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Abstract

The analysis of unit roots and cointegration in panel data is becoming a growing
research area. A number of issues have been raised in the literature (see Phillips and
Moon 1999 and 2000, Banerjee 2000, Maddala and Wu 1999). The aim of the present
paper is to contribute to the issue of cross sectional dependence in non-stationary
panel data. We review some of the most recent econometric techniques proposed by
the literature to dealing with cross sectional dependence and notice a sort of puzzle.
We extend the bootstrap methodology proposed by Maddala and Wu (1999) and
apply the resulting test to test for PPP. We find no evidence favouring PPP. Finally,
we use Monte Carlo simulation to analyse the size distortion of the bootstrap test
presented in this paper. The proposed test presents size distortion only when T = 100
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1 Introduction

The analysis of unit root and cointegration in panel data is becoming a growing

research area. The emphasis of the literature is the attempt to combine information

from the time series dimension with that obtained from the cross sectional dimension.

The advantages of using information from both dimensions rather than just one, are,

now well known. First, the power of unit root and cointegration tests increases

notably if we combine information from both dimensions. Finally, spurious regression

can be overcome by using panel data.

Most of the relevant asymptotic theory for panel data was developed for large cross

sectional dimension (N), but small time series dimensions (T). However, recently,

there has been an increase of the number of observations and this raises a number of

issues. First, most economic time series are known to be non-stationary. The issue

here is to develop asymptotic properties of panel estimators when data are non-

stationary. Second, since we have large N and large T, there is the question of how to

do the asymptotic analysis of N, T rather than just N. Several ways have been

suggested.  Phillips and Moon (1999, 2000) are two important papers, which attempt

to deal with these issues. Third, since we have large T, it is possible to estimate each

group separately. This kind of analysis raises a further issue. In fact, we can think that

parameters can differ over groups. If this is the case, then we have heterogeneous

panels. So instead of being forced to assume homogeneous parameters, as in the small

T case, we can test the heterogeneous hypothesis. Fourth, all the panel unit root-

cointegration tests, assume that each cross-section is independent from the other.
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The aim of the present paper is to contribute to the issue of cross sectional

dependence in panel data when the time series are I(1). In fact, as stressed in Banerjee

(1999), a formal study of the relaxation of the cross sectional independence

assumption is necessary since the asymptotic theory, so far, relies completely on that

assumption. Different procedures, for dealing with cross sectional dependence, have

been proposed. Im et al.(1997) propose subtracting cross sectional means from the

observed data. This procedure works provided that cross sectional dependence is of

weak memory variety. In fact in this case the central limit theorem, so important to

derive the asymptotic distribution, will continue to apply. However, when there are

strong correlations in a cross section (for example, in the presence of global shocks)

we can expect failure in the central limit theorem (Phillips and Moon, 1999). Pedroni

(1997) and O`Connell (1998) use feasible GLS corrections to deal with cross sectional

dependence. However as shown in Cerrato (2001) these corrections are likely to be

invalid because the estimator used to estimate the covariance matrix is, in this case,

inconsistent. Finally, Maddala and Wu (1999) suggest bootstrap methods to deal with

cross-sectional dependence.

Though all the above mentioned papers have proposed different methodology to deal

with cross sectional dependence, they did not try to characterise it. As far as we know,

the only papers which attempt to characterise cross sectional dependence is Bai

(2001) and Chang (2001). The former models cross sectional dependence caused by

common stochastic trends that are not observable and relying on principal component

analysis, it shows that the number of common stochastic trends can be consistently
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estimated. However, in this case, principal components capture a mixture of omitted

variables and global shocks, so this methodology cannot discern between different

sources of cross sectional dependence. The latter paper attempts to model a different

source of cross sectional dependence, that is omitted variables and deterministic

trends and it suggests non-linear IV estimation. However, even if there seems to be a

sort of puzzle between modelling cross sectional dependence induced by omitted

variables and modelling cross sectional dependence induced by global shocks, the two

above mentioned papers are a step in the right direction.

This paper, following Maddala and Wu (1999), suggests bootstrap procedure to deal

with cross sectional dependence. We account for cross sectional dependence

following the procedure suggested by Maddala and Wu, but we implement that

bootstrap procedure in different ways and apply the resulting unit root test to test for

Purchasing Power Parity. We show that bootstrap, if correctly specified, is a

reasonable way of dealing with cross sectional dependence. At least, it seems to be the

methodology that gives fewer headaches. The unit root test proposed in this paper

cannot reject the unit root null hypothesis in the real exchange rate. Monte Carlo

simulations on the proposed test confirm very little evidence of size distortion.

2. Cross-Sectional Dependence

A very important issue in panel unit root and cointegration tests is cross sectional

dependence. In fact, the properties of all panel unit root and cointegration tests are

based on the assumption that the error terms are not cross-correlated. In this section
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we highlight the implications of cross sectional dependence on the asymptotic

distribution of panel unit root and cointegration tests.

As we mentioned in the introduction, the asymptotic and finite sample properties of

many unit root and cointegration tests (Im. et al., Levin and Lin, Pedroni) have been

derived under the assumption of zero error covariance, that is assuming E(εtεt
)= Ω is

diagonal. If this assumption is relaxed, the derived distributions of panel unit root and

cointegration tests are no longer valid and depend in a very complicated way upon

various nuisance parameters leading to correlations across individual units, Chang

(2001). In the above context, the distribution of unit root and cointegration tests will

not be asymptotically non-stochastic. Then, it is evident that cross sectional

dependence is a serious matter. If error terms are correlated1 across the units, or to be

more precise are not orthogonal, the variance-covariance matrix is likely to increase

with the number of sectional units in the panel.

As noted in Cerrato (2001) cross sectional dependence can be caused by different

factors. For example in the case of Purchasing Power Parity, cross sectional

dependence can be caused by assuming the same numeraire currency, by omitted

variables and by exogenous common shocks. This means that cross sectional

dependence can be caused by model mis-pecification or also by common shocks. In

                                                       
1  Here, we prefer using the term "non correlated" rather than " independent"error terms. In fact it is
imperative to differentiate non-correlation from independence. Let X and Y be two random variables.
If for any functions v=Φ(X) and z=ϑ(Y); f(Φ(X),ϑ(Y))=fv( Φ(X))•fz(ϑ(Y)), for each (v,z)∈R , the two
random variables are said to be independent. This means that if X and Y are independent, then any
functions of these random variables are also independent. On the other hand, correlation is a different
issue. In fact, broadly speaking, it defines a measure of linear dependence only. Hence, the general
conclusion we reach is that if error terms are independent, they are non-correlated. On the other hand,
if error terms are non-correlated, this does not imply that they are also independent. However, for
simplicity in this paper we focus on non correlated error terms.
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general, researchers have largely neglected modelling cross-sectional dependence,

because it is often very complicated since individual observations across sections

display no natural ordering. Nevertheless, many researchers (see Phillips and Moon

1999, Banerjee, 1999) have called for major research effort in this direction.

One of the first papers, which attempt to model cross sectional dependence2 is Bai

(2001). Other papers are also of great interest. For example, Chang (2001) that

proposes an original way of dealing with cross sectional dependence. In fact, Levin

and Lin (1993) and Im et al. (1997) derived the asymptotic distribution of their tests,

through sequential asymptotic under the assumption of no cross sectional dependence,

but they did not derive joint asymptotics for their tests. Chang (2001) proposes a test

based on non-linear IV estimation of an ADF type regression on each individual cross

section. In this test cross sectional independence is not imposed as in the mentioned

tests, but it is reached by establishing asymptotic orthogonalities of the non-linear

instruments used to construct the test statistic. However, we shall review more in

detail this and other papers that deal with cross sectional dependence in the next

section.

                                                       
2 However modelling cross sectional dependence is not always an easy task For example, Peasaran and
Smith (1995) modelled cross sectional dependence by including, explicitly, amongst regressors an
additional variable which accounted for cross sectional dependence. However this way is not always
feasible (e.g in the case of Purchasing Power Parity).
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3. Some Literature on Cross Sectional Dependence

One of the first papers, which explicitly attempt to deal with cross sectional

dependence, is Im. et al. (1997). In this paper the authors, explicitly say that their

procedure is no longer applicable when observations are not generated independently

across groups. To allow for the possibility of correlated errors they propose a de-

meaning procedure. Consider the following model:

ittiiiit uyay ++=∆ −1,β i=1,…,N, t=1,…,T (1)

if we assume that the error term is composed of two components:

ittitu εθ += (2)

a time specific effect and a random effect, which is independent across the sections,

then to remove the effect of the common component in equation (2), we subtract cross

sectional means from both sides of equation (1), that is:
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However the assumed form of homogeneous cross sectional dependence (see Cerrato,

2001 for details) represented by equation (2) is of little use. In fact, generally cross

sectional dependence is often heterogeneous across sections (for example in the

presence of global shocks, O` Connell, 1998). In these circumstances, the equation (2)

takes the following form:

ittiit ru εθ += (3)

In the presence of heterogeneous cross sectional dependence, O`Connell (1998)

shows that feasible GLS (FGLS) estimator can restore orthogonality across the units.

In fact, the cross sectional effect is completely captured by the off-diagonal element

of the covariance matrix Ω, that is ω, and FGLS is invariant with respect to ω (see

O`Connell, 1998 for details). Based on this procedure O`Connell proposes a panel

unit root test. Many researchers, following O`Connell, use FGLS procedure to dealing

with cross sectional dependence (Higgins and Zakrajsek, 2000, Coakley and Fuertes,

2000). FGLS relies on a consistent estimator of Ω. Generally the covariance matrix is

estimated using OLS residuals. We can use residuals to estimate Ω because we

assume that they consistently estimate the error term. If the OLS estimator, say η*,

consistently estimates η, the residuals will consistently estimate the error term. But, it

is not always obvious that η* will consistently estimate η. In the case of
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equicorrelated error terms, η* is no longer a consistent estimator of η, the covariance

matrix is not estimated consistently and the FGLS procedure breaks down3 Cerrato

(2001).

Maddala and Wu (1999) suggest an alternative way of dealing with cross sectional

dependence. If error terms are correlated across the units, the derived distributions of

many unit root and cointegration tests are no longer valid, or to be more precise, they

are unknown. If this is the case, Maddala and Wu propose using the bootstrap

distribution to make inference.

The bootstrap method is a resampling method. It works as follows: Let (x1, x2, …, xn)

be the original sample. Draw a sample of size n4 from this sample with replacement,

say Bj=(x*1, x*2, …, x*n). This is the bootstrap sample. Each x*i  is randomly drawn

from the given sample. If we do this many times and compute the estimator θj* from

each of the bootstrap sample Bj, we have a realisation of θ*, and we use it to make

inference. Of course we may alternatively decide to bootstrap residuals or bootstrap

data. Assume we decide a bootstrap procedure based on bootstrapping residuals.

Assume that our data generating process is the following:

                                                       
3 Note that the same criticism applies to all tests based on seemingly unrelated regression estimation
(SURE). In fact, the efficiency of SURE estimation relative to OLS increases with the average absolute
size of the error correlations and decreases with the average absolute magnitude of the correlations
among the regressors across equations. However, Breuer et al. (2000) show that in a ADF context,
when correlation among error terms leads to correlation among regressors, the efficiency gains from
SURE are weakened.
4 We may also decide to draw a sample of size m<n. The validity of an m out of n bootstrap sample is
well documented.
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ittiiit eyny *1, +∆=∆ −

since there are cross correlations among e*it, instead of resampling e*it, we resample

e*t=[e*1,t, e
*
2,t,…,e*n,t]

|. This procedure consists in resampling e*it keeping the cross

sectional dimension fixed or in other words resampling a full column of the [e*i,t]

matrix at a time.

However, it should be kept in mind that although the bootstrap often provides a better

finite sample critical values for test statistics than does first-order asymptotic theory,

bootstrap values are still approximations and are not exact. That is why we need

Monte Carlo evidence on the numerical performance of the bootstrap as a means of

reducing differences between the true and the nominal levels of tests5. Finally, as

noted by Li and Maddala, (1996) "it is easy to jump on the computer and

mechanically apply a certain bootstrap procedure when in fact the structure of the

model suggests some other procedure for bootstrap data generation. It is also

important to think about what statistic to bootstrap which depends on the particular

problem and procedure for studentization. For this reason it is important to avoid

some ready available canned programs".

                                                                                                                                                              

5 Monte Carlo analysis of bootstrap tests is highly time consuming. However Davidson and
MacKinnon (1999) suggest a Monte Carlo approach that is relatively cheap, under the conditions of
asymptotic independence of the bootstrapped statistic and the bootstrap data generating process.
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Chang (2001), proposes a unit root test for panels with cross sectional dependence.

Consider the following regression:

ititiit uyay += −1 i=1,…,N; t=1,…,Ti (4)

where i is the cross sectional unit and t the time period. Since T can differ across i,

unbalanced panels are allowed. The hypotheses under consideration are that ai=1 for

all yit`s in the above equation, against ai<1 for some yit. The error in the above

equation is modelled assuming an AR(pi) process as follows:

itit
i uLa ε=)( (5)

where L is the lag operator. If the linear filter of the above process is represented by:

∑
=

−=
ip

k

k
ki

i zaza
1

,1)( (6)
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then, model 1 can be re-written as follows:

∑
=

−− ++=
ip

k
itktikitiiit uayay

1
,,1, ε (7)

since under the unit root null hypothesis itit uy =∆ equation (7) can be also written as

follows:

∑
=

−− +∆+=∆
ip

k
itktikitiiit yayay

1
,,1, ε (8)

Using the equation (8) Chang (2001) constructs a unit root test based on IV estimation

procedure. Strictly speaking the test is based on the ADF regression for each

individual cross section, using as instruments non-linear transformations of the lagged

levels. He shows that such a test is simply the standardised sum of the individual IV t-

ratios. To deal with cross sectional dependence, he uses instruments generated by

non-linear instrument generating function defined as F(yi,t-1). The main result is that

the limit distributions of the IV t-ratio statistics, that is proved to be normal, are cross-
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sectionally independent, since the non linear instruments F(yi,t-1) and F(yj,t-1) are

asymptotically uncorrelated6.

The main difference between the panel unit root test proposed by Chang (2001) and

the others proposed in the literature is that the former achieves asymptotic normality

without imposing independence across sectional units, but relying on the asymptotic

orthogonalities of the non-linear instruments, the latter obtain asymptotic normality

under the assumption of no cross sectional dependence.

Two considerations are to be made on the described procedure. First, instruments for

the lagged difference (i.e. ),...,( 1,1. iptiti yy −−− ∆∆ ), are generated using the variable

themselves. For the entire regressors the instruments are ¦
,1.1, ),...,),((

iptititi yyyF −−− ∆∆ .

This procedure is valid provided that ,0),,...,cov( ,1, =∆∆ −− itptiti i
yy ε that is there must

be no correlation between the instruments and the error term. In practice, this

assumption is likely to be violated. This could be a further explanation of why the test

produces ambiguous results when the sample size is small.7

Second, and more important, the econometric methodology suggested by Chang

(2001) is valid provided that cross sectional dependence is generated by omitted

variables. But cross sectional dependence is a more complex issue. As we stressed, it

                                                       
6 However this test is found to be very sensitive to the specification of the cross sectional and time
series dimensions. Furthermore, it produces ambiguous results if the autoregressive parameter is
restricted to be homogeneous across individual units.
7 Chang (2001) applies his non-linear IV method to test for PPP. When he applies his test to IFS and
PWT data, he gets contradictory results. In fact, the test appears to support PPP only when the sample
size is large. However, he does not report any test statistic on the orthogonality of the instrumental
variables. As a consequence, it may well be that the independence condition is violated.
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can be caused by different factors. In the PPP case, it may also be due to global

shocks. Chang`s methodology does not account for this possibility.

 Bai (2001) uses a different approach. Based on Hall et al. (1999a,b), he models cross

sectional dependence through common stochastic trends. That is, he assumes cross

sectional dependence to be caused by common factors (global shocks) and he shows

that if this is the case, it is possible to estimate the common stochastic trends as well

as the shocks themselves.

Consider the following model:

ttiit eFX += ¦λ   (10)

where Ft are the common stochastic trends, λi  is a vector of cointegrating

coefficients, and ti F
¦λ  the common components of  itX . Only itX  is observable and

itX , Ft are cointegrated. Call r the number of the true common trends, and assume

that it is given. Then, for a single time series, equation (10) can be re-written as

follows:

  Xi =    F0     λi
0  +  ei

(T×1) (T×r) (r×1)  (T×1)
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for the panel data:

  X    =   F0     Λ0¦  +  e

(T×N) (T×r) (r×N)  (T×N)

where X=(X1,…,XN). The goal, here, is to estimate r, F0 and Λ0. 8 To achieve this goal

Bai`s methodology relies on 4 assumptions, that is (A) common stochastic trends, (B)

heterogeneous cointegrating coefficients9, (C) time series and cross section

dependence and heteroschedasticity and (D) weak dependence between common

trends and idiosyncratic errors. We do not intend to go into details here, because this

would be beyond the aim of this paper. The reader interested in more details is

therefore referred to Bai`s paper.

Estimates of Ft
k and Λk (here r is assumed given and equal to k) are obtained as

follows:

                                                       
8 Note that in this paper we only describe the procedure used to estimate common trends and the true
cointegrating coefficients. For the estimation of the number of trends (r), see Bai (2001) and Bai and
Ng (2000).
9 An important feature should be noted. Once cross sectional dependence is introduced explicitly in the
model, it could make sense restricting the cointegrating vector to be homogeneous across sectional
units. In fact as noted in Banerjee (1999) it is the common stochastic trend that impart homogeneity
across the units of the panel. This result is also confirmed in Nelson and Sul (2001). In fact they use a
Wald test of the homogeneity restrictions on the cointegrating vector first omitting heterogeneous trend
and finally including heterogeneous trends. They show that there is evidence against homogeneity only
when trends are omitted. The homogeneous/heterogeneous issue in the presence of cross-correlated
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let the covariance matrix of X  be Σ10. Then, the variance of a linear combination, say

Ψ¦X is Ψ¦ΣΨ. Maximising this with respect to Ψ subject to a normalisation rule

Ψ¦Ψ/=Ir, gives Ψ as the eigenvector of ¦ X-ΨIr¦ = 0. If v1, v2, …vk are the eigenvalues

of Σ and Ψ1, Ψ2,…,Ψk are the corresponding eigenvectors then Ψk are mutually

orthogonal and var(Ψ¦
k X) = vk. If we order vk in descending order, v1> v2> …vk, then

we get the principal components as Ψ1
¦X, Ψ2

¦X,…,Ψ¦
kX. Thus the principal

components corresponding to the lowest vk give the cointegrating vectors and those

corresponding to the largest vk give the common stochastic trends. Clearly, the above

proposed methodology is the method of principal components. However, there are a

number of drawbacks with this procedure as well. For example, the principal

components often do not have economic meaning, so, the first problem would be how

to interpret them. Since in the mentioned case we use principal components to account

for cross sectional dependence, we may say that we are not interested in their

economic interpretation. Furthermore, once we have estimated the common factors

we have to determine which of these factors are important. To do this, it is necessary

to establish the consistency property of the estimated common factors when both N

and T are large. Although Bai derives the limiting distribution for the estimated

common-stochastic trends, cointegrating coefficients, and common components, more

work is needed on this issue. λi in equation 10 is assumed to be not random. If  λi is

random and is correlated with the common factors, Bai`s result will no longer hold.

On the other hand, there is a practical issue also: which kind of cross sectional

                                                                                                                                                              
errors is on the agenda for future research. However if confirmed it would give an enormous
contribution to the literature in this area.
10 Note that to make the subject more simple, we assume Σ=(ΣΛ  ΣF), this would imply that the random
matrix (ΣΛ  ΣF) has the same eigenvalues. Of course this is not the assumption made by Bai. In fact he
assumes that the eigenvalues of the described r×r matrix are distinct with probability 1.
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dependence are we dealing with using this methodology?  To be more specific, in the

case of Bai`s paper principal components may capture a mixture of omitted variables

and global shocks, but they say nothing about which of them predominate.

There seems to be a sort of puzzle in the cross sectional issue. That is, we can deal

with cross sectional dependence induced by omitted/global variables or by stochastic

trends, but we cannot discern between them. The effort made by Chang (2001) and

Bai (2001) to explicitly model one or another form of cross sectional dependence is

surprising, it is a step in the right direction, but as we stressed, their methodologies are

subject to different problems. We believe that, so far, the methodology that gives

fewer headaches is still bootstrap. In the next section we present a bootstrap

methodology that is robust to cross-sectional dependence.

4 Botstrapping or not Bootstrapping?

Consider the following model:

titii yy
ti ,1,,

εβ += − (11a)

The above model is clearly a panel model. For simplicity assume i=1. The model is

clearly an AR(1) model. Three hypotheses are possible, (a) ¦β¦<1  (b)  ¦β¦ = 1, and   (c)

¦β¦>1. In the first case we say that the AR process is stationary, the second case it is
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known as unit root, and the last one is known as an explosive process. Here we are

interested in the second case. That is we assume that the process contains a unit root.

The estimated counterpart is:

ttt yy *** 10 εβ += − (11b)

Define the vector of bootstrap residuals generated by the OLS regression errors as

ε¦•11. The hypotheses under consideration in this case are Ho: β0* = 1 and H1: β0*<1.

Under the null hypothesis β0* = 1 equation (11b) can be re-written as follows:

ttt yy •
−

•• += ε1 (12)

Equation (12) is the sampling scheme S2 suggested by Li and Maddala (1996). In this

paper we use S2 to generate our bootstrap sample.

Bootstrapping an AR (1) process as the one represented by equation (11) is quite

straightforward, in the sense that all we have to do is to generate pseudo data using

the bootstrap residuals and the scheme in equation (12) by a recursive procedure

assuming as an initial value 00 =y . However, the described procedure is appropriate
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if the process{ ty } can be represented as a first order autoregressive process. If not, an

alternative procedure must be used. Maddala and Wu (1999) suggest the following

procedure: generate pseudo-data: •
−

• += titit uu ,
*

1,
*
0 εβ  conditional on ∑

=

•
−=

m

j
j

ju
0

00 εβ 12.

Finally, generate bootstrap sample using the sample scheme S2 , that is

 ttt uyy •
−

•• += 1

Strictly speaking the procedure suggested by Maddala and Wu to build up 0u is to

pick it up from the estimated moving average (MA) representation. However the

suggested procedure encounters two practical difficulties. First it is well known that

estimation of MA time series models is not as straightforward as the estimation of the

AR models. Second it requires the truncation of an infinite sum, Berkowitz and Kilian

(2000). In this paper we follow an alternative way that has been suggested by

Berkowitz and Kilian (2000). We pick up arbitrary values for 0u  in the recursion:

ttt yy •
− += εβ 10*

                                                                                                                                                              
11 Refer to appendix 2 to see how we account for cross sectional dependence using bootstrap.
12 In this case we cannot assume u0 = 0 as initial value of the process {ut}. In fact this strategy is
feasible only in the case we analyse processes that contain a unit root.
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after discarding the start-up transients for { tty }13

5  Empirical Results

In this section we use two different methodologies to account for cross-sectional

dependence. To have a benchmark against which we can evaluate our test statistic, we

use the widely used t-test proposed by Im. et al. (1997), with and without the

adjustment described in section 3.  Finally, we use a bootstrap methodology, that is an

extension of the one proposed by Maddala and Wu (1999), to obtain p-values for our

test. We apply these tests to two different panels to test for Purchasing Power Parity

(PPP).14

We include only an intercept in the PPP specification. In fact, following Papell (2000)

we do not include a time trend, because such an inclusion would be inconsistent with

long-run PPP. Also, we use the recursive t-statistic procedure as described by

Campbell and Perron (1991), to select the lag length in the ADF specification.

The t-bar statistic, for both the CPI and WPI series is respectively –1.90 and –0.52

(5% critical values are –1.87 and –1.97). If we use the adjustment described in section

3, the t-bar statistic for both CPI and WPI series is now –4.41 and –2.17 (1% and 5%

critical values are –1.97 and –1.84 for CPI data and –2.15 and –1.97 for WPI data).

These results, strongly reject the unit root in both the panels and are in line with the

                                                                                                                                                              

13 The proposed algorithm is programmed in Matlab 5.0 and run on a 333 Mhz Pentium II. B is set
equal to 2000.
14 see appendix 1 for more details on data used.
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findings on PPP by Wu (1996), Oh (1996). Taken as a whole the above results seem

to suggest that the real exchange rate is mean reverting in the long-run. The issue we

raise at this stage is a methodological one. Is mean reversion due to effective

stationarity of the real exchange rate or is it due to neglecting cross-sectional

dependence?  To answer this question we use a panel unit root test (tables 1 and 2),

where the p-values have been calculated using a procedure that is robust to cross

sectional dependence.

 [Tables 1 and 2 around here]

We use the previously cited recursive procedure to select the lag length in the ADF

specification. We note that using the ADF test we cannot reject the null hypothesis for

all CPI exchange rates except Mexico (at 5% significance level). The test statistic is

calculated at the bottom of the final columns in the tables 1 and 2 (50.44 for CPI real

exchange rate and 16.07 for WPI real exchange rate). Since, as Maddala and Wu

(1999) show, this test is distributed as χ2(2N), for our panels we have χ2(40) and χ2

(20) respectively, which give a 5% critical value of 55.76 and 31.41. For the panels as

a whole, we cannot reject the unit root null15

The above result is not a surprise. In fact, O`Connell (1998) talked about

“overvaluation of PPP”. He argued that evidence favouring PPP is mainly due to the

fact of neglecting cross sectional dependence. He concluded that once we account for

cross sectional dependence, evidence favouring PPP disappears. This paper confirms

that result.

                                                                                                                                                              
15The same qualitative results are obtained with a homogeneous lag length.
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6 Size Analysis

In section 3 we presented different econometric-statistic procedures to dealing with

cross sectional dependence and we highlighted for each of them some pitfalls. With

regard bootstrap we stressed the necessity of running Monte Carlo simulations in

order to analyse the size distortion of a bootstrap test. However such an experiment is

very time-consuming, because each replication requires the calculation of B+1 test

statistics if B bootstrap samples are used. Davidson and MacKinnon (1998) show that

it is possible to estimate the size distortion of a bootstrap test by running a cheap

Monte Carlo simulation, provided that the condition of asymptotic independence of

the bootstrapped statistic and the bootstrap data generating process (DGP) holds. In

this section, after a brief presentation of the Monte Carlo analysis suggested by

Davidson and MacKinnon (DM)16, we use the suggested statistical methodology to

analyse the size distortion of the bootstrap test presented in this paper.

The fundamental idea of Davidson and MacKinnon is based on the fact that we can

estimate the size distortion of a bootstrap test using Monte Carlo experiments, relying

on two simple concepts, that is “error in rejection probability” (ERP) and “rejection

probability” (RP) of the bootstrap test. The former represents the size distortion of a

bootstrap test, the latter gives the rejection probability of the asymptotic test.

Consider a data-generating process (DGP), a set of DGPs form what we call a model

Μ. A generic element, or DGP, of a model Μ will be denoted as µ. A test statistic λ is

                                                       
16 For more details on this statistical technique see Davidson and MacKinnon (1998,2000).



23

said to be asymptotically pivotal if its distribution is the same for each DGP µ∈Μ.

We denote by *λ  the realisation of λ calculated from data generated by some

unknown DGP µ0. The DM procedure works as follows. For each of M replications

indexed by m, draw a sample from µ0 and use this sample to draw a realisation of the

statistic λ and the bootstrap DGP µm
*. Now, draw another sample from µm

*, and use it

to compute a realisation of *
mλ . The quantile ),( 0µαQ  is estimated by )(*

0 αQ , the α

quantile of the drawings of .λ  If we perform m replications the simulated estimate of

RP and the corresponding ERP are given by:

∑
=

<−=
M

m
m QI

M
RP

1

*
0

**
2 ))((

1
2 αλα   and  ∑

=

<−=
M

m
m QI

M
ERP

1

*
0

**
2 ))((

1
αλα  (13)

However, since the above estimator of the rejection probability is not guaranteed to be

positive, DM suggest to use a more accurate estimate in which λ and λ* are

interchanged. The procedure is the same as the one described above but the (ERP) is

estimated as the proportion of drawings of λ less than )(* αQ , the α quantile of *λ ,

minus α:

∑
=

<=
M

m
m QI

M
RP

1

**
1 ))((

1
αλ   and ∑

=

−<=
M

m
m QI

M
ERP

1

**
1 ))((

1
ααλ  (14)
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As suggested in DM (2000) since very little effort is needed to compute (12) and (14),

it makes sense to compute both, since substantial difference between the two

estimated ERPs may indicate that neither of them is accurate.

The DGP used, in this experiment, is the following linear AR equation:

titiiti ypy ,1,, εα ++=∆ −

We consider the above model, assuming that p=0.9817, 0.75, 050 and tε ∼N (0,1). We

use different values of T, that is we consider our test when T= 325 and T=100. For

each combination of (p,T) the number of replication is set to 2000. The nominal

significance level (α) is set to 0.05.   The size estimates from the DM approach are

reported in tables 3 (A, B, C) and 4 (A, B, C).18 The empirical size of the test should

not greatly exceed the nominal significance level. To allow for some random

[Table 3 A-C around here]

variation we form a confidence interval of the simulated size having length α

δ⋅± 96.1 α, with =αδ M/)1( αα − . Since M=2000 and α = 0.05 the confidence

interval is {0.059; -0.04}. From tables 3 and 4 we can see that most of those values

fall within these limits. With T=325 the empirical size of the test seems to be

                                                       
17 Since 0,98 is statistically indistinguishable from 1, in this case we assume that the process under
consideration contains a unit root. However, we also consider our test statistic when the process
contains roots that lie outside the unit circle.
18 the proposed algorithm is programmed in Matlab 5.0 and run on a 333 Mhz Pentium II. B is set equal
to 2000
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reasonable regardless of the value of p. With T=100, the test seems to suffer of very

small size distortion when p = 0.98, but the size distortion increases the smaller p.

[Table 4 A-C around here]

Summarising, this experiment suggests that the empirical size of our test matches the

nominal size pretty well. We believe that the results provided by our test can be

reasonable trusted.

Concluding Remarks

Panel data econometrics is a growing research area. The asymptotic theory for unit

root and cointegration tests is derived under the assumption of cross sectional

independence across individual units. This paper provides an outline of recent

developments in the field of cross sectional dependence in panel unit root and

cointegration tests.

We analyse the most recent econometric techniques proposed by the literature to

dealing with cross sectional dependence and notice a sort of puzzle. That is, they deal

either with cross sectional dependence caused by common stochastic trends or with

cross sectional dependence caused by omitted variables, but they do not account for

both. At least, they cannot discern between different sources of cross sectional

dependence.  In this paper we use bootstrap. We think that bootstrap is still a feasible

way of dealing with cross sectional dependence.
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Our bootstrap methodology is an extension of the Maddala and Wu`s (1999). We use

this methodology to account for cross sectional dependence in real exchange rates and

then we apply our test to test for long-run PPP. We find no evidence favouring long-

run PPP.

We believe that unit root and cointegration tests reject long-run PPP essentially

because they do not fully account for cross sectional dependence. In fact, cross

sectional dependence by imparting a common signal across sectional units is likely to

increase the probability of a type 1 error.

Appendix 1.

The Data

Our data consists of monthly bilateral exchange rates using the US$ as numeraire and

the wholesale (WPI) and consumer price (CPI) indices for two different panels. For

the CPI data set, we use G20 countries, for WPI, due to the availability of data, we

use a smaller panel. Only 10 countries. Furthermore, we note that the two panels

considered in this study, also span through two different periods. While the CPI series

span the period January 1973 to January 2000, the WPI series span the period January

1981 to October 1999.

Nominal exchange rates are end-of-period from Datastream.
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Appendix 2.

Bootstrap Methodology

We want to bootstrap the following ADF test in a panel context:

∑
=

−− +∆++=∆
i

ti

k

j
tijtiktiii eyyy

1
,,1,,

ρβα

To achieve this goal, we generate our bootstrap distribution assuming the following

data generating process (DGP):

titiiti eyy ,1,, +∆+=∆ −η (1)

1) Each yi,t in (1) is modelled as a unit root process. The individual equations of the

DGP in (1) are fitted by least squares and residuals (er
i,t) computed.

2) The bootstrap innovations ei,t
* are obtained by resampling with replacement from

the empirical residuals. In this case, since we want to account for cross

correlations among innovations, Maddala and Wu (1999) suggest resampling with

the cross-section index fixed. We get the N-dimensional vector of bootstrap

innovations e,t.
* =(e1,t

*,…eNt
*). In the case where tie ,  are AR processes (the ADF

test) we first generate pseudo-data as follows:
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3) Generate pseudo-data according to the following scheme

*
,

*
1,

**
, titikti eunu += −  

where ηk
* is  computed from estimation of equation (1) and ei,t

* is generated as in (2)

Note that it is not appropriate in this case to condition on ui,0 in order to generate *
,tiu .

One way out of this problem is conditioning *
,tiu  on a set of initial conditions

Berkowitz and Kilian (2000). The problem in this case can be overcome selecting,

arbitrary, values for *
0,iu  in the recursion **

1,
**

, ttikti eyy += −η . The bootstrap sample is

generated as follows:

4)   *
,

*
1,

*
, tititi uyy += −    with 0*

, =tiy

In this case it makes sense to set the initial value of 0,
*
, iti yy = . In fact as Dickey and

Fuller show, if the DGP contains a unit root the test statistic depends on yi,0, and α (if

intercept is included) (see  Dickey and Fuller, 1981 for more details).

The proposed resample scheme has been suggested by  Maddala and Kim (1998) and

Li and Maddala (1996). They suggested the resample scheme S2. Briefly, if the null

hypothesis is H0:β= :β0 versus H1: β≠β0, they suggest using the following scheme

y*=β0x+ε*.
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5) Run the ADF test using the bootstrap sample. This yields a realisation of t*, where

t*= (β*-1)/SE(β*).

6) Repeat 2-6 B (number of bootstrap replicates) times and the collection of realised

t* statistics form the bootstrap distribution of these statistics under the null

hypothesis.
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Table 1

Panel Unit Root Test-CPI-RER

Series Lags t-statistic P-values Ln (P)
Austria 1 -2.2529 0.176 -1.7344
Denmark 2 -2.0037 0.282 -1.2658
Belgium 2 -1.6792 0.427 -0.8509
France 0 -1.9015 0.315 -1.1536
Germany 1 0.4896 0.989 -0.0111
Italy 0 0.334 -1.0951
Netherl. 2 -1.9587 0.314 -1.1584
Norway 2 -2.1575 0.228 -1.4784
Portugal 6 -1.4244 0.548 -0.6015
Spain 2 -1.0304 0.463 -0.77
Canada 6 -1.8574 0.329 -1.1117
Sweden 6 -1.3339 0.629 -0.4628
Switzerl. 6 -1.9834 0.252 -1.3783
UK 1 -2.4869 0.13 -2.0402
New Zeal. 6 -2.1704 0.215 -1.5348
Japan 0 -2.0106 0.19 -1.6607
Greece 4 -1.71 0.425 -0.8557
Finland 0 -1.7968 0.393 -0.9339
Ireland 4 -2.3964 0.148 -1.9045
Mexico 6 -3.0131 0.04 -3.2189

SUM
Ln(P)

-25.2207

Panel test 50.4414
Chi-square (40)-5% 55.76
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Table 2

Panel Unit Root Test-WPI-RER

Series Lags t-statistic P-value Ln(P)
Austria 1 -1.68 0.4385 -0.8244
Belgium 0 -2.15 0.2055 -1.58231
Denmark 0 -1.38 0.5495 -0.59875
Germany 0 -1.35 0.598 -0.51416
Italy 0 -1.49 0.518 -0.65778
Netherl. 0 -1.05 0.6845 -0.37907
Norway 2 -2.17 0.207 -1.57504
Spain 0 -1.4 0.5395 -0.61711
Switzerl. 0 -1.51 0.517 -0.65971
Ireland 2 -1.44 0.5345 -0.62642

SUM LN(P) -8.03475
Panel test 16.06949
Chi-sq. (20)-5% 31.41
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Table 3

(A)
McKinnon-size test.

DM-simualtion T=325 p=0.98

RP2 0.057
ERP2 0.007
RP1 0.059
ERP1 0.009

(B)
McKinnon-size test

DM-simulation T=325 p=0.75

RP2 0.06
ERP2 0.001
RP1 0.06
ERP1 0.001

(C)
McKinnon-size test

DM-simulation T=325 p=0.50

RP2 0.04
ERP2 -0.008
RP1 0.04
ERP1 -0.008
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Table 4

(A)
MacKinnon-size test

DM-simulation T=100 p=0.98

RP2 0.06
ERP2 0.011
RP1 0.06
ERP1 0.009

(B)
MacKinnon-size test

DM-simulation T=100 p=0.75

RP2 0.06
ERP2 0.014
RP1 0.06
ERP1 0.013

(C)
MacKinnon-size test

DM-simulation T=100 p=0.5

RP2 0.07
ERP2 0.017
RP1 0.07
ERP1 0.016
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