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Abstract

Using a structural time series approach we measure different sorts of inflation persistence

allowing for an unobserved time-varying inflation target. Unobserved components are iden-

tified using Kalman filtering and smoothing techniques. Posterior densities of the model

parameters and the unobserved components are obtained in a Bayesian framework based

on importance sampling. We find that inflation persistence, expressed by the half life of a

shock, can range from 1 quarter in case of a cost-push shock to several years for a shock to

long-run inflation expectations or the output gap.
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1 Introduction

It is generally accepted that over the medium to long run inflation is a monetary phenom-

enon, i.e. entirely determined by monetary policy. Over shorter horizons various macroeco-

nomic shocks, including variations in economic activity or production costs, will temporarily

move inflation away from the central bank’s inflation target. Therefore, a profound under-

standing of the process generating inflation, in particular the speed of inflation adjustment

in response to such shocks is of crucial importance for an inflation targeting central bank.

Inflation persistence then refers to the tendency of inflation to converge slowly towards the

central bank’s inflation target in response to these shocks.

With respect to measuring historical inflation persistence, a common practice in em-

pirical research is to use a univariate autoregressive (AR) time series model and measure

persistence as the sum of the estimated AR coefficients (Nelson and Plosser 1982; Fuhrer

and Moore 1995; Pivetta and Reis 2004). In most of these studies, inflation is found to

exhibit high to very high persistence over the post-WW II period, i.e. persistence is found

to be close to that of a random walk. This suggests that a central bank’s task of pursuing

price stability might be more complicated than if persistence were low.

Important to note, though, is that this estimated high persistence should be interpreted

as a measure of unconditional inflation persistence as this literature does not take into ac-

count that the data generating process of inflation is composed of a number of distinct

components, each of them exhibiting its own level of persistence. As such, there are var-

ious factors underlying measured historical inflation persistence. First, over the last four

decades large changes in the monetary policy strategy of industrialised economies have oc-

curred. This has led to permanent shifts in the inflation target1 of central banks. Second,

due to asymmetric information, sticky information or imperfect credibility, private agents’

perceptions about the central bank’s inflation target can differ from the true inflation target.

The persistence of such deviations can be called expectations-based persistence (Angeloni

et al. 2004). Third, the sluggish response of inflation to various macroeconomic shocks

is likely to be related to the wage- and price-setting mechanism. If wages and prices are

adjusted infrequently, they will only gradually incorporate the effects of these shocks and

therefore deviations of the observed inflation rate from the perceived inflation target will

persist during several consecutive periods. This kind of inflation persistence can be called

intrinsic inflation persistence (Angeloni et al. 2004). Also price and wage indexation, which

introduces backward-lookingness into inflation, add to intrinsic inflation persistence. Fourth,

1Although inflation targeting is a monetary policy strategy that only emerged in the 1990s, we will still
use this framework for the 1970s and 1980s. It enables us to identify the implicit inflation target of central
banks from their policy choices as well as subsequent economic outcomes.
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inflation persistence is determined by the persistence of the various macroeconomic shocks

hitting inflation, e.g. persistent deviations of output from its potential level. This type of

inflation persistence can be called extrinsic inflation persistence (Angeloni et al. 2004).

In order to get a reliable estimate of the various types of inflation persistence, each of the

above mentioned components should be taken into account explicitly when constructing the

data generating process of inflation. First, permanent shifts in the central bank’s inflation

target lead to permanent changes in inflation. As standard AR models assume that inflation

has a stable mean, these shifts induce an upward bias on measured inflation persistence

(Levin and Piger 2004). In fact, this argument goes back to Perron (1990) who pointed

out that the standard Dickey-Fuller unit root test is biased towards non-rejection of the

unit root hypothesis if the true data generating process includes breaks in its deterministic

components. Taking historical changes in the central bank’s inflation target into account

might not be straightforward, though. Contrary to the current conduct of monetary policy,

most countries typically did not directly communicate their inflation target to the public.

Second, if the central bank’s inflation target is not known to private agents or if it is not

fully credible, the inflation target perceived by economic agents might differ from the central

bank’s inflation target. In this case intrinsic and extrinsic inflation persistence should be

measured as the persistence in the deviations of the actual inflation rate from the perceived

inflation target rather than from the central bank’s inflation target. Third, in order to

estimate extrinsic persistence, the persistence in macroeconomic shocks hitting inflation

should be modelled as well.

In the recent literature, shifts in the central bank’s inflation target are accounted for

in three different ways. First, O’Reilly and Whelan (2004) and Pivetta and Reis (2004)

use rolling regressions to allow for shifts in the mean of inflation over different subsamples.

By lowering the subsample size, the number of breaks that can occur is reduced. Still,

the authors cannot reject the hypothesis that the sum of the AR coefficients equals 1.

Second, Levin and Piger (2004), Gadzinski and Orlandi (2004) and Bilke (2004) estimate

an AR process allowing for discrete breaks in the mean of the inflation process. Without

accounting for possible shifts, Levin and Piger (2004) report a persistence parameter for

the United States GDP deflator of 0.92 over the period 1984Q1-2003Q4. Once a structural

break is allowed for, persistence drops to 0.36. Third, Cogley and Sargent (2001, 2003), and

Benati (2004) estimate time-varying AR coefficients conditional on a time-varying mean,

which is specified as a random walk process. They find evidence that the AR coefficients of

inflation have dropped considerably over the last decade.

With respect to these recent contributions to the literature, the following drawbacks

should be stressed. First, rolling regressions do not entirely rule out the possibility that a
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shift occurred in a specific subsample, especially when shifts are frequent. Moreover, this

approach has limits in terms of degrees of freedom. Second, capturing shifts in monetary

policy by allowing for a time-varying mean inflation rate, either by adding discrete breaks

or a random walk process to the AR model, is inappropriate if the perceived inflation target

differs from the central bank’s inflation target. As this difference is not accounted for in

these models, the persistence in the deviation of the perceived inflation target from the

central bank’s inflation target is implicitly restricted to equal the average of intrinsic and

extrinsic inflation persistence.

This paper uses a structural time series approach to model the data generating process

of inflation in the euro area2 and the United States. Given the various sources of infla-

tion persistence, structural time series models are particularly suited as in these models

a time series can be decomposed into a number of distinct components, each of them be-

ing modelled explicitly. We pursue both a univariate and a multivariate approach. In

both approaches, intrinsic inflation persistence is measured as the persistence of the devia-

tions of inflation from the perceived inflation target. In contrast to the current literature,

this allows for expectations-based persistence in response to shocks to the inflation target.

Expectations-based persistence is incorporated by modelling the perceived inflation target

as an AR process around the central bank’s inflation target, the latter being modelled as

a random walk. Kozicki and Tinsley (2003) use a similar model to disentangle permanent

and transitory monetary policy shifts. Contrary to these authors, in the multivariate model

we explicitly decompose output into potential output and a business cycle component. In

this way we can estimate extrinsic inflation persistence in response to shocks to the business

cycle.

As the univariate and the multivariate model both include a number of unobserved

components, they are cast in a linear Gaussian state space representation. This enables

identification of the unobserved components from the observed data using Kalman filtering

and smoothing techniques. The unknown parameters are estimated in a Bayesian framework,

exploiting information from both the sample data and previous studies estimating similar

models. Posterior densities of the model parameters and the unobserved components are

obtained using importance sampling.

The results indicate that intrinsic inflation persistence is not close to that of a random

walk, i.e. the half life of a cost-push shock is only one quarter in both the euro area and

the United States. The observed high degree of aggregate post-WW II inflation persistence

stems from the other three components driving inflation. First, credible changes in the

2Although the euro area did not exist for the larger part of our data sample (1970Q2-1998Q4), we use
synthetic data aggregating the national data (Fagan, Henry and Mestre 2005). As such, we implicitly assume
that the euro area was an economy with a homogeneous monetary policy over the entire sample.
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central bank’s inflation target induce permanent changes in observed inflation. Second,

expectations only adjust slowly in response to changes in the inflation target. The half

life of shocks to the perceived inflation target is 9 and 16 quarters in the euro area and

the United States respectively. This indicates that the dissipation of changes in the policy

target is typically slower than in case of temporary shocks. Third, given the relative high

persistence of shocks to the output gap, the half life of such shocks to inflation amounts

to 13 quarters in the euro area and to 19 quarters in the United States. This extrinsic

persistence explains why inflation may deviate from the perceived inflation target during

several consecutive periods.

The implications for monetary policy are as follows. In a stable inflation regime, where

the central bank’s inflation target does not change and where the public perception about

this inflation target is well anchored, inflation persistence is relatively low. In the case

monetary policy would again give rise to unstable inflation, it would afterwards be very hard

to disinflate due to the slow adjustment of inflation expectations in response to changes in

the inflation target. With natural rate misperceptions (Orphanides and Williams 2004) this

might not be straightforward to avoid.

2 A structural time series approach

In this section, we present a structural time series model for inflation which takes into

account (i) possible shifts in the central bank’s inflation target, (ii) expectations-based

persistence, (iii) intrinsic persistence and (iv) extrinsic persistence. The model is identified

both in a univariate and a multivariate set-up. The univariate approach relies on time series

data for inflation only. In the multivariate model, we add information contained in real

output and the central bank’s key interest rate. Using a variant of the macroeconomic model

of Rudebusch and Svensson (1999), this allows us to impose more economic structure on the

identification process. The advantage of the univariate over the multivariate model is that

its relative simplicity reduces the risk of specification errors. The state space representation

of both models is given in section 3.

2.1 Baseline structural model

The baseline structural model is given by:

πTt+1 = πTt + η1t, (1)

πPt+1 = Et+1π
T
t+1, (2)

πt = (1−
Xq

i=1
ϕi)π

P
t +

Xq

i=1
ϕiL

iπt + β1zt−1 + ε1t,
Xq

i=1
ϕi < 1, (3)
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where πTt is the central bank’s inflation target, π
P
t is the perceived inflation target, πt is the

observed inflation rate and zt is the output gap, i.e. the percentage deviation of real output

from potential output. L is the lag operator so that Liπt = πt−i. ε1t and η1t are mutually

independent zero mean white noise processes.

Equation (1) specifies πTt as a random walk process, i.e. shifts in the central bank’s

inflation target are assumed to be permanent. These shifts can be thought of as representing

(i) changes in the central bank’s preferences over alternative inflation outcomes (Andolfatto,

Hendry and Moran 2002) or (ii) an implicit change in the inflation target of the central bank

created by misperceptions about the natural rate of different real variables (Orphanides and

Williams 2004).

Shifts in πTt are unlikely to be passed on to inflation expectations immediately. Casteln-

uovo, Nicoletti-Altimari and Rodriguez-Palenzuela (2003) present data on long-run inflation

expectations. These suggest that in the aftermath of shifts in monetary policy, convergence

towards the new equilibrium evolves smoothly over time. In the literature, this is often

attributed to asymmetric information and signal extraction, sticky information or imperfect

credibility. The source of asymmetric information on behalf of the private agents can be

due to a lack of knowledge about the central bank’s inflation target (Kozicki and Tins-

ley 2003) or uncertainty about the central bank’s preferences of inflation over real activity

(Cukierman and Meltzer 1986; Tetlow and von zur Muehlen 2001). If private agents have

to extract information about the central bank’s inflation target from a monetary policy

rule, the signal-to-noise ratio of this policy rule determines the uncertainty faced by private

agents in disentangling transitory and permanent policy shocks and therefore also the speed

at which they recognise permanent policy shocks (Erceg and Levin 2003). Further, even if

the central bank clearly announces a new inflation target, it can take quite some time before

the new policy target is incorporated into long-run inflation expectations of private agents

(Castelnuovo et al. 2003). This might be due to costs of acquiring information and/or re-

optimisation (Mankiw and Reis 2002). Summing up, private agents must form expectations

about the inflation target πTt . Therefore, equation (2) introduces the perceived inflation tar-

get πPt , which captures the private agents’ beliefs about the central bank’s inflation target

πTt .

The expectations operator in equation (2) is operationalised by modelling πPt+1 as a

weighted average of πPt and πTt+1,

πPt+1 = (1− δ)πPt + δπTt+1 + η2t, 0 < δ ≤ 1, (4)

where η2t is a zero mean white noise process. The weighting parameter δ can be interpreted

as being the information updating parameter λ in a variant of the sticky-information model
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of Mankiw and Reis (2002) or as being proportional to the Kalman gain parameter kg in

the signal extraction problem of Erceg and Levin (2003) and Andolfatto et al. (2002).3

Consequently, δ measures the speed with which changes in the central bank’s inflation

target affect long-run inflation expectations of private agents, i.e. δ measures expectations-

based persistence. If δ is one, a shift in the central bank’s inflation target is immediately

and completely passed on to inflation expectations. This would be the case if the central

bank’s inflation target is perfectly known to all private agents and immediately credible.

The smaller δ, the slower expectations respond to a shift in the central bank’s inflation

target.4 In the sticky-information model of Mankiw and Reis (2002), δ decreases in the cost

of acquiring information and/or the cost of re-optimising prices in response to a shift in the

central bank’s inflation target. In the signal extraction problem of Erceg and Levin (2003)

and Andolfatto et al. (2002), δ increases in the signal-to-noise ratio of the monetary policy

rule, i.e. the lower the uncertainty about whether monetary policy signals reflect transitory

rather than permanent policy changes, the faster private agents will react to these signals

by updating their inflation expectations.5

Note that shocks to the perceived inflation target, η2, only have a short-run impact

on πP . These shocks should be interpreted as misperceptions of private agents about the

central bank’s inflation target, due to for instance noise in the signal extraction problem of

Erceg and Levin (2003) and Andolfatto et al. (2002). Shocks to the central bank’s inflation

target, η1, have a unit long-run impact on πP , i.e. πT is the long-run equilibrium inflation

rate. This is consistent with the generally accepted feature that long-run inflation is a purely

monetary phenomenon.

Equation (3) is a Phillips curve, relating the observed inflation rate πt to the perceived

inflation target πPt , q lags of inflation and the lagged output gap zt−1. The perceived inflation

target πPt is the inflation rate consistent with the private agents’ inflation expectations.

Therefore, it serves as the medium-run inflation anchor. Both business cycle shocks, reflected

in the output gap zt−1, as well as cost-push shocks, measured by ε1t, hitting inflation induce

temporary deviations of πt from πPt . The sluggish adjustment of πt in response to cost-push

shocks ε1t is measured by the sum of the AR coefficients,
Pq

i=1 ϕi. This intrinsic inflation

persistence is likely to be related to price- and wage-setting mechanisms, e.g. price and

wage indexation. The sluggish adjustment of πt in response to business cycle shocks is

determined, besides the intrinsic inflation persistence, by the persistence of the output gap

3See Appendix A for more details on how equation (4) can be derived from these two models.
4We do not allow δ to take a value of 0, as in this case πPt does not react to monetary policy shocks, i.e.

monetary policy is not credible. Note that this restriction does not imply that all monetary policy actions
are fully credible. Rather, only credible shifts in the central bank’s inflation target are included in η1t.

5Equation (4) does not distinguish between these two theories, neither excludes that δ is a weighted
average of kg and λ, which could be the case if reality is a mixture of both theories.
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zt in response to business cycle shocks. The latter source of inflation persistence can be

called extrinsic inflation persistence.

Note that equation (3) does not impose that the observed inflation series is additively

composed of the perceived inflation target and a temporary component. Rather, shifts in

πPt are only slowly passed on to observed inflation, with the speed of convergence being

determined by the degree of intrinsic inflation persistence. In this way, we assume that

in case of a shift in the perceived inflation target the structural determinants for intrinsic

persistence, e.g. price and wage indexation, are present in addition to the determinants of

expectations-based persistence, e.g. sticky or imperfect information.

2.2 Univariate identification

In a first step, we use time series data on inflation only to estimate the model specified in

equations (1)-(4). Given the limited information set, the baseline model is simplified in two

respects. First, we set β1 = 0 in equation (3). This restriction stems from the fact that we

do not include any information about real output and therefore cannot estimate extrinsic

inflation persistence in response to business cycle shocks. Second, we exclude the possibility

of shocks to πPt , i.e. η2t = 0 ∀t. This restriction is motivated from the concern to keep, given
the limited information set, the identification of πPt and πTt as simple as possible. Under

this restriction, equation (4) can be rewritten, using equation (1), as:

πPt+1 = (2− δ)πPt + (δ − 1)πPt−1 + δη1t (5)

This way of writing equation (4) shows that the univariate identification scheme boils

down to the empirical restriction that (i) shocks to the central bank’s inflation target, η1t,

have a unit long-run impact on observed inflation, (ii) inflation expectations can deviate

from the central bank’s inflation target over a long period of time and (iii) observed inflation

is a stationary AR process around the perceived inflation target. Note that equation (5)

is broadly consistent with the idea advocated by, among others, Young, Lane, Ng and

Palmer (1991) that in order to introduce enough smoothness in estimates of unobserved

trend components, they are best modelled as an integrated random walk process. Although

strictly speaking the data generating process for πPt is not allowed to be an integrated

random walk process, as δ > 0, πPt will exhibit a similar smoothness in response to monetary

policy shocks provided that δ is sufficiently close to 0. A similar specification of the data

generating process of inflation expectations can be found in Doménech and Gomez (2003).
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2.3 Multivariate identification

The univariate model exhibits two important drawbacks. First, identification of shocks to

the central bank’s inflation target stems from the purely statistical restriction that these

shocks should have a unit long-run impact on inflation. Second, extrinsic inflation persis-

tence cannot be estimated. Therefore, we add data on the central bank’s key interest rate

and real output. We use a variant of the widely used macroeconomic model of Rudebusch

and Svensson (1999) to (i) identify the central bank’s inflation target from information

contained in the central bank’s key interest rate and (ii) to measure extrinsic inflation per-

sistence in response to shocks to the output gap from information contained in real output.

Therefore, the baseline specification in equations (1)-(4) is extended with the following

equations:

it = ρ2it−1 + (1− ρ2)
¡
r∗t + πPt

¢
+ ρ1(πt−1 − πTt ) + ε2t (6)

yrt = yPt + zt (7)

zt = β2zt−1 + β3zt−2 − β4
¡
it−1 − πPt−1 − r∗t−1

¢
+ ε3t (8)

yPt+1 = λt+1 + yPt + η3t (9)

λt+1 = λt + η4t (10)

r∗t+1 = γλt+1 + τ t+1 (11)

τ t+1 = θτ t + η5t (12)

where ε2t, ε3t, η3t, η4t and η5t are mutually independent zero mean white noise processes.

The interest rate rule in equation (6) infers on the stance of monetary policy through

comparing the central bank’s key nominal interest rate, it, with a measure for the neutral

stance of monetary policy. Following Laubach and Williams (2003), this measure is assumed

to be the natural short-run nominal interest rate
¡
r∗t + πPt

¢
, where r∗t is the time-varying

real short-term interest rate consistent with output equal to potential (cf. below). As the

perceived inflation target πPt is the medium-run inflation anchor consistent with long-run

inflation expectations, r∗t +πPt is the medium-run nominal interest rate anchor for monetary

policy. The term (πt−1 − πTt ) captures the reaction of the central bank to deviations of

inflation from its target, i.e. monetary authorities will increase the nominal interest rate

it when observed inflation πt−1 lies above the inflation target πTt . The lagged interest rate

it−1 introduces a degree of nominal interest rate smoothing or policy inertia (Amato and

Laubach 1999; English, Nelson and Sack 2003; Erceg and Levin 2003). We assume that the

policy parameters ρ1 and ρ2 are time-invariant. Although Clarida, Gali and Gertler (1998)

find that the policy parameters are unstable in a number of countries, this assumption is not

in contradiction with their results. They estimate the parameters conditional on a constant
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inflation target, whereas we estimate the inflation target conditional on constant policy

parameters. Both strategies are to a high degree observationally equivalent. The reason

why we do so is that we are interested in the time-varying inflation target and less in the

policy parameters. For examples of the same approach see e.g. Kozicki and Tinsley (2003)

or Smets and Wouters (2005).

The interest rate rule enables us to extract information on shifts in the monetary policy

regime contained in the key nominal interest rate it. Figures 1 and 2 present data for key

nominal interest rates and inflation in the euro area and the United States since 1970. For a

given fully credible central bank inflation target, inflation and the key nominal interest rate

it should, over an entire business cycle, move around a fixed point on a 45 degree line with

an intercept equal to the equilibrium real interest rate. This 45 degree line corresponds to

the sum of the natural real interest rate and the perceived inflation target πPt , that equals

the credible central bank inflation target πTt . However, the seven year moving average line

of the data, which approximately filters out business cycle fluctuations, shows that from

the 1970s until now inflation and interest rates did not move around a fixed point. This

suggests that there have been substantial shifts in the central bank’s inflation target.

Figure 1: Shifts in the inflation target (euro area). The intercept is the mean of the real
interest rate in the sample 1970Q2-2003Q4. As the sample begins in 1970Q2, the moving
average will only start to contain seven years of data from 1977Q2. Therefore, the average
is a slightly more volatile in the beginning of the sample.

The same figures also reveal to what extent the perceived inflation target differed from
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Figure 2: Shifts in the inflation target in the United States. See figure 1 for notes.

the central bank’s inflation target at a certain point in time. Suppose we start from a point

on the 45 degree line, e.g. a high inflation rate and a high key interest rate in the early

1980s. Now consider a central bank that wants to disinflate, i.e. the central bank reduces

its target πTt . If the shift in πTt immediately feeds through into πPt , we would observe

a contemporaneous decrease in the key interest rate. Graphically, this would correspond

to a downward shift along the 45 degree line. As this is neither the case for the United

States nor for the euro area in most of the sample, this shows that changes in the central

bank’s inflation target are usually only slowly reflected in the perceived inflation target.

The only time this observation seems not to hold is for the period between 1994 and today

in the United States. It suggests that during the last decade, the Federal Reserve was

able to disinflate in a credible way by about 2 percentage points6. Note that, as Laubach

and Williams (2003) point out, shifts in the natural real rate of interest could mislead our

judgement of the stance of monetary policy if we would assume that the natural rate remains

constant. Time variation in the natural rate implies that the intercepts in Figures 1 and

2 are also time-varying. Still it is hard to believe that the natural rate of interest was

persistently lower in the seventies than in the eighties and nineties, which lets us conclude

6This seems to be confirmed by narrative evidence. Goodfriend (2002, p. 6) writes: "... in February
1994, the Fed started to announce its current intended federal funds rate target immediately after each
FOMC meeting. This new practice made Fed policy more visible than ever. Every increase in the federal
funds rate since then has attracted considerable attention."
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that the interest rate rule indeed contains information about the timing and magnitude of

shifts in the central bank’s inflation target.

Equation (7) decomposes the log of real output yrt into potential output y
P
t and the

output gap zt. Equation (8) is an aggregate demand equation, relating the output gap zt to

its own lags and a term
¡
it−1 − πPt−1 − r∗t−1

¢
which captures monetary policy transmission.

Following Harvey (1985), Stock and Watson (1998) and Laubach and Williams (2003),

equations (9)-(10) model potential output as a random walk with drift, where the drift term

λt varies over time according to a random walk process. The time-variation in λt allows for

the possibility of permanent changes in the trend growth of real output, e.g. the productivity

slowdown of the early 1970s.7

Laubach and Williams (2003) argue that the natural real rate of interest varies over time

due to shifts in the trend growth of output and other factors such as households’ rate of

time preference. Therefore, equation (11) relates the real short-term interest rate r∗t to the

trend growth in potential output λt and a component τ t that captures other determinants

like time preferences. τ t is assumed to be an AR process that, depending on the value for

θ, can be either stationary or non-stationary.

Because we want to measure inflation persistence as the sum of the coefficients on the

lagged inflation terms, the non-expectational autoregressive model presented above suits

our purpose very well. In the case the economy is characterised by forward looking rational

expectations, it can be considered as its reduced form representation. Rudebusch (2005),

however, shows that in that case the reduced form representation of a simple forward looking

monetary policy model would be subject to the Lucas critique. In this context Lansing and

Trehan (2003) analytically show that the reduced form parameters depend on the policy

parameters ρ1 and ρ2. As we model the economy in a reduced form around a time varying

steady state inflation rate, this is not relevant for our extension. The policy parameters

ρ1 and ρ2 remain constant and therefore the reduced form parameters are not affected by

policy changes.

7Note that the random walk in equation (10) implies that yPt , and therefore also yt, is an I(2) process.
This seems inconsistent with the empirical evidence from Dickey-Fuller (DF) unit root tests that real output
is I(1). Stock and Watson (1998) argue, though, that when the variance of η4t is small relative to the variance
of η3t, ∆yPt has a moving average (MA) root close to unity. Schwert (1989) and Pantula (1991) show that
the size of the standard DF unit root test is severely upward biased in the presence of a large MA root.
In this case, the standard DF unit root test is inappropriate to pick up a possible I(2) component in real
output.
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3 Estimation methodology8

3.1 State space representation

The structural time series models outlined in section 2 both include a number of unobserved

components (πPt , π
T
t , ...). In order to estimate these models, it is necessary to write them into

state space form9. In a state space model, the development over time of the system under

study is determined by an unobserved series of vectors α1, . . . , αn, which are associated with

a series of observed vectors y1, . . . , yn. A general linear Gaussian state space model can be

written in the following form:

yt = Zαt +Axt + εt, εt ∼ N(0,H), (13)

αt+1 = Tαt +Rηt, ηt ∼ N(0,Q), t = 1, . . . , n, (14)

where yt is a p × 1 vector of observed endogenous variables, modelled in the observation
equation (13), xt is a k× 1 vector of observed exogenous variables and αt is a m× 1 vector
of unobserved states, modelled in the state equation (14). The disturbances εt and ηt are

assumed to be independent sequences of independent normal vectors. The matrices Z, A,

T, R, H, and Q are parameter matrices.10

3.2 Kalman filter and smoother

Assuming that Z, A, T, R, H, and Q are known, the purpose of state space analysis is

to infer the relevant properties of the αt’s from the observations y1, . . . , yn and x1, . . . , xn.

This can be done through the subsequent use of two recursions, i.e. the Kalman filter and

the Kalman smoother. The objective of filtering is to obtain the distribution of αt, for

t = 1, . . . , n, conditional on Yt and Xt, where Yt = {y1, . . . , yt} and Xt = {x1, . . . , xt} . In a
linear Gaussian state space model, the distribution of αt is entirely determined by the filtered

state vector at = E (αt | Yt,Xt) and the filtered state variance matrix Pt = V ar (αt | Yt,Xt) .

The (contemporaneous) Kalman filter algorithm (see e.g. Hamilton, 1994, or Durbin and

Koopman, 2001) estimates at and Pt by updating, at time t, at−1 and Pt−1 using the new

information contained in yt and xt. The Kalman filter recursion can be initialised by the

assumption that α1 ∼ N(a1, P1). In practice, a1 and P1 are generally not known though.

Therefore, we assume that the distribution of the initial state vector α1 is

α1 = V Γ+R0η0, η0 ∼ N (0, Q0) , Γ ∼ N (0, κIr) , (15)

8The methodology outlined in this section was implemented using a set of GAUSS procedures. The code
of these procedures is available from the authors on request.

9 See e.g. Durbin and Koopman (2001) for an extensive overview of state space methods.
10The exact elements of the vectors yt, xt and αt and the matrices Z, A, T, R, H, and Q for both the

univariate and the multivariate model are specified in Appendix B.
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where the m × r matrix V and the m × (m− r) matrix R0 select the r elements of the

state vector that are non-stationary and the m−r elements that are stationary respectively.
They are composed of columns of the identity matrix Im and are defined so that, when taken

together, their columns constitute all the columns of Im and V 0R0 = 0. The unconditional

variance matrix Q0 of the stationary elements of the state vector is positive definite and

can be computed from the model parameters. The r × 1 vector Γ is a vector of unknown
random quantities which, as we let κ→∞, is referred to as the diffuse vector. This leads to

α1 ∼ N(0, P1), P1 = κP∞ + P∗, (16)

where P∞ = V V 0 and P∗ = R0Q0R
0
0. The Kalman filter is modified to account for this

diffuse initialisation implied by letting κ → ∞ by using the exact initial Kalman filter

introduced by Ansley and Kohn (1985) and further developed by Koopman (1997) and

Koopman and Durbin (2003).

Subsequently, the Kalman smoother algorithm is used to estimate the distribution of αt,

for t = 1, . . . , n, conditional on Yn and Xn, where Yn = {y1, . . . , yn} and Xn = {x1, . . . , xn}.
Thus, the smoothed state vector bat = E (αt | Yn,Xn) and the smoothed state variance

matrix bPt = V ar (αt | Yn,Xn) are estimated using all the observations for t = 1, . . . , n. In

order to account for the diffuse initialisation of α1, we use the exact initial state smoothing

algorithm suggested by Koopman and Durbin (2003).

Given the complexity of the multivariate model, we do not use the entire observational

vector yt in the filtering and smoothing algorithm. Following Koopman and Durbin (2000),

the elements of yt are introduced into the filtering and smoothing algorithms one at a

time, i.e. the multivariate analysis is converted into a univariate analysis. As the data can

then be analysed in univariate form, this approach offers significant computational gains,

particularly for the treatment of initialisation by diffuse priors.

3.3 Bayesian analysis

The filtering and smoothing algorithms both require that Z, A, T, R, H, and Q are known.

In practice, these matrices generally depend on elements of an unknown parameter vector

ψ. One possible approach is to derive, from the exact Kalman filter, the diffuse loglikelihood

function for the model under study (de Jong 1991; Koopman and Durbin 2000; Durbin and

Koopman 2001) and replace the unknown parameter vector ψ by its maximum likelihood

estimate. This is not the approach pursued in this paper. First, given the fairly large number

of unknown parameters, especially in the multivariate model, the numerical optimisation of

the sample loglikelihood function is quite tedious. Second, most of the unknown parameters

in ψ have been estimated in the past for different countries and samples. Therefore, we
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analyse the state space models from a Bayesian point of view, i.e. we treat ψ as a random

parameter vector with a known prior density p (ψ) and estimate the posterior densities

p (ψ | y, x) for the parameter vector ψ and p (bαt | y, x) for the smoothed state vector bαt,
where y and x denote the stacked vectors (y01, . . . , y0n)

0 and (x01, . . . , x0n)
0 respectively, by

combining information contained in p (ψ) and the sample data. Essentially, this boils down

to calculating the posterior mean g:

g = E [g (ψ) | y, x] =
Z

g (ψ) p (ψ | y, x) dψ (17)

where g is a function which expresses the moments of the posterior densities p (ψ | y, x) and
p (bαt | y, x) in terms of the parameter vector ψ.
In principle, the integral in equation (17) can be evaluated numerically by drawing a

sample of n random draws of ψ, denoted ψ(i) with i = 1, . . . , n, from p (ψ | y, x) and then
estimating g by the sample mean of g (ψ). As p (ψ | y, x) is not a density with known
analytical properties, such a direct sampling method is not feasable, though. Therefore,

we switch to importance sampling. The idea is to use an importance density g (ψ | y, x)
as a proxy for p (ψ | y, x), where g (ψ | y, x) should be chosen as a distribution that can be
simulated directly and is as close to p (ψ | y, x) as possible. By Bayes’ theorem and after

some manipulations, equation (17) can be rewritten as

g =

R
g (ψ) zg (ψ, y, x) g (ψ | y, x) dψR

zg (ψ, y, x) g (ψ | y, x) dψ (18)

with

zg (ψ, y, x) =
p (ψ) p (y | ψ)
g (ψ | y, x) (19)

Using a sample of n random draws ψ(i) from g (ψ | y, x) , an estimate gn of g can then be
obtained as

gn =

nX
i=1

g
³
ψ(i)

´
zg
³
ψ(i), y, x

´
nX
i=1

zg
³
ψ(i), y, x

´ =
nX
i=1

wig
³
ψ(i)

´
(20)

with wi

wi = zg
³
ψ(i), y, x

´
/

nX
i=1

zg
³
ψ(i), y, x

´
(21)

the weighting function reflecting the importance of the sampled value ψ(i) relative to other

sampled values.

Geweke (1989) shows that if g (ψ | y, x) is proportional to p (ψ | y, x) , and under a num-
ber of weak regularity conditions, gn will be a consistent estimate of g for n→∞.
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3.4 Computational aspects of importance sampling

As a first step importance density g (ψ | y, x), we take a large sample normal approximation
to p (ψ | y, x), i.e.

g (ψ | y, x) = N
³bψ, bΩ´ (22)

where bψ is the mode of p (ψ | y, x) obtained from maximising

log p (ψ | y, x) = log p (y | ψ) + log p (ψ)− log p (y) (23)

with respect to bψ and where bΩ denotes the covariance matrix of bψ. Note that p (y | ψ) is
given by the likelihood function derived from the exact Kalman filter and we do not need

to calculate p (y) as it does not depend on ψ.

In drawing from g (ψ | y, x) , efficiency was improved by the use of antithetic variables,
i.e. for each ψ(i) we take another value eψ(i) = 2bψ − ψ(i), which is equiprobable with ψ(i).

This results in a simulation sample that is balanced for location (Durbin and Koopman

2001).

As any numerical integration method delivers only an approximation to the integrals in

equation (18), we monitor the quality of the approximation by estimating the probabilistic

error bound for the importance sampling estimator gn (Bauwens, Lubrano and Richard 1999,

chap. 3, eq. 3.34). This error bound represents a 95% confidence interval for the percentage

deviation of gn from g. It should not exceed 10%. In practice this can be achieved by

increasing n, except when the coefficient of variation of the weights wi is unstable as n

increases. An unstable coefficient of variation of wi signals poor quality of the importance

density. This was exactly the problem encountered in the empirical analysis.

Note that the normal approximation in equation (22) selects g (ψ | y, x) in order to match
the location and covariance structure of p (ψ | y, x) as good as possible. One problem is that
the normality assumption might imply that g (ψ | y, x) does not match the tail behaviour
of p (ψ | y, x). If p (ψ | y, x) has thicker tails than g (ψ | y, x), a draw ψ(i) from the tails of

g (ψ | y, x) can imply an explosion of zg
³
ψ(i), y, x

´
. This is due to a very small value for

g (ψ | y, x) being associated with a relatively large vaule for p (ψ) p (y | ψ), as the latter is
proportional to p (ψ | y, x). Importance sampling is inaccurate in this case as this would
lead to a weight wi close to one, i.e. gn is determined by a single draw ψ(i). This is signaled

by instability of the weights and a probabilistic error bound that does not decrease in n.

In order to help prevent explosion of the weights, we change the construction of the

importance density in two respects (Bauwens et al. 1999, chap. 3). First, we inflate the

approximate covariance matrix bΩ a little. This reduces the probability that p (ψ | y, x)
has thicker tails than g (ψ | y, x). Second, we use a sequential updating algorithm for the
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importance density. This algorithm starts from the importance density defined by (22),

with inflation of bΩ, estimates posterior moments for p (ψ | y, x) and then defines a new
importance density from these estimated moments. This improves the estimates for bψ andbΩ. We continue updating the importance density until the weights stabilise. The number
of importance samples n was chosen to make sure that the probabilistic error bound for the

importance sampling estimator gn does not exceed 10%.

4 Estimation results

We use quarterly data for the euro area and the United States from 1970Q1 to 2003Q4. The

inflation series πt is the annualised first difference of the log of the seasonally adjusted GDP

deflator. For the interest rate, it, we use the annualised central bank key interest rate. This

interest rate should be most appropriate to infer changes in the central bank’s behaviour.

Real output, yrt , is measured as the log of seasonally adjusted GDP at constant prices. See

Appendix C for a more detailed data description. Given that we work with quarterly data,

the number of AR terms in equation (3) is set equal to 4, i.e. q = 4.

4.1 Prior information

Prior information, presented in Table 1, about the unknown parameter vector ψ is included

in the analysis through the prior density p (ψ). Where possible prior information is taken

from the literature. We use the same priors for the euro area and the United States. If

no adequate information is available, we leave considerable uncertainty around the chosen

priors. The prior distribution is assumed to be Gaussian for all elements in ψ, except for

the variance parameters which are assumed to be gamma distributed.

The priors for the AR coefficients ϕi are chosen from studies allowing for a break in the

mean of the inflation rate. Levin and Piger (2004) for instance find a value of 0.36 for the

sum of the AR coefficients of the United States GDP deflator. Gadzinski and Orlandi (2004)

find a somewhat higher figure of 0.6 for the euro area. Finally we choose a prior for the

sum of the AR coefficients of 0.4 for both the United States and the euro area. Our prior

for δ is 0.15, which is the average of the parameter values determining signal extraction in

Erceg and Levin (2003) and Kozicki and Tinsley (2003), or sticky information in Mankiw

and Reis (2002). The prior for the variance of the inflation target shocks σ2η1 corresponds,

on average, to what Kozicki and Tinsley (2003) and Smets and Wouters (2005) find. The

priors for the parameters that are only present in the multivariate model come from previous

studies estimating variants of the model of Rudebusch and Svensson (1999). For the impact

of the lagged output gap on inflation we choose a value of 0.2. The AR coefficients of the

output gap equation are chosen in order to generate a hump-shaped response of output
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in reaction to a shock. This feature is often found in previous empirical studies (Gerlach

and Smets 1999; Rudebusch and Svensson 1999; Laubach and Williams 2003; Rudebusch

2005). The parameter value for ρ2 assumes considerable interest rate smoothing (Smets and

Wouters, 2005). The parameter values for ρ1 and ρ2 are chosen so that the Taylor (1993)

principle
³
1 + ρ1

1−ρ2 = 1.5 > 1
´
holds for deviations of πPt from πTt . The central bank reacts

less vigorously
³

ρ1
1−ρ2 = 0.5

´
in response to deviations of πt from πTt . This is consistent

with the view that an inflation-targeting central bank should only stabilise inflation in the

medium run and pay less attention to short-term deviations.

Table 1: Prior information
reference(s) 5 p.c. Mean 95 p.c.

ϕ1 - 0.04 0.20 0.36
ϕ2 - −0.06 0.10 0.26
ϕ3 - −0.11 0.05 0.21
ϕ4 - −0.11 0.05 0.21P4
i=1 ϕi Gadzinski et al. (2004), Levin et al. (2004) 0.16 0.40 0.64
δ Erceg et al. (2003), Kozicki et al. (2003) −0.01 0.15 0.31

Mankiw et al. (2002)
β1
β2
β3
β4


Gerlach et al. (1999),
Rudebush (2005),

Rudebush et al. (1999)

0.18 0.20 0.22
1.32 1.35 1.38
−0.50 −0.47 −0.44
−0.01 0.15 0.31

ρ1 Taylor (1993) 0.02 0.05 0.08
ρ2 Taylor (1993), Smets et al. (2005) 0.87 0.90 0.93
γ
θ

¾
Laubach et al. (2003)

3.67 4.00 4.33
0.95 0.97 0.99

σ2ε1 - 0.35 1.30 2.77
σ2ε2 - 0.21 0.30 0.40
σ2ε3 Laubach et al. (2003) 0.11 0.16 0.21
σ2η1 Kozicki et al. (2003), Smets et al. (2005) 0.03 0.12 0.25

σ2η2 - 2.8e−5 1.0e−4 2.1e−4
σ2η3
σ2η4
σ2η5

 Laubach et al. (2003)
0.26 0.37 0.49
4.5e−4 6.5e−4 8.8e−4
0.07 0.10 0.14

Note: All variances are expressed at annual rates except for σ2ε3 , σ
2
η3
and σ2η4 which

are expressed as quarterly rates. The prior distribution is assumed to be Gaussian for
all elements in ψ, except for the variance parameters which are assumed to be gamma
distributed.

4.2 Posterior distributions

In this section we present estimates of the posterior mean ψ = E [ψ | y, x] of the parameter
vector ψ and the posterior mean αt = E [bαt | y, x] of the smoothed state vector bαt. An
estimate eψ of ψ is obtained by setting g ³ψ(i)´ = ψ(i) in equation (20) and taking eψ = gn.

An estimate eαt of αt is obtained by setting g
³
ψ(i)

´
= bα(i)t in equation (20) and taking
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eαt = gn, where bα(i)t is the smoothed state vector obtained from the Kalman smoother using

the parameter vector ψ(i).

We also present the 5th and 95th percentiles of the posterior densities p (ψ | y, x) and
p (bαt | y, x). Let F ¡ψj | y, x¢ = Pr³ψ(i)j ≤ ψj

´
with ψj denoting the j-th element in ψ. An

estimate eF ¡ψj | y, x¢ of F ¡ψj | y, x¢ is obtained by setting g ³ψ(i)´ = Ij

³
ψ
(i)
j

´
in equation

(20) and taking eF ¡ψj | y, x¢ = gn, where Ij
³
ψ
(i)
j

´
is an indicator function which equals

one if ψ(i)j ≤ ψj and zero otherwise. An estimate eψ5%j of the 5th percentile of the posterior

density p (ψ | y, x) is chosen such that eF ³ψ5%j | y, x
´
= 0.05. An estimate eα5%j,t of the 5th

percentile of the jth element of the posterior density p (bαt | y, x) is obtained by setting
g
³
ψ(i)

´
= bα(i)j,t − 1.645qbP (i)j,t in equation (20) and taking eα5%j,t = gn, where bα(i)j,t denotes the

j-th element in bα(i)t and bP (i)j,t is the (j, j)th element of the smoothed state variance matrixbP (i)t obtained using the parameter vector ψ(i). The 95th percentiles are constructed in a

similar way.

4.2.1 Posterior distribution of the parameters

Tables 2 and 3 present the posterior mean and the 5th and 95th percentile of the posterior

distribution of ψ for the euro area and the United States for both the univariate and multi-

variate model. Two important conclusions stand out. First, in the univariate model intrinsic

inflation persistence, measured as
Xq

i=1
ϕi, amounts to 0.44 for the euro area and 0.80 for

the United States. This is considerably lower than estimates from standard AR time series

models. The multivariate intrinsic inflation persistence estimates amount to 0.45 and 0.75

for the euro area and the United States, and are in line with the results of the univariate

specification. In the case of the United States, intrinsic inflation persistence is somewhat

higher than in the euro area. Note that this result is consistent with Galí et al. (2001), who

for the United States also find a relatively higher degree of backward-lookingness compared

to the euro area. Second, expectations-based persistence, measured by (1− δ) , is at least as

high or higher than intrinsic inflation persistence, i.e. higher than 0.74 for both economies

across the different models. The persistence in the output gap, measured by the sum of β2

and β3, amounts to at least 0.9. This implies considerable extrinsic inflation persistence.

4.2.2 Posterior distribution of the states

Figures 3, 4, 5 and 6 show the dynamics of the inflation rate together with the central bank’s

inflation target and the perceived inflation target. These figures reveal considerable variation

in the central bank’s inflation target in both the euro area and the United States. The

dynamics of the perceived inflation target show that inflation expectations adjust smoothly

in response to shifts in the central bank’s inflation target. The central bank’s inflation target

20



Table 2: Posterior distribution univariate model (1971Q2:2003Q4)

Euro area United States
5 p.c. Mean 95 p.c. 5 p.c. Mean 95 p.c.

ϕ1 0.15 0.27 0.38 0.26 0.38 0.50
ϕ2 0.01 0.11 0.22 0.07 0.19 0.31
ϕ3 −0.18 −0.07 0.04 0.01 0.13 0.25
ϕ4 0.02 0.13 0.23 −0.01 0.11 0.22P4
i=1 ϕi 0.22 0.44 0.65 0.59 0.80 0.99
δ 0.16 0.26 0.37 0.10 0.24 0.37
σ2ε1 1.34 1.66 2.06 1.15 1.42 1.76
σ2η1 0.09 0.16 0.29 0.03 0.09 0.23

Note: The approximate covariance matrix bΩ is inflated with a factor 1.2. For the US,
the coefficient of variation of the weights stabilised after 3 updates of the importance
function. For the Euro area updating was not necessary. With n = 10000, the
probabilistic error bound for the importance sampling estimator gn is well below 10%
for all coefficients.

Table 3: Posterior distribution multivariate model (1971Q2:2003Q4)

Euro area United States
5 p.c. Mean 95 p.c. 5 p.c. Mean 95 p.c.

ϕ1 0.15 0.25 0.36 0.20 0.31 0.41
ϕ2 0.00 0.11 0.21 0.05 0.16 0.26
ϕ3 −0.17 −0.07 0.04 0.03 0.14 0.24
ϕ4 0.05 0.15 0.25 0.05 0.15 0.25P4
i=1 ϕi 0.25 0.45 0.64 0.60 0.75 0.89
δ 0.14 0.24 0.35 0.06 0.20 0.34
β1 0.18 0.20 0.22 0.18 0.20 0.22
β2 1.34 1.37 1.40 1.34 1.36 1.39
β3 −0.48 −0.45 −0.42 −0.48 −0.45 −0.42
β4 0.10 0.16 0.22 0.09 0.13 0.17
ρ1 0.02 0.04 0.06 0.02 0.05 0.07
ρ2 0.87 0.90 0.92 0.86 0.89 0.91
γ 3.64 3.98 4.31 3.66 3.99 4.32
θ 0.95 0.97 0.98 0.95 0.97 0.98
σ2ε1 1.27 1.57 1.94 0.98 1.21 1.49
σ2ε2 0.25 0.30 0.36 0.63 0.72 0.82
σ2ε3 0.08 0.11 0.15 0.11 0.15 0.20
σ2η1 0.06 0.12 0.23 0.04 0.09 0.22

σ2η2 1.3e−5 5.2e−5 1.6e−4 1.3e−5 5.2e−5 1.6e−4
σ2η3 0.15 0.19 0.25 0.26 0.34 0.42

σ2η4 4.4e−4 6.2e−4 8.5e−4 4.3e−4 6.2e−4 8.6e−4
σ2η5 0.07 0.10 0.14 0.08 0.11 0.15

Note: The approximate covariance matrix bΩ is inflated with a factor 1.2. The coeffi-
cient of variation of the weights stabilised after 1 update of the importance function
for both the euro area and the United States. With n = 10000, the probabilistic error
bound for the importance sampling estimator gn is well below 10% for all coefficients.
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and the perceived inflation target identified in the univariate model are very similar to the

ones identified in the multivariate model. This confirms that the permanent shifts in the

perceived inflation target, which were identified in the univariate model using a statistical

restriction, are indeed driven by shifts in the central bank’s inflation target.

Figure 3: Smoothed univariate states for the euro area

The timing of the shifts in the central bank’s inflation target seems to be in line with

common knowledge about the historical conduct of monetary policy. A first disinflationary

period is present in the early 1980s. In the United States, the univariately estimated inflation

target decreased from 6% in the late 1970s to about 3% in the mid 1980s. This is matched

by the disinflationary policy of Paul Volcker, who was appointed president of the Federal

Reserve in 1979. A similar decrease, from about 10% to about 5%, is observed for the euro

area. This decrease is more difficult to match with narrative evidence, as no unified monetary

policy existed before 1999. Still, several future euro area member countries (e.g. Austria,

Belgium, France, The Netherlands) were disinflating in the beginning of the eighties. For

the euro area, a second disinflationary period is also present in the beginning of the nineties.

Other future euro area member countries (e.g. Greece, Italy, Portugal, Spain) were then

disinflating in order to comply with the Maastricht criteria. In the United States there

seems to have been a somewhat less pronounced decrease in the central bank’s inflation

target over that period.

Finally, in an inflation targeting framework, where the short-term interest rate is the
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Figure 4: Smoothed multivariate states for the euro area

Figure 5: Smoothed univariate states for the United States
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Figure 6: Smoothed multivariate states for the United States

primary policy instrument, the natural interest rate provides a metric for the stance of

monetary policy. The natural rate of interest varies over time due to shifts in the trend

growth of output and other factors such as households’ rate of time preference. We took

these variations explicitly into account in our model, so that when estimating shifts in the

central banks’ inflation target the results would not be misleading due to the shifts in the

benchmark, namely the natural interest rate. Figures 7 and 8 show that especially variations

in time preferences have driven the natural real interest rate over the last three decades in

both the United States and the euro area. In addition, during the nineties a decrease in the

trend growth rate has driven down the natural real interest rate in the euro area, whereas

this does not seem to be the case for the United States.

4.2.3 Half life and impulse response analysis

An alternative way of analysing inflation persistence is to look at the half life and impulse

response functions of different shocks to inflation. The former counts the number of periods

for which the effect of a shock to inflation remains above half its initial impact. An important

difference with the sum of estimated AR coefficients as a measure of persistence is that both

the half life and impulse response analysis take all the roots of the AR equation into account

while the sum of AR coefficients only measures the average speed of convergence. A second

important difference with the point estimates of the AR coefficients is that different sources
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Figure 7: Smoothed multivariate states for the euro area

Figure 8: Smoothed multivariate states for the United States
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Table 4: Half lives of inflation (quarters)

Euro area United States
Temporary inflation shock 1 1

Perceived inflation target shock 9 16
Output gap shock 13 19

Central bank target shock ∞ ∞

of persistence in response to a shock can reinforce each other. The inflation dynamics in

response to a shock will thus not only depend on the persistence in the variable that was

shocked, but will also depend on the interaction with other variables. Therefore, also the

persistence in the latter will play a role.

Table 4 reports half lives for four shocks to inflation considered in the multivariate model.

The half life of a temporary shock (ε1t) is only one quarter. For a shock to the perceived

inflation target (η2t), the half life is 9 and 16 quarters in the euro area and the United States

respectively. For a shock to the output gap (ε3t), the half life even amounts to 13 quarters

in the euro area and to 19 quarters the United States. Finally, a shock to the inflation

target (η1t) is permanent and therefore its half life is equal to infinity. The latter result is

obtained by construction because we assume a random walk process for the shifts in the

central bank’s inflation target. Still, it shows that ignoring a component with an infinite

half life must create a considerable bias in the estimates of the other kinds of persistence.

Figure 9: Impulse responses for the euro area
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Figure 10: Impulse responses for the United States

A similar lesson can be learned from the impulse response functions in response to a unit

shock in Figures 9-10. A shift in the central bank’s inflation target (η1t) has a permanent

impact on inflation. Still, it takes various periods before the inflation rate stabilises at

the new target, both in the euro area and in the United States. This is to a big extent

due to considerable expectations-based persistence that creates persistent deviations of the

perceived inflation target from the central bank’s inflation target. In case of a shock to the

output gap (ε3t) or the perceived inflation target (η2t), the response of inflation seems to be

characterised by a similar degree of persistence. In case of a temporary shock to inflation

(ε1t), the convergence to the target goes much faster. According to the sum of the AR

coefficients, intrinsic and expectations-based persistence are not statistically significantly

different. Still, due to the persistence in the reaction of the central bank and the output

gap, the number of quarters that inflation is affected by a difference between the perceived

and the central bank’s inflation target can be considerably higher.
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5 Conclusions

This paper aims at measuring different sorts of inflation persistence, i.e. the sluggish re-

sponse of inflation in response to different macroeconomic shocks. In the literature post

war inflation persistence measures are often found to be close to that of a random walk.

The main point stressed in this paper is that these unconditional estimates are hard to

interpret as the data generating process of inflation can be decomposed in a number of

distinct components, each of them exhibiting its own degree of persistence. First, shifts in

the central bank’s inflation target can induce permanent shifts in the mean inflation rate.

Second, imperfect or sticky information implies that private agents have to learn about the

true central bank’s inflation target. As such, the inflation target perceived by private agents

can persistently differ from the true central bank’s inflation target. Third, persistence in the

various determinants of inflation also introduces persistence in the observed inflation rate.

As each of these components typically shows relatively high inertia, ignoring one of them

might create an upward bias in estimates of intrinsic inflation persistence, which measures

the sluggish response of inflation to various macroeconomic shocks related to rigidities in

the wage- and price-setting mechanism.

Therefore, we measure inflation persistence in a structural time series model which ex-

plicitly models the various components driving inflation. We pursue both a univariate and a

multivariate approach. Extracting information from the central bank’s key interest rate we

find confirmation that shifts in the central bank’s inflation target induce a non-stationary

component in the inflation rate. In addition, slow adjustment of inflation expectations in

response to changes in the central bank’s inflation target and persistence of shocks hitting

inflation are important factors determining the observed inflation persistence. These com-

ponents explain a large fraction of the high degree of persistence observed in the post-WW

II inflation rate. Taking these components into account, intrinsic inflation persistence is

found to be lower than the persistence of a random walk, i.e. the half life of a cost-push

shock is only one quarter in both the euro area and the United States.

The implications for monetary policy are as follows. Our evidence indicates that in a

stable inflation regime, where the central bank’s inflation target does not change and where

the public perception about this inflation target is well anchored, inflation persistence is

relatively low. The results also imply that in the case monetary policy would again give

rise to unstable inflation, it would afterwards be very hard to disinflate due to the slow

adjustment of inflation expectations in response to changes in the inflation target. In the

case of natural rate misperceptions (Orphanides and Williams 2004) this might however not

be straightforward to avoid.
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Appendix A: Deriving an empirical specification for the perceived
inflation target

Equation (4) can be derived using a variant of the sticky information model of Mankiw

and Reis (2002) or the signal extraction problem of Erceg and Levin (2003) and Andolfatto

et al. (2002). The difference between the two models is the way information about the

central bank’s inflation target πTt arrives to the firms. In the sticky-information model,

exact information about πTt is available but not all firms update their information about π
T
t

every period due to for instance information gathering costs. Therefore, aggregate prices

do not respond immediately to changes in πTt . In the model of Erceg and Levin (2003) and

Andolfatto et al. (2002) all firms update their information about πTt every period, but exact

information about πTt is not available. This leads to a signal extraction problem. Aggregate

prices will only respond to changes in πTt once firms have learned about the new central

bank target. If learning is slow, aggregate prices will not respond immediately to changes

in πTt .

A.1 A sticky-information model

As in Mankiw and Reis (2002) we assume that firms reset their prices every period, but

infrequently gather information about the central bank inflation target πTt , which is readily

available in every period. Following Mankiw and Reis (2002) the log of a firm’s optimal

price p∗t , which can be derived from a firm’s profit maximisation problem, is given by (A.1):

p∗t = pt + αzt (A.1)

p∗t = pt assuming zt = 0 ∀t (A.2)

p∗t = pPt−1 + πTt (A.3)

where pt is the log of the aggregate price level, zt is the output gap and α is a positive

coefficient. This equation tells us that a firm’s desired relative price rises in booms and

falls in recessions. If we abstract from price adjustment to output gap fluctuations we

can set the output gap equal to zero, so that the firms’ optimal price p∗t will be equal

to the aggregate price level pt. The current aggregate price level pt is identical to last

period’s aggregate price level pPt−1, which is consistent with last period’s perceived inflation

target, and the current period’s central bank inflation target πTt . In the absence of short-

run macroeconomic fluctuations and given that in the long run inflation is a monetary

phenomenon, current period’s inflation must be equal to the central bank’s inflation target.

In this model, however, only a fraction λ of the firms updates its information about πTt

to calculate a new optimal price. The probability of updating information is the same for

each firm, i.e. independent of the timing of the last update. The other firms continue to set
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their prices based on old information about πTt .

A firm that last updated its beliefs about the inflation target j periods ago sets its price

xjt :

xjt = Et−jp∗t (A.4)

= pPt−1−j + (j + 1)π
T
t−j (A.5)

The aggregate price level is the average of the prices of all firms, given by:

pPt = λ
∞X
j=0

(1− λ)jxjt (A.6)

The perceived inflation target can be calculated from (A.6) as:

πPt = pPt − pPt−1 (A.7)

= λπTt + (λ− 1) pPt−1 + λ
∞X
j=0

(1− λ)j+1(pPt−2−j + (j + 2)π
T
t−j−1) (A.8)

Substituting out pPt−j using (A.6) and rearranging yields:

πPt = λ
∞X
j=0

(1− λ)jπTt−j , (A.9)

which is equivalent to:

πPt = (1− λ)πPt−1 + λπTt (A.10)

A.2 A signal extraction problem

Both Erceg and Levin (2003) and Andolfatto et al. (2002) assume that monetary authorities

set nominal interest rates in line with their inflation target, πTt , using an interest rate rule.

Observing the central bank’s interest rate, private agents can therefore infer on the central

bank’s inflation target from their knowledge of the central bank’s interest rate rule. An

information problem arrises from the assumption that the interest rate set by the central

bank can shift due to both transitory and permanent monetary policy actions. Transitory

policy actions can be interpreted as (i) deviations from the interest rate rule in response

to various transitory shocks hitting inflation and/or (ii) imperfect control of monetary au-

thorities over the interest rate. Permanent policy actions are shifts in the central bank’s

inflation target πTt . Consequently, private agents must solve a signal-extraction problem

to disentangle transitory and permanent policy actions using shifts in the nominal interest

rate. This can be done using the Kalman filter. This optimal filtering solution gives rise to

a learning rule that resembles adaptive expectations processes.

In particular, we assume that the central bank’s inflation target evolves according to

equation (1) while monetary policy is described by the interest rate rule in equation (6).
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More information on this interest rate rule can be found in subsection 2.3. Permanent

monetary policy actions stem from η1t in equation (1) . Transitory policy actions stem from

ε2t in equation (6) . An optimal estimate Etπ
T
t of π

T
t based on the information contained in

it can be obtained recursively using the Kalman filter as:

Etπ
T
t = Et−1πTt−1 − kgνt (A.11)

where νt captures the new information contained in it, i.e. νt = it−Et−1it = ρ1
¡
Et−1πTt − πTt

¢
+

ε2t and where for simplicity r∗t is assumed to be a constant r. kg is the Kalman gain parame-

ter that measures the speed at which private agents update their beliefs about the monetary

policy target πTt in response to the new information contained in νt. It is given by

kg =
1

2

σ2η1
σ2ε2

Ã
−ρ1 +

s
ρ21 + 4

σ2ε2
σ2η1

!
(A.12)

Equation (A.12) shows that kg is increasing in the signal-to-noise ratio σ2η1/σ
2
ε2 and decreas-

ing in the reaction ρ1 of the central bank to deviations of inflation from its target.

As from equation (1) we have that Et−1πTt = Et−1πTt−1 and setting πPt = Etπ
T
t using

equation (2), equation (A.11) can be rewritten as:

πPt = (1− ρ1kg)π
P
t−1 + ρ1kgπ

T
t − kgε2t (A.13)
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Appendix B: State Space representations

B.1 Univariate model

yt =
£
πt
¤
; αt =

£
πPt πPt−1

¤0
; xt =

£
πt−1 . . . πt−q

¤0
;

Z =
£
(1−Pq

i=1 ϕi) 0
¤
; A =

£
ϕ1 . . . ϕq

¤
; T =

·
2− δ δ − 1
1 0

¸
;

R =
£
δ 0

¤0
; εt =

£
ε1t

¤
; ηt =

£
η1t

¤
; H =

£
σ2ε1

¤
; Q =

£
σ2η1

¤
B.2 Multivariate model

yt =
£
πt it yrt

¤0
; xt =

£
πt−1 πt−2 . . . πt−q yt−1 yt−2 it−1

¤0
;

αt =
£
πTt πPt πPt−1 yPt yPt−1 yPt−2 λt λt−1 τ t τ t−1

¤0
;

A =

 ϕ1 ϕ2 . . . ϕq β1 0 0
ρ1 0 . . . 0 0 0 ρ2
0 0 . . . 0 β2 β3 −β4

;

Z =

 0 (1−Pq
i=1 ϕi) 0 0 −β1 0 0 0 0 0

−ρ1 (1− ρ2) 0 0 0 0 (1− ρ2) γ 0 (1− ρ2) 0
0 0 β4 1 −β2 −β3 0 β4γ 0 β4

;

T =



1 0 0 0 0 0 0 0 0 0
δ (1− δ) 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 θ 0
0 0 0 0 0 0 0 0 1 0


; R =



1 0 0 0 0
δ 1 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0



εt =
£
ε1t ε2t ε3t

¤0
; ηt =

£
η1t η2t η3t η4t η5t

¤0
;

Ht =

 σ2ε1 0 0
0 σ2ε2 0
0 0 σ2ε3

; Qt =


σ2η1 0 0 0 0

0 σ2η2 0 0 0

0 0 σ2η3 0 0

0 0 0 σ2η4 0

0 0 0 0 σ2η5


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Appendix C: Data

• Inflation: quarterly inflation rate, defined as 400(lnPt− lnPt−1), with Pt the sea-

sonally adjusted quarterly GDP deflator. Sources: AWM (Fagan et al, 2005) and

BIS;

• Real output: quarterly ln(GDPt), with GDPt the seasonally adjusted quarterly GDP
in constant prices. Sources: AWM (Fagan et al, 2005) and BIS. The estimated output

gap is expressed in percent deviation of current output from potential output, namely

100 ∗ ¡yrt − yPt
¢
;

• Key interest rate: quarterly central bank key interest rate. Sources: NCB and ECB
calculations and BIS.
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