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[point to plot] Suppose you want to obtain the area under this curve. An easy
way to approximate this area is to break it into many tiny rectangles, trapezoids
or other regions with known areas and sum them up.

Today, I'm going to demonstrate the power of Gaussian integration (technically,
quadrature ) to approximate areas by summing up as few as five such regions. In
the process, I will give examples to Slide how this may be accomplished in Stata.

First, I'll introduce the concept of Gaussian quadrature in general, then I'll
concentrate mostly on the simplest and most widely used case - Gauss Legendre
quadrature. I'll follow this with some examples and then conclude with a short
discussion of speed issues.

[Slide 2]. So what is Gaussian quadrature? Suppose we wish to numerically
calculate the integral of  some function H(x) over an interval (a, b). This can be
done by first decomposing H(x) into a product  of two other functions W and f
and then approximating the integral by the weighted sum on the right, where the
abcissas (x_j) and weights (w_j) depend on W(x) and usually a and b, but not on
f.

With fixed and suitable choice of W and for a variety of f’s, the approximation can
be amazingly accurate with very few terms in the summation - far less than the
number needed to achieve the same accuracy with summing rectangles or
trapezoids.

[Slide 3]. So how do we choose W and obtain the abcissas and weights? The
easiest way is to select W from among several widely-used standard forms. W
should be chosen such that f is as smooth as possible..

[Slide 4]
i.e. so that f can be well approximated by a linear combination of M orthogonal
polynomials P1(x) to PM(x). Recall that orthogonal polynomials satisfy this
relationship [point to it].

However there are many sets of possible orthogonal polynomials – in Gaussian
quadrature, the polynomials are specific to W and have particular names for
standard W’s.

For each of these standard W’s in combination with standard integration intervals
such as from zero to infinity, the abcissas and weights are well-known and may
be obtained from published tables.

[Slide 5]. It turns out that the xj‘s are actually the zeros of PM....



[Slide 6]. ...and that the w’s can be calculated from these quantities, which are
easily computed since the P’s are polynomials..[point to it].

[Slide 7]. Here are three of the more common type of Guassian quadrature –
each with their own set of orthogonal polynomials. Which one should we use?

[Slide 8]. In Stata’s -xtlogit-, the likelihood at each positive outcome is this
intractable integral [point to it] where H(x) is this [point to it]. Mu is the logit of
the probability of a positive outcome and in general would depend on various
predictor variables not Sliden here. The objective is to estimate mu by maximum
likelihood.

[Slide 9]. Note that the H(x) [point to graph] can be factored into 
2cxe− times a

the smooth function f(x) [point to graph], and that the interval of integration is -∞
to ∞.

[Slide 10]. To summarize, we wish to Evaluate an integral over the whole real
line, and the Integrand can be factored into e-^x2 times a smooth function

[Slide 11] ...therefore Guass-Hermite quadrature is called for –and that’s what
Stata does according to the V8 cross-sectional manual on p. 139. Also, see the
section on –quadcheck- for some information on accuracy. This information is
relevant not only for –xtlogit-, but also for other Stata analysis routines that use
Gaussian quadrature.

[Slide 12]. This is an example of  where Gauss-Laguerre quadrature would be
effective. Note that H(x) [point to graph] has a vertical asymptote and would be
difficult to integrate numerically. However by choosing W(x) to be x-1/2e-x, we can
write H(x)=W(x)f(x) [point to decomposition at bottom] where f(x) [point to
graph] is very well behaved. Thus the integral can be well-approximated by this
sum [point to sum at bottom right].

[Slide 13]. From now on, I'll restrict discussion to the Gauss-Legendre case,
where W(x) = 1.

[Slide 14]. This is the most flexible type of Gaussian quadrature since the same
weights can be used for any interval of integration and the abcissas can be easily
transformed from the standard ones over -1 to 1 to any finite interval.

[Slide 15]. Here's what the standard abcissas and weights look like for 5-pont
and 10-point quadrature: - again, the abcissas Sliden here are for an integration
range of –1 to + 1.



[Slide 16]. This illustrates how the standard abcissas get distributed
proportionally for integration over an arbitrary interval – in this example, from
–2.5 to + 3. The values of the weights are plotted against the y-axis as red dots.

[Slide 17] . Now I'll give a simple example to illustrate the accuracy of Gaussian
integration.

[Slide 18]. Suppose we wish to evaluate the standard normal probability integral
from 0 to 3 -  norm(3) - norm(0) in Stata. The actual value to 10 decimal places,
according to Abramowitz and Stegun's Handbook of Mathematical functions is
this [point to it], and is the same as norm(3)-norm(0) to this to this many places.

[Slide 19]. Using Guassian quadrature with only 5 points as Sliden one obtains
this value [point to it]

[Slide 20]. If you wanted to use Stata’s –integ- command to approximate this
integral over K equally spaced values of x, you would do something like this:
[point to statements in box] But to achieve an accuracy similar to 5-point
Gaussian quadrature, one would need K to be about 26 [point to it].

[Slide 21]. But how can we actually do Gaussian integration for each observation
of  a Stata data set? Here's a more complicated example:

[Slide 22]. Has anyone ever tried to fit a regression model to data such as this?
If there is reason to believe the regression function is bounded between two
limits (in this case zero and one), a plausible model is ...

[Slide 23]. ...this one where the regression function F(x) is an ogive shape – in
particular, a  Beta probability integral from 0 to x. Depending on the parameters p
and q, a variety of response functions are possible, all increasing from zero to
one as x increases.

[Slide 24]. Here’s the data again. [Slide 25] .Suppose we wish to estimate p and
q by nonlinear least squares with Stata’s –nl- command.

[Slide 26]. To do nonlinear least squares, the user must write an  –nl- program
that evaluates E(y | x) – namely the integral Sliden, for each observation – each
time the parameter estimates are updated. If ibeta didn’t exist and we wanted to
use Gaussian quadrature, how is this readily accomplished?

[Slide 27] One way to facilitate the integration is the so-called "wide' approach –
merge in the abcissas and weights as extra variables – Sliden here in orange. It
should be emphasized that all quadrature calculations should be done in double
precision – so here, the weight and abcissa variables are all of the double
precision type.



[Slide 28] After doing this, the data would look like this – the weight variables
take on the same values for each observation, but the abcissa variables change
because the range of integration depends on the value of x.

[Slide 29] Once these extra variables are merged with the original data, here's
how one might write the –nl-program:

As many of you know, an –nl-program has an itiialization and an iteration section.
This is what the initialization section might look like.

[point to args] – y is...

[point to P=1, Q=1] These are extremely naive first guesses at P and Q. I just
did this to prevent clutter in this example program.

[point to lnf..] – For each value of i, lnf_i is going to be the log of the integrand
f(p,q ui) in the regression function and  wf_i will be the product of the weight
times f(p,q,ui). These variables are initialized here so that they can be replaced
later in the iteration section.

[point to gaussrow] – this do-file merges in the weights and abcissas from pre-
existing datasets with weights and normalized abcissas for NP - the prescribed
number of points. The normalized abcissas are converted to the correct ones for
the 0 – X range of integration.

[Slide 30]. ..and here’s the iteration section. For each quadrature point i, this
program evaluates wi*f(p,q,ui), stores it in wfi and sums across i using egen’s row
sum operator [point to egen].

Note that to evaluate f(p,q,ui) [Sliden at the bottom] it is desirable to first evaluate
its log. This is because it has [small and large components] . T

[point to (b-a)*Eyx] –After egen, the sum must be multiplied by _ the integration
range. This is the complete approximation to the regression function for this
iteration.

[Slide 31]. Here's the nonlinear regression results with 5-point Gaussian
quadrature. The data was generated with P=2, Q=3 and sig=0.05.

[Slide 32]. Here's the same results, with the table at the bottom Slideing what
happened when I tried 10-point, 20-point quadrature as well as direct evaluation
using Stata’s built in ibeta function. Note the results are almost identical.



[Slide 33]. Here's what the fits look like using 5-point quadrature and ibeta. The
predicted regression functions are so close that you can't see them distinctly on
the graph.

[Slide 34]. How can this example usage of Gaussian quadrature be speeded up
and how does it compare with direct evaluation using ibeta?

[Slide 35] At the top is a fragment of code from the –nl- iteration section.

[Slide 36] One possible approach to speeding things up is to sum directly within
the loop and not use –egen –

[Slide 37] Another thing to try is use only one lnf and wf variable and keep
replacing it in the loop

[Slide 38] So here’s some timing results using the three methods: egen,
summing separate variables and summing one variable. The numbers Sliden are
seconds to do the regression on an expanded data set of about 23000
observations.

[Slide 39].In conclusion, here are a few of the many available references on
Gaussian quadrature.

The discussion in this one [point] in Numerical Recipes is an excellent
introductory reference.

A more advanced discussion can be found in the Wolfram Math World site here
[point to it].

Finally, tables of the abcissas and weights for various types of Gaussian
quadrature are in the Abramoviwits and Stegun Handbook of Mathematical
Functions. I used this to create my own Stata data sets for the 5, 10 and 20
point Gauss-Legendre cases. You can also use this to get equations for writing
your own programs for generating the appropriate orthogonal polynomials,
weights and abcissas for many types of Gaussian quadrature.


