Constructing Krinsky and Robb Confidence Intervals for Mean and Median Willingness to Pay (WTP) Using Stata

Bv

Agricultural, Environmental, and Development Economics

The Ohio State University

6th North American Stata Users' Group Meeting

August 13-14, 2007

Boston, MA

Outline

- Motivation
- Background
- Examples
- Formulas used in the calculations
- The Krinsky and Robb's procedure
- Program syntax and overview
- Stata code used in the examples
- Results
- Conclusions

Motivation

- The ultimate goal pursued in most contingent valuation studies is to estimate willingness to pay (WTP) measures and confidence intervals.
- Because WTP measures are non-linear functions of estimated parameters, procedures such as the delta method (nlcom in Stata) are inappropriate as they yield symmetric confidence intervals (CI).
- Non-symmetric CI obtained using Krinsky and Robb simulations are recommended (Park et al., 1991; Haab and McConnell, 2002; Creel and Loomis, 1991).
- Very recently, Arne Risa Hole (2007) has introduced the Krinsky and Robb procedure into Stata via the **wtp** command.
- However, this command does not feature mean and median WTP estimated from contingent valuation models.
- This void motivates me to develop a Stata program called **wtpcikr**.

Background

- National Oceanic Atmospheric Administration (NOAA) recommends the referendum (single bounded) format for eliciting WTP for non-market goods (Arrow et al., 1993).
- However, this approach yields inefficient welfare measures due to limited information obtained from each respondent.
- The referendum double bounded format (Hanemann et al., 1991) has emerged a means to improve efficiency in contingent valuation applications.
- Thus, double bounded models should provide narrower confidence intervals around welfare measures comparatively to single bounded ones.
- In other words, double bounded models (if more efficient) should yield lower ratios of confidence interval to mean (and/or median) WTP: (upper bound lower bound)/mean.

5

• Example of referendum single bounded question format

"Would you be willing to pay \$X? Yes/No"

WTP questions are also phrased as referendum vote questions:

- "If the proposed policy costs your household \$X, would you vote in favor or against it?"
- Example of referendum double bounded question format

"Would you be willing to pay \$X? Yes/No
If Yes, would you be willing to pay \$Z (where Z>X)? Yes/No
If No, would you be willing to pay \$Y (where Y<X)? Yes/No"

Examples

• I illustrate the use of **wtpcikr** by two examples.

- In the first example, which replicates the CI results obtained by Haab and McConnell (2002), I use data from a contingent valuation survey with no follow-up question (single bounded format). The model estimated is an exponential probit where the log of the bid variable is taken.
- Data for the second example were collected from a contingent survey with a followup question (double bounded format). First, I estimate a (single bounded) probit model using responses to the first question only. Second, I estimate two (double bounded) bivariate probit models using answers to both the first and the follow-up questions (see Cameron and Quiggin, 1994). The second bivariate probit model is a restricted version of the first one.
- After estimating each model, **wtpcikr** is used to calculate mean/median WTP along with 95 percent confidence intervals based on Krinsky and Robb's procedure.
- In the next two slides, I present the formulas **wtpcikr** uses in the calculations and outline the Krinsky and Robb's procedure.

Formulas Used in the Calculations

	WTP or welfare Measure	Functional form					
Distribution		Linear	Exponential				
Normal	Mean	$\frac{-\overline{X}\beta'}{\beta_0}$	$exp\left(\frac{-\overline{X}\beta'}{\beta_0}+0.5\sigma^2\right)$				
Normal	Median	$rac{-ar{X}eta^{\prime}}{eta_{0}}$	$expiggl(rac{-\overline{X}m{eta'}}{m{eta_0}}iggr)$				
Logistic	Mean	$rac{-\overline{X}oldsymbol{eta}'}{oldsymbol{eta}_0}$	$\frac{\sigma\pi}{\sin(\sigma\pi)} exp\left(\frac{-\overline{X}\beta'}{\beta_0}\right)$				
Logistic	Median	$rac{-\overline{X}oldsymbol{eta}'}{oldsymbol{eta}_0}$	$exp\left(rac{-\overline{X}eta'}{eta_0} ight)$				
\overline{X} = row vector of sample mean including 1 for the constant term							
$\beta'_{(k-1\times 1)}$ = column vector of estimated coefficients							

 β_0 = coefficient on the bid variable

In constant-only models, $\overline{X}=1$ and β' is the coefficient on the constant term

P. Wilner Jeanty

The Krinsky and Robb's Procedure

8

- **1**. Estimate the WTP model of interest
- 2. Obtain the vector of parameter estimates $\hat{\beta}$ and the variance-covariance (VCV) matrix $V(\hat{\beta})$
- 3. Calculate the Cholesky decomposition, *C*, of the VCV matrix such that $CC' = V(\hat{\beta})$
- 4. Randomly draw from standard normal distribution a vector *x* with *k* independent elements
- 5. Calculate a new vector of parameter estimates *Z* such that $Z = \hat{\beta} + C'x$
- 6. Use the new vector Z to calculate the WTP measures of interest
- 7. Repeat steps 4, 5, and 6 *N*(>=5000) times to obtain an empirical distribution of WTP
- 8. Sort the N values of the WTP function in ascending order
- 9. Obtain a 95% confidence interval around mean/median by dropping the top and bottom 2.5% of the observations

You estimate the WTP model of interest, and **wtpcikr** takes care of the rest.

P. Wilner Jeanty

Program Syntax and Overview

• Syntax

• wtpcikr varlist [if] [in], [options]

- Overview
 - **wtpcikr** computes mean and/or median WTP, Krinsky and Robb confidence intervals, achieved significance levels, and relative efficiency measures.
 - It works after estimation commands which should be probit, logit, biprobit, and user-written estimation commands, provided that the formulas apply.
 - **wtpcikr** uses the Stata matrix language, **Mata**, to take random draws from multivariate normal distribution with variance-covariance matrix **vmat** and the vector of parameter estimates **bmat** or the defaults to these options.
 - For exponential logit models, mean WTP is not defined if sigma>1. Stata will issue a warning and only median WTP will be computed if sigma>1.

WTPCIKR Options

- **reps**(#) sets the number of replications. The default value of reps() is 5000.
- **seed**(#) sets the random number seed. Seed(032007) is the default.
- **<u>l</u>evel**(#) sets the confidence level. The default is level(95).
- **<u>equation</u>**(*name*) specifies the name of the equation to be used in calculation, if there are multiple equations. The default is to use the first equation.
- **<u>bmat</u>**(*name*) specifies a vector of parameter estimates to be used. The default is e(b).
- **<u>vm</u>at**(*name*) specifies a VCV matrix to be used. The default is e(V).

WTPCIKR Options

- <u>mymean(name)</u> specifies a mean vector to be used. The default is a vector containing the sample means of the independent variables specified in *varlist* (except the bid variable). This option cannot be used for constant-only models.
- **<u>expo</u>nential** specifies that the model functional form is exponential. Without this option, a linear functional form is assumed.
- <u>meanlist</u> displays the mean vector used in computation and may not be combined with mymean.
- **dots** requests that replication dots be displayed. By default, replication dots are suppressed.
- **<u>saving</u>**(filename, *savings_options*) requests that results be saved to a Stata data file (*filename*).

For more details, after installation, type in: help wtpcikr

wtpcikr can be installed from within Stata using the command line: ssc install wtpcikr

Stata Code for Example 1 – Exponential probit

- . drop _all
- // May need to increase memory for large number of replications
- . set memory 8m
- . use south
- . gen lbid=ln(bid)
- . probit ypay lbid unlimwat govtpur environ waterbill urban
- . wtpcikr lbid unlimwat govtpur environ waterbill urban, reps(50000) /// meanl expo

Results from example 1

Probit regress		5	13	LR ch	r of obs i2(6) > chi2 o R2		95 65.46 0.0000 0.5192
ypay	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
lbid unlimwat govtpur environ waterbill urban _cons	-1.3007 9086091 .9321542 1.826571 0444018 1.033676 3.529088	.2714233 .4507424 .464851 .5786197 .0203859 .4467691 1.22522	-4.79 -2.02 2.01 3.16 -2.18 2.31 2.88	0.000 0.044 0.045 0.002 0.029 0.021 0.021	-1.8326 -1.79204 .02106 .692497 084357 .158024 1.127	8 3 6 4 8	7687205 0251703 1.843245 2.960645 0044461 1.909327 5.930476
Note: O failures and 1 success completely determined. . wtpcikr lbid unlimwat govtpur environ waterbil urban, reps(50000) meanl expo Krinsky and Robb Confidence Interval for WTP measures							

MEASURES	WTP	LB	UB	ASL*	CI/MEAN
MEAN	17.97	13.18	37.61	0.0000	1.36
MEDIAN	13.37	10.05	18.80	0.0000	0.65

*: Achieved Significance Level for testing HO: WTP<=0 vs. H1: WTP>0 LB: Lower bound; UB: Upper bound

Sample mean of the variables used in the computation

	unlimwat	govtpur	environ	waterb~1	urban
Mean	0.45263	0.77895	0.18947	35.80000	0.74737

P. Wilner Jeanty

Results from Example 1 – Cont'd

Now supply a mean vector to be used in lieu of the default:

matrix mat=[0.45, 0.78, 0.19, 35.80, 0.75] // use the the sample mean as in the book

wtpcikr lbid unlimwat govtpur environ waterbil urban, reps(50000) mym(mat) expo

Krinsky and Robb Confidence Interval for WTP measures

MEASURES	WTP	LB	UB	ASL*	CI/MEAN
MEAN	18.07	13.25	37.90	0.0000	1.36
MEDIAN	13.45	10.11	18.90	0.0000	0.65

*: Achieved Significance Level for testing HO: WTP<=O vs. H1: WTP>O LB: Lower bound; UB: Upper bound

Krinsky and Robb CI for median WTP obtained by Haab and McConnell (2002) from the model is shown below (page 113):

Measure	WTP	LB	UB	As can be seen, these results are similar to those
Median	13.45	10.07	18.93	calculated by wtpcikr.

P. Wilner Jeanty

Stata Code for Example 2- A Double Bounded Analysis

- . drop _all
- . set memory 8m // may need to increase memory for large number of replications
- . use nasug07
- * Single bounded model
- . probit y1 bid1 inc1, cluster(cid) nolog // model 1
- . matrix mat=(41.852) // use median income (in \$1000) in study area instead of sample mean
- . wtpcikr bid1 inc1, reps(50000) mym(mat)
- * Double bounded model
- . biprobit (y1 bid1 inc1) (y2 bid2 inc1), cluster(cid) nolog // model 2
- /* Now test the null hypothesis that wtp1=wtp2 and sigma1=sigma2 using a Wald test, since LR test does not apply because of the cluster option */
- . test ([y1]_cons=[y2]_cons) ([y1]bid1=[y2]bid2) ([y1]inc1=[y2]inc1)
- * Now apply the restrictions since they cannot be rejected.
- . constraint define 1 [y1]bid1=[y2]bid2
- . constraint define 2 [y1]_cons=[y2]_cons
- . constraint define 3 [y1]inc1=[y2]inc1
- . biprobit (y1 bid1 inc1) (y2 bid2 inc1), const(1 2 3) nolog cluster(cid) // model 3
- . wtpcikr bid1 inc1, reps(50000) eq(y1) mym(mat)
- * Comparison with the Delta method
- . scalar cens=mat[1,1]

```
. nlcom (meanwtp_q1: -([y1]_cons+ [y1]inc1*cens)/[y1]bid1) ///
```

 $(meanwtp_q2: -([y2]_cons+[y2]inc1*cens)/[y2]bid2) // no need for this part$

P. Wilner Jeanty

Results from the Double Bounded Analysis Confidence interval from the single bounded model 1:

Krinsky and Robb	o Confidence	e Interval for W 16				
MEASURE	WTP	LB	UB	ASL*	CI/MEAN	
MEAN/MEDIAN	322.65	195.99	572.76	0.0000	1.17	
*: Achieved Significance Level for testing HO: WTP<=0 vs. H1: WTP>0 LB: Lower bound; UB: Upper bound						

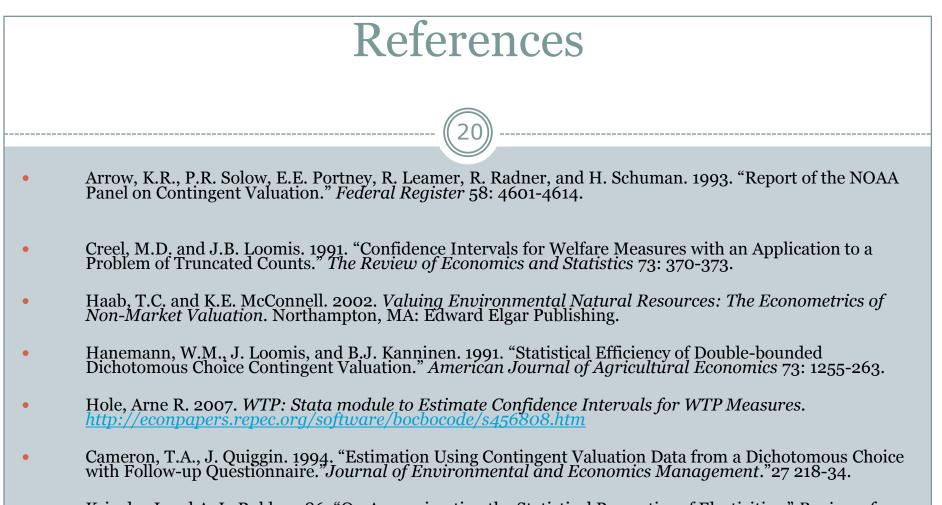
- Results from the Wald test reject model 2 in favor of model 3 (χ^2 =4.06 and p-value=0.2551). Estimation results for models 1 to 3 are not shown.
- Confidence interval from the double bounded model 3:

CI/MEAN
0.67

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
meanwtp_q1 meanwtp_q2		57.78186 57.78186		0.000 0.000	234.0147 234.0147	460.5154 460.5154

Results from the Double Bounded Analysis, cont'd

- As can be seen, the relative efficiency measures calculated by **wtpcikr** indicate that the double bounded model 3 yields more efficient WTP measures than the single bounded model 1.
- As expected, the 95 percent confidence interval obtained from the delta method is symmetric around the mean/median WTP, making it inappropriate.


Data source for example 1

Data for example 1 can be downloaded from the book (Haab and McConnell, 2002) website:

http://www-agecon.ag.ohiostate.edu/people/haab.1/bookweb/

Conclusions

- Implementing the Krinsky and Robb (KR) procedure to estimate CI for mean and median WTP can be computationally challenging.
- Now through the **wtpcikr** command, the procedure is made available to contingent valuation practitioners.
- wtpcikr allows users to save to disk the generated empirical distribution that can be used for an external scope test of difference between WTP measures.
- The relative efficiency measure, which is the CI normalized by mean/median WTP, allows straightforward efficiency comparison across models.
- Also, the KR procedure is now easily implemented for revealed preférence models such as conditional logit via the **wtp** command written by Hole.
- In the future (when I am no longer a post-doc), I might rewrite **wtpcikr** to make it handle large number of replications faster. But for now, I believe that it serves very well its intended purpose.

- Krinsky, I and A. L. Robb. 1986. "On Approximating the Statistical Properties of Elasticities." *Review of Economic and Statistics* 68: 715-719.
- Loomis, J. and E. Ekstrand. 1998. "Alternative Approach for Incorporating Uncertainty When Estimating Willingness to Pay: The Case of the Mexican Spotted Owl." *Ecological Economics* 27: 29-41
- Park, T, J.B. Loomis, and M. Creel. 1991. "Confidence Interval for Evaluating Benefit Estimates from Dichotomous Choice Contingent Valuation Studies." *Land Economics* 67: 64-73.

P. Wilner Jeanty

• Thanks to Arne Risa Hole for trusting me with preprints of his **wtp** command.

• A grant from the US Dept. of Energy and support from the Office of Energy Efficiency, Ohio Dept. of Development and from the AED Economics Dept. are gratefully acknowledged.

