information about

the premium. This is important because it means that direct testing of asset pricing

models as in Hansen and Singleton (1983) or Epstein and Zin (1991) may understate

the importance of consumption risk.

6. Economic Importance of the Time Varying VAR

We presented statistical evidence of parameter variation in Section 2, where we con-

ducted stability tests on VAR equations. A natural question is whether parameter

time variation is important economically. In this section we confront the question by

presenting summary statistics from the posterior distribution of the difference in the

price-dividend ratio implied by the time-varying VAR and the constant parameter VAR.

The time-varying parameters VAR (TVPVAR) nests the constant parameter VAR as

a special case. If modeling time variation turns out to be economically unimportant,

modeling expected returns by means of a constant parameter VAR would be a simpler

way to calculate the cost of capital. So, how much do we lose by using a simple constant

parameter VAR if the true model is statistically better represented by a VAR with

evolving parameters?

In Section 5.2 we derived our measure of expected returns by inferring it from the

dynamic growth model: Given the dividend price ratio and expected future dividend

growth, we used the model to calculate expected returns. So, if we use our measure

of expected returns in the dynamic growth model and use expected future dividend

growth from the TVPVAR, the implied divided price ratio (log of it) will be equal to
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the dividend price ratio in the data. But if we use the expected return from a constant

parameter VAR in the dynamic growth model with time varying parameters as in (13),

the implied price would be different. Under the null hypothesis that the two models

are equivalent, the pricing errors should be small and should not have a systematic

component. If the two models are not equivalent, then the pricing errors would be large

and would have a systematic component.

For each draw from the parameter posterior, we calculate the price implied by the

constant parameter model. I.e., we use the time-varying parameters to calculate kt,

ρt, and expected dividend growth in (13), but a constant parameter VAR for expected

returns (for each draw of the parameters). This yields a δ̂t. Statistics about the differ-

ence, êt ≡ δ̂t − δt, scaled by δt, is what we report in Table 6.14 For each series of êt we

calculate the median error, the the median absolute error, and the first autocorrelation.

Then we calculate the 5%, 25%, 50%, 75% and 95% quantiles.

The median absolute error is large. The 5% quantile is 26%. I.e., by using a con-

stant parameter VAR one would make a median pricing error of at least 26% with 95%

probability. The median pricing error is also large, and at least 50% of the time it is

negative, meaning the constant parameter expected returns would underprice stocks by

at least 14% at least 50% of the rime. The posterior distribution of the autocorrela-

tion coefficient tells us that the pricing errors are strongly positively correlated. The

median autocorrelation coefficient is 15%, the 75% quantile is 64%, and the correlation

coefficient is positive 93% of the times.

Figure 6 shows the price dividend ratio and the median price dividend ratio implied

by the constant parameter VAR. In terms of prices, the difference is large, and it is quite

persistent. The median absolute error is 33% for this series, and the autocorrelation

coefficient is 98%.

We take the results in Table 6 and Figure 6 seriously as indicating that the constant

parameter VAR is missing an important component of prices.

14We are assuming that the true model is the TVPVAR here. Given the statistical evidence in
Section 2 this seems the appropriate thing to do. Since the TVPVAR includes the constant parameter
as a special case, even if the true model was a constant parameter VAR the errors should be small and
should not contain a predictable (systematic) component. If that was the case, one should reject the
constant parameter as the true model.
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7. Summary and Conclusions

This paper estimates expected returns and expected equity premia in U.S. stock

markets using a valuation formula and allowing both the simultaneous relation between

dividend growth, consumption growth, and dividend-prices, and their dynamic lag struc-

ture to vary over time. We motivate the importance of time-varying parameters both

theoretically and statistically.

In particular, the paper focuses on the size and movements of the equity premium

over the last 75 years, and on the relationship between the equity premium and sources

of macroeconomic risk. We extend and confirm previous work on the declining equity

premium and run exploratory data analysis in search of clues about factors determining

movements in the equity premium. We find that the equity premium has declined and

it is now much closer to levels predicted by standard consumption models. This implies

that asset pricing models that aim at understanding the relationship between risk and

returns should try to replicate aggregate stock market features matching a value closer

to 3% rather than 6%.

A low estimate for the equity premium has important consequences for portfolio al-

location decisions, the cost of capital, and how much of Social Security funds should be

put into stocks. Jagannathan McGrattan and Scherbina (2000) indicate institutional

changes occurred in the U.S. in the last 30 years, technological improvements in partic-

ular. Other reasons for a lower premium may include greater opportunities for portfolio

diversification. Since the 1970’s, there have been enormous changes in the financial

instruments available to the public: think of money market funds, floating-rate notes,

index mutual funds, emerging market funds, equity REITs, zero-coupon bonds, S&P

index futures and options, and many more. These, as well as technological advances

and a decrease in macroeconomic risk, have increased participation in equity markets,

and equity premia have decreased.

A low estimate relative to ex-post excess returns makes one wonder whether the

calculations of this paper are somehow biased downward. Evidence from the book to

market value ratio in post war data support our low estimate. Fama and French (2002)

report that the book to market ratio values are on average 0.66 for the period 1950-2000,

and in only 6 years the ratio is above 1. The average real income return on book equity

is 7.60%, less that the average real stock return for the period, which is about 9%. If the
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expected return was indeed greater than the average real income return on equity, then

the present value of the investment would be negative, because the expected return is a

measure of the cost of capital. Then why would the book to market ratio be less than

one? A high cost of capital would also make investment unprofitable. A lower expected

return on the other hand makes investment profitable and is more consistent with book

to market ratios less than one.

Our second finding is a statistically and economically significant relationship between

the premium and volatility of consumption growth, which underscore the role of con-

sumption growth for risk. Consumption growth has been given a relatively low weight

in asset pricing because it is thought to be too smooth and to close to i.i.d. in quarterly

data. As Bansal and Yaron (2002) show, a small persistent component in the volatility

of consumption growth can be hardly detectable in the data and yet have important

implications for asset prices. Our results indicate the presence of persistent, and eco-

nomically meaningful, time-varying conditional volatility of consumption growth.
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Appendix A. Convergence and Robustness

A.1. Convergence Checks.

I perform the usual informal checks (changing the starting point in the Markov chain,
different number of draws, burning periods and “thinning” ratios) and some more formal
ones, such as Geweke (1992) χ2 convergence diagnostic (CD) and relative numerical
efficiency (RNE), and a test on the standardized CUMSUM statistic proposed by Yu
and Mykland (1994).15 The χ2 statistic of Geweke compares the estimate of a posterior
mean from the first NA draws with the estimate of the last NB draws of the chain. If
the two subsamples are well separated, they should be independent. If the number of
draws is sufficiently large, the following statistics is a χ2

CD(θ) =
(θA − θB)2

nse2
A + nse2

B

,

where θi is the estimate of the posterior mean of the parameter, and nse2
i is its numerical

standard error, formed from subsample i. In other words, θi is the sample mean of
Monte Carlo draws, and nse2

i is an estimate of the variance of the sample mean. Given
that the Monte Carlo sample is a Markov chain, it is not an independent sample, and
the variance of the sample mean is function of the variance and autocovariance of the
process generating the draws. The variance of the sample mean is therefore estimated
with a spectral estimator evaluated at zero, Sθ(0). In this application, the number
of draws is 10, 000, NA is the first 2, 000 draws, NB is the last 5, 000 draws, and the
variance of the two sample means is estimated using Newey-West weights on a number
of covariances equal to 10% Ni. The Newey-West estimator corresponds to the Bartlett
Spectral estimator (see Hamilton p.167).

Geweke’s RNE is a measure of efficiency of the algorithm, relative to the i.i.d. case.
If the Monte Carlo sample is i.i.d., the variance of the sample mean is the variance of
the population divided by the sample size, say γ0/N . Given dependence of the draws,
the variance is instead 2πSθ(0)/N = (γ0 +2

∑
j γj)/N . The relative numerical efficiency

is

RNE(θ) =
γ0

2πSθ(0)
= (1 + 2

∑

j

ρj)
−1

Notice that this statistic is not bounded between zero and one, and values greater than
one indicate that the variance of the sample mean in the chain is smaller than in the i.i.d.
case. This is desirable and means that convergence can be achieved with a relatively
smaller number of draws.

Given the N draws, a standardized version of Yu and Mykland (1994) convergence
check is the statistic

CSt(θ) =
1
t

∑t
n=1 θ(n) − µθ

σθ

15Gauss routines that perform the checks described in this section are available upon request.
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where µθ and σθ are the empirical mean and standard deviation of the N draws. If
the Markov chain converges, the graph of CS(θ) against t should converge smoothly
towards zero. This statistic is performed on randomly selected parameters.

Results from CD(θ) and RNE(θ) are reported in Table 7. They are quite satisfactory,
the algorithm is efficient according to RNE for most sets of parameters, although not
as efficient in the case of the hyperparameters. A value above 0.5 for the RNE is very
satisfactory. For the matrix V , the value of 0.06 is low, but acceptable, given the high
number of iterations in the Markov chain. The value is similar to Primiceri’s (2003). He
reports 1/RNE equal to 18 for hyperparameters, which correspond to 0.056. A value
of RNE = 0.06 means that the algorithm requires 16.7 times more iterations than the
i.i.d. case, for a given level of precision. Given the fact that our results are unchanged
by changes in starting points of the chain, and greater number of draws, we believe that
10,000 draws are enough and conclude that the algorithm is converging to the ergodic
distribution. This is confirmed by the CD statistics and graphs of randomly selected
CSt (not reported). The CD statistics are all well below the χ2

1 critical value of 3.84.
Medians are between 0.36 and 0.77 and convergence is not rejected for even a single
parameter.

A.2. Robustness to Prior Calibration.

Robustness checks are conducted for the parameters kQ, kS, kW . Given the great number
of parameters, the robustness checks are based on the long run values of the VAR µt|T

and by looking at the impact on the diagnostic statistics of the Markov chain.
Varying kQ does not affect the behavior of the long run values of the VAR variables,

unless extreme values are used. With values of the order of magnitude of the benchmark
level (0.025), from 0.01 to 0.05, both long-run posteriors and diagnostic statistics are
not affected. The long run trajectory of dividend growth is affected by high values
say greater than 0.1, and large values of kQ produce implausible values for the long run
trajectory of dividend yield. The long run of dividend growth becomes negative at some
dates, meaning that time variation in the parameters captures noise. The condition on
unit-root parameters does not impact the amount of time variation in θ’s in a sensible
way, if anything it reduces it, and it does not affect time variation in Ωt. Changing
kW or kS does not have any particular impact on the behavior of long run values and
on convergence properties of the algorithm. The most important parameter is clearly
kQ. The reason is that Q affects the amount of time variation and it is a matrix of big
dimension, possibly singular. The fact that the model behaves sensibly with a value
of kQ close to what is used in other research with quarterly data (Cogley and Sargent,
2001, 2002, and Primiceri, 2003) is taken as a good sign.

Appendix B. The Gibbs Sampler

B.1. Step1: Coefficient States.

Conditional on Y T , AT , ΣT and hyperparameters V , the state equation describing the
transition of θt is linear with normal innovations. We can therefore use the Kalman
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filter to infer the history of θt. As shown in Fruhwirth-Schnatter (1994) and Carter and
Kohn (1994), the density f(θT |Y T , AT , ΣT , V ) can be factored as:

(20) f(θT |Y T , AT , ΣT , V ) = f(θT |Y
T , AT , ΣT , V )

T−1∏

t=1

f(θt|θt+1, Y
t, AT , ΣT , V ),

where Y t is the history of yt up to date t. Given normality of νt in the state equation
θt = θt−1 + νt, the conditional distributions f(θt|θt+1, Y

t, AT , ΣT , V ) will be Gaussian.
Hence, it is enough to update their conditional means and variances. Starting from
period 0 with our prior p(θ0) ∼ N(θ, P ) let

θt|t = E(θt|Y
t, AT , ΣT , V ),

Pt|t−1 = Var(θt|Y
t−1, AT , ΣT , V ),

Pt|t = Var(θt|Y
t−1, AT , ΣT , V )

represent conditional means and variances. These are computed recursively from the
prior by iterating on

Kt = Pt|t−1Xt(X
′
tPt|t−1Xt + R)−1,

θt|t = θt|t−1 + Kt(yt − X ′
tθt−1|t−1),

Pt|t−1 = Pt−1|t−1 + Q,

Pt|t = Pt|t−1 − KtX
′
tPt|t−1.

The matrix Kt is the Kalman gain (see Hamilton, 1994). At the end of the sam-
ple, these iterations yield the conditional mean and variance for the terminal state
f(θT |Y

T , AT , ΣT , Q) = N(θT |T , PT,T ). To find the remaining terms in (20), notice that
we need mean and variances of θt conditional on θt+1 and the history up to time t. 16

Let

θt|t+1 = E(θt|θt+1, Y
t, AT , ΣT , V ),

Pt|t+1 = Var(θt|θt+1, Y
t, AT , ΣT , V )

represent estimates of mean and variances based on the full set of data. Because of the
Gaussian assumption, these can be calculated by going backwards from T as

θt|t+1 = θt|t + Pt|tP
−1
t+1|t(θt+1 − θt|t),(21)

Pt|t+1 = Pt|t − Pt|tP
−1
t+1|tPt|t.

So the remaining elements in the factorized posterior are

(22) f(θt|θt+1, Y
T , AT , ΣT , V ) = N(θt|t+1, Pt|t+1).

16As Cogley and Sargent pointed out, this is not the Kalman smoother, which would be E(θt|YT+1),
see Hamilton, 1994.
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Accordingly, a random sequence of parameters may be drawn from the prior at time 0
by using the Kalman filter to find f(θT |Y, V ) = N(θT |T , PT,T ), draw from this distribu-
tion, then draw θT−1 using (21) to calculate the mean and the variance. Then, iterate
backward to the beginning of the sample.

B.2. Step 2: Covariance States.

The system of equations (4)can be written as

(23) At(yt − X ′
tθt) = Atut = Σ

1/2
t εt,

The first row in (23) is just u1,t = σ11,tε1,t, whereas the two other equations in our model
are given by

u2,t = −a21,tu1,t + σ2,tε2,t(24)

u3,t = −a31,tu1,t − a32,tu2,t + σ3,tε3,t

Conditional on Y T , θT , ΣT the model given by (24) and (6) has a Gaussian but non linear
state space representation, the non-linearity given by the presence of contemporaneous
u’s in the observation equations. However, under the additional assumption of S being
block diagonal, the problem is solved by applying the Kalman filter and the backward
recursion equation by equation. The procedure is as above, though now we recover

αi,t|t+1 = E(αi,t|αi,t+1, Y
t, θT , ΣT , V )

Λi,t|t+1 = Var(αi,t|αi,t+1, Y
t, θT , ΣT , V ),

where αi,t is the i-th block of αt, corresponding to the coefficients of the i-th equation
in (24). As in the first step of the Gibbs sampler, αi,t can be drawn recursively from
a N(αi,t|t+1, Λi,t|t+1). Here is where we make use of the block diagonal S. If the coef-
ficients of the contemporaneous relations among variables were not assumed to evolve
independently in each equation, it would not be possible to apply the recursion equation
by equation.

B.3. Step 3: Volatility States.

Consider now the system of equations

(25) At(yt − X ′
tθt) = y∗

t = Σ1/2εt

Conditional on θT , AT , and Y T , y∗
t is observable. This is a system of non linear mea-

surement equations, but can be easily converted in a linear one by squaring and taking
logs of every element of (25). This leads to the state space form

y∗∗
t = 2ht + et(26)

ht = ht−1 + ηt

where y∗∗
it = log[(y∗

it)
2 + c], ht = ln σit and eit = log εit. The “offset” c is introduced to

robustify the stochastic volatility estimator in the case of (y∗
it)

2 being very small (see
Fuller (1996) p. 494-497). As in Kim, Shephard and Chib (1998), is set to 0.001. Notice
that the system written in this form has a linear, but a non-Gaussian state space form. In
fact, the eit are independently distributed as log χ2(1). The procedure of Kim, Shephard
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and Chib approximates the χ2(1) with a mixture of normal distributions. Because the
Var(εt) is the identity, the same (independent) mixture of normal approximation for
any element of et can be used. The approximation is written as

f(ej,t) ≃
K∑

i=1

qifN(ej,t|mi − 1.2704, v2
i ),

where j refers to the jth element of e (j = 1, 2, 3 in our case), and so the density of et is
a mixture of K normal densities fN with component probabilities qi, means mi−1.2704,
and variances v2

i . The constants qi,mi, v
2
i are selected to closely approximate the exact

density of et. Kim Shephard and Chib find that K = 7 is enough to match the first four
moments of the distributions with their selected constants qi,mi, v

2
i (see table 4 ofKim

Shephard and Chib,1998).
Define sT = [s1, . . . , sT ]′, the matrix of indicator variables selecting at every point in

time which member of the mixture approximation is to be used for each element of e.
Conditional on θT ,AT , V , and sT , the system in (26) is linear and Gaussian, Again, like
in the previous steps of the sampler, we can recursively recover

ht|t+1 = E(ht|ht+1, Y
t, AT , θT , V, sT ),

Ht|t+1 = Var(ht|ht+1, Y
t, AT , θT , V, sT )

and draw every ht from N(ht|t+1, Ht|t+1). Conditional on hT and y∗∗T , the new sT can
be drawn by independently sampling each st,j from the probability mass function

P (st,j = i|y∗
t , ht) = qifN(y∗∗

t,j|2ht + mi − 1, 2704, v2
i ), i = 1, . . . , 7, j = 1, 2, 3.

B.4. Step 4: Hyperparameters given states.

The hyperparameters of the model are the diagonal blocks of V : Q,W, and the diagonal
blocks of S. Conditional on θT , AT , ΣT , and Y T , the likelihood of the disturbance
vectors in each block is Gaussian by assumption and the prior for the hyperparameters is
inverse-Wishart. When a Gaussian is combined with an inverse-Wishart, the posterior
is inverse-Wishart too, so each square has an inverse-Wishart posterior distribution,
independent of the other blocks. Conditional on θT , AT , ΣT , and Y T , it is simple to
draw from these inverse-Wishart posteriors because the innovations are observable. As
an example, consider drawing from the posterior for Q using the innovations νt

p(Q|Y T , θT , AT , ΣT ) = IW (Q−1
1 , T1),

where T1 = T0 + T , Q1 = Q + V T , and QT is proportional to the usual covariance
estimator,

(1/T )QT = (1/T )
T∑

t=1

νtν
′
t.

To simulate a draw from the inverse-Wishart IW (S, df) we draw df independent vectors

ηi from a N(0, S) density, then V =
(∑df

i=1 ηiη
T
i

)−1

is a draw from an inverse-Wishart.

This concludes the Gibbs sampler.
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B.5. Summary.

To summarize, the Gibbs sampler iterates on 4 simulations, drawing states condi-
tional on hyperparameters, and then hyperparameters conditional on states. After
a ”burn-in” period, the sequence of draws approximates a sample from the posterior
p(θT , AT , ΣT , V |Y T ). The sampler can be summarized as follows:

(1) Initialize AT , ΣT , sT , and V .
(2) Sample θT from p(θT |Y T , AT , ΣT , V ).
(3) Sample AT from p(AT |Y T , θT , ΣT , V ).
(4) Sample ΣT from p(ΣT |Y T , θT , AT , sT , V ).
(5) Sample sT from p(sT |Y T , θT , AT , ΣT , V ).
(6) Sample V, by sampling Q,W, S from p(Q,W, S, |Y T , θT , AT , ΣT )
(7) Go to 2.
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Table 1. Time Series Properties

Variable Mean Standard Dev. Max Min
δt -3.43 0.379 -2.78 -4.52
∆ct 0.0198 0.0269 0.1 -0.0773
∆dt 0.0105 0.0601 0.233 -0.253
Variable PP Test Statistic 10% Critical Value 1% Critical Value
δt -1.2823 -2.5744 -3.4643
∆ct -4.9577 -2.5744 -3.4643
∆dt -9.8786 -2.5744 -3.4643
Variable OLS Estimates Autocorrelations Ljung-Box
δt const -0.0667 lag 1: 0.0055 8.594

φ1 1.0950 lag 2: -0.034
φ2 -0.1130 lag 3: 0.045

lag 4: -0.039
lag 5: -0.014
lag 12: 0.09

∆ct const 0.0157 lag 1: -0.012 16.29
φ1 0.1677 lag 2: -0.033
φ2 0.0383 lag 3: -0.19

lag 12: 0.099
∆dt const 0.0058 lag 1: -0.00028 12.76

φ1 0.2897 lag 2: -0.031
φ2 0.1963 lag 3: -0.019

lag 12: 0.0012
Ljung-Box 12 lags Critical Value 21.03

Notes: δt is the log of dividend-price ratio. PP Test indicates the Phillips-Perron test for unit roots.
Four lags of differenced variables are included in the Phillips-Perron test. The coefficients const, φ1,
φ2 are coefficients of an AR(2) model for the respective variables. The number of Lags included in the
calculation of the Ljung-Box statistic is 12, and the 5% critical value of the χ2

12 is 21.03.
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Table 2. Tests for deterministic breaks

δt δt ∆ct ∆dt |∆dt|
Test AR(2) AR(2), ∆ct, ∆dt AR(2) AR(2) AR(2)
SupFT (1) 70.8168** 147.4168** 11.1902 9.9162 23.1189**
SupFT (2) 74.2344** 113.2692** 19.4990** 13.0373* 16.4380**
SupFT (3) 82.8105** 129.6741** 15.4024** 13.0187* 12.7310*
SupFT (4) 72.7899** 101.4919** 13.1659* 10.7374* 17.1773**
SupFT (5) 101.5448** 67.9402** 11.5209* 9.9750* 14.2001**
UDmax 166.1071** 270.9723** 19.4990** 13.0373 23.1189**
WDmax 346.5638** 509.3399** 26.3582** 22.9696** 26.8638**
SupFT (2|1) 41.2933** 61.7071** 23.3230** 10.74 4.0465
SupFT (3|2) 45.7777** 55.3380** 8.9841 4.8124
sequential proc. 5% finds 4 breaks finds 3 breaks – –
sequential proc. 1% finds 3 breaks finds 3 breaks – –
* means significance at 5%, ** at 1%

SupF
T
(j) tests for zero breaks versus j breaks. UDmax and WDmax statistics test for zero breaks

versus an unknown number of breaks. The SupF
T
(l + 1|l) tests for l + 1 breaks given that l breaks are

present.

Table 3. Ex-ante and Ex-post Returns

Subperiod EPc EPu EP ∗
u Excess Returns

1928-1940 5.9% 5.1% 6.4% 3.0%
1928-1946 5.9% 5.0% 6.0% 6.1%
1946-1971 4.6% 3.9% 4.8% 8.6%
1971-1988 3.5% 2.4% 3.2% 3.2%
1976-1988 3.8% 2.3% 3.1% 4.5%
1988-2002 2.0% 1.8% 2.7% 6.7%
1994-2002 1.4% 1.5% 2.5% 5.7%
1995-1999 1.7% 1.5% 2.5% 21.0%

The table reports averages of the variables during the subperiods on the
left. EPc is our measure of the conditional equity premium. EPu is the
unconditional equity premium. * means that EPu is adjusted for Jensen
inequality. The last column has sub-samples averages of historical excess
returns. Periods of high Excess Returns correspond to periods of low
equity premia.
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Table 4. Volatility of Consumption Growth and Asset Returns

Dependent Variable Regressor Coeff. Std.Err. t-ratio R2

1 eq (16) EPc-Annual const. -0.017 0.014 -1.192 0.41
σt(∆c) 1.298 0.302 4.294
Var Coeff. Std.Err. t-ratio R2

2 eq (16) EPc-Quarterly const. -0.031 0.013 -2.465 0.26
σt(∆c) 1.686 0.290 5.810
Var Coeff. Std.Err. t-ratio R2

3 eq (17) (dt − pt) const. 0.779 0.276 2.822 0.18
σt(∆c)(−1) 20.228 6.837 2.958

Var Coeff. Std.Err. t-ratio R2

4 eq (18) ERc const. 0.000 0.021 0.010 0.17
σt(∆c)(−1) 1.156 0.505 2.291

Var Coeff. Std.Err. t-ratio R2

5 eq(18) ERc − ERu const. -0.024 0.006 -3.744 0.34
σt(∆c)(−1) 0.692 0.161 4.292

Var Coeff. Std.Err. t-ratio R2

6 eq (19) σt(∆c) const. 0.031 0.004 7.389 0.16
dt−1 − pt−1 0.006 0.003 2.099

Var Coeff. Std.Err. t-ratio R2

7 eq (19) σt(∆c) const. 0.034 0.003 12.085 0.11
dt−4 − pt−4 0.004 0.002 1.902

Var Coeff. Std.Err. t-ratio R2

8 eq (19) σt(∆c) const. 0.036 0.002 20.489 0.070
dt−8 − pt−8 0.003 0.001 1.765

Notes: EPc is the conditional equity premium, σt(∆c) is the volatility of consumption growth,
conditional on time t information. dt − pt is the log of the dividend price ratio at time t.
Standard error and t-ratios are 10-lag autocorrelation consistent. eq(j) refers to equation
(j) in the text.
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Table 5. Equity Premium and Fundamentals

Quarterly Regressions
EPc − EPu EPc

Variable Coeff. Std.Err. t-ratio R2 Var Coeff. Std.Err. t-ratio R2
const. -0.0222 0.0052 -4.31 0.66 const. -0.02510 0.0135 -1.86 0.61
Etπt+1 0.1157 0.0423 2.73 Etπt+1 0.26638 0.1278 2.08
∆dt -0.0062 0.0133 -0.46 ∆dt 0.04453 0.0241 1.85
cayt 0.1310 0.0375 3.50 cayt 0.41302 0.1075 3.84
payout -0.0072 0.0085 -0.84 payout 0.03929 0.0244 1.61
σt(∆c) 0.5565 0.1945 2.86 σt(∆c) 0.73421 0.5165 1.42

Annual Regressions
EPc − EPu EPc

Variable Coeff. Std.Err. t-ratio R2 Variable Coeff. Std.Err. t-ratio R2
const. -0.0293 0.0079 -3.71 0.33 const. -0.0290 0.0208 -1.40 0.64
Etπt+1 0.0162 0.0430 0.38 Etπt+1 -0.1582 0.0811 -1.95
∆dt 0.0097 0.0090 1.07 ∆dt 0.0253 0.0117 2.16
cayt 8.5E-06 3.6E-06 2.36 cayt 6.5E-06 8.2E-06 0.79
payout 0.0167 0.0065 2.55 payout 0.0415 0.0160 2.60
σt(∆c) 0.6405 0.1615 3.97 σt(∆c) 1.1953 0.2856 4.18

Notes: EPc is conditional equity premium. EPu is the unconditional equity premium. This is sub-
tracted from EPc in the left panel to filter out a low frequency component from the conditional equity
premium. Etπt+1 is expected inflation. ∆dt is dividend growth. cayt is the consumption-wealth ratio
variable of Lettau and Ludvigson (2001). The variable payout is the ratio of dividend to earnings.
σt(∆c) is the standard deviation of consumption conditional on time t. MAC10, MAR10, MAC5,
MAR5 are 10 and 5 periods moving averages of consumption (C) and returns (R) respectively. Stan-
dard errors and t-ratios are 10-lag autocorrelation consistent.

Table 6. Pricing Errors

med(|êt/δt|) med(êt/δt) ρ(êt, êt−1)
q.05 0.26 -0.62 -0.02
q.25 0.44 -0.38 0.10
q.50 0.61 -0.14 0.15
q.75 0.83 0.21 0.64
q.95 1.43 1.43 0.98

Notes: med denotes the median over each time series, ρ(·) is

the correlation coefficient, êt = δ̂t−δt, and q.05, . . . , q.95 denote
quantiles of the posterior distributions of the quantities in the
columns.
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Table 7. Convergence Diagnostics

20th Autocorrelation
Parameter block Median Mean Min Max 10% 90%

θT 0.01189 0.01213 -0.01817 0.05877 -0.0052 0.02846
A 0.01306 0.01827 -0.02812 0.08148 -0.00185 0.04305
Σ -0.00126 -0.0011 -0.02842 0.02842 -0.01443 0.01156
V 0.11797 0.12056 -0.01664 0.42024 0.05679 0.18159

RNE

Parameter block Median Mean Min Max 10% 90%
θT 0.61489 0.65593 0.14499 2.45819 0.29221 1.08640
A 0.67781 0.63823 0.11269 1.82291 0.16013 1.24765
Σ 0.99855 1.09247 0.38967 3.17533 0.58277 1.69928
V 0.05998 0.08196 0.01341 1.0552 0.03679 0.11555

CD

Parameter block Median Mean Min Max 10% 90%
θT 0.51137 1.04140 3E-08 2.45819 0.02275 2.92498
A 0.36281 0.94815 1.79E-06 1.82291 0.01137 2.74856
Σ 0.76759 1.57906 6.63E-06 3.17533 0.03186 4.02212
V 0.50669 1.16395 0.00017 1.0552 0.01355 2.80397

Notes: RNE is Geweke (1992) relative numerical efficiency, a measure of the efficiency
of the algorithm. CD is Geweke (1992) χ2

1 convergence diagnostic.

Figure 1. Expected Returns and Expected Excess Returns, Annual Data
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