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Abstract

Possibly hitherto unnoticed cointegrating relationships among integrated components of

data series are identified. If the components are cointegrated, the data are said to have

hidden cointegration. The implication of hidden cointegration on modeling data series

themselves is discussed through what we call crouching error correction models. We show

that hidden cointegration is a simple example of nonlinear cointegration. Economic

examples are provided with U.S. short-term and long-term interest rates and output and

unemployment, for which no evidence of standard cointegration is found.

KEY WORDS: Hidden cointegration; Crouching error correction models; Shocks; Interest

rates; Hysteresis of unemployment
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    Almost twenty years have passed since the introduction of the idea of cointegration

into econometric literature by the first author of this paper; see Granger (1981, 1983), Engle

and Granger (1987), and also the collection of papers in Engle and Granger (1991). It has

become customary to investigate the existence of cointegrating relationships among

integrated (often called nonstationary1) economic variables before conducting formal

inference, like estimating parameters of interest or testing hypotheses. If the data are

cointegrated, error correction models [ECMs] are estimated; otherwise, vector

autoregressive [VAR] models are estimated in first differences. There are also numerous

extensions of basic models; for instance, a discussion of nonlinear cointegration in Park and

Phillips (2001), threshold cointegration in Balke and Fomby (1997), and nonlinear

adjustment mechanism with asymmetric error correction in Enders and Granger (1998) and

Enders and Siklos (2001). Granger and Swanson (1996) contain a summary of further

                                                
1 An I(1) process is usually called nonstationary. However, while an I(1) series may be

nonstationary, not all nonstationary series are I(1); see Granger (1997) for an example. Also,

a stationary series will be I(0), but not all I(0) series are stationary. In this paper, keeping

the distinction in mind, we use nonstationarity interchangeably with an I(1) or unit root

process.
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developments in cointegration analysis, many of which are widely used in empirical

analysis.

Even though many economic series are routinely found to be cointegrated, it should be

emphasized that cointegration is a very special phenominon indeed. Cointegration occurs

because economic data share common stochastic trends, which are eliminated by

cointegrating linear combinations. Common stochastic trends are usually expressed as a

linear combination of the shocks of a system; see the Stock and Watson (1988) common

trends representation. Putting it differently, economic data are cointegrated because they

respond to shocks together. There would be no cointegration if they respond separately to

shocks. However, what would happen if they respond together only to a certain kind of

shocks? For instance, some series are known to be downwardly rigid; therefore, while they

move together with others to positive shocks, they would respond differently to negative

shocks. Further, we would observe an asymmetric response in unemployment to output

changes according to the framework of the hysteresis hypothesis of unemployment. Also

central banks may pay more attention to rising interest rates or exchange rates than falling

ones, because they have different implications on inflation rates. Hence, the instruments of

monetary policy like short-term interest rates may have relationships with only certain
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components of long-term interest rates or exchange rates. While such economic series are

not cointegrated, there might be useful information hidden in their components to help

understand their dynamic relationship. This possibility has been neglected until now. It is

the purpose of this paper to fill the gap by testing if there are cointegrating relationships

among the nonstationary components of data series. When the components are cointegrated,

the data series are called to have hidden cointegration. Surprisingly rich information on

their dynamics can be gathered from the approach. It becomes possible to investigate long-

run relationship among non-cointegrated nonstationary data series. It will be shown that

standard cointegration is a special case of hidden cointegration. Further, hidden

cointegration is a simple example of nonlinear cointegration.

The remainder of this paper is organized as follows; in section 1, possible cointegration

between nonstationary components of data series is discussed. In section 2, the implication

of hidden cointegration is studied through error correction models associated with hidden

cointegration. We call the error correction models implied by hidden cointegration

crouching ECMs. In section 3, the size of conventional cointegration tests is investigated

against hidden cointegration through Monte Carlo simulations. In section 4, empirical

examples are provided for U.S. short-term and long-term interest rates and output and
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unemployment, for which no evidence of standard cointegration is found. Conclusions are

provided in section 5.

1. Cointegration among nonstationary components of data series

Note initially that any I(1) series with an ARIMA(p,1,q) representation contain a

random walk component possibly with drift; see Beveridge and Nelson (1981). We discuss

only bivariate examples in this paper for simplicity. Consider the following two random

walks without drifts;

1 0
1

t

t t t iX X Xε ε-= + = +∑

and

1 0
1

t

t t t iY Y Yη η−= + = +∑ ,

where t = 1, 2, …, and 0X  and 0Y  denote initial values. iε  and iη  are white noises with

zero means. At this stage, we do not discuss if X and Y are cointegrated or not. Define new

variables;

( , )i imax dε ε∨ =  and ( , )i imin dε ε∧ = .

Note that i i i dε ε ε∧ ∨= + −  and d will be called a threshold. Popular choice would be

( ,0)i imaxε ε+ =  and ( ,0)i iminε ε− = . The threshold should be chosen such that the situation
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where i iε ε ∧=  or 0iε =  for all i should be excluded. Further, if i iε ε ∨=  for a small

number of i K∈ , while i iε ε ∧=  for most of i K+∈ −! , it is similar to using a dummy

variable for some i K∈ . From now on, we assume that 
1

t

iε ∧∑ , 
1

t

iη ∧∑ , 
1

t

iε ∨∑ , and

1

t

iη ∨∑  are all I(1). Later, we will discuss how to choose d based on a certain criterion.

There could be more than 2 components of interest in X and Y; however, for simplicity we

consider only two. We now have

1 0
1 1

t t

t t t i iX X Xε ε ε∧ ∨
−= + = + + −∑ ∑  dt

and

1 0
1 1

t t

t t t i iY Y Yη η η∧ ∨
−= + = + + −∑ ∑  dt.

It is much more convenient and intuitive if we set d = 0. For ease of exposition from now

on, we use d = 0 and mention results for 0d ≠  when necessary. We also assume that 0X

is a constant and that tX  = 0X + tX + + tX − , where 
1

t

t iX ε+ +=∑  and 
1

t

t iX ε− −=∑ . It

follows that t tX ε+ +∆ =  and t tX ε− −∆ = . Note also that we do not need to estimate any of

these terms; if 0tX∆ > , t tXε + = ∆  and 0tε − = , for instance. We note the following

observations on { }i iε ε+ −  under the assumption that ~ (0,i Nε 1). First,

1 1 1
~ ,

22
i d

πε
ππ

+ − 
  

 with [ ]i iE ε ε+ − =0. (d ⋅ , ⋅ ) denotes mean and variance of a random
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variable. Second, define 
1

2
i iυ ε

π
+ += − , then 

1

1

2

t

t iX t υ
π

+ += +∑ , where

1 1
~ 0,

2i d
πυ
π

+ − 
  

. Hence, tX +  is a random walk with drift. Similarly for tX − . More

general expressions are possible without assuming a specific distribution; see for instance

Schorderet (2001). We will call 
1 1

t t

i iε η+ + 
 
 
∑ ∑  = { }t tX Y+ +  and 

1 1

t t

i iε η− − 
 
 
∑ ∑  =

{ }t tX Y− −  sums of positive and negative shocks, respectively.

We now consider possible cointegration between the nonstationary components of X

and Y. First, a definition. We call X and Y to have hidden cointegration if their components

are cointegrated each other. We will show that only under specific conditions hidden

cointegration between nonstationary components of X and Y implies standard cointegrating

relationship for data series themselves. We implicitly assume for convenience that neither

1 1

t t

i iε η+ − 
 
 
∑ ∑  nor 

1 1

t t

i iε η− + 
 
 
∑ ∑  are cointegrated in the following discussion. In

empirical implementation below, however, we will test for possible cointegration between

them as well. First, we consider the case of no cointegration between the nonstationary

components of data series.

Case 1: Neither 
1 1

t t

i iε η+ + 
 
 
∑ ∑  nor 

1 1

t t

i iε η− − 
 
 
∑ ∑  are cointegrated.

It follows that X and Y are not cointegrated. They are subject to positive and negative

shocks, which have their own separate stochastic trends. More interesting cases follow;
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Case 2: Either 
1 1

t t

i iε η+ + 
 
 
∑ ∑  or 

1 1

t t

i iε η− − 
 
 
∑ ∑ , but not both, are cointegrated.

Hence, X and Y have either common positive or common negative shocks, but not both. For

example, when sums of positive shocks are cointegrated, both X and Y are subject to

common positive shocks. However, the sum of negative terms are not cointegrated due to,

for instance, different degrees of downward rigidity in X and Y. Even though X and Y are

still not cointegrated, they have more structure than available in the previous case 1. This

information on hidden cointegrating relationship will not be utilized if we are interested

only in the cointegrating relationship between X and Y.

Case 3: Both 
1 1

t t

i iε η+ + 
 
 
∑ ∑  and 

1 1

t t

i iε η− − 
 
 
∑ ∑  are cointegrated, but with different

cointegrating vectors.

Still, X and Y are not cointegrated; even though they have common positive and negative

shocks, the common shocks are not cointegrated. For X and Y to be cointegrated, an extra

condition is necessary.

Case 4: Both 
1 1

t t

i iε η+ + 
 
 
∑ ∑  and 

1 1

t t

i iε η− − 
 
 
∑ ∑  are cointegrated with the same

cointegrating vectors.

The positive and negative shocks are cointegrated with the same cointegrating vectors and

there is only one common shock. It can be interpreted as a common stochastic trend of X
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and Y and is responsible for their long-run dynamic behavior. In this case X and Y are

cointegrated.

The above discussion demonstrates how special cointegration is. For X and Y to be

cointegrated, their nonstationary components should be cointegrated each other with the

same cointegrating vectors.2 Table 1 summarizes the above discussion. In cases 1 to 3, X

and Y are not cointegrated. It is current practice to model nonstationary variables with a

VAR in first difference when they are not cointegrated. However, the degree of no-

cointegration is different from each other. Therefore, if we pay attention only to

cointegrating relationship between X and Y, much valuable information would be lost. Even

if they are not cointegrated, there could be hidden structure that can be fruitfully utilized to

help understand their dynamics and to produce possibly improved forecasts. It is the object

of this research to find if such useful information is available.

It is easy to show that hidden cointegration is a simple example of nonlinear

cointegration, which is actively studied these days; see for example, Granger (1995), Park

                                                

2 Further, if { }t tX kY−  is stationary where 1k ≠ , the cointegrating relationship will

contain a deterministic time trend, unless d = 0.
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and Phillips (1999 and 2001) and Karlsen et al. (2000). Consider two I(1) variables { }tX

and { }tY . They are linearly cointegrated if there exists α  such that { }t tY Xα− ~ I(0).

Further, they are nonlinearly cointegrated if there is β  such that { }( ) ( )t tf Y g Xβ− ~ I(0)

for certain nonlinear functions f and g. In the hidden cointegration framework, we take

( )tf Y  to be either 
1

( , )
t

i Y
i

max Y d
=

∆∑  or 
1

( , )
t

i Y
i

min Y d
=

∆∑ , with a threshold Yd . Similarly

for function g. Finally, our hidden cointegration should not be confused with that discussed

in Nowak (1991) in the framework of errors-in-variables. He is interested in a situation in

which cointegration of time series of interest can be partially or totally hidden in the

observed data due to measurement errors. Note that his proposition 1 is analogous to our

case 4 in table 1. He assumes that measurement errors are I(1), which implies that observed

data are measured very imprecisely.

2. Crouching error correction models

An error correction model implied by hidden cointegration will be called a crouching

error correction model. In this section we discuss it, starting with case 2 of the previous

section. Assume that 
1 1

t t

i iε η+ + 
 
 
∑ ∑  are cointegrated with a cointegrating vector of (1, -

1) for convenience and that they have the following ECM;



12

1 1

0 1 1 1
1 1

1 1

0 1 1 1
1 1

( , )

( , )

t t

t i i t t t

t t

t i i t t t

lags

lags

ε γ γ ε η ε η ξ

η δ δ ε η ε η ζ

− −
+ + + + +

− −

− −
+ + + + +

− −

 = + − + +  
 = + − + +  

∑ ∑

∑ ∑
,

where 1 1( , )t tlags ε η+ +
− −  indicates additional terms with various lags of 1tε +

−  and 1tη+
− . tξ  and

tζ  are white noises. Note that for cointegration 1γ  and 1δ  cannot be both zero

simultaneously. In terms of tX +∆  and tY +∆ , we have

( )0 1 1 1 1 1( , )t t t t t tX X Y lags X Yγ γ ξ+ + + + +
− − − −∆ = + − + ∆ ∆ + .

Similarly for 
t

Y +∆ . X and Y do not have an error correction model in the usual sense.

However, the hidden cointegration relationship between their nonstationary components

reveals until now unnoticed structure.

    For case 3, assume that 
1 1

t t

i iε η− − 
 
 
∑ ∑  are cointegrated as well, with a cointegrating

vector of (1, -k), 1k ≠  and that they have the following error correction models;

0

1 1
'

2 1 1
1 1

1 1
'
0 2 1 1

1 1

( , )

( , )

t t

t i i t t t

t t

t i i t t t

k lags

k lags

ε γ γ ε η ε η ξ

η δ δ ε η ε η ζ

− −
− − − − −

− −

− −
− − − − −

− −

 = + − + +  
 = + − + +  

∑ ∑

∑ ∑
.

X and Y are not cointegrated. However, they posses the following representation derived

from the above crouching ECMs;

     ( ) ( )0 1 1 1 2 1 1 1 1 1 1( , , , )t t t t t t t t t tX X Y X kY lags X Y X Yγ γ γ ξ+ + − − + + − −
− − − − − − − −∆ = + − + − + ∆ ∆ ∆ ∆ +   (1)

and
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( ) ( )0 1 1 1 2 1 1 1 1 1 1( , , , )t t t t t t t t t tY X Y X kY lags X Y X Yδ δ δ ζ+ + − − + + − −
− − − − − − − −∆ = + − + − + ∆ ∆ ∆ ∆ + .

These models are more general than the conventional error correction models

corresponding to case 4 below because they put fewer restrictions on their coefficients.

Finally for case 4, assume that (1, -1) is a common cointegrating vector and that X and Y

have the following standard error correction models;

     ( )0 1 1 1 1( , )t t t t t tX X Y lags X Yγ γ ξ− − − −∆ = + − + ∆ ∆ +    (2)

and

( )0 1 1 1 1( , )t t t t t tY X Y lags X Yδ δ ζ− − − −∆ = + − + ∆ ∆ + .

We may easily examine the restrictions that standard cointegration puts on equation (1) by

rewriting equation (2) as follows;

( ) ( )0 1 1 1 1 1 1 1 1( , )t t t t t t t t t tX X Y X Y lags X X Y Yγ γ γ ξ+ + − − + − + −
− − − − − − − −∆ = + − + − + ∆ + ∆ ∆ + ∆ + .

Therefore, 1 2γ γ γ= =  and the coefficients associated with t kX +
−∆  and t kX −

−∆ , 1,k =  2,

…, should be the same. Similarly for t kY +
−∆  and t kY −

−∆ .

Recall that couching ECMs are standard error correction models, except for the fact that

they show long-run equilibrium relationship and short-run dynamics of nonstationary

components of data series, rather than data themselves. We offer a brief comparison to

other nonstandard error correction models considered in the literature. Note however that
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all of the ECMs discussed below are concerned with the data series themselves, not their

components. Granger and Lee (1989) allow the effects of error correcting term to be

different depending on its signs, within the framework of a nonsymmetric error correction

model. Siklos and Granger (1997) introduce regime sensitive cointegration by allowing on-

and-off cointegrating relationship induced by changes in monetary policy. They allow data

series to be stationary depending on policy regimes. In contrast, we assume that the data

series are always nonstationary and allow possibly different cointegrating relationships

among the components of data series corresponding to different shocks or different regimes.

Escribano and Pfann (1998) introduce nonlinear error correction model embodying

asymmetric costs of adjustment. Finally, Enders and Granger (1998) and Enders and Siklos

(2001) consider threshold adjustment to long-run equilibrium relationships depending on

the signs and magnitude of changes in error correcting terms. In the hidden cointegration

framework, the adjustment to long-run equilibrium is linear, even though the asymmetric

threshold adjustment can be easily accommodated. It is also possible to provide theoretical

justifications to the widely used non-linear error correction models from the perspectives of

hidden cointegration. This line of research is reported in Yoon (2001).
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3. Simulation results

In this section, we briefly examine the size of conventional cointegrating regression

augmented Dickey-Fuller [CRADF] tests when data series are subject to hidden

cointegration with an unknown threshold value d. The power of the test is rather well

known, so we do not report it; see for instance Kremers et al. (1992). We generate 10,000

independent random numbers from a standard normal distribution (0,N 1) with a sample

size of 100, 300, and 500, after discarding the initial 100 observations. We set a common

threshold [ 1.0,d ∈ −  1.1] with an increment of 0.1 and employ the CRADF(k) test, with k =

0, 1, and 4, for the null of no cointegration between X and Y.

3.1 Size of cointegration tests: case 2

We assume that 
1 1

t t

i iε η∨ ∨ 
 
 
∑ ∑  are cointegrated such that 

1

t

iε ∨∑ −  
1

t

iη ∨∑ = tς  ~ I(0).

We use the following data generating process:

^

1 1

t t

i i i tX dtη ε ς∨= + − +∑ ∑

and

1 1

t t

t i iY dtη η∨ ∧= + −∑ ∑ .

To test for cointegration, we use Y as a dependent variable and a constant and X as
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independent variables. X and Y are not cointegrated by design. As d  is decreasing, the

proportion of 
1

i

t

η ∨∑  becomes higher relative to that of 
1

i

t

η ∧∑  or 
1

t

iε ∧∑  and so does the

importance of hidden cointegration between the 
1 1

i i

t t

ε η∨ ∨ 
 
 
∑ ∑  components in X and Y.

The size of standard cointegration tests is summarized in figure 1 at a nominal size of 5%

for the CRADF tests. Note that the scale of each plot is different. The empirical size is

shown for a sample of 100, 300, and 500. The size of the tests is increasing as sample size

increases. CRADF(4) test is undersized while CRADF(0) test is badly oversized. A

CRADF(1) test becomes oversized as d  is decreasing. Hence, a spurious cointegrating

relationship would be found more often as d  is decreasing, because the importance of

hidden cointegration is increasing. We may avoid the spurious cointegration finding by

including more lags in the CRADF test. However, the power of the test will be lower.

3.2 Size of cointegration tests: case 3

We assume that both 
1 1

t t

i iε η∨ ∨ 
 
 
∑ ∑  and ^ ^

1 1

t t

i iε η 
 
 
∑ ∑  are cointegrated, but with

different cointegrating vectors of (1, -1) and (1, -3), respectively such that 
1

t

iε ∨∑ −

1

t

iη ∨∑ = 1tϕ  and 
1

t

iε ∧∑  −  
1

3
t

iη ∧∑  = 2tϕ , where 1tϕ  and 2tϕ  are stationary error terms.

X and Y are not cointegrated. The data generating process is
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1 1

t t

t i i tX dtη η ς∨ ∧= + − +∑ ∑ ,

where tς  is stationary and

1 1

3
t t

t i iY dtη η∨ ∧= + −∑ ∑ .

As d is increasing, the importance of the cointegration between the negative components is

increasing over that between the positive ones. Figure 2 shows the size of the CRADF tests.

Note that the scales of the plots are not the same. The CRADF(4) tests is undersized, while

the CRADF(0) test is oversized for all d and CRADF(1) is oversized for d is bigger than 0.7

or 0.8. Therefore, a spurious cointegrating relationship would be found more often as d is

increasing. We may avoid spurious cointegration by including more lags in the

cointegration tests at the loss of power of the tests.

4. Examples

In this section, we provide two examples of hidden cointegration. The first example is

concerned with U.S. short-term and long-term interest rates. The second example is on the

relationship between U.S. output and unemployment, known as Okun’s law.

4.1 Short-term and long-term interest rates
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We use two monthly interest rates on federal funds [FYFF] and ten-year T-bill

[FYGT10]. The data series, in % per annum, are available at the DRI database from 1954:8

~ 2001:3. The data are not seasonally adjusted. Figure 3 shows the original data series. We

present empirical results for two different sample periods, before and after the Fed’s

monetary policy change in 1979:9.

4.1.1 The 1983:1 ~ 2001:3 sample period

The starting date is chosen to avoid more volatile episodes caused by the Fed’s

monetary policy changes that were effective until 1982:10. The total number of

observations is 219. We choose the threshold d = 0 because it makes the interpretation of
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estimation results very easy and natural.3 We calculate cumulative sums of 
1954:9

t

i
i

FYFF +

=
∆∑

and 
1954:9

10
t

i
i

FYGT +

=

∆∑  to determine 1983:1FYFF +  and 1983:110FYGT +  with 1983:1FYFF + =

1983:1

1954:9
i

i

FYFF +

=

∆∑ , for instance. Note that earlier observations up to 1982:12 are used only to

determine the initial values. Figure 4 shows the interest rates in first difference and figure 5

shows ( tFYFF + , )10tFYGT +  and ( tFYFF − , )10tFYGT − .

There is only weak evidence of cointegration between the two interest rates. Table 2

shows the cointegration test results. The lag order in the CRADF test is selected to be the

first significant one, starting with 20 lags and reducing the order one by one. Enders and

Siklos (2001) also find that they are not cointegrated using the data series in logs and

suggest threshold adjustment toward long-run equilibrium relationship. In this paper, we

                                                
3 We may select thresholds based on certain criterion, for example, maximizing the sum of

correlations between ( )10t tFYFF FYGT∨ ∨∆ ∆  and ( )^ ^10t tFYFF FYGT∆ ∆ . We assume

for convenience that the thresholds are the same for both interest rates. For [ 0.2,0.2]d ∈ −

with an increment of 0.001, d = 0.021~0.029 is selected for the current sample period, with

maximum correlations of 0.67. If we set d = 0 instead, the sum of correlations is lower only

by 0.00038. For the earlier sample period of 1956:1 ~ 1979:3, which will be considered

below, d = 0.070 is selected, with maximum correlations of 0.54. If we set d = 0 instead, the

sum is lower by 0.01237.
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use the data series in levels without taking log transformation. From the various

combinations of positive or negative sums of interest rate changes, evidence of hidden

cointegration is found for ( )10t tFYFF FYGT+ +  and ( )10t tFYFF FYGT+ − , as

summarized in table 3. Figure 6 compares residuals from the two possible hidden

cointegrating regressions, estimated with a constant and trend. The residual from the first

regression seems to have a clearer appearance like a stationary series. On the contrary, the

evidence for hidden cointegration between ( )10t tFYFF FYGT+ −  is somewhat weak; for

instance, CRADF(15) is only -3.39, where 15 is the next significant lag length. We can

infer indirectly that if ( )10t tFYFF FYGT+ −  are also cointegrated,

( )10 10t tFYGT FYGT+ −  are cointegrated as well and there is some evidence for it;

CRADF(10) = -3.91 with 10tFYGT +  as a dependent variable with trend. However, the

evidence is still not definite; for instance CRADF(7) becomes only -3.32. Keeping the

results in mind, it will be assumed that only ( )10t tFYFF FYGT+ +  are cointegrated. The

following hidden cointegrating regression is estimated with OLS;

10tFYGT + =
(19) (32) (23)

19.5 0.06 0.52 t ttrend FYFF residual+− + × + × + ,

where t-values are reported in the parentheses. The residuals are already shown at the upper

panel in figure 6.
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   In sum, there is evidence of hidden long-run equilibrium relationship between

cumulated positive changes in long-term and short-term interest rates, while the interest

rates themselves are not cointegrated. We may provide the following observations. The

increase in the long-term interest rate may be interpreted as signaling the increase in

inflationary expectations. To be credible in its fight against inflation, the Fed has responded

by increasing short-term interest rate under its control. The estimated hidden cointegrating

regression indicates that the Fed has responded by increasing the federal funds rate more

than the increases in the long-term interest rate. Meanwhile, the Fed is more tolerant to

falling long-term interest rates. The asymmetric behavior of the Fed is responsible for the

no-cointegration result for the short-term and long-term interest rates. See also Enders and

Siklos (2001) for the discussion on the Fed’s asymmetric response. Clarida et al. (2000)

find that the Fed’s interest rate policy becomes very sensitive to changes in inflation

expectations during the sample period that we consider in this subsection.

   Using the residuals from the above hidden cointegrating regression, we estimate the

following crouching error correction models after eliminating insignificant terms;

1 1 2
(3.51) (2.26) (3.67) (2.24)

3 1
(2.18) (2.06)

.04 .07 .29 10 .15 10

.15 10 .17

t t t t

t t

FYFF residual FYGT FYGT

FYGT FYFF

+ + +
− − −

+ +
− −

∆ = + × + ×∆ − ×∆

+ ×∆ + ×∆
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2 .227R =

and

1 1 4
(1.71) (3.46) (6.33) (2.81)

7 3 5 6
(3.54) (2.24) (1.99) (2.72)

10 .03 .14 .43 10 .22 10

.27 10 .14 .13 .20

t t t t

t t t t

FYGT residual FYGT FYGT

FYGT FYFF FYFF FYFF

+ + +
− − −

+ + + +
− − − −

∆ = − × + ×∆ + ×∆

+ ×∆ − ×∆ + ×∆ − ×∆

2R =  .202.

Robust t-values are reported in the parentheses. Note that the residual term is significant in

both equations.

4.1.2 The 1956:1 ~ 1979:3 and 1961:1 ~ 1979:3 sample periods

   We repeat the same analysis for the earlier sample period of 1956:1 ~ 1979:3, a total of

279 observations. The ending date is chosen to avoid the more volatile episodes starting at

1979:9. We find quite different implications on the Fed’s behavior. Still little evidence of

cointegration is found for the two interest rates as summarized in table 4. From the various

combinations of positive and negative components of interest rates, evidence of hidden

cointegration is found for ( )10t tFYFF FYGT+ − ; see table 5. The estimated hidden

cointegrating relationship is

tFYFF + =
(5) (12) (19)

-1.3 0.06 1.64 10t ttrend FYGT residual−+ × − × + .
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The results indicate that during the current sample period the Fed has responded only to

falling long-term interest rates by lowering federal funds rate. If we take the falling long-

term interest rate as signaling lower expected inflation induced by future economic

slowdown, the Fed has tried to avoid slowdown by lowering short-term interest rate.

Compared to the estimation results reported previously for the latter sample period, we may

conclude at least that the Fed did not conduct systematic monetary policy to fight inflation

before Volcker’s appointment as its Chairman in 1979. Recall that during the late 1960s

through the 1970s, U.S. experienced high and volatile inflation. Clarida et al. (2000) show

that the Fed is more accommodating inflation rather than fighting it during the sample

period considered here. The estimated crouching error correction models are,

1 1 3 1
(6.74) (3.10) (1.96) (3.80) (2.89)
.13 .03 .20 10 .33 10 .30t t t t tFYFF residual FYGT FYGT FYFF+ − − +

− − − −∆ = − × + ×∆ + ×∆ + ×∆

2 .125R = ,

and

1 1
(6.01) (3.91) (2.37)

10 .04 .31 10 .03t t tFYGT FYGT FYFF− − +
− −∆ = − + ×∆ + ×∆

2 .102R = .

Robust t-values are reported in the parentheses. We note that the 2R s  are only half of those

previously found for latter sample period. Further, the error correcting term is significant
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only in federal funds rate. Therefore, 10tFYGT −  is a common stochastic trend responsible

for the long-run dynamic behavior of the two rates, following the discussion in Gonzalo

and Granger (1995).

Somewhat weaker results are found for cointegrating relationship between

( )10t tFYFF FYGT+ −  for a sample of 1961:1 ~ 1979:3. The starting date is chosen to have

the same sample size as used in subsection 4.1.1 and to avoid more volatile episodes as well.

The two interest rates are still not cointegrated. Further, neither are any combinations of

sums of interest rate changes, including ( )10t tFYFF FYGT+ − . For instance with tFYFF +

as a dependent variable, CRADF(12) is only -3.74, while at the 5% significance level the

critical value is about -3.82. The finding reveals that during the sample period, the Fed’s

interest rate policy is driven separately from the shocks to inflationary expectations,

whether they are increasing or decreasing.

4.2 Output and unemployment rate

In this subsection, we investigate possible long-run relationship between output and

unemployment. First, a note on data availability. While unemployment data are available

monthly, GDP, which is widely used as a measure of output, is not. Hence we decide to use
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industrial production in manufacturing [IP] as a measure of output instead, along with

unemployment rate in manufacturing [LURM], both available monthly from the DRI

database. Figure 7 shows the data series from 1948:1 ~ 2001:3 and they are seasonally

adjusted. The output is set 100 at 1992 and transformed into log. The unemployment is

in %. We will use Y and U to denote output and unemployment rate, respectively. The

figure indicates that the series are not cointegrated and the results reported in table 6 concur.

Using real GNP and unemployment, Altissimo and Violante (2001) also find no evidence of

cointegration and non-linear cointegration relationship.4

We investigate the existence of hidden cointegration. We select thresholds that maximize

the sum of correlations between ( )t tY U∨ ∧∆ ∆  and ( )^
t tY U ∨∆ ∆ . For output, a threshold

of 1d  = 0 is selected from 1 [ 0.1,0.1]d ∈ −  with an increment of 0.001. For unemployment

rate, values between -0.09 and 0.09 do not make any difference out of 2 [ 0.2,0.2]d ∈ −  with

an increment of 0.01. Therefore, we set 2d = 0 as well. Figure 8 shows the positive and

                                                

4 They use the procedures suggested by Balke and Fomby (1997) and Corradi et al. (2000)

to find a non-linear cointegrating relationship.



26

negative components of Y and U. In figure 9, Y is superimposed on U with appropriate

modifications so that they look similar in magnitudes. In contrast to the original data, their

positive and negative components are moving very closely. We test for hidden cointegration

between the components and find evidence of hidden cointegration between tY −  and tU + .

The results are summarized in table 7. The following hidden cointegrating regression is

estimated with OLS;

(19) (91) (121)
1.31 0.06 30.17t t tU trend Y residual+ −= + × − × + .

t-values are reported in the parenthesis. Figure 10 shows the residual from the above

regression. We may provide the following observations. Output and unemployment do not

share a common stochastic trend. However, falling output would increase unemployment in

the long-run. There is an asymmetric response in unemployment to increase in output;

when output is increasing, it does not share a common stochastic trend with unemployment

rate. This asymmetric behavior of unemployment to output changes is widely noted in

literature as a hysteresis hypothesis; when output returns to a level where it was before the

shock, unemployment fails to return to its original level. Various explanations are given for

hysteresis, for instance, an unemployment model based on a human capital, an

insider/outsider model, or an institutional model; see Schorderet (2001) for discussion.
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  Finally, after eliminating insignificant terms the following crouching error correction

models are estimated;

1 3 1 14
(9.0) (3.7) (3.1) (4.9) (2.8)

0.08 0.07 0.18 15.9 2.94t t t t tU residual U Y Y+ + − −
− − − −∆ = − × + ×∆ − ×∆ + ×∆

2R  = 0.27,

and

1 3 6 1 4
(4.0) (3.2) (2.7) (2.2) (4.3) (2.4)

0.00 0.005 0.005 0.002 0.37 0.13t t t t t tY U U U Y Y− + + + − −
− − − − −∆ = − − ×∆ − ×∆ + ×∆ + ×∆ − ×∆

2R  = 0.28.

Robust t-values are reported in the parentheses. The error correcting term is significant only

in tU +∆ . Therefore, tY −  is a common stochastic trend, responsible for the long-run

dynamic behavior of tU + .

5. Conclusion

In this paper, as yet possibly unnoticed cointegrating relationships between

nonstationary components of data series are identified. When their components are

cointegrated, the data series have hidden cointegration. We also define crouching error

correction models of cointegrated components. We show that hidden cointegration is a

simple example of nonlinear cointegration. We show also that standard cointegration
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emerges as a special case of hidden cointegration. While the data series are not cointegrated

in the conventional sense, it is still possible for them to have hidden cointegration, which

would help better understand their dynamic relationships and produce improved forecasts.

We investigate the size of conventional cointegration tests when the data series are subject

to hidden cointegration.

We apply the hidden cointegration framework to two sets of U.S. data series, for which

no standard cointegration is found. First, we use U.S. short-term and long-term interest

rates and find quite different implications on the Fed’s interest rate policy. If the Fed is

more tolerant to falling interest rates, while fighting rising long-term interest rates by

aggressively adjusting short-term interest rate in fear of inflation, its asymmetric responses

would produce no-cointegration between the short-term and long-term interest rates but

hidden cointegration among their components. We indeed find that federal funds rate and

ten-year Treasury bill rate posses hidden cointegration during the sample period in which

the Fed is known to become sensitive to changes in expected inflation. Second, for U.S.

output and unemployment, we find that there is an asymmetric response in unemployment

rate to changes in output so that increasing output does not share common stochastic trend

with decreasing unemployment rate, while falling output is cointegrated with increasing
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unemployment rate.
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Table 1: Hidden cointegration

Case + components - components Cointegration between X and Y VAR
1 N N N In difference

Y N N In difference2
N Y N In difference

3 Y Y No, if cointegrating vectors are different. In difference
4 Y Y Yes, if cointegrating vectors are the same. ECM

N: No cointegration.  Y: Cointegration. ECM: error correction model

“In difference” denotes VAR in first difference.

+ and - components indicate 
1 1

t t

i iε η+ + 
 
 
∑ ∑ and 

1 1

t t

i iε η− − 
 
 
∑ ∑ , respectively.
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Table 2: Cointegration tests, 1983:1 ~ 2001:3

Dependent variable With trend Without trend
FYFF -2.14 [14] -2.00 [1]
FYGT10 -3.68 [7] -1.85 [14]
Critical value (5%) -3.82 -3.37

FYFF: Federal funds rate. FYGT10: Ten-year T-bill rate. Cointegrating regression

augmented Dickey-Fuller [CRADF] tests are reported. Numbers in the square parentheses

are lag orders used in the CRADF tests.

Table 3: Hidden cointegration tests, 1983:1 ~ 2001:3

Dependent variable Independent variable With trend Without trend

FYFF + 10FYGT + -3.72 [7] -1.84 [0]

10FYGT + FYFF + -5.40 [11]
-4.51 [7]

-1.70 [0]

FYFF − 10FYGT − -1.87 [1] -1.26 [1]

10FYGT − FYFF − -2.44 [3] -1.04 [1]

FYFF + 10FYGT − -2.83 [15] -2.87 [15]

10FYGT − FYFF + -4.39 [19]
-3.39 [15]

-2.81 [15]

FYFF − 10FYGT + -1.64 [1] -1.83 [1]

10FYGT + FYFF − -2.88 [7] -1.88 [11]

Critical value (5%) -3.82 -3.37

tFYFF + = 
1954:9

t

i
i

FYFF +

=
∆∑ , where iFYFF +∆  = ( ,0)imax FYFF∆ . See Table 2 for more

details.
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Table 4: Cointegration tests, 1956:1 ~ 1979:3

Dependent variable With trend Without trend
FYFF -3.48 [3] -4.35 [12]
FYGT10 -2.43 [17] -2.75 [3]
Critical value (5%) -3.81 -3.36

See table 2 for details.

Table 5: Hidden cointegration tests, 1956:1 ~ 1979:3

Dependent variable Independent variable With trend Without trend

FYFF + 10FYGT + -3.29 [16] -3.20 [16]

10FYGT + FYFF + -2.92 [16] -3.17 [16]

FYFF − 10FYGT − -2.83 [5] -2.82 [5]

10FYGT − FYFF − -2.55 [19] -2.78 [5]

FYFF + 10FYGT − -4.25 [12] -4.19 [12]

10FYGT − FYFF + -4.08 [12] -4.24 [12]

FYFF − 10FYGT + -2.42 [14] -2.43 [14]

10FYGT + FYFF − -2.16 [11] -2.33 [14]

Critical value (5%) -3.81 -3.36

See table 2 for details.
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Table 6: Cointegration test: 1948:1 ~2001:3

Dependent variable Independent variable With trend Without trend
U Y -2.55 [12] -3.29 [12]
Y U -2.21 [15] -0.93 [12]
Critical value (5%) -3.80 -3.35

U and Y denote unemployment rate and output, respectively. See table 2 for details.

Table 7: Hidden cointegration tests: 1948:1 ~2001:3

Dependent variable Independent variable With trend Without trend

Y + U + -3.02 [18]
-2.86 [12]

-3.14 [18]
-3.06 [12]

U + Y + -2.80 [18]
-2.95 [12]

-3.04 [18]
-3.00 [12]

Y − U + -4.48 [0] -0.67 [16]
-0.53 [4]

U + Y − -4.69 [0] -0.44 [16]
-0.31 [4]

Y + U − -1.28 [1] -1.24 [1]

U − Y + -1.93 [19]
-2.04 [3]

-1.16 [1]

Y − U − -2.53 [12]
-3.41 [8]

-1.80 [12]
-2.56 [4]

U − Y − -3.36 [12]
-3.90 [8]

-1.64 [12]
-2.40 [4]

Critical value (5%)   -3.80 -3.35

See table 2 for details.
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Captions for figures

Figure 1: Size of cointegration tests

Figure 2: Size of cointegration tests

Figure 3: U.S. short-term and long-term interest rates, 1954:8 ~ 2001:3

Figure 4: First differences of interest rates

Figure 5: Sum of positive and negative changes in interest rates

Figure 6: Comparison of two residuals, 1983:1 ~ 2001:3

Figure 7: U.S. industrial production and unemployment rate, 1948:1 ~ 2001:3

Figure 8: Transformed data series: 1948:2 ~ 2001:3

Figure 9: Comparison of transformed data series: 1948:2 ~ 2001:3

Figure 10: Estimated error correcting term between Y −  and U +
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