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Abstract
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1. Introduction

Innovation is a primary source of economic growth. But do innovations come from the

same set of firms or, on the contrary, from a continuous renewal of innovators? On this point,

the assumptions underlying the endogenous growth models are different. While Romer (1991)

suggests a strong persistence of innovators, Aghion and Howitt (1992) take the opposite view

and develop a neo-Schumpeterian model in which the process of creative destruction leads to an

infinite renewal of innovators.3 More recently, Aghion, Harris and Vickers (1997), Encaoua and

Ulph (2000) and Hörner (2001) have shown that a rich number of individual patterns of

innovation persistence are in fact possible. Hence, innovation persistence at the macroeconomic

level can be supported by different firm-level behavioral assumptions. What is the empirical

relevance of these different microeconomic foundations?

Answer to this question relates directly to central problems in economic theory. In the first

place, the frequency with which a firm introduces innovations plays a central role in the analysis

of technical progress and economic growth (Aghion, Harris and Vickers, 1997). In the second

place, understanding whether innovation is persistent or not at the firm level constitutes an

important piece of evidence for finding and improving current theories of industrial dynamics,

where some forms of dynamic increasing returns play a major role in determining degrees of

concentration, the evolution of market shares and their stability over time (Geroski, 1995).

Few empirical works have examined the issue of innovation persistence at the firm-level data

(Crépon and Duguet, 1997; Geroski, Van Reenen and Walters, 1997; Malerba and Orsenigo,

1999; Cefis and Orsenigo, 2001). Globally, these works conclude either that there is a small

degree of innovation persistence, or that innovation is persistent only in a small number of firms.

Hence, as long as the majority of innovators would be involved in a creative destruction process, there

would still remain an innovative core. However, several considerations led us to investigate the

robustness of this conclusion.

The first motivation of this paper is to clarify the links between the theoretical

explanations of innovation persistence and the empirical results. The previous studies do not

always allow to identify the theoretical model that generates the data. Indeed, some data

limitations prevent them from testing some theoretical propositions. Moreover, the previous

studies differ according to the set of explanative variables, such that their results are not easily

                                                

3 This difference of assumptions can be seen by comparing the innovation value equations of these models.
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comparable. This paper is an attempt to identify the theoretical models that are compatible with

the facts, in order to achieve a better understanding of the empirical regularities. We fulfilled this

objective by using a larger set of explanative variables and by referring to the theoretical literature

explicitly when we interpret our empirical results.

The second motivation of this paper originates from the way innovation is measured in the

previous studies that use only patent data or “major” innovations data.4 By definition, these data

tend to underestimate the number of innovative firms, hence the persistence of innovation. For

the patent data, many problems emerge, mostly from the fact that a patent is not an innovation

(Griliches, 1990). Among the problems often quoted in the applied literature, patents are not the

most effective means of knowledge protection and this explains why some industries report

patent figures much below their innovative level (Levin et al., 1987; Cohen et al., 1997; Duguet

and Kabla, 1998).5 Moreover, even if patent protection was perfect, a patent would involve both

to innovate and to be the first to innovate. This means that patent data measure the persistence of

innovative leadership rather than the persistence of innovation. In the same way, the major

innovations data involve some kind of leadership as well. Consequently, the evaluation of

innovation persistence requires separating innovation from its commercial performance and from

the intellectual protection strategies of the firms. The Community Innovation Surveys (CIS)

provide information that satisfy these conditions.

Lastly we examine the robustness of the standard econometric methods. Ideally, we would

like to measure the difference between, on the one hand, the innovative performance a firm

makes today knowing that the firm has innovated in the past and, on the other hand, the

innovative performance the same firm would have done if it had not innovated in the past. There is

no way to observe these two quantities at the same time for any firm. Indeed, either the firm

innovated and we cannot observe what it would have done if it had not innovated, or the firm

did not innovate and we cannot observe what it would have done if it had innovated. The

standard econometric methods assume that the non-observable outcomes can be obtained from a

regression model. This implies that there should exist a firm with exactly the same characteristics

but with a different past innovation status. If this past innovation status depends on the firms’

                                                

4 In the applied literature, “major” innovations refer to innovations that have met a large commercial success

5 Duguet and Kabla (1988) show that on average only a third of the innovations are patented because of the
information disclosure implied by the patent documents. Moreover, after controlling for the propensity to patent,
R&D investments, market share and industry of the firm, the determinants “will to avoid litigation” and “technology
negotiations” remain strongly significant in the explanation of the number of patent applications. Hence, strategic
aspects are omnipresent in the patent numbers, which precludes from using it as a mere innovation indicator. This
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characteristics, this assumption could not be valid. In order to solve this problem, we use the

propensity score approach introduced by Rubin (1974), Rosenbaum and Rubin (1983) and

developed by Heckman, Ichimura and Todd (1997).

We reach three conclusions. First, we find that innovation persistence is much stronger with

Community Innovation Surveys data than with patent data. Second, we find that the origin of

innovation persistence depends on the size of the firms. While learning-by-doing effects in the

production of innovations appear to play a major role in innovation persistence in the small

firms, their importance steadily decreases with the size of the firms. In the largest firms, these

effects vanish and the persistence of innovation originates from the persistence of the formal

research and development investments. Third, we find that the standard econometric methods

provide correct results on average but conceal an interesting composition effect.

Section 2 presents the theoretical models of innovation persistence, discusses their empirical

implications and summarizes the empirical results from previous studies. Section 3 presents the

data and section 4 gives the estimation methods. In section 5, we discuss the results. Section 6

concludes the paper.

2. Theoretical framework and previous empirical analysis

2.1. The theoretical framework

The persistence of innovation at the firm level can be explained by three types of models,

which lead to different empirical predictions. The linear model of innovation establishes a simple

relationship between the research and development (R&D) expenditures of a firm and its

innovations. The firms that can support the sunk costs of R&D make inventions that lead to

product or process innovations  (Cohen and Klepper, 1996). In this model the successive

innovations originate from the continuity of R&D expenditures and are not directly connected.

According to this vision of the innovative process, innovation is persistent only if R&D is.

This model implies that there should be no innovation difference between firms once

controlled for R&D expenditures. Hence, it is possible to test this model by regressing a measure

                                                                                                                                            

strategic dimension of patents is more and more present in the firms’ decisions to patent their innovations (Encaoua
and Hollander, 2001).
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of innovation on a measure of past innovation and a measure of R&D. The issue is then whether

there is an additional effect of past innovation on present innovation. If R&D and past

innovation are both significant, other models should be investigated.

A second model underlines the importance of the financial constraints related to the R&D

activities (Nelson et Winter, 1982). Giving the difficulty of funding the R&D activities, the

commercial success of past innovations helps to fund the current innovative activities: successful

innovative firms make profits that can be allocated to future R&D investments. This problem of

funding appears when the financial markets are imperfect. A firm that reached a commercial

success in the past has more chance to innovate in the future merely because it reinvests its

benefits in its research projects. Hence, “success breeds success”: a past innovation that met

commercial success becomes a necessary condition to finance the future research projects.

Empirically, the correlation between innovation and research is expected to be weaker than

in the linear model, since past innovation is a necessary condition of present R&D investments.

One way to test this model is to control the differences of financial constraints between the firms

before examining the relation between innovation and research. This control can be made with a

variable of size.6 If the differences of size between firms are controlled for, research should have

a significant impact on present innovation and past innovation should not be significant.

The third model relies on the idea that innovations result from an accumulation of specific

competencies (Rosenberg, 1976; Malerba et al., 1997). More precisely, this model considers that

the innovative abilities that a firm develops when it invests in research projects do not necessarily

depreciate rapidly over time. Therefore, the same knowledge or know-how may be applied to

develop several innovations at successive times. The competencies related to innovation do not

only refer to the scientific knowledge available to the firm but also to a specific know-how in the

production of innovations. Chandler (1990) emphasized the importance of such effects in the

production of innovations. According to that view, firms benefit from learning-by-doing effects in

the production of innovations, which leads to a strong innovation persistence at the firm level.

Empirically, a simple way to test this hypothesis is to examine whether past innovations still

have an effect on present innovation, once both R&D and size have been controlled for:

according to this third model, past innovation should remain significant. This conclusion differs

from the ones of the two previous models. Such an effect can be supported neither by the linear

                                                

6 On the relationship between size and liquidity constraints, see Audretsch and Elston (2002).
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model because R&D differences are accounted for, nor by the Nelson-Winter model because the

financial constraints are controlled for.

Finally, even if these models do not explain the persistence of innovation in the same way,

they all suggest that we should observe a significant degree of persistence. Indeed, according to

the first model, a weak persistence would mean that firms do not invest in R&D continuously,

which contradicts the evidence from the R&D surveys. Only a part of the firms performs R&D

but these firms generally invest in R&D activities continuously.

According to the second model, a weak innovation persistence implies either that the capital

markets would not be able to fund the innovation projects, or that firms would not reinvest their

profits from past innovations in their current research projects. These two conditions are

unlikely. On the one hand, the financial markets have considerably increased the funds available

for the innovation projects and many public policies supporting innovation exist in OECD

countries (Hall and Van Reenen, 2000). If there remains a funding problem, it is unlikely that it is

so large that innovation would stop being persistent. On the other hand, it is equally unlikely that

firms do not reinvest their profits from past innovations in their current research projects, giving

the importance of innovation for their competitiveness. In some industries, competition

principally centers in innovation (Encaoua and Hollander, 2002). When a firm reinvests its profits

in innovation projects, it has more chance to create or maintain its market power.

Lastly, according to the third model, a weak innovation persistence would mean that

learning-by-doing effects in the production of innovations are not important. Some recent

empirical analyses suggest the contrary. Kim (1997) showed the central role played by the

development of internal innovative know-how in Samsung’s technological successes in the semi-

conductors industry. Henderson and Cockburn (1996) and Nightingale (2000) studied the

pharmaceutical industry and showed that the pharmaceutical firms have succeeded in lowering

the production costs of new drugs by adopting new experimentation methods and organizational

changes.

If we combine these models, we should thus expect a significant degree of innovation

persistence, at least in a part of the firms. But, until now, previous studies rather conclude that

the innovation persistence at the firm level is weak. We think that this apparent paradox is due

for a significant part to the data used to measure innovation.
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2.2. The previous empirical results

The issue of innovation persistence at the firm level has recently been studied by Geroski,

Van Reenen and Walters (1997). The authors use two different measures of innovation: annual

patents data and annual major innovations data. The extent of innovation persistence of a firm is

defined as the number of consecutive years during which it innovates. The authors do not

account for innovation inputs differences (like R&D expenditures) but for size differences for

major innovations. Their main result is that : “it is very hard to find any evidence at all that

innovative activity can be self-sustaining over anything other than very short periods of time”.

Three explanations related to the measurement of innovation could explain this result.

The first point is that there is a strong difference between a patent and an innovation. The

most important difference for this study is that a patent implies leadership in innovation. Indeed,

an innovative firm needs to be the first to apply for a patent in order to be properly registered in

the data set. Patent data do not only measure innovation but also the fact that a firm won an

innovation race. Hence, a sample reporting firms that win the innovation race from time to time

would show up a weak persistence of innovation, even if these firms innovate all the time. The

second point is that leadership itself may be poorly measured by patent data. This problem is

linked to the intellectual property strategy of the firms. Firms can have an obvious interest in

avoiding to patent an intermediate innovation in order to conceal the knowledge that could be

used by their competitors. There is a strong empirical evidence of this kind of behavior (Cohen et

al., 1997, on American data; Duguet and Kabla, 1998, on French data). Lastly, the firms tend to

patent more their product innovations than their process innovations (Arundel and Kabla, 1998).

The patent data are thus biased in favor of product innovations. Hence it is unlikely that the

persistence of innovation can be adequately measured with such data.

The second type of data that Geroski, Van Reenen and Walters (1997) used to measure

persistence concerns innovations that met a commercial success. Here, the data avoid the biases

associated to the patenting strategy of the firms but there remains one problem. Since this

definition involves a commercial success, the firms considered as innovative are likely to be either

innovation leaders or commercial leaders. In the latter case, the data measure the ranking of the

firms on the market, that is their ability to adapt the available innovations to consumers’ tastes.
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The work of Crépon and Duguet (1997) is equally related to the issue of innovation

persistence. They use a panel of R&D performers operating in France and they also use patent

data to measure innovation.7 They estimate a dynamic count data model that links the current

number of patents to both the previous year number of patents and the amount invested in

R&D. They also account for an individual fixed effect that represents the differences of size, of

technological opportunities and of the firm’s propensity to patent. Contrary to Geroski et al.

(1997), they find that innovation persistence is strong among R&D performers. Moreover they

find a positive effect of lagged patents on the current number of patents, which suggests that

learning-by-doing effects play a role in the production of innovations. At a first glance, the results of

Crépon and Duguet (1997) seem to contradict the results of Geroski et al. (1997). However, the

study of Malerba and Orsenigo (1999) suggests that these two works are in fact complementary.

The descriptive statistics study by Malerba and Orsenigo (1999) examined the issue of

persistence by using patent data of six countries over the period 1978-1991.8 They conclude that

a large fraction of innovators is casual. Nevertheless, there would still remain a stable group of

innovators that apply for a large share of patenting. The results of this study are confirmed by

Cefis and Orsenigo (2001) who find that both “great-innovators” and non-innovators have a

strong probability to stay in the same innovative state. Then, there would be a strong persistence

of innovation in a core of firms.

Globally, two interesting elements emerge from these studies. On the one hand, the

weakness of persistence degree found in several empirical studies contradicts the basic theoretical

prediction and suggests to use different data sources in order to avoid measuring innovation by

patents. On the other hand, few studies pay attention to the determinants of innovation

persistence, such that we do not know the empirical relevance of the different theoretical models.

In order to determine which of the previous theoretical models is relevant, one should care

about the whole list of explanative variables included in a regression, since the significance of

each coefficient depends on all the explanative variables included. Current innovation must be

explained by past innovation, research and size, such that a significant effect of past innovation

on current innovation can be interpreted as a learning-by-doing effect since the financial

constraints and size are controlled for. Crépon and Duguet (1997) take into account these

different variables but their sample is limited to the significant R&D performers only. Moreover,

                                                

7 R&D performers are defined according to the Frascatti criterion (at least one research working full time on R&D).

8 The six countries are : France, Germany, Italy,  Japan, the U.K. and the U.S.A. Their patent data are available for
different periods: 1978-1982, 1982-1985, 1986-1988 and 1988-1991.
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they use patent data. Our objective is thus to analyze this latter model in order to be able to

identify all the determinants of innovation persistence with a more representative sample of firms

and another measurement of innovation.

3. The data

One purpose of this study is to use other data sources than patent data in order to separate

the leadership, commercial or innovative, from innovation itself. The recent Community

Innovation Surveys (CIS) provide information about the implementation of innovation at the

firm level, without any reference to their commercial success or their patenting status.9

The data come from four data sets, including three about innovation. The first data set is the

Innovation Survey “L’Innovation Technologique dans l’Industrie” conducted by the SESSI that was

performed in order to prepare all the other innovation surveys in France. It was conducted in

1991 and provides information about the period 1986-1990. In order to assess innovation

persistence, we also use two Community Innovation Surveys (henceforth CIS). The CIS1,

conducted in 1993, provides information about the period 1990-1992, while the CIS2, conducted

in 1997, gives information about the period 1994-1996. The remaining data set provides

accounting information. They come from the annual industry census 1985 (in French, “Enquête

Annuelle d’Entreprises”) that provides data about the line of business and sales at the firm-level.10

The merger of these data sets provides a sample of 808 firms operating in manufacturing and

covers the period 1986-1996.11 Year 1993 is missing since no innovation survey covers this year.

Table 1 provides the percentage of innovators by industry. These percentages are not directly

comparable since the first survey spans 5 years instead of 3. Hence the first survey gives the

highest innovation figures. The maximum is reached in equipment goods (including cars) and the

                                                

9 Moreover, these surveys have been conducted in many European countries such that international comparisons are
now possible.

10 EAE is the « Enquête Annuelle d’Entreprises  » (the industry census). It is compulsory for all firms above 20
employees.

11 Notice that we imposed the presence of firms in each innovation survey and in the 1985 E.A.E. survey. We thus
examine the innovation persistence conditional to the existence of the firms in 1985 and to their survival up to 1997.
The integration of entry and survival issues of innovative firms in our analysis would require another data which we
do not posses. Nevertheless, the impact of new entrants on the date at which the installed firms decide to innovate is
taken into account. Moreover, the role of new innovative firms, in particular of start-ups, could be relatively minor in
France. In a recent study, Arora et al. (2000) show that in Europe 90% of research projects in biotechnological
sectors are due to large installed firms, whereas in United States more than 50% of the research projects are
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minimum in consumer goods. The two following surveys (CIS1 and CIS2) provide lower figures

as expected, but they give comparable results. On a three-year period, the percentage of

innovators is 61%. These figures seem high but there are two reasons for it: they cover a three-

year period or a five-year period and the definition of innovation includes both new products and

new processes.12 Since these data do not refer to the market performance of the firms or to their

patenting strategy, we should be able to better identify the persistence of innovation. The

advantage of this innovation definition is that it allows to measure innovation in a firm that

persistently innovates but in a different manner over time, for instance by introducing a new

product and then by improving on the production process. The case studies confirm the view of

the innovative process according to which the persistence originates from the diversity of

innovative behaviors (Kim, 1997).

-Insert Table 1-

The innovation surveys also include information about the inputs that have been used to

innovate. The 1991 innovation survey distinguishes formal R&D according to the Frascatti

criterion and the informal R&D identified as “technical studies”. The answers are provided on a

four-point scale (“none”, “weak”, “moderate” and “strong”). The figures are reported in Table 1.

Over 1986-1990, about the two thirds of the innovative firms declare to have conducted

moderate or strong informal R&D, 43% have conducted strong formal R&D and 29% have

conducted no research at all. The CIS1 does not allow to separate the formal R&D from the

informal one. The only available data aggregates both definitions. We have grouped the weak and

moderate levels to obtain a four-point scale. It appears that a third of the firms have conducted

very strong formal or informal R&D, a figure that is close to the one obtained in the previous

survey for informal R&D.

Table 1 equally presents some descriptive statistics on the size of the firms measured by their

sales in 1985 and on the degree of technological opportunities in their activity. The advantage of

                                                                                                                                            

accompanied by the creation of a new firm. Chesbrough (1999) finds similar results in the industry of semi-
conductors.

12 The definition used in the innovation surveys includes the five following types of innovation : (1) significant
improvement of an already existing product; (2) introduction of a product that is new both for the firm and for the
market; (3) introduction of a product that is new for the firm but not for the market; (4) significant improvement of
an already production process and (5) process breakthrough. Notice that the full decomposition is available in the
first survey only.
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measuring the size of the firms by sales rather than employment is that is it less sensitive to the

differences in the capital-labor ratio (Cohen and Levin, 1989; Kleinknecht, 1996). The degree of

technological opportunities does not come from an industry classification but is available at the

firm level in the first innovation survey that provides information about the degree of innovation

of a firm’s line of business (four levels: “none”, “weak”, “moderate” and “strong”). Based on

previous works, we define the “low-tech” activities as “none” or “weak”, and the “high-tech” as

“moderate” or “strong”. This variable has proved to be useful in previous econometric studies in

French manufacturing where it revealed significant differences of performances that were not

attributable to the firm-level innovation.13 We see that the innovators have generally a larger size

than the non-innovators and they are situated in sectors where the technological opportunities

are more important.

4. Methodology

Let yi denote the innovative performance of firm i and Ti denote past innovation. Each firm

has two different innovative performances depending on whether it innovated in the past (Ti = 1)

or not (Ti = 0). We denote them ( )1iy  and ( )0iy . The effect of past innovation on the whole

population, called the causal effect in the litterature, is defined as ( ) ( )( )01E ii yyc −= . If it was

possible to observe the performance of each firm in both states 0 and 1, the average effect of

past innovation could be consistently estimated by the difference of the corresponding sample

averages. Since such data are not available, one needs to  construct a counterfactual, that is an

estimation of ( )1iy  for the firms that did not innovate and an estimation of ( )0iy  for the firms

that innovated. The most widespread method is to use a parametric model ( ).y  that explains the

performance iy  by past innovation iT  and the characteristics of the firm (denoted iX ) :

( )iii XTyy ,= . The counterfactuals are simply obtained by ( ) ( )ii Xyy ,00 =  and

( ) ( )ii Xyy ,11 = .

When the performance is a binary variable (e.g., innovate or not), the evaluation can be

obtained from a probit model, that explains the probability to innovate today by past innovation

and the characteristics of the firm (size, industry, R&D expenditures). It is given by :

                                                

13 This variable could indirectly measure a spillover potential available to the firm. See Barlet et al. (1998).
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( ) [ ]iiii TXXTy γβ +Φ=, ,

where Φ is the cumulative distribution function of the standard normal distribution. The average

effect of past innovation is estimated by :

( ) ( ){ } ( ) ( ){ }∑∑
==

Φ−+Φ=−=
N

i
ii

N

i
ii XX

N
XyXy

N
c

11

ˆˆˆ1
,0ˆ,1ˆ

1
ˆ βγβ ,

where β̂  and γ̂  denotes the maximum likelihood estimations from the probit model and N  is

the number of firms in our sample.14

The main drawback of the probit method is that it assumes that there is always a perfect

counterfactual given by the parametric model, that is it assumes there can exist a firm that did not

innovate in the past and that has exactly the same characteristics than the firm that innovated (i.e.,

the same βiX ). Therefore this method could be invalidated when innovative firms have

significantly different characteristics Xi from the non-innovative firms. The basic reason why the

firms are not comparable may be simply that innovative firms do more R&D or have a size that

differs from the size of non-innovative firms.15 In this case, it is possible that the probit method

provides inconsistent estimates of the effect of past innovations.

With the Rubin method, the counterfactuals are not obtained from a parametric model, but

from the actual data. This methodology was first proposed by Rubin (1974) and developed by

Rosenbaum and Rubin (1983) and Heckman, Ichimura and Todd (1997) among others. The

intuition is the following. If we had an experimental sample, a direct comparison of the

percentage of innovation between the two sets of firms, defined by Ti,  would provide a

consistent estimate of c. The reason is that the performance average difference between past

innovative and non-innovative firms could only come from past innovation and the empirical

average would be a consistent estimator of the expected causal effect. But past innovation is not

allocated at random between firms so that a generalization of this method is needed. Rubin

(1974) showed that it is possible to evaluate the effect c  if the following condition if fullfiled :

( ) ( )( ) iiii XTyy ⊥1,0 (H-1)

where ⊥  denotes statistical independence. This implies that one can evaluate the

counterfactuals by :

                                                

14 The same computation can be done for any binary explanative variable. It is thus possible to compare the
importance of past innovation with the importance of other explanative variables, especially with R&D.
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))1((E)1,)1((E)0,)1((E iiiiiiii XyTXyTXy ====

))0((E)0,)0((E)1,)0((E iiiiiiii XyTXyTXy ====

The only practical problem with this method is that it implies to match firms on large

number of variables iX . Fortunately, Rosenbaum and Rubin (1983) have shown that this

condition can be simplified to conditional independence on the one-dimensional propensity score

defined as ( )
ii XT 1Pr = . This selection probability plays an especially important role for the

following reason. Suppose that we have a group of firms with the same probability to have

innovated in the past. Inside this group, there are firms that innovated in the past and firms that

did not. Hence, the difference of past innovation between these firms can be considered as

random. The comparison of the average performances inside homogeneous probability groups is

therefore relevant. More precisely, Rosenbaum and Rubin (1983) have shown that:

( ) ( )( ) ( ) ( )( ) ( )iiiiiiiii XTTyyXTyy 1Pr1,01,0 =⊥⇒⊥ .

In practice, the propensity score is replaced by its estimation. The propensity score can be

estimated by a probit or a logit model, with Xi as explanative variables. But it may also depend on

a firm-level fixed effect, which represents any time-invariant factor that influences the innovative

performance of the firms.16 For instance, this effect may represent firms that have research teams

with more successful researchers. We denote this fixed effect by iα . The identification condition

becomes:

( ) ( )( ) ( ) ( ) ( )( ) ( )iiiiiiiiiii XTTyyXTyy αα ,1Pr1,0,1,0 =⊥⇒⊥ .

The fixed effect raises an issue because it is unobservable. There are two ways to deal with

this problem. The first method is to estimate a fixed-effect logit model on panel data and to use

the predicted probability to match firms. But, unfortunately, this is not possible with the

Community Innovation Surveys for the two following reasons:

1. In the fixed effect logit model, the estimation proceeds by the conditional maximum

likelihood method, where the conditioning variable is the number of times that a firm

innovates (i.e., the sum of the innovation dummies). This implies that two kinds of events

must be excluded from the regression (Hsiao, 1986). First, one should exclude the firms

                                                                                                                                            

15 For evidence, see Cohen and Levin (1989) and Kleinknecht ed. (1996) on European data.

16 Taking into account an individual fixed effect implies that the selection equally comes from unobservable
variables.
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that have always innovated and, secondly, one should exclude the firms that have never

innovated. The reason why the always-innovators are excluded by this method is that the

conditional probability to innovate knowing that one has always innovated is equal to one,

such that it does not contribute to the conditional likelihood (i.e., provides no relevant

information for the estimation). The reason why never-innovators are excluded is that the

conditional probability to innovate knowing one has never innovated is equal to zero.

Hence the higher the persistence of innovation, the less there will be firms available for the fixed-effect logit

regression. And we have a majority of such firms.

2. In a logit model with a fixed effect and two years of data, one needs to do a regression

on the difference of the explanative variables (Hsiao, 1986). Unfortunately the definition of

research inputs changes over time. In the first survey, formal and informal R&D are

separated and the firms answer on a four point scale (“Not important”, “Weakly

important”, “Moderately important”, “Strongly important”). In the second survey, formal

and informal R&D are grouped together and firms answer on a 5 points scale (0,1,2,3,4).

Hence, there is no way to take the difference.

Therefore, the applied researcher has no other choice than to use another method. The

second method is to find out observable variables that are strongly correlated to the fixed effects

such that the differences between firms can be controlled for. Thus, we need variables that, for

example, give information on the competencies of the research team of a firm. The most obvious

set of variables is the past innovative history of the firm. If a firm has a successful research team,

its innovation history should score better than the one of another firm.

The first innovation survey is especially useful since it provides information on the

innovation history of the firms over five years. The long length of inquiry of this data set is an

advantage when trying to control for individual effects. Firms that did not innovate over five

years may not have successful research teams, while firms that innovated at least once in five

years may have a more competent research teams. Another variable that can be used is the degree

of technological opportunities. We denote these two variables by Zi. Replacing the fixed effect

formulation by its observable counterpart, we use the following condition:

( ) ( )( ) ( ) ( )( ) ( )iiiiiiiii WTTyyWTyy 1Pr1,01,0 =⊥⇒⊥

where ),( iii ZXW = . We perform the matching on the corresponding estimated propensity

score.
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Whichever the method used, the first precaution to take is to check that the support of the

probabilities has a sufficient overlap between the two groups of firms (i.e. treated and non-

treated firms). Some firms can be excluded from the sample because there exists no relevant

counterfactual. It is then not possible to evaluate a causal effect for these latter firms. It is an

important difference with the probit method.

Our first evaluation of the causal effect is based on the construction of several probability

classes.17 This method allows to compute the effect of past innovation by regression and to

compute heteroskedasticity-robust standard errors in a simple way18. However, the matching is

not perfect. In order to fix this problem, we have grouped observations into strata defined on the

estimated propensity score such that the covariates within each stratum are balanced (Rosenbaum

and Rubin, 1983; Dehejia and Wahba, 1998).19 Once that the probability classes are constructed,

we compute the average difference of performance inside each propensity score class by the following

regression:

iii uTcay ++= ,

where u is a disturbance. The OLS estimator simply gives the difference of the means between

the past innovators and the other firms: 01
ˆ yyc −= . A second evaluation is based on an

extension of the previous regression :20

( ) ,iiiii vdmcTbmay ++++=

where δ̂ii Wm =  is the score obtained from the (selection) probit model, δ̂  the corresponding

maximum likelihood estimate and v a disturbance.21 Here, the effect of past innovation depends

on the characteristics of the firm through the score. When the score is centered, the average

causal effect is still given by the coefficient of the treatment since we have :

( ) ( )( ) ( ) cdmcyy iii =+=− E01E .

                                                

17 An imperfect matching allows keeping more firms in the sample but implies to test for homogeneity inside the
classes. On the problems associated to matching, see Heckman et al. (1998).

18 It is why we impose that at least 30 treated and 30 non-treated are included in each probability class.

19 For this reason, we perform a test for the statistical significance of differences in the distribution of covariates,
focusing on the two first moments.

20 See Crépon and Iung (1999) for a justification.

21 The propensity score is strictly increasing with mi such that it could be used to match firm as well. The reason why
we take this score instead of the propensity score is that it is a linear function of the variables, such that we get a
standard-looking regression.
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The previous estimator provides valid inference for the whole population of firms, but we

are also interested in the causal effect on the treated. The difference between the two quantities is

that the causal effect can be different for each firm such that there is no reason a priori why the

effect of the treatment should be the same among the treated and the non-treated. More

precisely, we evaluate ( )1E1 == ii Tcc . Here, the identifying assumption is less demanding :

( ) ( ) ( )iiiiiii WTTyWTy 1Pr00 =⊥⇒⊥

The simplest way to evaluate this quantity is to use the nearest-neighbor. We match each

firm that innovated in the past with the past non-innovative firm that has the closest probability

to innovate (Rubin, 1977). When several neighbors have the same probability, we select one at

random. The estimator is now:

( ) 





−= ∑∑

=

−

=
1/

1

11 )0(~)1(ˆ
iti

ii

n

i i yyTc

where )0(~
iy  denotes the innovative performance of the firm that did not innovate in the past

and whose propensity score is the closest to the one of the firm i. In this case, we do not need to

regroup our data into probability classes since we take the nearest neighbor of each past innovator.

The standard error of this estimator can be complicated to compute such that we have used the

bootstrap method with 100 simulations (Efron and Tibshirani, 1983).22

Notice that this estimator can also be used to estimate the effect over the whole population.

This is what we have done in order to easier the comparison with the effect on the treated.

5. The results

5.1. The probit models

The results of the probit models are reported in Table 2. Two different sets of explanative

variables are examined. The aim of the model 1 is to evaluate the degree of innovation

persistence, such that the current innovation (1994-96) is explained only by lagged innovations,

industry dummies and a firm-level dummy indicating whether the firm belongs to a high-tech

                                                

22 The propensity score is re-estimated for each simulation.
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activity. We controlled for industries differences because we want to evaluate the firm-level

persistence of innovation. The model 2 includes past innovations, past research activities and size

as explanative variables. It is only this last model that allows us to identify precisely the

determinants of the innovation persistence.

We find a strong persistence of innovation at the firm level. In the model 1, all the lagged innovation

variables are significant. A firm that innovated in the past has thus a stronger probability to

innovate today. Moreover, the coefficient of past innovations decreases with the lag length.

These findings are robust to the introduction of industry and to the introduction of the firm-level

high-tech dummy, such that the past innovation variables reflect neither differences between

industries, nor differences between low-tech and high-tech activities. The controls are also

significant: the fact to be engaged in an activity where the technological opportunities are high

favors current innovation and the equipment goods industry produces more innovations than the

other lines of business. These two results are consistent with previous evidence. This first model

allows us to conclude to the likely existence of an innovative core of firms that innovate

persistently and whose the advantage decays relatively slowly over time since innovations that

have been made 10 years before still have a significant effect.

- Insert Table 2-

In the model 2, we find that innovation over 1986-1990 is no more significant once

controlled for research and development over the same period. Hence a good part of the

persistence found in the model 1 comes from research. The linear model is thus partly validated.

However, the short-run lagged innovation (1990-1992) continues to be significant. We conclude

that firms that innovated in the past benefit from advantages that do not come only from formal

research activities but equally from more informal activities. The learning-by-doing effects in the

production of innovations thus play an important role to explain the persistence of innovation.

The relevance of the model with learning-by-doing is thus confirmed.

Another interesting result is that while formal R&D over 1986-1990 is significant on

innovation over 1994-1996, informal R&D is not. This suggests that informal knowledge would have a

higher depreciation rate than formal knowledge. One explanation is that formal R&D can be more easily

codified and transmitted to the new researchers or engineers or simply that the knowledge

generated by formal R&D is relevant for a larger number of innovations than the knowledge
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generated by informal research. Lastly, the size variable is significant, which suggests that firms

have not the same access to finance. It is thus necessary to control for these differences.

The simplest way to compare the relative importance of research and past innovation is to

compute the average innovation probability difference that they imply (Table 2, columns 4 and

5). We find that a firm that has innovated over 1990-1992 has on average a 19% higher

probability to innovate in 1994-1996, once controlled for all the other determinants of

innovation. This figure is comparable to the difference associated to the strongest level of formal

research and development (18%). According to these first estimates, the achievement of a past

innovation would be as important as formal research itself.

Finally, the conclusions of the different theoretical models appear as complementary. But we

will see that in fact the relevance of the theoretical models depends on the size of the firms.

5.2. The Rubin model and the evaluation of the causal effect

The estimation of the causal effect is based on the first-step estimate of the probability to

have innovated in the past (1990-92). Then firms can be matched in different ways. The first one

consists in constructing probability classes in which there are firms that innovated in the past and

firms that did not innovate. In each probability class, it is possible to evaluate the causal effect,

i.e. the specific effect of past innovation on current innovation. The second matching method is

the nearest-neighbor method that consists in matching each firm that has innovated in the past

with the past non-innovative firm that had the closest probability to innovate.

The estimate of the probability to have innovated over 1990-92, i.e. to have been treated, is

equivalent to choose a set of conditioning variables. We retained size, industry dummies, high

tech dummy, past research activities (1986-90) and innovation 1986-90 as explanative variable.23

For each firm, we then get a predicted probability to have been treated and construct probability

classes in function of this propensity score.

The construction of probability classes requires several steps. First, we exclude from our

sample firms that have a propensity score superior to 85% because among these firms, there are

nearly only treated firms, such that for these latter firms, it is not possible to evaluate correctly

the causal effect (see figure 1). Therefore, the comparison between past innovative and past non-

                                                

23 The innovation 1986-90 is used in order to correct a possible individual fixed effect. This estimate relies on a
probit model.
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innovative firms can only be made for a part of the sample. The probit model does not allow to

correct this potential source of bias. Second, we imposed that each class includes at least 30

treated and 30 non-treated in order to be able to evaluate the causal effect. This convention

increases the heterogeneity inside the classes, that we control for by adding the propensity score

and the product of the treatment and of the propensity score in our regressions. Lastly, inside

each class, we check that the conditioning variables are well-balanced between the treated and the

non-treated firms. We performed a test for the statistical significance of differences in the

distribution of observable variables, focusing on first moment.

These three steps lead to define three probability classes: 0-35%, 35-57% and 57-85%. The

first class starts at strictly positive values because, even for low levels of the probability to be

treated, there are enough treated and non-treated firms.

We distinguish two types of evaluation: first, we compute the difference of the average

probabilities to innovate inside each probability class (Table 3 – regression 1). Secondly, we run a

regression of the current innovation dummy on the score, past innovation and the cross product

of the two latter variables (Table 3 – regression 2).24 The purpose of the latter regression is to

allow for firm-level variation of the causal effect.

Important differences appear between probability classes (Table 3 – regressions 1 and 2). We

find that the causal effect is the strongest for the lowest probability class, around 40%, decreases

in the second probability class, around 20 %, and vanishes in the last class.

- Insert Table 3-

The class 1 corresponds to small firms that do not invest in R&D activities. In these firms,

the causal effect is the strongest. It does not mean that the persistence of innovation is the

strongest in this class but that the learning-by doing effects play an essential role in these firms.

Moreover, the existence of such effects leads to a strong innovation persistence in the small firms

that are not engaged in R&D activities since firms that innovated in the past increase their

probability to innovate once again of around 40%.

The causal effect in the class 2 is not far from the half of the causal effect in the class 1,

around 20%. The persistence of innovation in these firms is explained not only by their larger
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size or their R&D activities but equally by the existence of learning-by-doing effects. Indeed there

remains a strong effect of the past innovation on current innovation.

The causal effect of past innovation is not significant in the class 3. This result does not

mean that the innovation is not persistent within these firms. This class includes firms with a

larger size and more R&D. Here, the persistence of innovation comes from the persistence of

R&D.

In Table 3, the nearest neighbor estimates are equally presented for each class and for each

model. These last estimates are consistent with the results obtained with the probability classes

method.

The origin of innovation persistence thus depends on the size of the firm. Consequently, the

relevance of the different theoretical models depends on the characteristics of the firms. In the

largest firms, the linear model applies whereas in the smallest firms, the relevant model includes

learning-by-doing effects. This last conclusion is close to the results of Kleinknecht (1987) and

emphasizes the inadequacy of R&D data to evaluate the innovative competencies in the small

firms.

This suggests the following functioning of innovation: the importance of learning-by-doing

decreases with the formalization of research and development activities. Clearly, the last class

includes mostly firms with the highest formal R&D budgets, such that the persistence of

innovation for these firms comes from the persistence of research. In order to evaluate the

degree of innovation persistence at the firm level, both effects must be accounted for. The fact to

omit the learning-by-doing effect leads to underestimate the innovation persistence, in particular in

small firms.

All the methods used lead to estimate an average causal effect of past innovation on the

whole sample around 20%.25 Consequently, the learning-by-doing effects play an essential role in

the persistence of innovation.  This last result is very close to the result of the probit model.

The nearest neighbor estimator equally allows to compute the causal effect on the treated

(Table 3 – column 5). This effect (14%) is lower than the causal effect on the whole sample

(20%). The reason is that the sample of treated includes many large firms. Moreover, this last

                                                                                                                                            

24 We have centered the score before to take the cross products such that the average causal effect is given directly
by the coefficient of past innovation.

25 We recall that the sample does not contain the firms that have a propensity score superior to 85%.
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result slightly differs from the average effect of past innovation computed on the sample of the

treated with the probit model (18%).

6. Conclusion

The econometric results that we obtain with the Innovation Surveys contrast with the results

of previous studies on patent data and seem more in accordance with the theoretical literature.

In a first step, we find that the innovation persistence is strong since, ceteris paribus, a firm

that already innovated in the past has a stronger probability to innovate today (around +20%).

This persistence has several origins. Indeed we find that the origin of the persistence depends on

the size of the firm. Whereas the learning-by-doing model seems to play a major role in the small

firms, its validity is decreasing when the size of the firm is increasing. In the largest firms, it is the

linear model that is relevant. In these latter firms we do not find any significant effect of past

innovation on current innovation. The innovation persistence is due to the formal research in

these firms.

Consequently, the pertinence of the innovation models depends on the size of the firm, such

that the learning-by-doing model and the linear model are not conflicting but complementary.
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Table 1 -Sample Statistics

Innovation 1991 CIS1 (1993) CIS2 (1997)
5 years (86-90) 3 years (90-92) 3 years (94-96)

% of innovators
Consumer goods (210 firms) 63 48 50
Car industry (33 firms) 91 76 79
Other equipment goods (180 firms) 85 79 77
Intermediate goods (385 firms) 79 58 56
Sample total (808 firms) 77 61 61

Innovation inputs  (% of firms) :
Formal research and development
- none / weak / moderate / strong 29/ 11 / 17 / 43 × ×
Informal research
- none / weak / moderate / strong 15 / 17 / 32 / 36 × ×
Formal or informal R&D
- none / weak or moderate / strong / very strong × 9 / 17 / 40 / 34 ×
Other variables :
Sales 1985 – Millions of euros*: Means
- Innovative firms / Non-innovative firms 20.4 / 3.0 24.0 / 4.3 24.8 / 3.3
High technological opportunities (% of firms)
- Innovative firms / Non-innovative firms 71.4 / 10.2 71.1 / 35.7 68.1 / 40.0
Note: Sample of 808 French manufacturing firms of 20 employees or more resulting from the fusion of the three consecutive
innovation surveys and of the 1985 E.A.E. survey. * Official conversion rate 1 euro = 6.55957 FRF.
1: Information on research activities is available only for firms that innovated during the period considered. In regressions, we set the
research variables of the firms that have not innovated to 0. The 1997 innovation survey equally questions firms on their research
activities but only for the year 1996 such that this information can not be used in our model.

Table 2 – The probit models and the average effects

Average effectaVariables Model 1 Model 2
Whole
sample

Sample of
treated

- Intercept -0.79* (0.12) -4.45* (0.62) × ×
- Innovation 86-90 0.42* (0.13) 0.11  (0.18) × ×
- Innovation 90-92 0.84* (0.10) 0.56* (0.21) 0.19 0.18
- Industryb

- Car industry 0.46  (0.28) 0.16  (0.29) × ×
- Other equip. goods 0.43* (0.15) 0.38* (0.16) 0.11 0.09
- Intermediate goods 0.62  (0.11) 0.04  (0.12) × ×

-- High tech dummy 0.22  (0.11) 0.06  (.12) × ×
- Formal R&D 86-90c

- weak × 0.31  (0.20) 0.11 0.09
- moderate × 0.29  (0.18) 0.11 0.09
- strong × 0.45* (0.16) 0.18 0.16

- Informal R&D 86-90
- weak × 0.16  (0.20) × ×
- moderate × -0.06  (0.18) × ×
- strong × 0.03  (0.18) × ×

-Formal or informal R&D 90-92
- weak × -0.21  (0.25) × ×
- moderate × 0.07  (0.23) × ×
- strong × 0.26  (0.24) × ×

- ln(Sales) × 0.21* (0.03) × ×
ù ×Log-likelihood -452.88 -408.92 × ×
% correct predictions 73.6% 81.9% × ×

Note: Sample of 808 French manufacturing firms of 20 employees or more resulting from the fusion of the three consecutive innovation
surveys and of the 1985 E.A.E. survey. Left-hand variable : implementation of a product or process innovation between 1994 et 1996.
Maximum likelihood estimates of the probit model (standard errors between parentheses). * : significant at 1%. ** : significant at 5%.
a: The average effects are computed only for significant binary variables of the model 3.b: The consumer goods industry is the industry of
reference. c: For research activities, the reference is the modality none.
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Figure 1 - Distributions of the propensity score among treated and non-treated firms

(Kernel density estimator with a gaussian kernel and a Silverman window)
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Table 3 – Average causal effect of innovation 1990-92
on innovation 1994-96 for the whole sample

Causal effect Causal effect on the whole sample Causal effect
on the treated

Estimator
The

probability
classes

estimator:
regression 1

The
probability

classes
estimator:

regression 2

The nearest
neighbor
estimator

The nearest
neighbor
estimator

Class 1
0%<Pr(T=1|X)≤35%

0.38*
(0.08)

0.40*
(0.08)

0.37*
(0.09)

×

Class 2
35%<Pr(T=1|X)≤57%

0.23*
(0.08)

0.23*
(0.08)

0.19*
(0.09)

×

Class 3
57%<Pr(T=1|X)≤85%

0.13**
(0.06)

0.07
(0.06)

0.07
(0.07)

×

Weighted Estimator 0.23*
(0.04)

0.21*
(0.04)

0.19*
(0.05)

×

Global Estimators × × 0.20*
(0.05)

0.14*
(0.07)

* : significant at 1%. ** : significant at 5%.
Note: The probability classes estimator- regression 1: The regression comprises a constant term and the treatment
variable. The heteroskedasticity robust asymptotic standard errors are between parentheses. The probability
classes estimator- regression 2: The regression comprises a constant term, the treatment variable, the propensity
score and the product of the treatment and of the propensity score. The heteroskedasticity robust asymptotic
standard errors are between parentheses. The nearest neighbor estimator: The asymptotic standard errors
obtained by the bootstrap method are between parentheses (100 simulations).
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SUPPLEMENTARY SECTION

DATA APPENDIX

The innovation surveys

The first innovation survey in France, namely “l'innovation technologique dans l'industrie”, was

conducted in 1991. The firms were asked to report retrospectively over the 1985-1990 period.

Hence, the choice of the respondent was an important issue. Here intervenes the SESSI

(Industrial Statistics Bureau of the Ministry of Industry) which is responsible of the Industry

Census and of all innovation surveys in France (and more surveys). The basic organization is as

follows: inside SESSI the same person always works with the same set of firms. A part of his (or

her) job is to find the right interlocutor inside the firm. On each questionnaire appear the name

and the phone number of the SESSI correspondent inside the firm. Here the correspondent

(which is an employee of the firm) has to send the questionnaire to “a person responsible of

innovation, development, strategy issues or to the boss himself” (literal translation). The name of

the respondent, that can be different from the name of the correspondent, and its phone

number, have to be systematically reported on the questionnaire. The respondent has a SESSI

phone number he (or she) can use to have explanations on how to reply to the survey. The

census file is used for the mailing that prints automatically the name of the correspondents on the

questionnaire itself etc. In other words, this survey has been conducted by an administration that

has for main purpose to collect data among industrial firms.

The survey was presented as an appendix to the Industry Census, which is compulsory.

While the Census was compulsory, the appendix was not, but it was not indicated on the

questionnaire such that the firms could have believed that it was compulsory. This is likely to be

the case since the response rate to the innovation survey is the same as the one of the industry

census (85% for compulsory surveys in France). The possibility of a response bias is

systematically studied by the specialists of SESSI, for all the surveys. They compute the response

rate after the “first wave” of the survey for each size class and each industry in order to detect

abnormal response rates (e.g., below 85%). When the questionnaire does not come back, they can

launch a second wave.

Last but not least, all French firms have a compulsory national identification number that

is called the SIREN code. The use of this code is compulsory for all the relationship that a firm
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has with the administration (including taxes). Its main advantage is that it allows for matching all

the surveys without loss for identification reasons.

The first innovation survey is linked to the Community Innovation Survey (CIS) since it

was designed to prepare the future CIS. The information collected is made up of answers over

the 1985-1990 period, such that no annual information is available. This survey provides

information on the type of innovation that industrial firms have implemented, as well as which

knowledge sources they have used to achieve these innovations. We have qualitative information

(yes/no) about eight types of innovation including the five following types of innovation:

− Significant improvement on an existing product.

− Introduction of a product that is new for the firm and for the market;

− Introduction of a product that is new for the firm but not for the market;

− Significant improvement on an existing process;

− Process technological breakthrough (“Première de procédé technologique”).

A firm that has performed at least one of these five types of innovation is considered as

innovative. We take this definition because it corresponds to the one used in the CIS surveys

(product or process innovation).26 The questionnaire then turns to the sources of these

innovations. The questionnaire design clearly indicates the causality in the following way (literal

translation) “Sources of innovations: in your firm, does the introduction of innovation result from:”

and then comes the list of the innovation inputs. The importance of innovation sources is

available on a four-point scale. The scale is: unimportant, weakly important, moderately

important and very important. The two inputs used in this paper are formal and informal R&D:

− Formal R&D is defined as internal research and development with at least one full-time

employee. This is the definition that is used for the R&D survey and is the closest to the

traditional R&D studies (i.e., from the Frascatti criterion).

− Informal R&D is defined as “internal method and technical studies”. The interest of this

measure is to avoid the undercounting of research in small firms, a common feature of most

databases (Kleinknecht, 1987; Kleinknecht and Reijnen, 1991).

                                                

26 The remaining three types are: organizational innovation, marketing innovation and packaging innovation.
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CIS 1 and CIS2

CIS 1 is the first international survey on innovation. It was also conducted by SESSI and

reached the same response rate as the first survey. Notice that we do not use the micro-

aggregated version of the survey but the original French survey in which information is available

at the firm level. Fewer firms were surveyed than in the original innovation survey of 1991 (see

below). It provides information about the implementation of product and process innovation and

on the innovation inputs. In order to keep comparable specifications across time, we have kept

the formal and informal research inputs that are grouped together in only one question. The

answer is on a five points scale: “not important”, “weakly important”, “moderately important”,

“important” and “very important”. CIS 2 is the second international survey on innovation. It was

conducted in the same conditions as the two other surveys and reaches the same response rate. It

includes many informations but we just keep the implementation of a product or a process

innovation. For more information about the data sources, see François (1991), Lhuillery (1995)

and Favre and François (1998).

The sample

Our sample results from the merger of these three innovation surveys and of the industry

census in 1985. We impose the presence in 1985 because the first survey questionnaire refers to

the period 1986-1990. The sample includes 808 firms. Even though merging is easily done with

the SIREN code, we lose two types of firms by performing this operation.

The first kind of firms that we lose are the firms that were not included in all the surveys.

This allocation is random, such that is should not be a source of bias. The second kind of firms

that we lose are the firms that did not survive the whole period. Here, we should check that our

data are representative of the exit rates of the industry. Since there are both innovative and non-

innovative firms in our sample, we should not expect that our firms survive longer.

The appendix tables gives the detail of the constitution of the sample and compares the

entry and exit rates of the innovation survey with the ones of the whole industry. It clearly shows

the innovation surveys are representative of the cohort of firms that were present in

manufacturing in 1985. It is especially true of the first survey since all the firms in the CIS1

survey were respondents to the first innovation survey of 1991. The CIS2 survey, on the

contrary, includes a large number of firms newly included in the survey. Globally, we can say that
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our sample is representative of the exit rate of the industry but that it exhibits a smaller entry rate.

Therefore, we should interpret our results as valid for the cohort of manufacturing firms in 1985.

Table A.1 - Details on the Merger of the Innovation surveys (2 by 2)

File 1 Innovation
1991

Innovation
1991

CIS1

Number of firms in file 1 (A) 15498 15498 3342
File 2 CIS1 CIS2 CIS2
Remaining number of firms after the merger
of file 1 and file 2

3329 3882 3881

Explanation of the variation of the
number of firms after the merger of file 1
and file 2 :
Entry in the survey (from file 1 to file 2)

-  old business included in file 2 0 821 2840
-  new business included in file 2 2 558 284
- total 2 1379 3124

Exit from the survey (from file 1 to file 2)
- by bankruptcy between the two surveys 2626 5330 693
- by exclusion from the second survey

(these firms are still in the census)
9545 7665 1892

- total 12171 12995 2585
Entry in the survey – Exit from the survey
(B)

-12169 -11616 +539

Remaining firms after the merger of file 1
and file 2 (A) + (B)

3329 3882 3881

Annualized Entry and exit rates
(corrected for pure sampling
movements):
Exit rate from the census 10.3% 5.8% 6.1%
Exit rate from the CIS 8.1% 5.2% 4.8%
Entry rate in the census 6.6% 4.9% 5.9%
Entry rate in the CIS <0.1% 2.3% 1.8%

Note about our sample:  the merger of the three files gives 808 firms. This small figure comes mostly from the
variation of the sampling of the two last innovation surveys (CIS1 and CIS2) since the exit rates are about the
same in the census and in the CIS. Therefore, our sample is representative of the firms that belong to the
cohort of 1985.
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We equally give the results of the test for the statistical significance of differences in the

distribution of observable variables and the mean characteristics of each class.

The t-tests

Classes Class 1
0-35%

Class 2
35-57%

Class 3
57-85%

- Innovation 1986-90 -0.42 (.67) -0.97 (.33) -0.61 (.54)
- Sales 1985 -1.96** (.05) -0.72 (.47) -0.40 (.69)
- Industry
- Car industry -0.35 (.73) -0.23 (.82) -0.91 (.36)
- Other equipment goods 1.33(.18) 0.98 (.33) -0.72 (.47)

- Intermediate goods -0.43 (.67) -0.61 (.54) 0.30 (.76)
-High tech dummy 0.21 (.83) 0.07 (.94) -0.30 (.77)
-Formal R&D 1986-90
- weak × -1.93** (.05) 1.26 (.21)

- moderate PM 1.32 (.19) -0.32 (.75)

- strong × -0.23 (.82) -1.31 (.19)

-Informal R&D 1986-90
- weak -0.11 (.91) -0.84 (.40) 0.43 (.66)
- moderate -1.17 (.25) -0.39 (.70) 0.14 (.89)
- strong × -0.55 (.58) -1.31 (.19)

Number of treated
Number of non-treated

42
135

66
91

204
72

Note : Between parentheses, p-value for testing the hypothesis that the true means of two
groups of observations are equal. “PM” indicates perfect matching. × : no point in the class.

Characteristics of firms in the different classes

           Means of the different samples
Classes 1 2 3

-Innovation 1986-90 21.5 73.2 98.2
-Salesa 42 223 504
-Industry

- Car industry 1.7 1.3 6.1
- Other equipment goods 5.6 12.1 18.1
- Intermediate goods 54.2 47.1 55.4
-High tech dummy 7.9 38.2 73.5
-Formal R&D 1986-90

- weak 0 8.3 17.4
- moderate 0.6 5.7 26.4
- strong 0 12.7 35.5
-Informal R&D 1986-90

- weak 6.8 21.0 17.7
- moderate 3.3 19.7 34.0
- strong 0 13.4 35.5
Number of treated
Number of non-treated

401
309

Note: The different samples used are defined in the table 7.


